JP5095129B2 - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
JP5095129B2
JP5095129B2 JP2006146881A JP2006146881A JP5095129B2 JP 5095129 B2 JP5095129 B2 JP 5095129B2 JP 2006146881 A JP2006146881 A JP 2006146881A JP 2006146881 A JP2006146881 A JP 2006146881A JP 5095129 B2 JP5095129 B2 JP 5095129B2
Authority
JP
Japan
Prior art keywords
rotor
working chamber
phase
side working
advance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006146881A
Other languages
Japanese (ja)
Other versions
JP2007318937A (en
Inventor
玲 西川
淳 枡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006146881A priority Critical patent/JP5095129B2/en
Publication of JP2007318937A publication Critical patent/JP2007318937A/en
Application granted granted Critical
Publication of JP5095129B2 publication Critical patent/JP5095129B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)

Description

この発明は、回転子に永久磁石を備えた電動機に関し、特に、回転子の永久磁石の界磁特性を変更できる電動機に関するものである。   The present invention relates to an electric motor having a permanent magnet in a rotor, and more particularly to an electric motor capable of changing the field characteristics of a permanent magnet of a rotor.

この種の電動機として、夫々個別に永久磁石を備える内周側回転子と外周側回転子とが同軸に配設され、この両回転子を周方向に相対的に回動させる(両回転子の相対的な位相を変更する)ことにより、回転子全体としての界磁特性を変更できるようにしたものが知られている(例えば、特許文献1参照)。   As an electric motor of this type, an inner circumferential rotor and an outer circumferential rotor each having a permanent magnet are coaxially arranged, and both rotors are relatively rotated in the circumferential direction (of both rotors). It is known that the field characteristics of the entire rotor can be changed by changing the relative phase (see, for example, Patent Document 1).

この電動機では、電動機の回転速度に応じて両回転子における相対的な位相を変更する場合には、遠心力の作用により径方向に沿って変位する部材によって、外周側回転子と内周側回転子との何れか一方を他方に対して周方向に回動させる。また、固定子に発生する回転磁界の速度に応じて両回転子における相対的な位相を変更する場合には、各回転子が慣性により回転速度を維持する状態で固定子巻線に制御電流を通電して回転磁界速度を変更することによって、外周側回転子及び内周側回転子の周方向の相対位置を変更する。   In this electric motor, when the relative phase of both rotors is changed according to the rotational speed of the electric motor, the outer rotor and the inner rotor are rotated by a member that is displaced along the radial direction by the action of centrifugal force. Either one of the children is rotated in the circumferential direction with respect to the other. In addition, when the relative phase of both rotors is changed according to the speed of the rotating magnetic field generated in the stator, a control current is applied to the stator winding in a state where each rotor maintains the rotation speed due to inertia. The relative position in the circumferential direction of the outer peripheral side rotor and the inner peripheral side rotor is changed by energizing and changing the rotating magnetic field speed.

この電動機においては、外周側回転子と内周側回転子の永久磁石を互いに異極同士で対向させる(同極配置にする)ことで、回転子全体の界磁を強めて誘起電圧を増大させ、逆に、外周側回転子と内周側回転子の永久磁石を互いに同極同士で対向させる(対極配置にする)ことで、回転子全体の界磁を弱めて誘起電圧を減少させる。
特開2002−204541号公報
In this electric motor, the permanent magnets of the outer rotor and the inner rotor are opposed to each other with different polarities (with the same polarity arrangement), thereby strengthening the field of the entire rotor and increasing the induced voltage. On the contrary, the permanent magnets of the outer and inner rotors are opposed to each other with the same polarity (with a counter electrode arrangement), thereby weakening the field of the entire rotor and reducing the induced voltage.
JP 2002-204541 A

しかし、この従来の電動機の場合、外周側回転子と内周側回転子の相対位相を変更できる条件が限られており、電動機の運転停止時や任意の回転時に自由に相対位相を変更することができない。特に、ハイブリッド車や電動車両の駆動用として用いる場合には、車両の運転状況に応じて瞬時に所望の電動機特性に変更することが望まれ、この要望に応えるためにも相対位相の変更制御の自由度を高めることが重要となる。このため、本出願人は、作動流体を用いる位相変更手段を組み込むことを発案し、現在、作動流体の効率的な給排制御を検討している。   However, in the case of this conventional electric motor, the conditions under which the relative phase between the outer peripheral rotor and the inner peripheral rotor can be changed are limited, and the relative phase can be freely changed when the motor is stopped or rotated arbitrarily. I can't. In particular, when used for driving a hybrid vehicle or an electric vehicle, it is desired to instantaneously change to a desired motor characteristic according to the driving situation of the vehicle. It is important to increase the degree of freedom. For this reason, the present applicant has conceived of incorporating phase changing means using a working fluid, and is currently studying efficient supply / discharge control of the working fluid.

具体的には、位相変更手段には、内周側回転子を外周側回転子に対して進角方向に相対回動させる進角側作動室と、内周側回転子を外周側回転子に対して遅角方向に相対回動させる遅角側作動室を設け、これらの作動室に対する作動流体の給排を電磁式の流路切換弁で制御することを検討している。   Specifically, the phase changing means includes an advance side working chamber for rotating the inner side rotor relative to the outer side rotor in the advance direction, and the inner side rotor as the outer side rotor. On the other hand, a retarding-side working chamber that is relatively rotated in the retarding direction is provided, and the supply and discharge of the working fluid to and from these working chambers is controlled by an electromagnetic flow path switching valve.

しかし、この位相変更手段の場合、進角側作動室と遅角側作動室に対する作動流体の給排を流路切換弁によって操作するため、流路切換弁における作動流体の通過許容流量によって作動応答性が制限されてしまい、通過許容流量を大きく設定しなければ急激な位相変更要求に対応できなくなる。そして、通過許容流量を増大させるためには流路切換弁の弁体や電磁アクチュエータ部を大型化せざるを得ないが、流路切換弁の大型化は、システム内での占有スペースの増大や製造コストの高騰を招いてしまう。   However, in the case of this phase changing means, the working fluid is supplied and discharged by the flow path switching valve to the advance side working chamber and the retard side working chamber, so that the operation response is determined by the allowable flow rate of working fluid in the flow path switching valve Therefore, unless the passage allowable flow rate is set large, it becomes impossible to respond to a sudden phase change request. And in order to increase the passage allowable flow rate, it is necessary to increase the size of the valve body and the electromagnetic actuator part of the flow path switching valve. However, increasing the size of the flow path switching valve increases the occupied space in the system. The manufacturing cost will rise.

そこでこの発明は、占有スペースの増大や製造コストの高騰を招くことなく、位相変更制御の自由度の向上と、位相変更時の作動応答性の向上を図ることのできる電動機を提供しようとするものである。   Therefore, the present invention intends to provide an electric motor capable of improving the degree of freedom of phase change control and improving the operation response at the time of phase change without causing an increase in occupied space or an increase in manufacturing cost. It is.

上記の課題を解決するための手段として、請求項1に記載の発明は、円周方向に沿うように永久磁石(例えば、後述の実施形態における永久磁石9)が配設された内周側回転子(例えば、後述の実施形態における内周側回転子6)と、この内周側回転子の外周側に同軸にかつ相対回動可能に配設されるとともに、円周方向に沿うように永久磁石が配設された外周側回転子(例えば、後述の実施形態における外周側回転子5)と、前記内周側回転子と外周側回転子を相対回動させて両者の相対的な位相を変更する位相変更手段(例えば、後述の実施形態における位相変更手段12)と、を備えた電動機であって、前記位相変更手段が、内部に導入した作動流体の圧力によって前記内周側回転子を外周側回転子に対して進角方向に相対回動させる進角側作動室(例えば、後述の実施形態における進角側作動室24)と、内部に導入した作動流体の圧力によって前記内周側回転子を外周側回転子に対して遅角方向に相対回動させる遅角側作動室(例えば、後述の実施形態における遅角側作動室25)と、前記作動流体を供給する流体供給源(例えば、後述の実施形態におけるオイルポンプ32)と、位相変更の要求に応じて前記進角側作動室と遅角側作動室に対する作動流体の給排の振り分けを行う流路切換弁(例えば、後述の実施形態における流路切換弁37)と、前記流体供給源と進角側作動室の間と、前記流体供給源と遅角側作動室の間の少なくともいずれか一方に、前記流路切換弁を迂回するように設けられたバイパス通路(例えば、後述の実施形態における進角側バイパス通路45、遅角側バイパス通路46)と、このバイパス通路に介装された開閉弁(例えば、後述の実施形態における開閉弁47A,47B)と、前記相対的な位相の検出値を出力する位相検出器(例えば、後述の実施形態における位相検出器81)と、前記相対的な位相の指令値を出力する位相制御手段(例えば、後述の実施形態における位相制御部62)と、を備えており、前記位相変更手段は、前記相対的な位相の前記検出値と前記指令値との差分が所定範囲から外れた際に前記開閉弁を開くことを特徴とする。
この場合、通常の位相変更時には開閉弁がバイパス通路を閉じており、コントローラからの位相変更の要求に応じて流路切換弁が進角側作動室と遅角側作動室に対する作動流体の給排を行う。また、例えば、進角側または遅角側の急激な位相変更の要求があったとき等には、開閉弁がバイパス通路を開き、流体供給源の作動液が、流路切換弁内とバイパス通路を通して進角側作動室または遅角側作動室に導入される。この場合、一方の作動室には作動液が大流量で流れ込み、位相が迅速に変更される。
As means for solving the above-mentioned problems, the invention according to claim 1 is directed to an inner peripheral rotation in which a permanent magnet (for example, a permanent magnet 9 in an embodiment described later) is disposed along the circumferential direction. A rotor (for example, an inner circumferential rotor 6 in an embodiment described later) and an outer circumferential side of the inner circumferential rotor are arranged coaxially and relatively pivotably, and are permanent along the circumferential direction. An outer peripheral rotor (for example, an outer peripheral rotor 5 in an embodiment described later) on which a magnet is disposed, and the inner peripheral rotor and the outer peripheral rotor are rotated relative to each other so that the relative phases of the two are changed. A phase change means for changing (for example, a phase change means 12 in an embodiment to be described later), wherein the phase change means changes the inner rotor by the pressure of the working fluid introduced therein. Rotate relative to the outer rotor in the advance direction A corner side working chamber (for example, an advance side working chamber 24 in an embodiment to be described later) and a pressure of working fluid introduced into the inner side rotor are rotated relative to the outer side rotor in a retarded direction. A retarding-side working chamber to be moved (for example, a retarding-side working chamber 25 in an embodiment to be described later), a fluid supply source for supplying the working fluid (for example, an oil pump 32 in an embodiment to be described later), and a phase change A flow path switching valve (for example, a flow path switching valve 37 in an embodiment to be described later) for distributing the supply and discharge of the working fluid to the advance side working chamber and the retard side working chamber according to demand, and the fluid supply source And a bypass passage provided between the fluid supply source and the retarding side working chamber so as to bypass the flow path switching valve (for example, implementation described later) Advance side bypass passage in the configuration 5, the retard-side bypass passage 46), interposed the on-off valve in the bypass passage (e.g., on-off valve 47A will be described in the exemplary embodiment, 47B) and a phase detector for outputting a detection value of the relative phase A phase detector (e.g., phase detector 81 in an embodiment described later) and phase control means (e.g., phase control unit 62 in an embodiment described later) for outputting the relative phase command value, The phase changing means opens the on-off valve when a difference between the detected value of the relative phase and the command value is out of a predetermined range .
In this case, the on-off valve closes the bypass passage during normal phase change, and the flow path switching valve supplies and discharges the working fluid to the advance side working chamber and the retard side working chamber in response to a phase change request from the controller. I do. Further, for example, when there is a request for a sudden phase change on the advance side or the retard side, the on-off valve opens the bypass passage, and the hydraulic fluid of the fluid supply source flows in the flow path switching valve and the bypass passage. It is introduced into the advance side working chamber or the retard side working chamber. In this case, the working fluid flows into one working chamber at a large flow rate, and the phase is quickly changed.

請求項2に記載の発明は、請求項1に記載の発明において、前記外周側回転子と一体に回転する第1部材(例えば、後述の実施形態におけるベーンロータ14,ドライブプレート16)と前記内周側回転子と一体に回転する第2部材(例えば、後述の実施形態における環状ハウジング15)の間に作動流体の導入空間(例えば、後述の実施形態における導入空間23)が設けられ、前記第1部材と第2部材のうちの一方に、前記導入空間に摺動自在に配置されて前記導入空間内を2室に隔成するベーン(例えば、後述の実施形態におけるベーン18)が突設され、前記ベーンで隔成される2室によって前記進角側作動室と遅角側作動室が構成されていることを特徴とする。
これにより、例えば、進角側作動室に作動流体が供給され、遅角側作動室から作動流体が排出されると、ベーンが前後の差圧を受けて導入空間内を一方から他方側に相対的に移動して第1部材と第2部材が一方に相対回動する。これにより、内周側回転子は外周側回転子に対して進角方向に相対回動する。一方、遅角側作動室に作動流体が供給され、進角側作動室から作動流体が排出された場合には、ベーンがこのときの前後の差圧を受けて前記と逆方向に相対的に移動し、このとき第1部材と第2部材を介して内周側回転子が外周側回転子に対して遅角方向に相対回動する。
According to a second aspect of the present invention, in the first aspect of the present invention, a first member (for example, a vane rotor 14 and a drive plate 16 in an embodiment described later) that rotates integrally with the outer circumferential rotor and the inner circumferential surface. A working fluid introduction space (for example, an introduction space 23 in a later-described embodiment) is provided between a second member (for example, an annular housing 15 in the later-described embodiment) that rotates integrally with the side rotor, and the first One of the member and the second member is provided with a vane (for example, a vane 18 in an embodiment described later) that is slidably disposed in the introduction space and separates the introduction space into two chambers. The advance side working chamber and the retard side working chamber are constituted by two chambers separated by the vane.
Thereby, for example, when the working fluid is supplied to the advance side working chamber and the working fluid is discharged from the retard side working chamber, the vane receives the pressure difference between the front and rear, and the inside of the introduction space is relatively moved from one side to the other side. The first member and the second member rotate relative to each other. As a result, the inner circumferential rotor rotates relative to the outer circumferential rotor in the advance direction. On the other hand, when the working fluid is supplied to the retard side working chamber and the working fluid is discharged from the advance side working chamber, the vane receives the differential pressure before and after this and relatively At this time, the inner rotor rotates relative to the outer rotor in the retarding direction via the first member and the second member.

請求項3に記載の発明は、円周方向に沿うように永久磁石が配設された内周側回転子と、この内周側回転子の外周側に同軸にかつ相対回動可能に配設されるとともに、円周方向に沿うように永久磁石が配設された外周側回転子と、前記内周側回転子と外周側回転子を相対回動させて両者の相対的な位相を変更する位相変更手段と、を備えた電動機であって、前記位相変更手段が、内部に導入した作動流体の圧力によって前記内周側回転子を外周側回転子に対して進角方向に相対回動させる進角側作動室と、内部に導入した作動流体の圧力によって前記内周側回転子を外周側回転子に対して遅角方向に相対回動させる遅角側作動室と、前記作動流体を供給する流体供給源と、位相変更の要求に応じて前記進角側作動室と遅角側作動室に対する作動流体の給排の振り分けを行う流路切換弁と、前記流体供給源と進角側作動室の間と、前記流体供給源と遅角側作動室の間の少なくともいずれか一方に、前記流路切換弁を迂回するように設けられたバイパス通路と、このバイパス通路に介装された開閉弁と、を備え、前記外周側回転子と一体に回転する第1部材(例えば、後述の実施形態における内筒部材112,ドライブプレート114)と前記内周側回転子と一体に回転する第2部材(例えば、後述の実施形態における外筒部材113)のうちの一方に軸部(例えば、後述の実施形態における軸部112b)が設けられるとともに、前記第1部材と第2部材のうちの他方に、前記軸部の外側を囲繞する筒部(例えば、後述の実施形態における肉厚部113a)が設けられ、内周面と外周面が前記軸部と筒部に夫々ヘリカルスプライン係合するリングギヤ(例えば、後述の実施形態におけるリングギヤ118)が設けられ、前記第1部材と第2部材の間に作動流体の導入空間(例えば、後述の実施形態における導入空間115)が設けられ、この導入空間に摺動自在に収容されて前記導入空間内を2室に隔成するピストン(例えば、後述の実施形態におけるピストン122)が設けられるとともに、このピストンが前記リングギヤと一体変位可能に連結され、前記ピストンで隔成される2室によって前記進角側作動室と遅角側作動室が構成されていることを特徴とする。
この場合、例えば、進角側作動室に作動流体が供給され、遅角側作動室から作動流体が排出されると、ピストンが前後の差圧を受けて導入空間内を一方から他方側に相対的に移動し、このとき、ピストンに連結されたリングギヤが軸部と筒部の間において一方から他方側に移動する。そして、リングギヤが軸部と筒部の間でこうして移動すると、リングギヤがヘリカルスプラインを介して軸部と筒部に一方側の相対回転力を付与するようになる。これにより、第1部材と第2部材が一方に相対回動し、内周側回転子は外周側回転子に対して進角方向に相対回動する。一方、遅角側作動室に作動流体が供給され、進角側作動室から作動流体が排出された場合には、ピストンがこのときの前後の差圧を受けて前記と逆方向に相対的に移動し、このとき、リングギヤがピストンと同方向に移動して軸部と筒部にヘリカルスプラインを介して前記と逆方向の相対回転力を付与するようになる。これにより、第1部材と第2部材が他方に相対回動し、内周側回転子は外周側回転子に対して遅角方向に相対回動する。
According to a third aspect of the present invention, an inner peripheral rotor on which a permanent magnet is disposed along the circumferential direction, and an outer peripheral side of the inner peripheral rotor are coaxially and relatively rotatable. At the same time, the outer peripheral rotor on which the permanent magnets are arranged along the circumferential direction, and the inner peripheral rotor and the outer peripheral rotor are relatively rotated to change the relative phase between them. An electric motor comprising phase change means, wherein the phase change means causes the inner rotor to rotate relative to the outer rotor in the advance direction by the pressure of the working fluid introduced therein. Advancing side working chamber, a retarding side working chamber for rotating the inner circumferential side rotor relative to the outer circumferential side rotor in a retarding direction by the pressure of the working fluid introduced therein, and supplying the working fluid The fluid supply source to be operated and the operation for the advance side working chamber and the retard side working chamber in response to the phase change request. A flow path switching valve for distributing supply and discharge of fluid, and the flow path between at least one of the fluid supply source and the advance side working chamber, and between the fluid supply source and the retard side working chamber. A first member (for example, in an embodiment to be described later) that includes a bypass passage provided so as to bypass the switching valve, and an on-off valve interposed in the bypass passage, and rotates integrally with the outer peripheral rotor. An inner cylinder member 112, a drive plate 114) and a second member (for example, an outer cylinder member 113 in an embodiment described later) that rotates integrally with the inner peripheral rotor are provided with a shaft portion (for example, an operation described later). A shaft portion 112b) is provided, and a cylindrical portion (for example, a thick portion 113a in an embodiment described later) is provided on the other of the first member and the second member to surround the outside of the shaft portion. Inner and outer circumference Is provided with a ring gear (for example, a ring gear 118 in an embodiment described later) that engages with the shaft portion and the cylindrical portion, respectively, and a working fluid introduction space (for example, described later) is provided between the first member and the second member. In this embodiment, an introduction space 115) is provided, and a piston (for example, a piston 122 in the embodiment described later) is provided that is slidably received in the introduction space and separates the introduction space into two chambers. The piston is connected to the ring gear so as to be integrally displaceable, and the advance side working chamber and the retard side working chamber are constituted by two chambers separated by the piston.
In this case, for example, when the working fluid is supplied to the advance side working chamber and the working fluid is discharged from the retard side working chamber, the piston receives a differential pressure between the front and rear, and the inside of the introduction space is relatively moved from one side to the other side. At this time, the ring gear connected to the piston moves from one side to the other side between the shaft portion and the cylindrical portion. When the ring gear moves in this manner between the shaft portion and the tube portion, the ring gear applies one side relative rotational force to the shaft portion and the tube portion via the helical spline. As a result, the first member and the second member rotate relative to each other, and the inner circumferential rotor rotates relative to the outer circumferential rotor in the advance direction. On the other hand, when the working fluid is supplied to the retarded-side working chamber and the working fluid is discharged from the advanced-side working chamber, the piston receives a differential pressure before and after that and is relatively moved in the opposite direction. At this time, the ring gear moves in the same direction as the piston, and applies a relative rotational force in the opposite direction to the shaft portion and the cylindrical portion via the helical spline. As a result, the first member and the second member rotate relative to the other, and the inner circumferential rotor rotates relative to the outer circumferential rotor in the retard direction.

請求項4に記載の発明は、円周方向に沿うように永久磁石が配設された内周側回転子と、この内周側回転子の外周側に同軸にかつ相対回動可能に配設されるとともに、円周方向に沿うように永久磁石が配設された外周側回転子と、前記内周側回転子と外周側回転子を相対回動させて両者の相対的な位相を変更する位相変更手段と、を備えた電動機であって、前記位相変更手段が、内部に導入した作動流体の圧力によって前記内周側回転子を外周側回転子に対して進角方向に相対回動させる進角側作動室と、内部に導入した作動流体の圧力によって前記内周側回転子を外周側回転子に対して遅角方向に相対回動させる遅角側作動室と、前記作動流体を供給する流体供給源と、位相変更の要求に応じて前記進角側作動室と遅角側作動室に対する作動流体の給排の振り分けを行う流路切換弁と、前記流体供給源と進角側作動室の間と、前記流体供給源と遅角側作動室の間の少なくともいずれか一方に、前記流路切換弁を迂回するように設けられたバイパス通路と、このバイパス通路に介装された開閉弁と、を備え、前記外周側回転子と一体に回転する第1部材(例えば、後述の実施形態における内側ブロック212)と前記内周側回転子と一体に回転する第2部材(例えば、後述の実施形態における外側ブロック213)のうちの一方に、回転軸線を中心とする円周の略接線方向に沿い互いに相反する回転方向に向く第1のシリンダ(例えば、後述の実施形態における第1のシリンダ214)と第2のシリンダ(例えば、後述の実施形態における第2のシリンダ215)が設けられるとともに、この第1のシリンダと第2のシリンダに第1のピストン(例えば、後述の実施形態における第1のピストン216)と第2のピストン(例えば、後述の実施形態における第2のピストン217)が夫々進退自在に設けられ、前記第1部材と第2部材のうちの他方に、前記両回転子の略半径方向に沿い夫々前記第1のピストンと第2のピストンの頂部に当接する第1の荷重伝達壁(例えば、後述の実施形態における第1の荷重伝達壁218)と第2の荷重伝達壁(例えば、後述の実施形態における第2の荷重伝達壁219)が設けられ、前記第1のシリンダと第1のピストンの間と、前記第2のシリンダと第2のピストンの間で前記進角側作動室と遅角側作動室が夫々構成されていることを特徴とする。
この場合、例えば、進角側作動室に作動流体が供給され、遅角側作動室から作動流体が排出されると、第1のピストンが突出する一方で第2のピストンが後退する。このとき、第1のピストンが第1の荷重伝達壁を押圧して、第1の荷重伝達壁が第1のシリンダ側から離間するとともに、第2の荷重伝達壁が第2のシリンダ側に近接し、その結果、第1部材と第2部材が一方側に相対回動する。これにより、内周側回転子は外周側回転子に対して進角方向に相対回動する。一方、遅角側作動室に作動流体が供給され、進角側作動室から作動流体が排出された場合には、第2のピストンが突出する一方で第1のピストンが後退し、第2のピストンが第2の荷重伝達壁を押圧する。これにより、第1部材と第2部材が他方側に相対回動し、内周側回転子は外周側回転子に対して遅角方向に相対回動する。
The invention according to claim 4 is an inner peripheral rotor in which permanent magnets are disposed along the circumferential direction, and is disposed coaxially and relatively rotatably on the outer peripheral side of the inner peripheral rotor. At the same time, the outer peripheral rotor on which the permanent magnets are arranged along the circumferential direction, and the inner peripheral rotor and the outer peripheral rotor are relatively rotated to change the relative phase between them. An electric motor comprising phase change means, wherein the phase change means causes the inner rotor to rotate relative to the outer rotor in the advance direction by the pressure of the working fluid introduced therein. Advancing side working chamber, a retarding side working chamber for rotating the inner circumferential side rotor relative to the outer circumferential side rotor in a retarding direction by the pressure of the working fluid introduced therein, and supplying the working fluid The fluid supply source to be operated and the operation for the advance side working chamber and the retard side working chamber in response to the phase change request. A flow path switching valve for distributing supply and discharge of fluid, and the flow path between at least one of the fluid supply source and the advance side working chamber, and between the fluid supply source and the retard side working chamber. A first member (for example, in an embodiment to be described later) that includes a bypass passage provided so as to bypass the switching valve, and an on-off valve interposed in the bypass passage, and rotates integrally with the outer peripheral rotor. An inner block 212) and a second member that rotates integrally with the inner rotor (for example, an outer block 213 in an embodiment described later) are arranged in a direction substantially tangential to the circumference centered on the rotation axis. A first cylinder (for example, a first cylinder 214 in an embodiment to be described later) and a second cylinder (for example, a second cylinder 215 in an embodiment to be described later) are provided. In addition, a first piston (for example, a first piston 216 in an embodiment described later) and a second piston (for example, a second piston 217 in an embodiment described later) are connected to the first cylinder and the second cylinder. Are provided so as to be capable of advancing and retreating, and the first member and the second member are in contact with the tops of the first piston and the second piston, respectively, along the substantially radial direction of the two rotors. Load transmission walls (for example, a first load transmission wall 218 in an embodiment described later) and a second load transmission wall (for example, a second load transmission wall 219 in an embodiment described later) are provided. The advance side working chamber and the retard side working chamber are configured between the cylinder and the first piston and between the second cylinder and the second piston, respectively.
In this case, for example, when the working fluid is supplied to the advance side working chamber and the working fluid is discharged from the retard side working chamber, the first piston protrudes while the second piston moves backward. At this time, the first piston presses the first load transmission wall, the first load transmission wall is separated from the first cylinder side, and the second load transmission wall is close to the second cylinder side. As a result, the first member and the second member rotate relative to one side. As a result, the inner circumferential rotor rotates relative to the outer circumferential rotor in the advance direction. On the other hand, when the working fluid is supplied to the retard side working chamber and the working fluid is discharged from the advance side working chamber, the second piston protrudes while the first piston moves backward, The piston presses the second load transmission wall. As a result, the first member and the second member rotate relative to the other side, and the inner circumferential rotor rotates relative to the outer circumferential rotor in the retard direction.

また、請求項5に記載の発明は、請求項1〜4のいずれか1項に記載の電動機において、前記流体供給源から供給される作動流体の圧力の導入と排出を切り換えて信号圧を作る電磁弁(例えば、後述の実施形態における電磁弁48A,48B)を設け、この電磁弁で作られる信号圧によって前記開閉弁を開閉作動させることを特徴とする。
この場合、電磁弁は流体供給源からの作動流体の圧力の導入と排出を切り換えるだけであるため、比較的小さな磁力での作動が可能になり、一方、開閉弁は流体供給源から導入される圧力を基に作られた比較的大きな信号圧でもってバイパス通路を操作するようになる。
According to a fifth aspect of the present invention, in the electric motor according to any one of the first to fourth aspects, the signal pressure is generated by switching between introduction and discharge of the pressure of the working fluid supplied from the fluid supply source. An electromagnetic valve (for example, electromagnetic valves 48A and 48B in the embodiments described later) is provided, and the on-off valve is opened and closed by a signal pressure generated by the electromagnetic valve.
In this case, since the solenoid valve only switches between the introduction and discharge of the pressure of the working fluid from the fluid supply source, the solenoid valve can be operated with a relatively small magnetic force, while the on-off valve is introduced from the fluid supply source. The bypass passage is operated with a relatively large signal pressure based on the pressure.

この出願の発明によれば、進角側作動室と遅角側作動室に作動流体を適宜給排することによって外周側回転子と内周側回転子の相対位相が変更される構成を採用するとともに、位相変更の要求に応じて流路切換弁によって進角側作動室と遅角側作動室に作動流体の給排を振り分け、さらに、流路切換弁の内部を通る通路の他に、流路切換弁を迂回して流体供給源といずれかの作動室を接続するバイパス通路を設けるとともに、このバイパス通路に開閉弁を介装したため、急激な位相変更の要求があった場合に、バイパス通路に介装された開閉弁を開くことによって対応する作動室に作動液を大流量で供給することができる。
したがって、この発明によれば、回転子の位相を任意のタイミングで自由に変更することができるとともに、大型の電磁弁を用いることなく、急激な位相変更の要求にも速やかに対応することができる。よって、占有スペースの増大や製造コストの高騰を招くこともない。
According to the invention of this application, a configuration is adopted in which the relative phases of the outer circumferential rotor and the inner circumferential rotor are changed by appropriately supplying and discharging working fluid to and from the advance side working chamber and the retard side working chamber. In addition, according to the phase change request, the flow path switching valve distributes the supply and discharge of the working fluid to the advance side working chamber and the retard side working chamber, and in addition to the passage through the flow path switching valve, A bypass passage that bypasses the path switching valve and connects one of the working chambers to the fluid supply source is provided, and an on-off valve is interposed in the bypass passage, so that when there is a sudden phase change request, the bypass passage By opening the on-off valve interposed in the working fluid, the working fluid can be supplied to the corresponding working chamber at a large flow rate.
Therefore, according to the present invention, the phase of the rotor can be freely changed at an arbitrary timing, and it is possible to respond quickly to a sudden phase change request without using a large solenoid valve. . Therefore, an increase in occupied space and an increase in manufacturing cost are not caused.

請求項5に記載の発明によれば、流体供給源から供給される作動流体の圧力を用いて電磁弁で信号圧を作り、その信号圧によって開閉弁を操作するため、電磁弁の比較的小さな磁力でもって開閉弁を確実に制御することができる。
したがって、この発明によれば、電磁弁をより小型化し、占有スペースの狭小化と製造コストのさらなる低減を図ることができる。
According to the fifth aspect of the present invention, since the signal pressure is generated by the solenoid valve using the pressure of the working fluid supplied from the fluid supply source, and the on-off valve is operated by the signal pressure, the solenoid valve is relatively small. The on-off valve can be reliably controlled with magnetic force.
Therefore, according to the present invention, the solenoid valve can be further downsized, the occupied space can be reduced, and the manufacturing cost can be further reduced.

また、請求項2〜4に記載の発明によれば、いずれも比較的簡単な構成により、作動流体の給排制御によって内周側回転子と外周側回転子の相対位相を任意のタイミングで正確に変更することができるため、相対位相の変更制御の自由度を高めつつ、電動機の小型化を図ることができる。 In addition, according to the inventions described in claims 2 to 4 , the relative phases of the inner and outer rotors can be accurately determined at any timing by the supply and discharge control of the working fluid with a relatively simple configuration. Therefore, it is possible to reduce the size of the electric motor while increasing the degree of freedom in changing the relative phase.

以下、この発明の各実施形態を図面に基づいて説明する。最初に、図1〜図8に示す第1の実施形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings. First, the first embodiment shown in FIGS. 1 to 8 will be described.

この実施形態の電動機1は、図1〜図4に示すように円環状の固定子2の内周側に回転子ユニット3が配置されたインナロータ型のブラシレスモータであり、例えばハイブリッド車や電動車両等の走行駆動源として用いられる。固定子2は複数相の固定子巻線2aを有し、回転子ユニット3は軸芯部に回転軸4を有している。車両の走行駆動源として用いる場合には、電動機1の回転力はトランスミッション(図示せず)を介して車輪の駆動軸(図示せず)に伝達される。この場合、電動機1は車両の減速時に発電機として機能させれば、回生エネルギーとして蓄電器に回収することもできる。また、ハイブリッド車においては、電動機1の回転軸4をさらに内燃機関のクランクシャフト(図示せず)に連結することにより、内燃機関による発電にも利用することができる。   The electric motor 1 of this embodiment is an inner rotor type brushless motor in which a rotor unit 3 is disposed on the inner peripheral side of an annular stator 2 as shown in FIGS. 1 to 4, for example, a hybrid vehicle or an electric vehicle. It is used as a traveling drive source. The stator 2 has a multi-phase stator winding 2a, and the rotor unit 3 has a rotating shaft 4 at the shaft core. When used as a vehicle driving source, the rotational force of the electric motor 1 is transmitted to a wheel drive shaft (not shown) via a transmission (not shown). In this case, if the electric motor 1 functions as a generator when the vehicle is decelerated, it can be recovered as regenerative energy in the electric storage device. Further, in the hybrid vehicle, the rotating shaft 4 of the electric motor 1 can be further connected to a crankshaft (not shown) of the internal combustion engine so that it can be used for power generation by the internal combustion engine.

図6は、この電動機1を車両の走行駆動源として用いる場合の電動機1の制御系の一例を示すものである。この制御系では、電動機1の駆動作動および回生作動はコントローラ40から出力される制御指令を受けてパワードライブユニット41(以下、「PDU41」と呼ぶ)により行われる。
PDU41は、トランジスタのスイッチング素子がブリッジ接続されたブリッジ回路を用いてパルス幅変調(PWM)を行うPWMインバータを備えるとともに、電動機1と電気エネルギーの授受を行う高圧系のバッテリ42に接続されている。
PDU41は、電動機1の駆動時等においてコントローラ40から入力されるスイッチング指令であるゲート信号(つまり、PWM信号)に基づき、PWMインバータにおいて各相毎に対を成す各トランジスタのオン(導通)/オフ(遮断)状態を切り換えることによって、バッテリ42から供給される直流電力を3相交流電力に変換し、電動機1の固定子巻線2aへの通電を順次転流させることによって、各相の固定子巻線2aに交流のU相電流Iu、V相電流IvおよびW相電流Iwを通電する。
FIG. 6 shows an example of a control system of the electric motor 1 when the electric motor 1 is used as a travel drive source of the vehicle. In this control system, the drive operation and regenerative operation of the electric motor 1 are performed by a power drive unit 41 (hereinafter referred to as “PDU41”) in response to a control command output from the controller 40.
The PDU 41 includes a PWM inverter that performs pulse width modulation (PWM) using a bridge circuit in which transistor switching elements are bridge-connected, and is connected to a high-voltage battery 42 that exchanges electric energy with the electric motor 1. .
The PDU 41 is based on a gate signal (that is, a PWM signal) that is a switching command input from the controller 40 at the time of driving the electric motor 1 or the like. By switching the (shutoff) state, the DC power supplied from the battery 42 is converted into three-phase AC power, and the energization to the stator winding 2a of the electric motor 1 is sequentially commutated, whereby the stator of each phase. AC winding U-phase current Iu, V-phase current Iv and W-phase current Iw are passed through winding 2a.

回転子ユニット3は、図1〜図4に示すように、円環状の外周側回転子5と、この外周側回転子5の内側に同軸に配置される円環状の内周側回転子6を備え、外周側回転子5と内周側回転子6が設定角度の範囲で回動可能とされている。   As shown in FIGS. 1 to 4, the rotor unit 3 includes an annular outer circumferential rotor 5 and an annular inner circumferential rotor 6 disposed coaxially inside the outer circumferential rotor 5. The outer peripheral side rotor 5 and the inner peripheral side rotor 6 are rotatable within a set angle range.

外周側回転子5と内周側回転子6は、回転子本体である円環状のロータ鉄心7,8が例えば焼結金属によって形成され、その各ロータ鉄心7,8の外周側に偏寄した位置に、複数の磁石装着スロット7a,8aが円周方向等間隔に形成されている。各磁石装着スロット7a,8aには、厚み方向に磁化された2つの平板状の永久磁石9,9が並列に並んで装着されている。同じ磁石装着スロット7a,8a内に装着される2つの永久磁石9,9は同方向に磁化され、各隣接する磁石装着スロット7a,7a、及び、8a,8aに装着される永久磁石9の対同士は磁極の向きが逆向きになるように設定されている。即ち、各回転子5,6においては、外周側がN極とされた永久磁石9の対と、S極とされた永久磁石9の対が円周方向に交互に並んで配置されている。なお、各回転子5,6の外周面の隣接する磁石装着スロット7a,7a、及び、8a,8aの各間には、永久磁石9の磁束の流れを制御するための切欠き部10が回転子5,6の軸方向に沿って形成されている。   The outer rotor 5 and the inner rotor 6 are formed by, for example, sintered rotor cores 7 and 8 made of sintered metal, and are biased toward the outer periphery of the rotor cores 7 and 8. A plurality of magnet mounting slots 7a, 8a are formed at equal intervals in the circumferential direction. In each of the magnet mounting slots 7a and 8a, two flat plate-like permanent magnets 9 and 9 magnetized in the thickness direction are mounted in parallel. Two permanent magnets 9, 9 mounted in the same magnet mounting slot 7a, 8a are magnetized in the same direction, and a pair of permanent magnets 9 mounted in each adjacent magnet mounting slot 7a, 7a and 8a, 8a. The magnetic poles are set so that the directions of the magnetic poles are opposite to each other. That is, in each of the rotors 5 and 6, a pair of permanent magnets 9 whose outer peripheral side is an N pole and a pair of permanent magnets 9 that are an S pole are alternately arranged in the circumferential direction. A notch 10 for controlling the flow of magnetic flux of the permanent magnet 9 is rotated between the adjacent magnet mounting slots 7a, 7a and 8a, 8a on the outer peripheral surfaces of the rotors 5, 6. It is formed along the axial direction of the children 5 and 6.

外周側回転子5と内周側回転子6の磁石装着スロット7a,8aは夫々同数設けられ、両回転子5,6の永久磁石9…が夫々1対1で対応するようになっている。したがって、外周側回転子5と内周側回転子6の各磁石装着スロット7a,8a内の永久磁石9の対を互いに同極同士で対向させる(異極配置にする)ことにより、回転子ユニット3全体の界磁が最も弱められる弱め界磁の状態(図4,図5(b)参照)を得ることができるとともに、外周側回転子5と内周側回転子6の各磁石装着スロット7a,8a内の永久磁石9の対を互いに異極同士で対向させる(同極配置にする)ことにより、回転子ユニット3全体の界磁が最も強められる強め界磁の状態(図2,図5(a)参照)を得ることができる。   The same number of magnet mounting slots 7a, 8a of the outer rotor 5 and inner rotor 6 are provided, and the permanent magnets 9 of the rotors 5, 6 correspond to each other on a one-to-one basis. Therefore, by making the pair of permanent magnets 9 in each of the magnet mounting slots 7a and 8a of the outer peripheral rotor 5 and the inner peripheral rotor 6 face each other with the same polarity (with different polar arrangement), the rotor unit 3 is able to obtain a field weakening state (see FIGS. 4 and 5B) in which the field of the entire field is most weakened, and the magnet mounting slots 7a of the outer peripheral rotor 5 and the inner peripheral rotor 6. , 8a, the pair of permanent magnets 9 are opposed to each other with different polarities (with the same polarity arrangement), so that the field of the entire rotor unit 3 is most strongly strengthened (see FIGS. 2 and 5). (See (a)) can be obtained.

また、回転子ユニット3は、外周側回転子5と内周側回転子6を相対回動させるための回動機構11を備えている。この回動機構11は、両回転子5,6の相対位相を任意に変更するための位相変更手段12の一部を構成するものであり、非圧縮性の作動流体である作動液の圧力によって操作されるようになっている。位相変更手段12は、上記の回動機構11と、この回動機構11に供給する作動液の圧力を制御する図7に示す油圧制御装置13と、を主要な要素として構成されている。   The rotor unit 3 includes a rotation mechanism 11 for relatively rotating the outer peripheral rotor 5 and the inner peripheral rotor 6. The rotating mechanism 11 constitutes a part of phase changing means 12 for arbitrarily changing the relative phase of the two rotors 5 and 6, and is based on the pressure of the working fluid that is an incompressible working fluid. It is designed to be operated. The phase changing means 12 is composed mainly of the turning mechanism 11 and a hydraulic control device 13 shown in FIG. 7 for controlling the pressure of the hydraulic fluid supplied to the turning mechanism 11.

回動機構11は、図1〜図4に示すように回転軸4の外周に一体回転可能にスプライン嵌合されるベーンロータ14(第1部材)と、ベーンロータ14の外周側に相対回動可能に配置される環状ハウジング15(第2部材)とを備え、この環状ハウジング15が内周側回転子6の内周面に一体に嵌合固定されるとともに、ベーンロータ14が、環状ハウジング15と内周側回転子6の両側の側端部を跨ぐ円板状の一対のドライブプレート16,16(第1部材)を介して外周側回転子5に一体に結合されている。したがって、ベーンロータ14は回転軸4と外周側回転子5に一体化され、環状ハウジング15は内周側回転子6に一体化されている。   As shown in FIGS. 1 to 4, the rotation mechanism 11 can be relatively rotated on the outer peripheral side of the vane rotor 14 and the vane rotor 14 (first member) that is spline-fitted to the outer periphery of the rotary shaft 4 so as to be integrally rotatable. An annular housing 15 (second member) disposed, and the annular housing 15 is integrally fitted and fixed to the inner peripheral surface of the inner rotor 6, and the vane rotor 14 is connected to the inner periphery of the annular housing 15. The outer rotor 5 is integrally coupled to the outer rotor 5 via a pair of disk-like drive plates 16 and 16 (first member) straddling the side end portions on both sides of the side rotor 6. Therefore, the vane rotor 14 is integrated with the rotary shaft 4 and the outer peripheral rotor 5, and the annular housing 15 is integrated with the inner peripheral rotor 6.

ベーンロータ14は、回転軸4にスプライン嵌合される円筒状のボス部17の外周に、径方向外側に突出する複数のベーン18が円周方向等間隔に設けられている。一方、環状ハウジング15は、内周面に円周方向等間隔に複数の凹部19が設けられ、この各凹部19にベーンロータ14の対応するベーン18が収容配置されるようになっている。各凹部19は、ベーン18の先端部の回転軌道にほぼ合致する円弧面を有する底壁20と、隣接する凹部19,19同士を隔成する略三角形状の仕切壁21によって構成され、ベーンロータ14と環状ハウジング15の相対回動時に、ベーン18が一方の仕切壁21と他方の仕切壁21の間を変位し得るようになっている。この実施形態の場合、仕切壁21はベーン18と当接することにより、ベーンロータ14と環状ハウジング15の相対回動を規制するストッパとしても機能する。なお、各ベーン18の先端部と仕切壁21の先端部には、軸方向に沿うようにシール部材22が設けられ、これらのシール部材22によってベーン18と凹部19の底壁20、仕切壁21とボス部17の外周面の各間が液密にシールされている。   In the vane rotor 14, a plurality of vanes 18 projecting radially outward are provided at equal intervals in the circumferential direction on the outer periphery of a cylindrical boss portion 17 that is spline-fitted to the rotary shaft 4. On the other hand, the annular housing 15 is provided with a plurality of concave portions 19 on the inner peripheral surface at equal intervals in the circumferential direction, and the corresponding vanes 18 of the vane rotor 14 are accommodated in the concave portions 19. Each recess 19 is constituted by a bottom wall 20 having an arc surface that substantially matches the rotational trajectory of the tip of the vane 18 and a substantially triangular partition wall 21 that separates the adjacent recesses 19, 19. The vane 18 can be displaced between the one partition wall 21 and the other partition wall 21 during relative rotation of the annular housing 15. In the case of this embodiment, the partition wall 21 also functions as a stopper that restricts the relative rotation of the vane rotor 14 and the annular housing 15 by contacting the vane 18. A seal member 22 is provided along the axial direction at the tip of each vane 18 and the tip of the partition wall 21, and the vane 18, the bottom wall 20 of the recess 19, and the partition wall 21 are provided by these seal members 22. And the outer peripheral surface of the boss portion 17 are liquid-tightly sealed.

また、内周側回転子6に固定される環状ハウジング15のベース部15aは一定厚みの円筒状に形成されるとともに、図1に示すように内周側回転子6や仕切壁21に対して軸方向外側に突出している。このベース部15aの外側に突出した各端部は、ドライブプレート16に形成された環状のガイド溝16aに摺動自在に保持され、環状ハウジング15と内周側回転子6が、外周側回転子5や回転軸4にフローティング状態で支持されるようになっている。   Further, the base portion 15a of the annular housing 15 fixed to the inner peripheral rotor 6 is formed in a cylindrical shape having a constant thickness, and is also provided with respect to the inner peripheral rotor 6 and the partition wall 21 as shown in FIG. Projects outward in the axial direction. Each end projecting outward of the base portion 15a is slidably held in an annular guide groove 16a formed in the drive plate 16, and the annular housing 15 and the inner peripheral rotor 6 are connected to the outer peripheral rotor. 5 and the rotating shaft 4 are supported in a floating state.

外周側回転子5とベーンロータ14を連結する両側のドライブプレート16,16は、環状ハウジング15の両側面(軸方向の両端面)に摺動自在に密接し、環状ハウジング15の各凹部19の側方を夫々閉塞する。したがって、各凹部19は、ベーンロータ14のボス部17と両側のドライブプレート16,16によって夫々独立した空間部を形成し、この空間部は、作動液が導入される導入空間23となっている。各導入空間23内は、ベーンロータ14の対応する各ベーン18によって夫々2室に隔成され、一方の部屋が進角側作動室24、他方の部屋が遅角側作動室25とされている。進角側作動室24は、内部に導入された作動液の圧力によって内周側回転子6を外周側回転子5に対して進角方向に相対回動させ、遅角側作動室25は、内部に導入された作動液の圧力によって内周側回転子6を外周側回転子5に対して遅角方向に相対回動させる。この場合、「進角」とは、内周側回転子6を外周側回転子5に対して、図2,図4中の矢印Rで示す電動機1の回転方向に進めることを言い、「遅角」とは、内周側回転子6を外周側回転子5に対して、電動機1の回転方向Rと逆側に進めることを言うものとする。   The drive plates 16 and 16 on both sides connecting the outer rotor 5 and the vane rotor 14 are slidably in close contact with both side surfaces (both end surfaces in the axial direction) of the annular housing 15, and the side of each recess 19 of the annular housing 15. Respectively. Therefore, each recessed part 19 forms the independent space part by the boss | hub part 17 of the vane rotor 14, and the drive plates 16 and 16 of both sides, and this space part is the introduction space 23 into which a hydraulic fluid is introduce | transduced. Each introduction space 23 is divided into two chambers by the corresponding vanes 18 of the vane rotor 14, and one room is an advance side working chamber 24 and the other room is a retard side working chamber 25. The advance side working chamber 24 rotates the inner circumferential side rotor 6 relative to the outer circumferential side rotor 5 in the advance direction by the pressure of the working fluid introduced inside, and the retard side working chamber 25 is The inner rotor 6 is rotated relative to the outer rotor 5 in the retard direction by the pressure of the working fluid introduced therein. In this case, “advance angle” means that the inner circumferential rotor 6 is advanced relative to the outer circumferential rotor 5 in the rotational direction of the electric motor 1 indicated by an arrow R in FIGS. 2 and 4. “Angle” means that the inner rotor 6 is advanced to the opposite side of the rotation direction R of the electric motor 1 with respect to the outer rotor 5.

また、各進角側作動室24と遅角側作動室25に対する作動液の給排は回転軸4を通して行われるようになっている。具体的には、進角側作動室24は、図7に示す油圧制御装置13の進角側給排通路26に接続され、遅角側作動室25は同油圧制御装置13の遅角側給排通路27に接続されているが、進角側給排通路26と遅角側給排通路27の一部は、図1に示すように、夫々回転軸4に軸方向に沿って形成させた通路孔26a,27aによって構成されている。そして、各通路孔26a,27aの端部は、回転軸4の外周面の軸方向にオフセットした2位置に形成された環状溝26bと環状溝27bに夫々接続され、その各環状溝26b,27bは、ベーンロータ14のボス部17に略半径方向に沿って形成された複数の導通孔26c…,27c…に接続されている。進角側給排通路26の各導通孔26cは環状溝26bと各進角側作動室24とを接続し、遅角側給排通路27の各導通孔27cは環状溝27bと各遅角側作動室25とを接続している。   Further, the supply and discharge of the hydraulic fluid to and from each of the advance side working chambers 24 and the retard side working chambers 25 is performed through the rotating shaft 4. Specifically, the advance side working chamber 24 is connected to the advance side supply / discharge passage 26 of the hydraulic control device 13 shown in FIG. 7 and the retard side working chamber 25 is connected to the retard side supply / discharge passage of the hydraulic control device 13. Although connected to the exhaust passage 27, a part of the advance side supply / exhaust passage 26 and the retard side supply / exhaust passage 27 are respectively formed on the rotary shaft 4 along the axial direction as shown in FIG. It is constituted by passage holes 26a and 27a. The end portions of the passage holes 26a and 27a are respectively connected to an annular groove 26b and an annular groove 27b formed at two positions offset in the axial direction of the outer peripheral surface of the rotary shaft 4, and the respective annular grooves 26b and 27b. Are connected to a plurality of conduction holes 26c... 27c formed in the boss portion 17 of the vane rotor 14 along the substantially radial direction. Each conduction hole 26c of the advance side supply / discharge passage 26 connects the annular groove 26b and each advance side working chamber 24, and each conduction hole 27c of the retard side supply / exhaust passage 27 connects to the annular groove 27b and each retard side. The working chamber 25 is connected.

ここで、この実施形態の電動機1の場合、内周側回転子6が外周側回転子5に対して最遅角位置にあるときに、外周側回転子5と内周側回転子6の永久磁石9が異極同士で対向して強め界磁の状態(図2,図5(a)参照)になり、内周側回転子6が外周側回転子5に対して最進角位置にあるときに、外周側回転子5と内周側回転子6の永久磁石9が同極同士で対向して弱め界磁の状態(図4,図5(b)参照)になるように設定されている。
なお、この電動機1は、進角側作動室24と遅角側作動室25に対する作動液の給排制御によって、強め界磁の状態と弱め界磁の状態を任意に変更し得るものであるが、こうして磁界の強さが変更されると、それに伴って誘起電圧定数が変化し、その結果、電動機1の特性が変更される。即ち、強め界磁によって誘起電圧定数が大きくなると、電動機1として運転可能な許容回転速度は低下するものの、出力可能な最大トルクは増大し、逆に、弱め界磁によって誘起電圧定数が小さくなると、電動機1の出力可能な最大トルクは減少するものの、運転可能な許容回転速度は上昇する。
Here, in the case of the electric motor 1 of this embodiment, when the inner circumferential rotor 6 is at the most retarded position with respect to the outer circumferential rotor 5, the outer circumferential rotor 5 and the inner circumferential rotor 6 are permanent. The magnets 9 are opposed to each other with different polarities and are in a strong field state (see FIGS. 2 and 5A), and the inner circumferential rotor 6 is at the most advanced position with respect to the outer circumferential rotor 5. Sometimes, the permanent magnets 9 of the outer circumferential rotor 5 and the inner circumferential rotor 6 are set so as to face each other with the same poles to form a field weakening state (see FIGS. 4 and 5B). Yes.
The electric motor 1 can arbitrarily change the state of the strong field and the state of the weak field by controlling the supply and discharge of the hydraulic fluid to the advance side working chamber 24 and the retard side working chamber 25. Thus, when the strength of the magnetic field is changed, the induced voltage constant is changed accordingly, and as a result, the characteristics of the electric motor 1 are changed. That is, when the induced voltage constant increases due to the strong field, the allowable rotational speed at which the motor 1 can be operated decreases, but the maximum torque that can be output increases. Conversely, when the induced voltage constant decreases due to the weak field, Although the maximum torque that can be output from the electric motor 1 decreases, the allowable rotational speed at which the motor 1 can operate increases.

一方、油圧制御装置13は、図7に示すように、オイルタンク(図示せず)から作動液を吸い上げて通路に吐出するオイルポンプ32(流体供給源)と、このオイルポンプ32から吐出された作動液の油圧を調整して高圧のライン通路33に導入し、余剰分の作動液を各種機器の潤滑や冷却のための低圧通路34に流出させるレギュレータバルブ35と、ライン通路33に導入された作動液を進角側給排通路26と遅角側給排通路27に振り分けるとともに、進角側給排通路26と遅角側給排通路27で不要な作動液をドレン通路36に排出する流路切換弁37とを備えている。
レギュレータバルブ35は、ライン通路33の圧力を制御圧として受け、反力スプリング38とのバランスによって作動液の振り分けを行う。
また、流路切換弁37は、制御スプール37aを進退操作する電磁ソレノイド37bを有し、この電磁ソレノイド37bがコントローラ40によって制御されるようになっている。
On the other hand, as shown in FIG. 7, the hydraulic control device 13 sucks the hydraulic fluid from an oil tank (not shown) and discharges it to the passage, and the oil pump 32 is discharged from the oil pump 32. The hydraulic pressure of the hydraulic fluid was adjusted and introduced into the high-pressure line passage 33, and the excess hydraulic fluid was introduced into the low-pressure passage 34 for lubricating and cooling various devices, and the hydraulic fluid was introduced into the line passage 33. A flow in which the working fluid is distributed to the advance side supply / discharge passage 26 and the retard side supply / discharge passage 27, and unnecessary working fluid is discharged to the drain passage 36 through the advance side supply / discharge passage 26 and the retard side supply / discharge passage 27. And a path switching valve 37.
The regulator valve 35 receives the pressure of the line passage 33 as a control pressure, and distributes the hydraulic fluid according to the balance with the reaction force spring 38.
Further, the flow path switching valve 37 has an electromagnetic solenoid 37 b that moves the control spool 37 a forward and backward, and the electromagnetic solenoid 37 b is controlled by the controller 40.

また、油圧制御装置13は、さらに、ライン通路33の流路切換弁37の上流位置から流路切換弁37を迂回して進角側給排通路26に接続される進角側バイパス通路45と、ライン通路33の流路切換弁37の上流位置から流路切換弁37を迂回して遅角側給排通路27に接続される遅角側バイパス通路46と、進角側バイパス通路45と遅角側バイパス通路46に夫々介装されて各通路45,46を開閉する常閉型の開閉弁47A,47Bと、この各開閉弁47A,47Bを開閉作動させる信号圧を作る電磁弁48A,48Bと、ソレノイドのオン作動によってレギュレータバルブ35の反力室49にライン通路33の圧力を導入するバルブ固定用の電磁弁50を備えている。   The hydraulic control device 13 further includes an advance side bypass passage 45 that bypasses the flow path switching valve 37 from the upstream position of the flow path switching valve 37 in the line passage 33 and is connected to the advance side supply / discharge passage 26. The retard side bypass passage 46, which bypasses the flow path switching valve 37 from the upstream position of the flow path switching valve 37 in the line passage 33 and is connected to the retard side supply / discharge passage 27, and the advance side bypass passage 45 and the delay side. Normally-closed on-off valves 47A and 47B that open and close the passages 45 and 46, respectively, and electromagnetic valves 48A and 48B that generate signal pressures to open and close the on-off valves 47A and 47B. And a solenoid valve 50 for fixing the valve for introducing the pressure of the line passage 33 into the reaction force chamber 49 of the regulator valve 35 by turning on the solenoid.

各バイパス通路45,46の電磁弁48A,48Bは、対応する開閉弁47A,47Bに導通する信号ポートP1と、ライン通路33に導通する圧力導入ポートP2と、ドレン通路44に導通するドレンポートP3とを有し、コントローラ40(図6参照)から制御信号(オン・オフ信号)を受けて、信号ポートP1を圧力導入ポートP2とドレンポートP3に選択的に導通させる。具体的には、各電磁弁48A,48Bは、通常時にはオフにされ、信号ポートP1をドレンポートP3に導通させて対応する開閉弁47A,47Bを閉状態に維持しており、コントローラ40からオン信号が入力されると、信号ポートP1を圧力導入ポートP2に導通させ、対応する開閉弁47A,47Bを開作動させる。   The electromagnetic valves 48A and 48B of the bypass passages 45 and 46 are respectively connected to the corresponding on-off valves 47A and 47B, the signal port P1 conducting to the line passage 33, the pressure introducing port P2 conducting to the line passage 33, and the drain port P3 conducting to the drain passage 44. In response to a control signal (ON / OFF signal) from the controller 40 (see FIG. 6), the signal port P1 is selectively conducted to the pressure introduction port P2 and the drain port P3. Specifically, each of the solenoid valves 48A and 48B is normally turned off, and the corresponding on-off valves 47A and 47B are maintained in the closed state by causing the signal port P1 to be connected to the drain port P3. When a signal is input, the signal port P1 is electrically connected to the pressure introduction port P2, and the corresponding on-off valves 47A and 47B are opened.

また、レギュレータバルブ35の反力室49は、ライン通路33からの導入圧を反力スプリング38の付勢方向と同方向の力としてレギュレータバルブ35に作用させるものであり、バルブ固定用の電磁弁50のオン・オフ作動によってライン通路33の圧力の導入と遮断が制御されるようになっている。電磁弁50は、反力室49に導通する信号ポートP4と、ライン通路33に導通する圧力導入ポートP5と、ドレン通路44に導通するドレンポートP6とを有し、前記の電磁弁48A,48Bと同様にコントローラ40(図6参照)から制御信号(オン・オフ信号)を受けて、信号ポートP4を圧力導入ポートP5とドレンポートP6に選択的に導通させる。具体的には、電磁弁50は、通常時にはオフにされ、信号ポートP4をドレンポートP6に導通させて反力室49を大気圧状態に維持しており、コントローラ40からオン信号が入力されると、信号ポートP4を圧力導入ポートP5に導通させて反力室49にライン通路33の圧力を導入する。レギュレータバルブ35は、こうして反力室49に圧力が導入されると、ライン通路33の圧力に応じたスプール制御を実質的に無効し、低圧通路34を完全に遮断する(全流量をライン通路33に導入する)固定状態に切り換える。   Further, the reaction force chamber 49 of the regulator valve 35 applies the pressure introduced from the line passage 33 to the regulator valve 35 as a force in the same direction as the urging direction of the reaction force spring 38, and is a solenoid valve for fixing the valve. The on / off operation of 50 controls the introduction and shut-off of the pressure in the line passage 33. The electromagnetic valve 50 has a signal port P4 that conducts to the reaction force chamber 49, a pressure introduction port P5 that conducts to the line passage 33, and a drain port P6 that conducts to the drain passage 44, and the electromagnetic valves 48A and 48B. In the same manner as described above, a control signal (ON / OFF signal) is received from the controller 40 (see FIG. 6), and the signal port P4 is selectively conducted to the pressure introduction port P5 and the drain port P6. Specifically, the solenoid valve 50 is normally turned off, the signal port P4 is electrically connected to the drain port P6, and the reaction force chamber 49 is maintained in an atmospheric pressure state, and an on signal is input from the controller 40. Then, the signal port P4 is conducted to the pressure introduction port P5 to introduce the pressure of the line passage 33 into the reaction force chamber 49. When pressure is introduced into the reaction force chamber 49 in this way, the regulator valve 35 substantially disables spool control in accordance with the pressure in the line passage 33 and completely shuts off the low-pressure passage 34 (the total flow rate is reduced to the line passage 33). Switch to the fixed state.

以上説明した電磁弁48A,48Bとバルブ固定用の電磁弁50は、電動機1の通常の位相変更時にはオフにされ、コントローラ40が急激な位相変更が必要と判断した場合(急激な位相変更を要求した場合)、例えば、車両の急加速や急減速時、低温環境下で作動液の粘性抵抗が高いとき(位相変更要求に作動液の流れが追いつかないとき)等にオン操作される。   The solenoid valves 48A and 48B and the solenoid valve 50 for fixing the valve described above are turned off when the normal phase change of the electric motor 1 is performed, and the controller 40 determines that a sudden phase change is necessary (requesting a sudden phase change). For example, when the vehicle is rapidly accelerating or decelerating, when the viscosity of the hydraulic fluid is high in a low temperature environment (when the flow of hydraulic fluid cannot catch up with the phase change request), the ON operation is performed.

ここで、図6に示すコントローラ40の構成について説明する。   Here, the configuration of the controller 40 shown in FIG. 6 will be described.

コントローラ40は、回転直交座標をなすdq座標上で電流のフィードバック制御を行うものであり、例えば運転者のアクセル操作に係るアクセル開度等に応じて設定されるトルク指令Tqに基づきd軸電流指令Idc及びq軸電流指令Iqcを演算し、d軸電流指令Idc及びq軸電流指令Iqcに基づいて各相出力電圧Vu,Vv,Vwを算出し、各相出力電圧Vu,Vv,Vwに応じてPDU41にゲート信号であるPWM信号を出力するとともに、実際にPDU41から電動機1に供給される各相電流Iu,Iv,Iwの何れか2つの相電流をdq座標上の電流に変換して得たd軸電流Id及びq軸電流Iqと、d軸電流指令Idc及びq軸電流指令Iqcとの各偏差がゼロとなるように電流制御を行う。   The controller 40 performs current feedback control on the dq coordinates that form the rotation orthogonal coordinates. For example, the d-axis current command is based on the torque command Tq that is set according to the accelerator opening degree related to the accelerator operation of the driver. Idc and q-axis current command Iqc are calculated, and each phase output voltage Vu, Vv, Vw is calculated based on d-axis current command Idc and q-axis current command Iqc, and according to each phase output voltage Vu, Vv, Vw Obtained by outputting a PWM signal as a gate signal to the PDU 41 and converting any two phase currents of the phase currents Iu, Iv, and Iw actually supplied from the PDU 41 to the current on the dq coordinate. Current control is performed such that each deviation between the d-axis current Id and the q-axis current Iq and the d-axis current command Idc and the q-axis current command Iqc becomes zero.

また、このコントローラ40は、トルク指令Tq等の要求指令と、実際の両回転子6,5の位相差のフィードバック値に基づいて、位相変更を行うべく油圧制御装置13(流路切換弁37の電磁ソレノイド37b)の制御を行い、さらに、位相制御の指令値θcとフィードバック値θの差が設定許容範囲から外れる場合には、急激な位相変更の要求があったものと判定して油圧制御装置13に対して付加的な制御(電磁弁48A,48B,50のオン制御)を行う。 The controller 40 also controls the hydraulic control device 13 (of the flow path switching valve 37) to change the phase based on the request command such as the torque command Tq and the actual feedback value of the phase difference between the rotors 6 and 5. and controls the electromagnetic solenoid 37b), further, if the difference command value θc and the feedback value theta 0 of the phase control is out of allowable setting range, the hydraulic pressure control is determined that there is a request for sudden phase changes Additional control (on-control of the solenoid valves 48A, 48B, 50) is performed on the device 13.

コントローラ40は、具体的には、目標電流設定部51と、電流偏差算出部52と、界磁制御部53と、電力制御部54と、電流制御部55と、dq−3相変換部56と、PWM信号生成部57と、フィルタ処理部58と、3相−dq変換部59と、回転数演算部60と、誘起電圧定数指令出力部83と、誘起電圧常数算出部82と、誘起電圧定数差分算出部84と、位相制御部62と、要求位相差算出部63と、変更要求判定部64と、第2の位相制御部65とを備えている。   Specifically, the controller 40 includes a target current setting unit 51, a current deviation calculation unit 52, a field control unit 53, a power control unit 54, a current control unit 55, a dq-3 phase conversion unit 56, and a PWM. Signal generator 57, filter processor 58, 3-phase-dq converter 59, rotation speed calculator 60, induced voltage constant command output unit 83, induced voltage constant calculator 82, and induced voltage constant difference calculation Unit 84, phase control unit 62, required phase difference calculation unit 63, change request determination unit 64, and second phase control unit 65.

そして、コントローラ40には、PDU41から電動機1に出力される3相の各相電流Iu,Iv,Iwのうち、2相のU相電流IuおよびW相電流Iwを検出する各電流センサ71,71から出力される各検出信号Ius,Iwsと、バッテリ42の端子電圧(電源電圧)VBを検出する電圧センサ72から出力される検出信号と、電動機1の回転子ユニット3の回転角θM(つまり、所定の基準回転位置からの回転子ユニット3の磁極の回転角度)を検出するレゾルバ73(回転センサ)から出力される検出信号と、外部の制御装置(図示略)から出力されるトルク指令TqおよびトランスミッションT/Mの変速比に対する制御指令である変速指令および車両の駆動状態(例えば、前輪駆動状態や総輪駆動状態等)に対する制御指令である駆動輪選択指令とが入力される。   The controller 40 then detects current sensors 71 and 71 for detecting a two-phase U-phase current Iu and a W-phase current Iw among the three-phase currents Iu, Iv, and Iw output from the PDU 41 to the electric motor 1. Detection signals Ius and Iws output from the battery 42, a detection signal output from the voltage sensor 72 for detecting the terminal voltage (power supply voltage) VB of the battery 42, and the rotation angle θM of the rotor unit 3 of the motor 1 (that is, A detection signal output from a resolver 73 (rotation sensor) that detects a rotation angle of a magnetic pole of the rotor unit 3 from a predetermined reference rotation position, a torque command Tq output from an external control device (not shown), and A shift command that is a control command for the transmission gear ratio of the transmission T / M and a control command for a vehicle driving state (for example, a front wheel driving state or a total wheel driving state) That the drive wheel selection command and are inputted.

目標電流設定部51は、例えば外部の制御装置(図示略)から入力されるトルク指令Tq(例えば、運転者によるアクセルペダルの踏み込み操作量に応じて必要とされるトルクを電動機1に発生させるための指令値)と、回転数演算部60から入力される電動機1の回転数NMと、誘起電圧定数Keとに基づき、PDU41から電動機1に供給される各相電流Iu,Iv,Iwを指定するための電流指令を演算しており、この電流指令は、回転する直交座標上でのd軸目標電流Idc及びq軸目標電流Iqcとして電流偏差算出部52へ出力されている。
この回転直交座標をなすdq座標は、例えば回転子ユニット3の永久磁石9による界磁極の磁束方向をd軸(界磁軸)とし、このd軸と直交する方向をq軸(トルク軸)としており、電動機1の回転位相に同期して回転している。これにより、PDU41から電動機1の各相に供給される交流信号に対する電流指令として、直流的な信号であるd軸目標電流Idcおよびq軸目標電流Iqcを与えるようになっている。
The target current setting unit 51 is, for example, for causing the electric motor 1 to generate a torque command Tq (for example, a torque required according to the amount by which the driver depresses the accelerator pedal) input from an external control device (not shown). ), The rotational speed NM of the electric motor 1 input from the rotational speed calculation unit 60, and the induced voltage constant Ke, each phase current Iu, Iv, Iw supplied from the PDU 41 to the electric motor 1 is specified. The current command is output to the current deviation calculation unit 52 as the d-axis target current Idc and the q-axis target current Iqc on the rotating orthogonal coordinates.
The dq coordinates forming the rotation orthogonal coordinates are, for example, the field magnetic flux direction of the permanent magnet 9 of the rotor unit 3 as a d axis (field axis), and the direction orthogonal to the d axis as a q axis (torque axis). And is rotating in synchronization with the rotation phase of the electric motor 1. As a result, the d-axis target current Idc and the q-axis target current Iqc, which are DC signals, are given as current commands for the AC signal supplied from the PDU 41 to each phase of the electric motor 1.

電流偏差算出部52は、界磁制御部53から入力されるd軸補正電流が加算されたd軸目標電流Idcと、d軸電流Idとの偏差ΔIdを算出するd軸電流偏差算出部52aと、電力制御部54から入力されるq軸補正電流が加算されたq軸目標電流Iqcと、q軸電流Iqとの偏差ΔIqを算出するq軸電流偏差算出部52aとを備えて構成されている。
なお、界磁制御部53は、例えば電動機1の回転数NMの増大に伴う逆起電圧の増大を抑制するためにロータ23の界磁量を等価的に弱めるようにして電流位相を制御する弱め界磁制御の弱め界磁電流に対する目標値をd軸補正電流として出力する。
また、電力制御部54は、例えばバッテリ18の残容量等に応じた適宜の電力制御に応じてq軸目標電流Iqcを補正するためのq軸補正電流を出力する。
The current deviation calculation unit 52 includes a d-axis current deviation calculation unit 52a that calculates a deviation ΔId between the d-axis target current Idc input with the d-axis correction current input from the field control unit 53 and the d-axis current Id, A q-axis target current Iqc to which the q-axis correction current input from the control unit 54 is added and a q-axis current deviation calculating unit 52a that calculates a deviation ΔIq from the q-axis current Iq are configured.
The field control unit 53 performs field weakening control that controls the current phase so as to weaken the field amount of the rotor 23 equivalently in order to suppress an increase in the counter electromotive voltage accompanying an increase in the rotational speed NM of the electric motor 1, for example. The target value for the field weakening current is output as the d-axis correction current.
Further, the power control unit 54 outputs a q-axis correction current for correcting the q-axis target current Iqc according to appropriate power control according to, for example, the remaining capacity of the battery 18.

電流制御部55は、例えばモータ回転数NMに応じたPI(比例積分)動作により、偏差ΔIdを制御増幅してd軸電圧指令値Vdを算出し、偏差ΔIqを制御増幅してq軸電圧指令値Vqを算出する。   The current control unit 55 controls and amplifies the deviation ΔId to calculate the d-axis voltage command value Vd by, for example, a PI (proportional integration) operation according to the motor rotational speed NM, and controls and amplifies the deviation ΔIq to thereby q-axis voltage command. The value Vq is calculated.

dq−3相変換部56は、回転数演算部60から入力されるロータの回転角θMを用いて、dq座標上でのd軸電圧指令値Vdおよびq軸電圧指令値Vqを、静止座標である3相交流座標上での電圧指令値であるU相出力電圧Vu、V相出力電圧VvおよびW相出力電圧Vwに変換する。   The dq-3 phase conversion unit 56 uses the rotor rotation angle θM input from the rotation speed calculation unit 60 to convert the d-axis voltage command value Vd and the q-axis voltage command value Vq on the dq coordinate in a stationary coordinate. It is converted into a U-phase output voltage Vu, a V-phase output voltage Vv and a W-phase output voltage Vw which are voltage command values on a certain three-phase AC coordinate.

PWM信号生成部57は、例えば、正弦波状の各相出力電圧Vu,Vv,Vwと、三角波からなるキャリア信号と、スイッチング周波数とに基づくパルス幅変調により、PDU13のPWMインバータの各スイッチング素子をオン/オフ駆動させる各パルスからなるスイッチング指令であるゲート信号(つまり、PWM信号)を生成する。   For example, the PWM signal generation unit 57 turns on each switching element of the PWM inverter of the PDU 13 by pulse width modulation based on each phase output voltage Vu, Vv, Vw of a sine wave, a carrier signal composed of a triangular wave, and a switching frequency. A gate signal (that is, a PWM signal) that is a switching command including each pulse to be driven off / off is generated.

フィルタ処理部58は、各電流センサ71,71により検出された各相電流に対する検出信号Ius,Iwsに対して、高周波成分の除去等のフィルタ処理を行い、物理量としての各相電流Iu,Iwを抽出する。   The filter processing unit 58 performs filter processing such as removal of high-frequency components on the detection signals Ius and Iws for the phase currents detected by the current sensors 71 and 71 to obtain the phase currents Iu and Iw as physical quantities. Extract.

3相−dq変換部59は、フィルタ処理部58により抽出された各相電流Iu,Iwと、回転数演算部60から入力される回転子ユニット3の回転角θMとにより、電動機1の回転位相による回転座標すなわちdq座標上でのd軸電流Idおよびq軸電流Iqを算出する。   The three-phase-dq conversion unit 59 uses the phase currents Iu and Iw extracted by the filter processing unit 58 and the rotation angle θM of the rotor unit 3 input from the rotation number calculation unit 60 to rotate the rotation phase of the electric motor 1. The d-axis current Id and the q-axis current Iq on the rotation coordinates by dq, that is, the dq coordinates are calculated.

回転数演算部60は、レゾルバ73から出力される検出信号から電動機1の回転子ユニット3の回転角θMを抽出するとともに、この回転角θMに基づき、電動機1の回転数NMを算出する。   The rotation speed calculation unit 60 extracts the rotation angle θM of the rotor unit 3 of the electric motor 1 from the detection signal output from the resolver 73, and calculates the rotation speed NM of the electric motor 1 based on the rotation angle θM.

誘起電圧定数指令出力部83は、例えばトルク指令Tqと、電動機1の回転数NMと、変速指令と、駆動輪選択指令とに基づいて誘起電圧定数指令値Kec(誘起電圧定数指令)を出力する。   The induced voltage constant command output unit 83 outputs an induced voltage constant command value Kec (induced voltage constant command) based on, for example, the torque command Tq, the rotation speed NM of the electric motor 1, the shift command, and the drive wheel selection command. .

誘起電圧常数算出部82は、内周側回転子6と外周側回転子5の相対位相を検出する位相検出器81から検出値θを受けて実際の電動機1の誘起電圧定数Keを算出する。ここで算出した誘起電圧定数Keは、目標電流設定部51に入力されるとともに、誘起電圧定数差分算出部84に入力される。なお、位相検出器81としては、例えば進角側給排通路26(進角側作動室24)と遅角側給排通路27(遅角側作動室25)の差圧を検出するセンサや、内周側回転子6と外周側回転子5の位相差を直接的に検出するセンサ等を用いることができる。 The induced voltage constant calculator 82 receives the detection value θ 0 from the phase detector 81 that detects the relative phase between the inner circumferential rotor 6 and the outer circumferential rotor 5 and calculates the actual induced voltage constant Ke of the electric motor 1. . The induced voltage constant Ke calculated here is input to the target current setting unit 51 and also input to the induced voltage constant difference calculation unit 84. As the phase detector 81, for example, a sensor that detects a differential pressure between the advance side supply / discharge passage 26 (advance side working chamber 24) and the retard side supply / exhaust passage 27 (retard side operation chamber 25), A sensor or the like that directly detects the phase difference between the inner circumferential rotor 6 and the outer circumferential rotor 5 can be used.

誘起電圧定数差分算出部84は、誘起電圧定数指令出力部83から出力された誘起電圧定数指令値Kecと、誘起電圧常数算出部82で求めた実際の誘起電圧定数Keとの偏差を算出し、そこで算出した誘起電圧定数の偏差ΔKeを位相制御部62に出力する。   The induced voltage constant difference calculation unit 84 calculates a deviation between the induced voltage constant command value Kec output from the induced voltage constant command output unit 83 and the actual induced voltage constant Ke obtained by the induced voltage constant calculation unit 82. Therefore, the calculated deviation ΔKe of the induced voltage constant is output to the phase controller 62.

位相制御部62は、誘起電圧定数の偏差ΔKeに応じた位相指令値θcを算出し、その位相指令値θcを油圧制御装置13の流路切換弁37(電磁ソレノイド37b)に出力する。   The phase control unit 62 calculates a phase command value θc corresponding to the induced voltage constant deviation ΔKe, and outputs the phase command value θc to the flow path switching valve 37 (electromagnetic solenoid 37b) of the hydraulic control device 13.

要求位相差算出部63は、位相制御部62から出力される位相指令値θcと、位相検出器81から出力された検出値θとの差分Δθを算出し、変更要求判定部64は、要求位相差算出部63で算出した差分Δθが設定許容値の範囲から外れるかどうかを判定する。
第2の位相制御部65は、変更要求判定部64で差分Δθが設定許容値の範囲から外れると判定したときに、油圧制御装置13の電磁弁48A,48B,50に制御信号(オン信号)を出力する。
The request phase difference calculation unit 63 calculates a difference Δθ between the phase command value θc output from the phase control unit 62 and the detection value θ 0 output from the phase detector 81, and the change request determination unit 64 It is determined whether or not the difference Δθ calculated by the phase difference calculation unit 63 is out of the set allowable value range.
When the change request determination unit 64 determines that the difference Δθ is out of the set allowable value range, the second phase control unit 65 controls the electromagnetic valves 48A, 48B, 50 of the hydraulic control device 13 to receive control signals (ON signals). Is output.

変更要求判定部64と第2の位相制御部65での制御のフローは、例えば図8に示すようになる。以下、このフローについて説明するが、このフローにおいては、内周側回転子6が進角側から遅角側に進む向きを正の向きと考えるものとする。
まず、ステップS1において、位相指令値θcと実際の位相検出値θとの差分Δθを読み込み、つづくステップS2において、差分Δθが上限側の位相差設定値θ1(プラスの値)よりも大きいかどうかを判定し、位相差設定値θ1よりも大きい場合にはステップS3に進み、大きくない場合にはステップS4に進む。
ステップ3に進んだ場合には、内周側回転子6が遅角方向に制御され、かつ、位相指令値θcと現在の位相との乖離幅が設定許容幅から外れる(つまり、遅角方向の位相変更要求が急激である)ため、図7に示す電磁弁50と電磁弁48Bにオン信号を出力する。これにより、レギュレータバルブ35が固定されるとともに、遅角側バイパス通路46が開かれる。
また、ステップS4に進んだ場合には、さらに差分Δθが下限側の位相差設定値θ2(マイナスの値)よりも小さいかどうかを判定し、位相差設定値θ2よりも小さい場合にはステップS5に進み、小さくない場合にはリターンする。
ステップS4に進んだ場合には、内周側回転子6が進角方向に制御され、かつ、位相指令値θcと現在の位相との乖離幅が設定許容幅から外れる(つまり、進角方向の位相変更要求が急激である)ため、図7に示す電磁弁50と電磁弁48Aにオン信号を出力する。これにより、レギュレータバルブ35が固定されるとともに、進角側バイパス通路45が開かれる。
A control flow in the change request determination unit 64 and the second phase control unit 65 is, for example, as shown in FIG. Hereinafter, this flow will be described. In this flow, it is assumed that the direction in which the inner circumferential rotor 6 advances from the advance side to the retard side is a positive direction.
First, in step S1, reads the difference Δθ of the actual and phase detection value theta 0 and phase command value .theta.c, in the following step S2, whether the difference Δθ is greater than the phase difference setting value θ1 upper side (positive value) If it is larger than the phase difference set value θ1, the process proceeds to step S3, and if not larger, the process proceeds to step S4.
When the routine proceeds to step 3, the inner circumferential rotor 6 is controlled in the retarding direction, and the deviation width between the phase command value θc and the current phase is out of the set allowable range (that is, in the retarding direction). Since the phase change request is abrupt, an ON signal is output to the solenoid valve 50 and the solenoid valve 48B shown in FIG. As a result, the regulator valve 35 is fixed and the retard side bypass passage 46 is opened.
When the process proceeds to step S4, it is further determined whether or not the difference Δθ is smaller than the lower limit side phase difference set value θ2 (negative value). If the difference Δθ is smaller than the phase difference set value θ2, step S5 is performed. If not, return.
When the process proceeds to step S4, the inner rotor 6 is controlled in the advance direction, and the deviation width between the phase command value θc and the current phase is out of the set allowable range (that is, in the advance direction). Since the phase change request is abrupt, an ON signal is output to the solenoid valve 50 and the solenoid valve 48A shown in FIG. As a result, the regulator valve 35 is fixed and the advance side bypass passage 45 is opened.

つづいて、電動機1の位相変更の作動について説明する。
電動機1の位相が強め界磁側に変更される場合には、コントローラ40による指令によって図7に示す流路切換弁37が制御され、ライン通路33の作動液が流路切換弁37と遅角側給排通路27を通して遅角側作動室25に供給され、進角側作動室24の作動液が進角側給排通路26と流路切換弁37を通してドレン通路36に排出される。これにより、図1〜図4に示す内周側回転子6と環状ハウジング15は、外周側回転子5とベーンロータ14に対して遅角側に相対回動し、電動機1は、両回転子5,6の永久磁石9が異極面同士で対向する強め界磁方向に位相変更される。
Next, the operation of changing the phase of the electric motor 1 will be described.
When the phase of the electric motor 1 is changed to the strong field side, the flow path switching valve 37 shown in FIG. 7 is controlled by a command from the controller 40, and the hydraulic fluid in the line passage 33 is retarded from the flow path switching valve 37. The retarded-side working chamber 25 is supplied to the retarded-side working chamber 25 through the side-feeding / discharging passage 27, and the working fluid in the advance-side working chamber 24 is discharged to the drain passage 36 through the advance-side feeding / discharging passage 26 and the flow path switching valve 37. As a result, the inner rotor 6 and the annular housing 15 shown in FIGS. 1 to 4 are rotated relative to the outer rotor 5 and the vane rotor 14 in the retarded direction, and the electric motor 1 includes both rotors 5. , 6 permanent magnets 9 are phase-shifted in the direction of the strong magnetic field facing each other at different polar surfaces.

また、このように電動機1が強め界磁側に位相変更されるときに、位相変更要求が急激である場合には、前述のようにコントローラ40による指令によって電磁弁50と電磁弁48Bがオン操作され、レギュレータバルブ35が低圧通路34を閉じた状態に固定されるとともに遅角側バイパス通路46が開かれる。これにより、オイルポンプ32側から供給される作動液がライン通路33の流路切換弁37側のメイン通路と遅角側バイパス通路46とに分流され、大流量でもって遅角側作動室25に供給される。したがって、電動機1は、この結果、迅速に強め界磁側に位相変更される。   Further, when the phase of the electric motor 1 is changed to the strong field side and the phase change request is abrupt, the solenoid valve 50 and the solenoid valve 48B are turned on by the command from the controller 40 as described above. Then, the regulator valve 35 is fixed in a state where the low pressure passage 34 is closed, and the retard side bypass passage 46 is opened. As a result, the hydraulic fluid supplied from the oil pump 32 side is divided into the main passage on the flow path switching valve 37 side of the line passage 33 and the retard side bypass passage 46, and enters the retard side working chamber 25 with a large flow rate. Supplied. Therefore, as a result, the phase of the electric motor 1 is quickly changed to the strong field side.

一方、電動機1の位相が弱め界磁側に変更される場合には、コントローラ40による指令によって流路切換弁37が制御され、ライン通路33の作動液が流路切換弁37と進角側給排通路26を通して進角側作動室24に供給され、遅角側作動室25の作動液が遅角側給排通路27と流路切換弁37を通してドレン通路36に排出される。これにより、環状ハウジング15がベーンロータ14に対して遅角側に相対回動し、電動機1は、両回転子5,6の永久磁石9が同極面同士で対向する弱め界磁方向に位相変更される。   On the other hand, when the phase of the electric motor 1 is changed to the field weakening side, the flow path switching valve 37 is controlled by a command from the controller 40, and the hydraulic fluid in the line passage 33 is supplied to the flow path switching valve 37 and the advance side. The hydraulic fluid is supplied to the advance side working chamber 24 through the exhaust passage 26, and the working fluid in the retard side working chamber 25 is discharged to the drain passage 36 through the retard side supply / exhaust passage 27 and the flow path switching valve 37. As a result, the annular housing 15 rotates relative to the vane rotor 14 in the retarded direction, and the electric motor 1 changes the phase in the field-weakening direction in which the permanent magnets 9 of the rotors 5 and 6 face each other at the same pole surfaces. Is done.

また、この場合も、位相変更要求が急激であるときには、電磁弁50と電磁弁48Aがオン操作され、レギュレータバルブ35が低圧通路34を閉じた状態に固定されるとともに進角側バイパス通路46が開かれる。これにより、オイルポンプ32側から供給される作動液が流路切換弁37側のメイン通路と進角側バイパス通路45とに分流され、大流量でもって進角側作動室24に供給される。電動機1は、この結果、迅速に弱め界磁側に位相変更される。   Also in this case, when the phase change request is abrupt, the solenoid valve 50 and the solenoid valve 48A are turned on, the regulator valve 35 is fixed in the closed state of the low pressure passage 34, and the advance side bypass passage 46 is be opened. As a result, the hydraulic fluid supplied from the oil pump 32 side is divided into the main passage on the flow path switching valve 37 side and the advance side bypass passage 45, and is supplied to the advance side working chamber 24 with a large flow rate. As a result, the phase of the electric motor 1 is rapidly changed to the field weakening side.

以上のように、この電動機1においては、位相変更の要求に応じて流路切換弁37が進角側作動室24と遅角側作動室25に作動液の給排制御を行い、位相変更の要求が急激である場合には、電磁弁48A或いは48Bによって対応するバイパス通路45,46を開き、作動室24,25に導入する作動液の流量を増大させることができるため、流路面積の大きい大型の電磁弁(流路切換弁)を用いることなく、回転子ユニット3の位相を任意のタイミングで自由に変更でき、しかも、急激な位相変更の要求にも速やかに対応することができる。   As described above, in the electric motor 1, the flow path switching valve 37 controls the supply and discharge of the hydraulic fluid to the advance side working chamber 24 and the retard side working chamber 25 in response to a request for phase change, and the phase change is performed. When the demand is abrupt, the corresponding bypass passages 45 and 46 can be opened by the electromagnetic valve 48A or 48B, and the flow rate of the working fluid introduced into the working chambers 24 and 25 can be increased. Without using a large solenoid valve (flow path switching valve), the phase of the rotor unit 3 can be freely changed at an arbitrary timing, and it is possible to quickly respond to a sudden phase change request.

また、この電動機1の場合、バイパス通路45,46の開閉を制御する電磁弁48A,48Bは、直接バイパス通路45,46を開閉するのではなく、電磁弁48A,48Bによってライン通路33の圧力を信号圧として開閉弁47A,47Bに作用させるため、比較的磁力の弱い小型のものを採用することができる。したがって、電動機1のシステムの小型化と製造コストの低減を図ることができる。   In the case of the electric motor 1, the electromagnetic valves 48A and 48B that control the opening and closing of the bypass passages 45 and 46 do not directly open and close the bypass passages 45 and 46, but the pressure of the line passage 33 is controlled by the electromagnetic valves 48A and 48B. Since the signal pressure is applied to the on-off valves 47A and 47B, a small one having a relatively weak magnetic force can be employed. Therefore, the system of the electric motor 1 can be reduced in size and the manufacturing cost can be reduced.

さらに、この実施形態の電動機1の場合、バルブ固定用の電磁弁50が設けられているため、急激な位相変更要求時にバイパス通路45或いは46を開いて作動室24,25の導入流量を急増させる場合に、ライン通路33での充分な供給流量を安定的に維持することができる。   Furthermore, in the case of the electric motor 1 of this embodiment, since the valve-fixing electromagnetic valve 50 is provided, the bypass passage 45 or 46 is opened at the time of a sudden phase change request to rapidly increase the introduction flow rate of the working chambers 24 and 25. In this case, a sufficient supply flow rate in the line passage 33 can be stably maintained.

なお、以上で説明した実施形態においては、バイパス通路45,46と、これに対応する開閉弁47A,47Bや電磁弁48A,48Bを遅角側と進角側の両方に設けたが、これらは車両の仕様等に応じて進角側と遅角側のいずれか一方側にのみ設けるようにしても良い。この場合、バルブ固定用の電磁弁は開閉弁を操作するための電磁弁と共用させことができる。   In the embodiment described above, the bypass passages 45 and 46 and the corresponding on-off valves 47A and 47B and electromagnetic valves 48A and 48B are provided on both the retard side and the advance side. It may be provided only on either the advance side or the retard side according to the specifications of the vehicle. In this case, the solenoid valve for fixing the valve can be shared with the solenoid valve for operating the on-off valve.

図9,図10は、この発明の第2の実施形態と第3の実施形態を夫々示すものである。
これらの実施形態の電動機1は、いずれも位相変更手段12の回動機構111,211の構成が第1の実施形態のものと異なっており、他の構成は第1の実施形態のものとほぼ同様とされている。したがって、第1の実施形態と同一部分には同一符号を付し、重複する部分については説明を省略するものとする。
9 and 10 show a second embodiment and a third embodiment of the present invention, respectively.
The electric motors 1 of these embodiments are different from those of the first embodiment in the configuration of the rotation mechanisms 111 and 211 of the phase changing means 12, and the other configurations are substantially the same as those in the first embodiment. The same is said. Accordingly, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description of the overlapping parts is omitted.

図9に示す第2の実施形態の回動機構111は、回転軸4の外面に一体回転可能にスプライン嵌合されたボビン状の内筒部材112(第1部材)と、内筒部材112の外周側に配置された円筒状の外筒部材113(第2部材)とを備え、この外筒部材113が内周側回転子6の内周面に一体に嵌合固定されるとともに、内筒部材112の軸方向外側の両側壁112a,112aが、外筒部材113と内周側回転子6の両側の側端部を跨ぐ一対のドライブプレート114,114(第1部材)を介して外周側回転子5に一体に結合されている。この回動機構111の場合、内筒部材112は回転軸4と外周側回転子5に一体化され、外筒部材113は内周側回転子6に一体化されている。   The rotating mechanism 111 of the second embodiment shown in FIG. 9 includes a bobbin-shaped inner cylinder member 112 (first member) that is spline-fitted to the outer surface of the rotating shaft 4 so as to be integrally rotatable, and the inner cylinder member 112. A cylindrical outer cylinder member 113 (second member) disposed on the outer peripheral side, and the outer cylinder member 113 is integrally fitted and fixed to the inner peripheral surface of the inner peripheral side rotor 6. Both side walls 112a, 112a on the axially outer side of the member 112 are on the outer peripheral side through a pair of drive plates 114, 114 (first member) straddling the outer cylindrical member 113 and the side end portions on both sides of the inner peripheral side rotor 6. The rotor 5 is integrally connected. In the case of the rotating mechanism 111, the inner cylinder member 112 is integrated with the rotating shaft 4 and the outer rotor 5, and the outer cylinder member 113 is integrated with the inner rotor 6.

内筒部材112の両側壁112aの外周面には外筒部材113が摺動自在に嵌合され、内筒部材112と外筒部材113の間に、作動液が導入される円筒状の導入空間115が形成されている。外筒部材113の内周面の軸方向略中間位置には、径方向内側に突出する肉厚部113a(筒部)が形成され、この肉厚部113aの内周面と内筒部材112の軸部112bの略半部(図中左側領域)の外周面には夫々逆向きのヘリカルスプライン116,117が形成されている。そして、内筒部材112の軸部112aと外筒部材113の間には、両者の内周と外周の各ヘリカルスプライン117,116に係合されるリングギヤ118が介装されている。なお、リングギヤ118の内周面と外周面には内筒部材112と外筒部材113のヘリカルスプライン117,116に噛合されるヘリカルスプラインが形成されているが、これらのヘリカルスプラインは図中符号を省略するものとする。   A cylindrical introduction space in which an outer cylinder member 113 is slidably fitted to the outer peripheral surfaces of both side walls 112 a of the inner cylinder member 112 and hydraulic fluid is introduced between the inner cylinder member 112 and the outer cylinder member 113. 115 is formed. A thick portion 113a (cylindrical portion) protruding radially inward is formed at a substantially intermediate position in the axial direction of the inner peripheral surface of the outer cylindrical member 113. The inner peripheral surface of the thick portion 113a and the inner cylindrical member 112 Helical splines 116 and 117 having opposite directions are formed on the outer peripheral surface of a substantially half portion (left region in the drawing) of the shaft portion 112b. Between the shaft portion 112a of the inner cylinder member 112 and the outer cylinder member 113, a ring gear 118 that is engaged with the helical splines 117 and 116 on the inner periphery and outer periphery thereof is interposed. In addition, helical splines that mesh with the helical splines 117 and 116 of the inner cylindrical member 112 and the outer cylindrical member 113 are formed on the inner peripheral surface and the outer peripheral surface of the ring gear 118. These helical splines are denoted by the reference numerals in the figure. Shall be omitted.

また、リングギヤ118は一端が封止壁119で連結された二重円筒状に形成され、リングギヤ118の封止壁119のある側の外周壁の一端は筒状に延出し、その延出端には径方向外側に突出するフランジ部120が設けられている。このフランジ部120の外周面は、外筒部材113のヘリカルスプライン116の形成されていない略半部の内周面にシールリング121を介して摺動自在に嵌合されている。このリングギヤ118の一端の封止壁119からフランジ部120にかけては導入空間115内を前後2室に隔成するピストン122を構成し、こうしてピストン122で隔成された一方の部屋が進角側作動室24、他方の部屋が遅角側作動室25とされている。そして、進角側作動室24と遅角側作動室25は、内筒部材112から回転軸4に亘って形成された進角側給排通路26と遅角側給排通路27に夫々接続されている。進角側給排通路26と遅角側給排通路27は第1の実施形態と同様の油圧制御装置(図示省略)に接続されている。   Further, the ring gear 118 is formed in a double cylindrical shape having one end connected by a sealing wall 119, and one end of the outer peripheral wall on the side where the sealing wall 119 of the ring gear 118 is extended to a cylindrical shape, Is provided with a flange 120 projecting radially outward. The outer peripheral surface of the flange portion 120 is slidably fitted to the inner peripheral surface of a substantially half portion of the outer cylinder member 113 where the helical spline 116 is not formed via a seal ring 121. A piston 122 that divides the inside of the introduction space 115 into two front and rear chambers is formed from the sealing wall 119 at one end of the ring gear 118 to the flange portion 120, and thus one of the chambers separated by the piston 122 operates on the advance side. The chamber 24 and the other chamber are set as the retard side working chamber 25. The advance side working chamber 24 and the retard side working chamber 25 are respectively connected to an advance side supply / discharge passage 26 and a retard side supply / discharge passage 27 formed from the inner cylinder member 112 to the rotating shaft 4. ing. The advance side supply / discharge passage 26 and the retard side supply / discharge passage 27 are connected to a hydraulic control device (not shown) similar to that of the first embodiment.

この実施形態の回動機能111の場合、進角側作動室24と遅角側作動室25の一方に作動液が供給されて他方から作動液が排出されると、ピストン122を含むリングギヤ118が前後の差圧に応じて導入空間115内を一方から他方に移動し、このとき、リングギヤ118にヘリカルスプライン117,116で係合される内筒部材112と外筒部材113が一方に相対回転して、内周側回転子6を外周側回転子5に対して進角側若しくは遅角側に回転させる。また、逆に、進角側作動室24と遅角側作動室25の他方に作動液が供給されて一方から作動液が排出された場合には、ピストン122を含むリングギヤ118が前後の差圧に応じて導入空間115内を他方から一方に移動し、同様にして内周側回転子6を外周側回転子5に対して遅角側若しくは進角側に回転させる。   In the case of the rotation function 111 of this embodiment, when the working fluid is supplied to one of the advance side working chamber 24 and the retard side working chamber 25 and the working fluid is discharged from the other, the ring gear 118 including the piston 122 is The inside of the introduction space 115 moves from one side to the other in accordance with the differential pressure across the front and back. At this time, the inner cylinder member 112 and the outer cylinder member 113 engaged with the ring gear 118 by the helical splines 117 and 116 rotate relative to one side. Thus, the inner rotor 6 is rotated forward or retarded with respect to the outer rotor 5. Conversely, when the hydraulic fluid is supplied to the other of the advance side working chamber 24 and the retard side working chamber 25 and the hydraulic fluid is discharged from one, the ring gear 118 including the piston 122 causes the differential pressure between the front and rear. Accordingly, the inside of the introduction space 115 is moved from the other side to the other side, and similarly, the inner circumferential rotor 6 is rotated to the retard side or the advanced side with respect to the outer circumferential rotor 5.

この回動機構111の場合、簡単な構造でありながら油圧制御装置によって制御された油圧によって内周側回転子5と外周側回転子6とを所望の位置に確実に相対回動させることができる。
なお、ここで説明した図9に示す実施形態においては、導入空間115を2室に隔成するピストン122がリングギヤ118と一体に形成されているが、ピストンとリングギヤは夫々別体で形成し、両者を連結部材で結合するようにしても良い。
In the case of the rotation mechanism 111, the inner rotor 5 and the outer rotor 6 can be reliably rotated relative to each other at a desired position by the hydraulic pressure controlled by the hydraulic control device, although having a simple structure. .
In the embodiment shown in FIG. 9 described here, the piston 122 that divides the introduction space 115 into two chambers is formed integrally with the ring gear 118, but the piston and the ring gear are formed separately from each other, You may make it couple | bond both by a connection member.

また、図10に示す第3の実施形態の回動機構211は、回転軸4の外面に一体回転可能にスプライン嵌合された内側ブロック212(第1部材)と、この内側ブロック212の外周側に配置される略筒状の外側ブロック213(第2部材)とを備え、この外側ブロック213が内周側回転子6の内周面に一体に嵌合固定されるとともに、内側ブロック212の軸方向の端部が、外側ブロック213と内周側回転子6の側端部を跨ぐ図示しないドライブプレート(第1部材)を介して外周側回転子5に一体に結合されている。この回動機構211の場合、内側ブロック212は回転軸4と外周側回転子5に一体化され、外側ブロック213は内周側回転子6に一体化されている。   Further, the rotation mechanism 211 of the third embodiment shown in FIG. 10 includes an inner block 212 (first member) that is spline-fitted to the outer surface of the rotating shaft 4 so as to be integrally rotatable, and an outer peripheral side of the inner block 212. A substantially cylindrical outer block 213 (second member) disposed on the inner block 212, and the outer block 213 is integrally fitted and fixed to the inner peripheral surface of the inner rotor 6 and the shaft of the inner block 212 is fixed. The end in the direction is integrally coupled to the outer rotor 5 via a drive plate (first member) (not shown) that straddles the outer block 213 and the side end of the inner rotor 6. In the case of this rotating mechanism 211, the inner block 212 is integrated with the rotating shaft 4 and the outer peripheral rotor 5, and the outer block 213 is integrated with the inner peripheral rotor 6.

内側ブロック212には、径方向外側に張り出す一対のアーム部212aが設けられ、この各アーム部212aの先端に、回転軸4を中心とする円周の略接線方向に沿い互いに相反する回転方向に開口する第1のシリンダ214と第2のシリンダ215が形成されている。そして、両アーム部212aの第1のシリンダ214と第2のシリンダ215には第1のピストン216と第2のピストン217が進退自在に嵌合され、これらの各シリンダ214,215には対応するピストン216,217を進退作動させるための作動液が給排されるようになっている。第1のシリンダ214は電動機1の主回転方向に向かって開口して、第1のピストン216との間で進角側作動室24を形成し、第2シリンダ215は主回転方向と逆向きに開口して、第2のピストン217との間で遅角側作動室25を形成している。そして、進角側作動室24と遅角側作動室25は、内側ブロック212から回転軸4に亘って形成された給排通路(図においては、遅角側給排通路27のみ示す)を介して第1の実施形態と同様の油圧制御装置に接続されている。また、各ピストン216,217は頂部216a,217aが封止された略円筒状に形成され、頂部216a,217aの外側面が球面状に形成されている。   The inner block 212 is provided with a pair of arms 212a projecting outward in the radial direction, and the ends of the arms 212a are opposite to each other along the substantially tangential direction of the circumference around the rotation shaft 4. A first cylinder 214 and a second cylinder 215 are formed. A first piston 216 and a second piston 217 are fitted to the first cylinder 214 and the second cylinder 215 of both arm portions 212a so as to be able to advance and retract, and correspond to the cylinders 214 and 215. The hydraulic fluid for moving the pistons 216 and 217 forward and backward is supplied and discharged. The first cylinder 214 opens toward the main rotation direction of the electric motor 1 to form an advance side working chamber 24 with the first piston 216, and the second cylinder 215 is opposite to the main rotation direction. The retard side working chamber 25 is formed between the second piston 217 and the second piston 217. The advance side working chamber 24 and the retard side working chamber 25 are connected via a supply / exhaust passage (only the retard side supply / exhaust passage 27 is shown in the figure) formed from the inner block 212 to the rotating shaft 4. Are connected to the same hydraulic control apparatus as in the first embodiment. The pistons 216, 217 are formed in a substantially cylindrical shape with the top portions 216a, 217a sealed, and the outer surfaces of the top portions 216a, 217a are formed in a spherical shape.

一方、外側ブロック213は、内周側回転子6に嵌合固定される円筒状のベース部213aと、このベース部213aの内周面から径方向内側に膨出する一対の隆起部213b,213bが設けられている。各隆起部213bには、回転軸4の略半径方向に沿い、内側ブロック212の第1のピストン216の頂部216aに当接する第1の荷重伝達壁218と、同様に回転軸4の半径方向に沿い、内側ブロック212の第2のピストン217の頂部217aに当接する第2の荷重伝達壁219が形成されている。   On the other hand, the outer block 213 includes a cylindrical base portion 213a that is fitted and fixed to the inner peripheral rotor 6, and a pair of raised portions 213b and 213b that bulge radially inward from the inner peripheral surface of the base portion 213a. Is provided. Each of the raised portions 213b has a first load transmission wall 218 that is in contact with the top 216a of the first piston 216 of the inner block 212 along the radial direction of the rotation shaft 4, and similarly to the radial direction of the rotation shaft 4. A second load transmission wall 219 is formed along the top block 217a of the second piston 217 of the inner block 212.

この実施形態の場合、例えば、進角側作動室24に作動液が供給されて遅角側作動室25から作動液が排出されると、図10に示すように内側ブロック212の第1のピストン216が突出する一方で第2のピストン217が後退し、このとき、第1のピストン216が外側ブロック213の第1の荷重伝達壁218を押圧し、外側ブロック213を内側ブロック212に対して進角方向に回転させる。これにより、外側ブロック213と一体の内周側回転子6が、内側ブロック212と一体の外周側回転子5に対して進角方向に回転する。また、この状態から逆に遅角側作動室25に作動液が供給されて進角側作動室24から作動液が排出されると、第2のピストン217が突出する一方で第1のピストン216が後退し、第2のピストン217が外側ブロック213の第2の荷重伝達壁219を押圧することによって内側回転子6を外側回転子5に対して遅角方向に回転させる。   In the case of this embodiment, for example, when the working fluid is supplied to the advance side working chamber 24 and the working fluid is discharged from the retard side working chamber 25, the first piston of the inner block 212 as shown in FIG. 216 protrudes while the second piston 217 is retracted. At this time, the first piston 216 presses the first load transmission wall 218 of the outer block 213 and advances the outer block 213 relative to the inner block 212. Rotate in the angular direction. As a result, the inner circumferential rotor 6 integral with the outer block 213 rotates in the advance direction with respect to the outer circumferential rotor 5 integral with the inner block 212. On the other hand, when the working fluid is supplied to the retard side working chamber 25 and the working fluid is discharged from the advance side working chamber 24 from this state, the second piston 217 protrudes while the first piston 216 is projected. Retreats, and the second piston 217 presses the second load transmission wall 219 of the outer block 213 to rotate the inner rotor 6 in the retard direction with respect to the outer rotor 5.

この回動機構211の場合にも、やはり簡単な構造でありながら、油圧によって内周側回転子5と外周側回転子6とを確実に相対回動させることができる。   Even in the case of the rotation mechanism 211, the inner rotor 5 and the outer rotor 6 can be reliably rotated relative to each other by hydraulic pressure, though the structure is simple.

なお、この発明は上記の各実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。   The present invention is not limited to the above embodiments, and various design changes can be made without departing from the scope of the invention.

この発明の第1の実施形態の電動機の要部断面図。1 is a cross-sectional view of a main part of an electric motor according to a first embodiment of the present invention. 同実施形態の電動機の最遅角位置に制御されている回転子ユニットの一部部品を省略した側面図。The side view which abbreviate | omitted some components of the rotor unit controlled to the most retarded angle position of the electric motor of the embodiment. 同実施形態の電動機の回転子ユニットの分解斜視図。The disassembled perspective view of the rotor unit of the electric motor of the embodiment. 同実施形態の電動機の最進角位置に制御されている回転子ユニットの一部部品を省略した側面図。The side view which abbreviate | omitted some components of the rotor unit controlled to the most advanced angle position of the electric motor of the embodiment. 内周側回転子の永久磁石と外周側回転子の永久磁石とが同極配置された強め界磁状態を模式的に示す図(a)と、内周側回転子の永久磁石と外周側回転子の永久磁石とが異極配置された弱め界磁状態を模式的に示す図(b)を併せて記載した図。The figure (a) which shows typically the strong field state where the permanent magnet of the inner circumference side rotor and the permanent magnet of the outer circumference side rotor are arranged in the same polarity, and the permanent magnet and outer circumference side rotation of the inner circumference side rotor The figure which also described the figure (b) which shows typically the field-weakening state by which the permanent magnet of a child was arrange | positioned differently. 同実施形態の位相変更手段の制御系の概略構成図。The schematic block diagram of the control system of the phase change means of the embodiment. 同実施形態の位相変更手段の油圧回路図。The hydraulic circuit diagram of the phase change means of the embodiment. 同実施形態の位相変更制御のフローの一部を示すフローチェート。The flow chart which shows a part of flow of the phase change control of the embodiment. この発明の第2の実施形態の電動機の要部断面図。Sectional drawing of the principal part of the electric motor of 2nd Embodiment of this invention. この発明の第3の実施形態の電動機の要部断面図。Sectional drawing of the principal part of the electric motor of 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1…電動機
5…外周側回転子
6…内周側回転子
9…永久磁石
12…位相変更手段
14…ベーンロータ(第1部材)
15…環状ハウジング(第2部材)
16…ドライブプレート(第1部材)
18…ベーン
23…導入空間
24…進角側作動室
25…遅角側作動室
32…オイルポンプ(流体供給源)
37…流路切換弁
45…進角側バイパス通路(バイパス通路)
46…遅角側バイパス通路(バイパス通路)
47A,47B…開閉弁
48A,48B…電磁弁
62…位相制御部(位相制御手段)
81…位相検出器
112…内筒部材(第1部材)
112a…軸部
113…外筒部材(第2部材)
113a…肉厚部(筒部)
114…ドライブプレート(第1部材)
115…導入空間
118…リングギヤ
122…ピストン
212…内側ブロック(第1部材)
213…外側ブロック(第2部材)
214…第1のシリンダ
215…第2のシリンダ
216…第1のピストン
217…第2のピストン
218…第1の荷重伝達壁
218…第2の荷重伝達壁
DESCRIPTION OF SYMBOLS 1 ... Electric motor 5 ... Outer peripheral side rotor 6 ... Inner peripheral side rotor 9 ... Permanent magnet 12 ... Phase change means 14 ... Vane rotor (1st member)
15 ... Annular housing (second member)
16 ... Drive plate (first member)
18 ... Vane 23 ... Introduction space 24 ... Advance side working chamber 25 ... Delay side working chamber 32 ... Oil pump (fluid supply source)
37 ... Flow path switching valve 45 ... Advance side bypass passage (bypass passage)
46 ... retard side bypass passage (bypass passage)
47A, 47B ... open / close valve 48A, 48B ... solenoid valve
62 ... Phase control section (phase control means)
81 ... Phase detector 112 ... Inner cylinder member (first member)
112a ... Shaft 113 ... Outer cylinder member (second member)
113a ... Thick part (cylinder part)
114 ... Drive plate (first member)
115: Introduction space 118 ... Ring gear 122 ... Piston 212 ... Inner block (first member)
213 ... Outer block (second member)
214 ... 1st cylinder 215 ... 2nd cylinder 216 ... 1st piston 217 ... 2nd piston 218 ... 1st load transmission wall 218 ... 2nd load transmission wall

Claims (5)

円周方向に沿うように永久磁石が配設された内周側回転子と、
この内周側回転子の外周側に同軸にかつ相対回動可能に配設されるとともに、円周方向に沿うように永久磁石が配設された外周側回転子と、
前記内周側回転子と外周側回転子を相対回動させて両者の相対的な位相を変更する位相変更手段と、を備えた電動機であって、
前記位相変更手段が、
内部に導入した作動流体の圧力によって前記内周側回転子を外周側回転子に対して進角方向に相対回動させる進角側作動室と、
内部に導入した作動流体の圧力によって前記内周側回転子を外周側回転子に対して遅角方向に相対回動させる遅角側作動室と、
前記作動流体を供給する流体供給源と、
位相変更の要求に応じて前記進角側作動室と遅角側作動室に対する作動流体の給排の振り分けを行う流路切換弁と、
前記流体供給源と進角側作動室の間と、前記流体供給源と遅角側作動室の間の少なくともいずれか一方に、前記流路切換弁を迂回するように設けられたバイパス通路と、
このバイパス通路に介装された開閉弁と、
前記相対的な位相の検出値を出力する位相検出器と、
前記相対的な位相の指令値を出力する位相制御手段と、
を備えており、
前記位相変更手段は、前記相対的な位相の前記検出値と前記指令値との差分が所定範囲から外れた際に前記開閉弁を開くことを特徴とする電動機。
An inner rotor on which permanent magnets are arranged along the circumferential direction;
An outer peripheral rotor disposed coaxially and relatively rotatably on the outer peripheral side of the inner peripheral rotor, and a permanent magnet disposed along the circumferential direction;
A phase changing means for changing the relative phase of the inner and outer rotors by relatively rotating the inner rotor and the outer rotor,
The phase changing means is
An advance side working chamber for rotating the inner circumference side rotor relative to the outer side rotor in the advance direction by the pressure of the working fluid introduced inside;
A retarding-side working chamber that rotates the inner circumferential rotor relative to the outer circumferential rotor in the retarding direction by the pressure of the working fluid introduced therein;
A fluid supply source for supplying the working fluid;
A flow path switching valve for distributing the supply and discharge of the working fluid to the advance side working chamber and the retard side working chamber in response to a request for phase change;
A bypass passage provided between the fluid supply source and the advance side working chamber and at least one of the fluid supply source and the retard side working chamber so as to bypass the flow path switching valve;
An on-off valve interposed in the bypass passage;
A phase detector for outputting a detected value of the relative phase;
Phase control means for outputting a command value of the relative phase;
With
The electric motor characterized in that the phase changing means opens the on-off valve when a difference between the detected value of the relative phase and the command value is out of a predetermined range .
前記外周側回転子と一体に回転する第1部材と前記内周側回転子と一体に回転する第2部材の間に作動流体の導入空間が設けられ、A working fluid introduction space is provided between a first member that rotates integrally with the outer circumferential rotor and a second member that rotates integrally with the inner circumferential rotor,
前記第1部材と第2部材のうちの一方に、前記導入空間に摺動自在に配置されて前記導入空間内を2室に隔成するベーンが突設され、One of the first member and the second member is provided with a vane that is slidably disposed in the introduction space and separates the introduction space into two chambers,
前記ベーンで隔成される2室によって前記進角側作動室と遅角側作動室が構成されていることを特徴とする請求項1に記載の電動機。The electric motor according to claim 1, wherein the advance side working chamber and the retard side working chamber are configured by two chambers separated by the vane.
円周方向に沿うように永久磁石が配設された内周側回転子と、An inner rotor on which permanent magnets are arranged along the circumferential direction;
この内周側回転子の外周側に同軸にかつ相対回動可能に配設されるとともに、円周方向に沿うように永久磁石が配設された外周側回転子と、An outer peripheral rotor disposed coaxially and relatively rotatably on the outer peripheral side of the inner peripheral rotor, and a permanent magnet disposed along the circumferential direction;
前記内周側回転子と外周側回転子を相対回動させて両者の相対的な位相を変更する位相変更手段と、を備えた電動機であって、A phase changing means for changing the relative phase of the inner and outer rotors by relatively rotating the inner rotor and the outer rotor,
前記位相変更手段が、The phase changing means is
内部に導入した作動流体の圧力によって前記内周側回転子を外周側回転子に対して進角方向に相対回動させる進角側作動室と、An advance side working chamber for rotating the inner circumference side rotor relative to the outer side rotor in the advance direction by the pressure of the working fluid introduced inside;
内部に導入した作動流体の圧力によって前記内周側回転子を外周側回転子に対して遅角方向に相対回動させる遅角側作動室と、A retarding-side working chamber that rotates the inner circumferential rotor relative to the outer circumferential rotor in the retarding direction by the pressure of the working fluid introduced therein;
前記作動流体を供給する流体供給源と、A fluid supply source for supplying the working fluid;
位相変更の要求に応じて前記進角側作動室と遅角側作動室に対する作動流体の給排の振り分けを行う流路切換弁と、A flow path switching valve for distributing the supply and discharge of the working fluid to the advance side working chamber and the retard side working chamber in response to a request for phase change;
前記流体供給源と進角側作動室の間と、前記流体供給源と遅角側作動室の間の少なくともいずれか一方に、前記流路切換弁を迂回するように設けられたバイパス通路と、A bypass passage provided between the fluid supply source and the advance side working chamber and at least one of the fluid supply source and the retard side working chamber so as to bypass the flow path switching valve;
このバイパス通路に介装された開閉弁と、を備え、An on-off valve interposed in the bypass passage,
前記外周側回転子と一体に回転する第1部材と前記内周側回転子と一体に回転する第2部材のうちの一方に軸部が設けられるとともに、A shaft portion is provided on one of a first member that rotates integrally with the outer circumferential rotor and a second member that rotates integrally with the inner circumferential rotor,
前記第1部材と第2部材のうちの他方に、前記軸部の外側を囲繞する筒部が設けられ、The other of the first member and the second member is provided with a cylindrical portion surrounding the outside of the shaft portion,
内周面と外周面が前記軸部と筒部に夫々ヘリカルスプライン係合するリングギヤが設けられ、A ring gear is provided in which an inner peripheral surface and an outer peripheral surface are helically spline-engaged with the shaft portion and the cylindrical portion, respectively.
前記第1部材と第2部材の間に作動流体の導入空間が設けられ、A working fluid introduction space is provided between the first member and the second member,
この導入空間に摺動自在に収容されて前記導入空間内を2室に隔成するピストンが設けられるとともに、A piston that is slidably accommodated in the introduction space and that separates the introduction space into two chambers is provided,
このピストンが前記リングギヤと一体変位可能に連結され、This piston is connected to the ring gear so as to be integrally displaceable,
前記ピストンで隔成される2室によって前記進角側作動室と遅角側作動室が構成されていることを特徴とする電動機。The electric motor characterized in that the advance side working chamber and the retard side working chamber are constituted by two chambers separated by the piston.
円周方向に沿うように永久磁石が配設された内周側回転子と、An inner rotor on which permanent magnets are arranged along the circumferential direction;
この内周側回転子の外周側に同軸にかつ相対回動可能に配設されるとともに、円周方向に沿うように永久磁石が配設された外周側回転子と、An outer peripheral rotor disposed coaxially and relatively rotatably on the outer peripheral side of the inner peripheral rotor, and a permanent magnet disposed along the circumferential direction;
前記内周側回転子と外周側回転子を相対回動させて両者の相対的な位相を変更する位相変更手段と、を備えた電動機であって、A phase changing means for changing the relative phase of the inner and outer rotors by relatively rotating the inner rotor and the outer rotor,
前記位相変更手段が、The phase changing means is
内部に導入した作動流体の圧力によって前記内周側回転子を外周側回転子に対して進角方向に相対回動させる進角側作動室と、An advance side working chamber for rotating the inner circumference side rotor relative to the outer side rotor in the advance direction by the pressure of the working fluid introduced inside;
内部に導入した作動流体の圧力によって前記内周側回転子を外周側回転子に対して遅角方向に相対回動させる遅角側作動室と、A retarding-side working chamber that rotates the inner circumferential rotor relative to the outer circumferential rotor in the retarding direction by the pressure of the working fluid introduced therein;
前記作動流体を供給する流体供給源と、A fluid supply source for supplying the working fluid;
位相変更の要求に応じて前記進角側作動室と遅角側作動室に対する作動流体の給排の振り分けを行う流路切換弁と、A flow path switching valve for distributing the supply and discharge of the working fluid to the advance side working chamber and the retard side working chamber in response to a request for phase change;
前記流体供給源と進角側作動室の間と、前記流体供給源と遅角側作動室の間の少なくともいずれか一方に、前記流路切換弁を迂回するように設けられたバイパス通路と、A bypass passage provided between the fluid supply source and the advance side working chamber and at least one of the fluid supply source and the retard side working chamber so as to bypass the flow path switching valve;
このバイパス通路に介装された開閉弁と、を備え、An on-off valve interposed in the bypass passage,
前記外周側回転子と一体に回転する第1部材と前記内周側回転子と一体に回転する第2部材のうちの一方に、回転軸線を中心とする円周の略接線方向に沿い互いに相反する回転方向に向く第1のシリンダと第2のシリンダが設けられるとともに、One of the first member that rotates integrally with the outer circumferential rotor and the second member that rotates integrally with the inner circumferential rotor is mutually reciprocal along a substantially tangential direction of the circumference around the rotation axis. A first cylinder and a second cylinder facing the rotating direction are provided,
この第1のシリンダと第2のシリンダに第1のピストンと第2のピストンが夫々進退自在に設けられ、A first piston and a second piston are respectively provided in the first cylinder and the second cylinder so as to freely advance and retract,
前記第1部材と第2部材のうちの他方に、前記両回転子の略半径方向に沿い夫々前記第1のピストンと第2のピストンの頂部に当接する第1の荷重伝達壁と第2の荷重伝達壁が設けられ、The other of the first member and the second member is provided with a first load transmission wall and a second load abutting on tops of the first piston and the second piston, respectively, along a substantially radial direction of the two rotors. A load transmission wall is provided,
前記第1のシリンダと第1のピストンの間と、前記第2のシリンダと第2のピストンの間で前記進角側作動室と遅角側作動室が夫々構成されていることを特徴とする電動機。The advance side working chamber and the retard side working chamber are respectively configured between the first cylinder and the first piston and between the second cylinder and the second piston. Electric motor.
前記流体供給源から供給される作動流体の圧力の導入と排出を切り換えて信号圧を作る電磁弁を設け、この電磁弁で作られる信号圧によって前記開閉弁を開閉作動させることを特徴とする請求項1〜4のいずれか1項に記載の電動機。An electromagnetic valve for generating a signal pressure by switching between introduction and discharge of the pressure of the working fluid supplied from the fluid supply source is provided, and the on-off valve is opened and closed by the signal pressure generated by the electromagnetic valve. Item 5. The electric motor according to any one of Items 1 to 4.
JP2006146881A 2006-05-26 2006-05-26 Electric motor Expired - Fee Related JP5095129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006146881A JP5095129B2 (en) 2006-05-26 2006-05-26 Electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006146881A JP5095129B2 (en) 2006-05-26 2006-05-26 Electric motor

Publications (2)

Publication Number Publication Date
JP2007318937A JP2007318937A (en) 2007-12-06
JP5095129B2 true JP5095129B2 (en) 2012-12-12

Family

ID=38852270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006146881A Expired - Fee Related JP5095129B2 (en) 2006-05-26 2006-05-26 Electric motor

Country Status (1)

Country Link
JP (1) JP5095129B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179315A (en) * 1998-10-08 2000-06-27 Unisia Jecs Corp Valve timing control device for internal combustion engine
JP4478855B2 (en) * 2001-02-23 2010-06-09 アイシン精機株式会社 Valve timing control device
JP4225001B2 (en) * 2002-08-09 2009-02-18 株式会社エクォス・リサーチ Electric motor

Also Published As

Publication number Publication date
JP2007318937A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP4421603B2 (en) Motor control method and motor control apparatus
US7872440B2 (en) Controller of electric motor
US7898200B2 (en) Controller of electric motor
JP4971039B2 (en) Motor control device
JP2008137550A (en) Controller of hybrid vehicle
JP2010273521A (en) Device for control of electric motor
US7818111B2 (en) Motor control apparatus and motor control method
JP4777192B2 (en) Motor control device
JP5095129B2 (en) Electric motor
JP5031351B2 (en) Electric motor
JP4805128B2 (en) Motor control device
JP4971040B2 (en) Motor control device
JP5063943B2 (en) Electric motor and electric motor phase control method
JP2009060697A (en) Motor control apparatus
JP4754433B2 (en) Motor control device
JP4757722B2 (en) Motor control device
JP4805129B2 (en) Motor control device
JP2008067499A (en) Vehicle provided with rotary electric machine
JP4869825B2 (en) Motor control device
JP2009005452A (en) Motor controller
JP4864686B2 (en) Motor control device
JP2010273522A (en) Device for control of electric motor
JP2009050124A (en) Motor controller
JP2009159760A (en) Electric motor
JP2009005453A (en) Controller for motor-driven vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees