JP5093054B2 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP5093054B2
JP5093054B2 JP2008281151A JP2008281151A JP5093054B2 JP 5093054 B2 JP5093054 B2 JP 5093054B2 JP 2008281151 A JP2008281151 A JP 2008281151A JP 2008281151 A JP2008281151 A JP 2008281151A JP 5093054 B2 JP5093054 B2 JP 5093054B2
Authority
JP
Japan
Prior art keywords
active material
material layer
positive electrode
electrode active
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008281151A
Other languages
Japanese (ja)
Other versions
JP2009054598A (en
Inventor
祥一 西山
弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2008281151A priority Critical patent/JP5093054B2/en
Publication of JP2009054598A publication Critical patent/JP2009054598A/en
Application granted granted Critical
Publication of JP5093054B2 publication Critical patent/JP5093054B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、正極と負極とをセパレータを間にして積層し、巻回した巻回体を備えた二次電池に関する。   The present invention relates to a secondary battery including a wound body in which a positive electrode and a negative electrode are stacked with a separator interposed therebetween and wound.

近年、カメラ一体型VTR(Videotape Recorder;ビデオテープレコーダー)、携帯電話、ノートパソコンなどの携帯電子機器が多く登場し、その電源として、小型かつ軽量で高エネルギー密度を有する電池、特に二次電池の開発が強く要請されている。このような要求に応える二次電池としては、例えば、電極反応物質にリチウムを用いたリチウム二次電池が実用化されているが、近年の携帯用機器の高性能化に伴い、更なる高容量化が求められている。   In recent years, many portable electronic devices such as a camera-integrated VTR (Videotape Recorder), a mobile phone, and a laptop computer have appeared, and as a power source, a small, lightweight battery having a high energy density, particularly a secondary battery. Development is strongly requested. As a secondary battery that meets such requirements, for example, a lithium secondary battery using lithium as an electrode reactant has been put to practical use. Is required.

高容量化を図る1つの方法としては、例えば、電池内に充填する活物質の量を多くすることが考えられる。例えば、集電体の両面に活物質層を設けた正極と負極とをセパレータを介して積層し、巻回した構造を有するリチウム二次電池では、活物質層の厚みを厚くすれば、電池内における集電体およびセパレータの割合が小さくなり、活物質の充填量が増えて容量を向上させることができる。ところが、活物質層の厚みを厚くすると、巻回時に活物質層に亀裂や破断が生じやすいという問題があった。そこで、例えば、巻回内面側の活物質層の厚みを巻回外面側の活物質層の厚みよりも薄くすることにより、応力を緩和することが提案されている(例えば、特許文献1参照。)。
特開平8−130035号公報
One method for increasing the capacity is, for example, increasing the amount of active material filled in the battery. For example, in a lithium secondary battery having a structure in which a positive electrode and a negative electrode each provided with an active material layer on both sides of a current collector are stacked via a separator and wound, if the thickness of the active material layer is increased, The ratio of the current collector and the separator is reduced, the active material filling amount is increased, and the capacity can be improved. However, when the thickness of the active material layer is increased, there is a problem that the active material layer is easily cracked or broken during winding. Thus, for example, it has been proposed to reduce the stress by making the thickness of the active material layer on the wound inner surface side thinner than the thickness of the active material layer on the wound outer surface side (see, for example, Patent Document 1). ).
JP-A-8-130035

しかしながら、このように巻回内面側の活物質層の厚みを薄くしても、円筒型のものでは径が小さい巻回中心側、角型のものでは折り目となる部分においては応力を十分に緩和することができず、亀裂や破断が発生してしまうという問題があった。特に、この問題は正極において発生しやすく、中でも、負極にスズあるいはケイ素などの高容量材料を用いる場合に、正極活物質層の厚みが厚くなるので顕著であった。   However, even if the thickness of the active material layer on the inner surface side of the winding is reduced in this way, the stress is sufficiently relieved at the winding center side where the diameter is small for the cylindrical type, and at the crease part for the rectangular type. There is a problem that cracks and fractures occur. In particular, this problem is likely to occur in the positive electrode. In particular, when a high-capacity material such as tin or silicon is used for the negative electrode, the thickness of the positive electrode active material layer is increased, which is remarkable.

本発明はかかる問題点に鑑みてなされたもので、その目的は、正極の厚みを厚くしても亀裂や破断が発生することを抑制することができる二次電池を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a secondary battery capable of suppressing the occurrence of cracks and breaks even when the thickness of the positive electrode is increased.

本発明による第1の二次電池は、正極と負極とをセパレータを間にして積層し巻回した巻回体を備え、巻回体は、巻回中心側に少なくとも1つのリードが取り付けられており、正極は、一対の対向面を有する正極集電体と、この正極集電体の巻回外面側に設けられた外面正極活物質層と、巻回内面側に設けられた内面正極活物質層とを有し、内面正極活物質層の厚みは、外面正極活物質層の厚みよりも薄く、正極の巻回中心側には、リードと重なる位置に、外面正極活物質層のみが設けられた外面活物質領域が形成されており、負極は、一対の対向面を有する負極集電体と、この負極集電体の巻回外面側に設けられた外面負極活物質層と、巻回内面側に設けられた内面負極活物質層とを有し、外面負極活物質層の厚みは、内面負極活物質層の厚みと同じ、または、内面負極活物質層の厚みよりも薄く、負極は、負極活物質として、スズとコバルトと炭素とを構成元素として含むCoSnC含有材料を含み、CoSnC含有材料において、炭素の含有量は16.8質量%以上24.8質量%以下であると共に、X線回折により得られる回折ピークの半値幅は1.0°以上であるものである。 A first secondary battery according to the present invention includes a wound body in which a positive electrode and a negative electrode are stacked and wound with a separator interposed therebetween, and the wound body has at least one lead attached to the winding center side. A positive electrode current collector having a pair of opposing surfaces, an outer surface positive electrode active material layer provided on the winding outer surface side of the positive electrode current collector, and an inner surface positive electrode active material provided on the winding inner surface side The inner surface positive electrode active material layer is thinner than the outer surface positive electrode active material layer, and only the outer surface positive electrode active material layer is provided on the positive electrode winding center side at a position overlapping the lead. A negative electrode current collector having a pair of opposed surfaces, an outer surface negative electrode active material layer provided on the winding outer surface side of the negative electrode current collector, and a winding inner surface An inner surface negative electrode active material layer provided on the side, and the thickness of the outer surface negative electrode active material layer is Same as body or thinner than the thickness of the inner face anode active material layer, the negative electrode, as an anode active material, it comprises a CoSnC containing material comprising as constituent elements tin, cobalt and carbon, in CoSnC containing material, containing carbon The amount is 16.8% by mass or more and 24.8% by mass or less, and the half width of the diffraction peak obtained by X-ray diffraction is 1.0 ° or more.

本発明による第2の二次電池は、正極と負極とをセパレータを間にして積層し巻回した巻回体を備え、巻回体は、対向する一対の屈曲部と、前記一対の屈曲部の間の平坦部とを含む偏平な形状を有し、正極は、一対の対向面を有する正極集電体と、この正極集電体の巻回外面側に設けられた外面正極活物質層と、巻回内面側に設けられた内面正極活物質層とを有し、内面正極活物質層の厚みは、外面正極活物質層の厚みよりも薄く、正極の巻回中心側には、屈曲部に、外面正極活物質層のみが設けられた外面活物質領域が形成されており、負極は、一対の対向面を有する負極集電体と、この負極集電体の巻回外面側に設けられた外面負極活物質層と、巻回内面側に設けられた内面負極活物質層とを有し、外面負極活物質層の厚みは、内面負極活物質層の厚みと同じ、または、内面負極活物質層の厚みよりも薄く、負極は、負極活物質として、スズとコバルトと炭素とを構成元素として含むCoSnC含有材料を含み、CoSnC含有材料において、炭素の含有量は16.8質量%以上24.8質量%以下であると共に、X線回折により得られる回折ピークの半値幅は1.0°以上であるものである。 A second secondary battery according to the present invention includes a wound body in which a positive electrode and a negative electrode are stacked and wound with a separator in between, and the wound body includes a pair of opposed bent portions and the pair of bent portions. A positive electrode current collector having a pair of opposing surfaces, and an outer surface positive electrode active material layer provided on the wound outer surface side of the positive electrode current collector, The inner surface positive electrode active material layer provided on the inner surface side of the winding, and the thickness of the inner surface positive electrode active material layer is thinner than the thickness of the outer surface positive electrode active material layer. In addition, an outer surface active material region in which only the outer surface positive electrode active material layer is provided is formed, and the negative electrode is provided on the outer surface side of the negative electrode current collector having a pair of opposing surfaces and the negative electrode current collector. The outer surface negative electrode active material layer and the inner surface negative electrode active material layer provided on the wound inner surface side, the thickness of the outer surface negative electrode active material layer is the inner surface negative electrode Same as the thickness of the material layer, or smaller than the thickness of the inner face anode active material layer, the negative electrode, as an anode active material, comprises a CoSnC containing material comprising as constituent elements tin, cobalt and carbon, in CoSnC containing material, The carbon content is 16.8% by mass or more and 24.8% by mass or less, and the half width of the diffraction peak obtained by X-ray diffraction is 1.0 ° or more.

本発明の第1の二次電池によれば、正極の巻回中心側において、リードと重なる位置に、外面正極活物質層のみが設けられた外面活物質領域を設けるようにしたので、また、本発明の第2の二次電池によれば、正極の巻回中心側において、屈曲部に、外面活物質領域を設けるようにしたので、リードによる段差または屈曲部における折れ曲がりを外面正極活物質層により緩和し、内面正極活物質層に与える影響を小さくすることができる。しかも、本発明の第1および第2の二次電池によれば、負極が負極活物質としてCoSnC含有材料を含み、そのCoSnC含有材料において炭素の含有量が16.8質量%以上24.8質量%以下であると共にX線回折により得られる回折ピークの半値幅が1.0°以上となるようにしたので、高いエネルギー密度を得ることができると共に優れたサイクル特性を得ることができる。よって、正極の厚みを厚くしても、巻回中心側において亀裂や破断が発生することを抑制しつつ、容量およびサイクル特性を向上させることができる。   According to the first secondary battery of the present invention, the outer surface active material region in which only the outer surface positive electrode active material layer is provided is provided at a position overlapping the lead on the winding center side of the positive electrode. According to the second secondary battery of the present invention, since the outer surface active material region is provided in the bent portion on the winding center side of the positive electrode, the step due to the lead or the bending in the bent portion is not caused by the outer surface positive electrode active material layer. Therefore, the influence on the inner surface positive electrode active material layer can be reduced. Moreover, according to the first and second secondary batteries of the present invention, the negative electrode includes a CoSnC-containing material as a negative electrode active material, and the content of carbon in the CoSnC-containing material is 16.8% by mass or more and 24.8% by mass. %, And the half-value width of the diffraction peak obtained by X-ray diffraction is 1.0 ° or more, so that high energy density can be obtained and excellent cycle characteristics can be obtained. Therefore, even if the thickness of the positive electrode is increased, the capacity and cycle characteristics can be improved while suppressing the occurrence of cracks and breaks on the winding center side.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る二次電池の構成を表すものである。この二次電池は、いわゆる円筒型といわれるものであり、ほぼ中空円柱状の電池缶11の内部に、巻回体20を有している。電池缶11は、例えばニッケル(Ni)のめっきがされた鉄(Fe)により構成されており、一端部が閉鎖され他端部が開放されている。電池缶11の内部には、巻回体20を挟むように巻回周面に対して垂直に一対の絶縁板12,13がそれぞれ配置されている。
(First embodiment)
FIG. 1 shows the configuration of the secondary battery according to the first embodiment of the present invention. This secondary battery is a so-called cylindrical type, and has a wound body 20 inside a substantially hollow cylindrical battery can 11. The battery can 11 is made of, for example, iron (Fe) plated with nickel (Ni), and has one end closed and the other end open. Inside the battery can 11, a pair of insulating plates 12 and 13 are arranged perpendicular to the winding peripheral surface so as to sandwich the wound body 20.

電池缶11の開放端部には、電池蓋14と、この電池蓋14の内側に設けられた安全弁機構15および熱感抵抗素子(Positive Temperature Coefficient;PTC素子)16とが、ガスケット17を介してかしめられることにより取り付けられており、電池缶11の内部は密閉されている。電池蓋14は、例えば、電池缶11と同様の材料により構成されている。安全弁機構15は、熱感抵抗素子16を介して電池蓋14と電気的に接続されており、内部短絡あるいは外部からの加熱などにより電池の内圧が一定以上となった場合にディスク板15Aが反転して電池蓋14と巻回体20との電気的接続を切断するようになっている。熱感抵抗素子16は、温度が上昇すると抵抗値の増大により電流を制限し、大電流による異常な発熱を防止するものである。ガスケット17は、例えば、絶縁材料により構成されており、表面にはアスファルトが塗布されている。   At the open end of the battery can 11, a battery lid 14, a safety valve mechanism 15 provided inside the battery lid 14 and a heat sensitive resistance element (Positive Temperature Coefficient; PTC element) 16 are interposed via a gasket 17. It is attached by caulking, and the inside of the battery can 11 is sealed. The battery lid 14 is made of, for example, the same material as the battery can 11. The safety valve mechanism 15 is electrically connected to the battery lid 14 via the heat sensitive resistance element 16, and the disk plate 15A is reversed when the internal pressure of the battery exceeds a certain level due to an internal short circuit or external heating. Thus, the electrical connection between the battery lid 14 and the wound body 20 is cut off. When the temperature rises, the heat sensitive resistance element 16 limits the current by increasing the resistance value and prevents abnormal heat generation due to a large current. The gasket 17 is made of, for example, an insulating material, and asphalt is applied to the surface.

図2は、図1に示した巻回体20のII−II線に沿った断面構造を表すものである。巻回体20は、帯状の正極21と帯状の負極22とをセパレータ23を間にして積層し円筒状に巻回したものであり、中心にはセンターピン24が挿入されている。なお、図2においてセパレータ23は省略している。正極21にはアルミニウム(Al)などよりなるリード25が接続されており、負極22にはニッケルなどよりなるリード26が接続されている。リード25は、安全弁機構15に取り付けられることにより電池蓋14と電気的に接続されており、リード26は電池缶11に取り付けられ電気的に接続されている。   FIG. 2 shows a cross-sectional structure taken along line II-II of the wound body 20 shown in FIG. The wound body 20 is formed by laminating a belt-like positive electrode 21 and a belt-like negative electrode 22 with a separator 23 therebetween and winding them into a cylindrical shape, and a center pin 24 is inserted in the center. In FIG. 2, the separator 23 is omitted. A lead 25 made of aluminum (Al) or the like is connected to the positive electrode 21, and a lead 26 made of nickel or the like is connected to the negative electrode 22. The lead 25 is electrically connected to the battery lid 14 by being attached to the safety valve mechanism 15, and the lead 26 is attached to and electrically connected to the battery can 11.

正極21は、例えば、一対の対向面を有する正極集電体21Aと、正極集電体21Aの巻回外面側に設けられた外面正極活物質層21Bと、正極集電体21Aの巻回内面側に設けられた内面正極活物質層21Cとを有している。正極21には、両面に外面正極活物質層21Bおよび内面正極活物質層21Cが設けられた両面活物質領域21Dが形成されており、外面正極活物質層21Bの厚みよりも内面正極活物質層21Cの厚みの方が薄くなっている。内面正極活物質層21Cの方が応力がかかりやすく、亀裂や破断が生じやすいからである。外面正極活物質層21Bの厚みをT21B、内面正極活物質層21Cの厚みをT21C、外面正極活物質層21Bと内面正極活物質層21Cとの合計厚みT21=T21B+T21Cと記すと、外面正極活物質層21Bの厚みT21Bは、例えば、0.5×T21<T21B<0.6×T21の範囲内が好ましく、内面正極活物質層21Cの厚みT21Cは、例えば、0.4×T21<T21C<0.5×T21の範囲内が好ましい。このような範囲において、亀裂や破断を抑制しつつ、容量を向上させることができるからである。   The positive electrode 21 includes, for example, a positive electrode current collector 21A having a pair of opposed surfaces, an outer surface positive electrode active material layer 21B provided on the outer surface of the positive electrode current collector 21A, and a wound inner surface of the positive electrode current collector 21A. And an inner surface positive electrode active material layer 21 </ b> C provided on the side. The positive electrode 21 is formed with a double-sided active material region 21D in which an outer-side positive-electrode active material layer 21B and an inner-side positive-electrode active material layer 21C are provided on both sides, and the inner-side positive-electrode active material layer is larger than the thickness of the outer-side positive-electrode active material layer 21B. The thickness of 21C is thinner. This is because the inner surface positive electrode active material layer 21 </ b> C is more susceptible to stress and is more likely to crack or break. The outer surface positive electrode active material layer 21B has a thickness T21B, the inner surface positive electrode active material layer 21C has a thickness T21C, and the outer surface positive electrode active material layer 21B and the inner surface positive electrode active material layer 21C have a total thickness T21 = T21B + T21C. The thickness T21B of the layer 21B is preferably in the range of 0.5 × T21 <T21B <0.6 × T21, for example, and the thickness T21C of the inner surface positive electrode active material layer 21C is, for example, 0.4 × T21 <T21C <0. Within the range of 5 × T21 is preferable. This is because in such a range, the capacity can be improved while suppressing cracks and breakage.

外面正極活物質層21Bおよび内面正極活物質層21Cの空隙率は、20%以上27%以下の範囲内が好ましい。このような範囲において、亀裂や破断を抑制すると共に容量を向上させつつ、さらに高負荷電流で出力した場合においても高容量を維持できるからである。   The porosity of the outer surface positive electrode active material layer 21B and the inner surface positive electrode active material layer 21C is preferably in the range of 20% to 27%. In such a range, it is possible to maintain a high capacity even when cracks and fractures are suppressed and the capacity is improved, and even when a higher load current is output.

なお、空隙率(%)は、100から充填率(%)を引いた値である。この充填率は、外面正極活物質層21Bおよび内面正極活物質層21Cの体積中において、それらを構成する材料(正極活物質など)の体積が占める割合である。例えば、充填率は、単位重量当たりの外面正極活物質層21Bおよび内面正極活物質層21Cの体積と、単位重量当たりの材料の体積(正極活物質などの合計体積)とから求められる。前者の体積は、体積密度の逆数(単位重量)で表される。後者の体積は、各材料の比率および真密度から算出される。例えば、各材料が正極活物質、導電材および結着材である場合には、正極活物質の比率+導電材の比率+結着材の比率=1であるとき、(正極活物質の比率/正極活物質の真密度)+(導電材の比率/導電材の真密度)+(結着材の比率/結着材の真密度)で表される。   The porosity (%) is a value obtained by subtracting the filling rate (%) from 100. This filling rate is the ratio of the volume of the material (positive electrode active material, etc.) constituting them in the volume of the outer surface positive electrode active material layer 21B and the inner surface positive electrode active material layer 21C. For example, the filling rate is obtained from the volume of the outer surface positive electrode active material layer 21B and the inner surface positive electrode active material layer 21C per unit weight and the volume of material per unit weight (total volume of the positive electrode active material and the like). The former volume is expressed by the reciprocal (unit weight) of the volume density. The latter volume is calculated from the ratio and true density of each material. For example, when each material is a positive electrode active material, a conductive material, and a binder, when the ratio of the positive electrode active material + the ratio of the conductive material + the ratio of the binder = 1 (the ratio of the positive electrode active material / The true density of the positive electrode active material) + (the ratio of the conductive material / the true density of the conductive material) + (the ratio of the binder / the true density of the binder).

正極21の巻回中心側には、例えば、外面正極活物質層21Bおよび内面正極活物質層21Cが設けられずに正極集電体21Aの両面が露出された両面露出領域21Eが形成されており、リード25が取り付けられている。また、正極21の巻回中心側には、両面露出領域21Eと両面活物質領域21Dとの間に、外面正極活物質層21Bのみが設けられた外面活物質領域21Fが形成されている。この外面活物質領域21Fは、リード25と重なる位置に少なくとも形成されており、リード25により生じる段差を外面正極活物質層21Bにより緩和し、内面正極活物質層21Cに与える影響を小さくするようになっている。   On the winding center side of the positive electrode 21, for example, a double-sided exposed region 21E where both surfaces of the positive electrode current collector 21A are exposed without the outer surface positive electrode active material layer 21B and the inner surface positive electrode active material layer 21C being formed. The lead 25 is attached. Further, on the winding center side of the positive electrode 21, an outer surface active material region 21F in which only the outer surface positive electrode active material layer 21B is provided is formed between the double-sided exposed region 21E and the double-sided active material region 21D. The outer surface active material region 21F is formed at least at a position overlapping the lead 25, and the step generated by the lead 25 is relaxed by the outer surface positive electrode active material layer 21B so as to reduce the influence on the inner surface positive electrode active material layer 21C. It has become.

すなわち、図3に示したように、両面活物質領域21Dはリード25と重なる位置で折れ曲がり、段差21Gが生じている。このとき、外面活物質領域21Fを設けることにより、外面活物質領域21Fの外面正極活物質層21Bの厚みが大きくなるにつれて、巻回体20の巻回中心から両面活物質領域21Dまでの径が大きくなる。これにより、段差21Gの折れ曲がり角度θが大きくなり、応力が緩和される。   That is, as shown in FIG. 3, the double-sided active material region 21 </ b> D is bent at a position where it overlaps the lead 25, and a step 21 </ b> G is generated. At this time, by providing the outer surface active material region 21F, the diameter from the winding center of the wound body 20 to the double-sided active material region 21D increases as the thickness of the outer surface positive electrode active material layer 21B of the outer surface active material region 21F increases. growing. As a result, the bending angle θ of the step 21G increases, and the stress is relieved.

なお、正極21の巻回外周側にも、必要に応じて、正極集電体21Aの両面が露出された両面露出領域21Hが形成されていてもよく、図示しないが、内面正極活物質層21Cのみが設けられた内面活物質領域が形成されていてもよい。   Note that a double-sided exposed region 21H where both sides of the positive electrode current collector 21A are exposed may be formed on the winding outer peripheral side of the positive electrode 21 as necessary, and although not shown, the inner surface positive electrode active material layer 21C The inner surface active material region provided only with the first electrode may be formed.

正極集電体21Aは、例えば、アルミニウム,ニッケルあるいはステンレスなどの金属箔により構成されている。外面正極活物質層21Bおよび内面正極活物質層21Cは、例えば、正極活物質として、電極反応物質であるリチウムを吸蔵および放出可能な正極材料のいずれか1種または2種以上を含んでおり、必要に応じて導電材および結着材などを含んでいてもよい。リチウムを吸蔵および放出可能な正極材料としては、例えば、硫化チタン(TiS2 ),硫化モリブデン(MoS2 ),セレン化ニオブ(NbSe2 )あるいは酸化バナジウム(V2 5 )などのリチウムを含有しない金属カルコゲン化物、またはリチウムを含有するリチウム含有化合物が挙げられる。 The positive electrode current collector 21A is made of, for example, a metal foil such as aluminum, nickel, or stainless steel. The outer surface positive electrode active material layer 21B and the inner surface positive electrode active material layer 21C include, for example, any one or more of positive electrode materials capable of occluding and releasing lithium, which is an electrode reactant, as a positive electrode active material, A conductive material and a binder may be included as necessary. The positive electrode material capable of inserting and extracting lithium does not contain lithium such as titanium sulfide (TiS 2 ), molybdenum sulfide (MoS 2 ), niobium selenide (NbSe 2 ), or vanadium oxide (V 2 O 5 ). Examples thereof include metal chalcogenides or lithium-containing compounds containing lithium.

中でも、リチウム含有化合物は、高電圧および高エネルギー密度を得ることができるものがあるので好ましい。このようなリチウム含有化合物としては、例えば、リチウムと遷移金属元素とを含む複合酸化物、またはリチウムと遷移金属元素とを含むリン酸化合物が挙げられ、特にコバルト(Co),ニッケル,マンガン(Mn)および鉄のうちの少なくとも1種を含むものが好ましい。より高い容量を得ることができるからである。その化学式は、例えば、Lix MIO2 あるいはLiy MIIPO4 で表される。式中、MIおよびMIIは1種類以上の遷移金属元素を表す。xおよびyの値は二次電池の充放電状態によって異なり、通常、0.05≦x≦1.10、0.05≦y≦1.10である。 Among these, lithium-containing compounds are preferable because some compounds can obtain a high voltage and a high energy density. Examples of such a lithium-containing compound include a composite oxide containing lithium and a transition metal element, or a phosphate compound containing lithium and a transition metal element. In particular, cobalt (Co), nickel, manganese (Mn And those containing at least one of iron. This is because a higher capacity can be obtained. The chemical formula is represented by, for example, Li x MIO 2 or Li y MIIPO 4 . In the formula, MI and MII represent one or more transition metal elements. The values of x and y vary depending on the charge / discharge state of the secondary battery, and are generally 0.05 ≦ x ≦ 1.10 and 0.05 ≦ y ≦ 1.10.

リチウムと遷移金属元素とを含む複合酸化物の具体例としては、リチウムコバルト複合酸化物(Lix CoO2 )、リチウムニッケル複合酸化物(Lix NiO2 )、リチウムニッケルコバルト複合酸化物(Lix Ni1-z Coz 2 (z<1))、あるいはスピネル型構造を有するリチウムマンガン複合酸化物(LiMn2 4 )などが挙げられる。リチウムと遷移金属元素とを含むリン酸化合物の具体例としては、例えばリチウム鉄リン酸化合物(LiFePO4 )あるいはリチウム鉄マンガンリン酸化合物(LiFe1-v Mnv PO4 (v<1))が挙げられる。 Specific examples of the composite oxide containing lithium and a transition metal element include lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel composite oxide (Li x NiO 2 ), and lithium nickel cobalt composite oxide (Li x Ni 1-z Co z O 2 (z <1)) or lithium manganese composite oxide (LiMn 2 O 4 ) having a spinel structure. Specific examples of the phosphate compound containing lithium and a transition metal element include, for example, a lithium iron phosphate compound (LiFePO 4 ) or a lithium iron manganese phosphate compound (LiFe 1-v Mn v PO 4 (v <1)). Can be mentioned.

負極22は、例えば、一対の対向面を有する負極集電体22Aと、負極集電体22Aの巻回外面側に設けられた外面負極活物質層22Bと、負極集電体22Aの巻回内面側に設けられた内面負極活物質層22Cとを有している。負極22には、正極21と同様に、両面に外面負極活物質層22Bおよび内面負極活物質層22Cが設けられた両面活物質領域22Dが形成されており、少なくとも一部において、外面負極活物質層22Bは内面正極活物質層21Cと対向し、内面負極活物質層22Cは外面正極活物質層21Bと対向するように配置されている。外面負極活物質層22Bの厚みは、内面負極活物質層22Cの厚みと同じでもよいが、内面負極活物質層22Cよりも薄い方が好ましい。外面負極活物質層22Bは内面正極活物質層21Cと対向しているので、内面負極活物質層22Cよりも単位面積当たりの容量は小さくてもよく、厚みをその分薄くした方が無駄な体積を排除することができ、より容量を向上させることができるからである。   The negative electrode 22 includes, for example, a negative electrode current collector 22A having a pair of opposing surfaces, an outer negative electrode active material layer 22B provided on the outer surface of the negative electrode current collector 22A, and a wound inner surface of the negative electrode current collector 22A. And an inner surface negative electrode active material layer 22C provided on the side. Similarly to the positive electrode 21, the negative electrode 22 has a double-sided active material region 22 </ b> D in which an outer surface negative electrode active material layer 22 </ b> B and an inner surface negative electrode active material layer 22 </ b> C are provided on both sides. The layer 22B is disposed to face the inner surface positive electrode active material layer 21C, and the inner surface negative electrode active material layer 22C is disposed to face the outer surface cathode active material layer 21B. The outer surface negative electrode active material layer 22B may have the same thickness as the inner surface negative electrode active material layer 22C, but is preferably thinner than the inner surface negative electrode active material layer 22C. Since the outer surface negative electrode active material layer 22B faces the inner surface positive electrode active material layer 21C, the capacity per unit area may be smaller than that of the inner surface negative electrode active material layer 22C. This is because the capacity can be improved.

負極22の巻回中心側には、必要に応じて、外面負極活物質層22Bおよび内面負極活物質層22Cが設けられずに負極集電体22Aの両面が露出された両面露出領域22Eが形成されていてもよい。また、負極22の巻回中心側には、両面露出領域22Eと両面活物質領域22Dとの間に、外面負極活物質層22Bまたは内面負極活物質層22Cのみが設けられた片面領域22Fが形成されていてもよい。   On the winding center side of the negative electrode 22, a double-sided exposed region 22 </ b> E in which both surfaces of the negative electrode current collector 22 </ b> A are exposed without the outer negative electrode active material layer 22 </ b> B and the inner negative electrode active material layer 22 </ b> C is formed as necessary. May be. Further, on the winding center side of the negative electrode 22, a single-sided region 22F in which only the outer-surface negative electrode active material layer 22B or the inner-surface negative electrode active material layer 22C is provided between the double-sided exposed region 22E and the double-sided active material region 22D is formed. May be.

負極22の巻回外周側には、例えば、負極集電体22Aの両面が露出された両面露出領域22Gが形成されており、リード26が取り付けられている。また、負極22の巻回外周側には、図示しないが、内面負極活物質層22Cのみが設けられた内面活物質領域が形成されていてもよい。   On the winding outer peripheral side of the negative electrode 22, for example, a double-sided exposed region 22G where both surfaces of the negative electrode current collector 22A are exposed is formed, and a lead 26 is attached. Further, although not shown, an inner surface active material region in which only the inner surface negative electrode active material layer 22C is provided may be formed on the winding outer peripheral side of the negative electrode 22.

負極集電体22Aは、例えば、銅(Cu),ニッケルあるいはステンレスなどの金属箔により構成されている。外面負極活物質層22Bおよび内面負極活物質層22Cは、例えば、負極活物質として、電極反応物質であるリチウムを吸蔵および放出可能な負極材料のいずれか1種または2種以上を含んでおり、必要に応じて導電材および結着材などを含んでいてもよい。リチウムを吸蔵および放出可能な負極材料としては、例えば、天然黒鉛,人造黒鉛,難黒鉛化炭素あるいは易黒鉛化炭素などの炭素材料、または、リチウムと合金を形成可能な金属元素および半金属元素のうちの少なくとも1種を構成元素として含むものも挙げられる。   The anode current collector 22A is made of, for example, a metal foil such as copper (Cu), nickel, or stainless steel. The outer surface negative electrode active material layer 22B and the inner surface negative electrode active material layer 22C include, for example, any one or more of negative electrode materials capable of occluding and releasing lithium as an electrode reactant as a negative electrode active material, A conductive material and a binder may be included as necessary. Examples of the anode material capable of inserting and extracting lithium include carbon materials such as natural graphite, artificial graphite, non-graphitizable carbon, and graphitizable carbon, or metal elements and metalloid elements capable of forming an alloy with lithium. The thing containing at least 1 sort (s) of them as a structural element is also mentioned.

中でも、このような金属元素または半金属元素を構成元素として含む負極材料を用いるようにすれば、容量を向上させることができるので好ましい。この負極材料は金属元素あるいは半金属元素の単体でも合金でも化合物でもよく、またこれらの1種または2種以上の相を少なくとも一部に有するようなものでもよい。なお、本発明において、合金には2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを含むものも含める。また、非金属元素を含んでいてもよい。その組織には固溶体,共晶(共融混合物),金属間化合物あるいはそれらのうちの2種以上が共存するものがある。   Among these, it is preferable to use a negative electrode material containing such a metal element or metalloid element as a constituent element because the capacity can be improved. The negative electrode material may be a single element, alloy or compound of a metal element or metalloid element, or may have at least a part of one or more of these phases. In the present invention, alloys include those containing one or more metal elements and one or more metalloid elements in addition to those composed of two or more metal elements. Moreover, the nonmetallic element may be included. There are structures in which a solid solution, a eutectic (eutectic mixture), an intermetallic compound, or two or more of them coexist.

この負極材料を構成する金属元素あるいは半金属元素としては、マグネシウム(Mg),ホウ素(B),アルミニウム,ガリウム(Ga),インジウム(In),ケイ素(Si),ゲルマニウム(Ge),スズ(Sn),鉛(Pb),ビスマス(Bi),カドミウム(Cd),銀(Ag),亜鉛(Zn),ハフニウム(Hf),ジルコニウム(Zr),イットリウム(Y),パラジウム(Pd)あるいは白金(Pt)などが挙げられ、中でも、ケイ素またはスズが好ましい。   Examples of metal elements or metalloid elements constituting the negative electrode material include magnesium (Mg), boron (B), aluminum, gallium (Ga), indium (In), silicon (Si), germanium (Ge), and tin (Sn). ), Lead (Pb), bismuth (Bi), cadmium (Cd), silver (Ag), zinc (Zn), hafnium (Hf), zirconium (Zr), yttrium (Y), palladium (Pd) or platinum (Pt) Among them, silicon or tin is preferable.

特に、この負極材料としては、スズと、コバルトと、炭素(C)とを構成元素として含むCoSnC含有材料、または、スズと、鉄と、炭素とを構成元素として含むFeSnC含有材料が好ましい。高いエネルギー密度を得ることができると共に、優れたサイクル特性を得ることができるからである。CoSnC含有材料における炭素の含有量は16.8質量%以上24.8質量%以下であり、スズとコバルトとの合計に対するコバルトの割合は30質量%以上45質量%以下であることが好ましい。FeSnC含有材料における炭素の含有量は11.9質量%以上29.7質量%以下であり、スズと鉄との合計に対する鉄の割合は26.4質量%以上48.5質量%以下であることが好ましい。この範囲内においてより高い特性を得ることができるからである。   In particular, the negative electrode material is preferably a CoSnC-containing material containing tin, cobalt, and carbon (C) as constituent elements, or a FeSnC-containing material containing tin, iron, and carbon as constituent elements. This is because a high energy density can be obtained and excellent cycle characteristics can be obtained. The content of carbon in the CoSnC-containing material is preferably 16.8% by mass or more and 24.8% by mass or less, and the ratio of cobalt to the total of tin and cobalt is preferably 30% by mass or more and 45% by mass or less. The carbon content in the FeSnC-containing material is 11.9 mass% or more and 29.7 mass% or less, and the ratio of iron to the total of tin and iron is 26.4 mass% or more and 48.5 mass% or less. Is preferred. This is because higher characteristics can be obtained within this range.

また、これらCoSnC含有材料およびFeSnC含有材料は、必要に応じて更に他の構成元素を含んでいてもよい。CoSnC含有材料であれば、例えば、ケイ素,鉄,ニッケル,クロム(Cr),インジウム,ニオブ(Nb),ゲルマニウム,チタン(Ti),モリブデン(Mo),アルミニウム,リン(P),ガリウムまたはビスマスが好ましく、2種以上を含んでいてもよい。FeSnC含有材料であれば、例えば、アルミニウム,チタン,バナジウム(V),クロム, ニオブおよびタンタル(Ta)からなる群のうちの少なくとも1種と、コバルト,ニッケル,銅,亜鉛,ガリウムおよびインジウムからなる群のうちの少なくとも1種とが好ましく、また、銀も好ましい。   Further, these CoSnC-containing material and FeSnC-containing material may further contain other constituent elements as necessary. If it is a CoSnC-containing material, for example, silicon, iron, nickel, chromium (Cr), indium, niobium (Nb), germanium, titanium (Ti), molybdenum (Mo), aluminum, phosphorus (P), gallium or bismuth may be used. Preferably, 2 or more types may be included. In the case of a FeSnC-containing material, for example, at least one member selected from the group consisting of aluminum, titanium, vanadium (V), chromium, niobium, and tantalum (Ta), and cobalt, nickel, copper, zinc, gallium, and indium. At least one member of the group is preferred, and silver is also preferred.

なお、このCoSnC含有材料はスズとコバルトと炭素とを含む相を有し、この相は結晶性の低いまたは非晶質な構造を有していることが好ましい。同様に、FeSnC含有材料はスズと鉄と炭素とを含む相を有し、この相は結晶性の低いまたは非晶質な構造を有していることが好ましい。また、CoSnC含有材料およびFeSnC含有材料において、構成元素である炭素の少なくとも一部は、他の構成元素である金属元素または半金属元素と結合していることが好ましい。サイクル特性の低下はスズなどが凝集あるいは結晶化することによるものであると考えられるが、炭素が他の元素と結合することにより、そのような凝集あるいは結晶化を抑制することができるからである。   This CoSnC-containing material has a phase containing tin, cobalt, and carbon, and this phase preferably has a low crystallinity or an amorphous structure. Similarly, the FeSnC-containing material has a phase containing tin, iron, and carbon, and this phase preferably has a low crystallinity or an amorphous structure. In the CoSnC-containing material and the FeSnC-containing material, it is preferable that at least a part of carbon that is a constituent element is bonded to a metal element or a metalloid element that is another constituent element. The decrease in cycle characteristics is thought to be due to the aggregation or crystallization of tin or the like, but this is because such aggregation or crystallization can be suppressed by combining carbon with other elements. .

セパレータ23は、正極21と負極22とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータ23は、例えば、ポリテトラフルオロエチレン、ポリプロピレンあるいはポリエチレンなどよりなる合成樹脂製の多孔質膜、またはセラミック製の多孔質膜により構成されており、これらの2種以上の多孔質膜を積層した構造とされていてもよい。   The separator 23 separates the positive electrode 21 and the negative electrode 22 and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes. The separator 23 is made of, for example, a porous film made of synthetic resin made of polytetrafluoroethylene, polypropylene, polyethylene, or the like, or a porous film made of ceramic, and these two or more kinds of porous films are laminated. It may be a structure.

セパレータ23には、例えば、電解液が含浸されている。電解液は、例えば、溶媒と、電解質塩とを含んでいる。溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、炭酸メチルエチル、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、γ−バレロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、1,3−ジオキソール−2−オン、4−ビニル−1,3−ジオキソラン−2−オン、4−フルオロ−1,3−ジオキソラン−2−オン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、アニソール、酢酸エステル、酪酸エステル、プロピオン酸エステル、フルオロベンゼン、あるいはエチレンスルフィトなどの非水溶媒が挙げられる。電解質塩としては、例えば、LiPF6 、LiBF4 、LiClO4 、LiAsF6 、LiN(CF3 SO2 2 、LiN(C2 5 SO2 2 、LiC(CF3 SO2 3 、LiB(C6 5 4 、LiB(C2 4 2 、LiCF3 SO3 、LiCH3 SO3 、LiCl、あるいはLiBrなどのリチウム塩が挙げられる。溶媒および電解質塩は、1種を単独で用いてもよいが、2種以上を混合して用いてもよい。 For example, the separator 23 is impregnated with an electrolytic solution. The electrolytic solution includes, for example, a solvent and an electrolyte salt. Examples of the solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, γ-valerolactone, tetrahydrofuran, 2- Methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxol-2-one, 4-vinyl-1,3-dioxolan-2-one, 4-fluoro-1,3 -Non-aqueous solvents such as dioxolan-2-one, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile, anisole, acetate, butyrate, propionate, fluorobenzene, or ethylene sulfite. Examples of the electrolyte salt include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiB ( Examples thereof include lithium salts such as C 6 H 5 ) 4 , LiB (C 2 O 4 ) 2 , LiCF 3 SO 3 , LiCH 3 SO 3 , LiCl, or LiBr. As the solvent and the electrolyte salt, one kind may be used alone, or two or more kinds may be mixed and used.

この二次電池は、例えば、次のようにして製造することができる。   For example, the secondary battery can be manufactured as follows.

まず、正極集電体21Aに外面正極活物質層21Bおよび内面正極活物質層21Cを形成し正極21を作製する。外面正極活物質層21Bおよび内面正極活物質層21Cは、例えば、正極活物質と導電材と結着材とを混合して分散媒に分散させ、正極集電体21Aに塗布して乾燥させたのち、圧縮成型することにより形成する。また、正極21と同様にして、負極集電体22Aに外面負極活物質層22Bおよび内面負極活物質層22Cを形成し負極22を作製する。その際、外面正極活物質層21B、内面正極活物質層21C、外面正極活物質層21Bおよび内面正極活物質層21Cの厚みおよび位置関係を上述のように調節する。次いで、正極集電体21Aにリード25を溶接などにより取り付けると共に、負極集電体22Aにリード26を溶接などにより取り付ける。   First, the positive electrode 21 is manufactured by forming the outer surface positive electrode active material layer 21B and the inner surface positive electrode active material layer 21C on the positive electrode current collector 21A. The outer surface positive electrode active material layer 21B and the inner surface positive electrode active material layer 21C were, for example, mixed with a positive electrode active material, a conductive material, and a binder, dispersed in a dispersion medium, applied to the positive electrode current collector 21A, and dried. After that, it is formed by compression molding. Similarly to the positive electrode 21, the negative electrode current collector 22 </ b> A is formed with the outer-surface negative electrode active material layer 22 </ b> B and the inner-surface negative electrode active material layer 22 </ b> C to produce the negative electrode 22. At that time, the thickness and positional relationship of the outer surface positive electrode active material layer 21B, the inner surface positive electrode active material layer 21C, the outer surface positive electrode active material layer 21B, and the inner surface positive electrode active material layer 21C are adjusted as described above. Next, the lead 25 is attached to the positive electrode current collector 21A by welding or the like, and the lead 26 is attached to the negative electrode current collector 22A by welding or the like.

続いて、正極21と負極22とをセパレータ23を間にして巻回し、中心にセンターピン24を挿入する。その際、本実施の形態によれば、内面正極活物質層21Cの厚みを外面正極活物質層21Bよりも薄くし、かつ、外面正極活物質層21Bのみが設けられた外面活物質領域21Fをリード25と重なるように配置してリード25の段差を緩和しているので、内面正極活物質層21Cに亀裂や破断が発生することが抑制される。そののち、リード25の先端部を安全弁機構15に溶接すると共に、リード26の先端部を電池缶11に溶接して、巻回した正極21および負極22を一対の絶縁板12,13で挟み電池缶11の内部に収納する。次いで、電解液を電池缶11の内部に注入し、セパレータ23に含浸させる。そののち、電池缶11の開口端部に電池蓋14,安全弁機構15および熱感抵抗素子16をガスケット17を介してかしめることにより固定する。これにより、図1,2に示した二次電池が完成する。   Subsequently, the positive electrode 21 and the negative electrode 22 are wound with the separator 23 therebetween, and the center pin 24 is inserted in the center. At this time, according to the present embodiment, the inner surface positive electrode active material layer 21C is made thinner than the outer surface positive electrode active material layer 21B, and only the outer surface positive electrode active material layer 21B is provided. Since it arrange | positions so that it may overlap with the lead | read | reed 25 and the level | step difference of the lead | read | reed 25 is eased, it is suppressed that a crack and a fracture | rupture generate | occur | produce in the inner surface positive electrode active material layer 21C. Thereafter, the tip of the lead 25 is welded to the safety valve mechanism 15, and the tip of the lead 26 is welded to the battery can 11, and the wound positive electrode 21 and negative electrode 22 are sandwiched between the pair of insulating plates 12 and 13. The can 11 is stored inside. Next, an electrolytic solution is injected into the battery can 11 and impregnated in the separator 23. After that, the battery lid 14, the safety valve mechanism 15, and the heat sensitive resistance element 16 are fixed to the opening end of the battery can 11 by caulking through a gasket 17. Thereby, the secondary battery shown in FIGS. 1 and 2 is completed.

このように本実施の形態によれば、内面正極活物質層21Cの厚みを外面正極活物質層21Bよりも薄くすると共に、巻回中心側においてリード25と重なる位置に、外面正極活物質層21Bのみが設けられた外面活物質領域21Fを設け、リード25による段差を緩和するようにしたので、正極21の厚みを厚くしても、亀裂や破断が発生することを抑制することができる。よって、容量を向上させることができる。   Thus, according to the present embodiment, the thickness of the inner surface positive electrode active material layer 21C is made thinner than that of the outer surface positive electrode active material layer 21B, and the outer surface positive electrode active material layer 21B is located at the position overlapping the lead 25 on the winding center side. Since the outer surface active material region 21F provided only with the lead 25 is provided and the step due to the lead 25 is relaxed, the occurrence of cracks and breakage can be suppressed even if the thickness of the positive electrode 21 is increased. Thus, the capacity can be improved.

(第2の実施の形態)
図4は、本発明の第2の実施の形態に係る二次電池の構成を表すものである。この二次電池は、いわゆるラミネートフィルム型といわれるものであり、リード31,32が取り付けられた巻回体30をフィルム状の外装部材40の内部に収容したものである。
(Second Embodiment)
FIG. 4 shows the configuration of the secondary battery according to the second embodiment of the present invention. This secondary battery is a so-called laminate film type, in which a wound body 30 to which leads 31 and 32 are attached is accommodated in a film-like exterior member 40.

リード31,32は、それぞれ、外装部材40の内部から外部に向かい例えば同一方向に導出されている。リード31,32は、例えば、アルミニウム,銅,ニッケルあるいはステンレスなどの金属材料によりそれぞれ構成されており、それぞれ薄板状または網目状とされている。   The leads 31 and 32 are led out from the inside of the exterior member 40 to the outside, for example, in the same direction. The leads 31 and 32 are made of a metal material such as aluminum, copper, nickel, or stainless steel, respectively, and have a thin plate shape or a mesh shape, respectively.

外装部材40は、例えば、ナイロンフィルム,アルミニウム箔およびポリエチレンフィルムをこの順に貼り合わせた矩形状のアルミラミネートフィルムにより構成されている。外装部材40は、例えば、ポリエチレンフィルム側と巻回30とが対向するように配設されており、各外縁部が融着あるいは接着剤により互いに密着されている。外装部材40とリード31,32との間には、外気の侵入を防止するための密着フィルム41が挿入されている。密着フィルム41は、リード31,32に対して密着性を有する材料、例えば、ポリエチレン,ポリプロピレン,変性ポリエチレンあるいは変性ポリプロピレンなどのポリオレフィン樹脂により構成されている。   The exterior member 40 is made of, for example, a rectangular aluminum laminated film in which a nylon film, an aluminum foil, and a polyethylene film are bonded together in this order. The exterior member 40 is disposed, for example, so that the polyethylene film side and the winding 30 are opposed to each other, and the outer edge portions are in close contact with each other by fusion or an adhesive. An adhesion film 41 for preventing the entry of outside air is inserted between the exterior member 40 and the leads 31 and 32. The adhesion film 41 is made of a material having adhesion to the leads 31 and 32, for example, a polyolefin resin such as polyethylene, polypropylene, modified polyethylene, or modified polypropylene.

なお、外装部材40は、上述したアルミラミネートフィルムに代えて、他の構造を有するラミネートフィルム,ポリプロピレンなどの高分子フィルムあるいは金属フィルムにより構成するようにしてもよい。   The exterior member 40 may be made of a laminated film having another structure, a polymer film such as polypropylene, or a metal film instead of the above-described aluminum laminated film.

図5は、図4に示した巻回体30のV−V線に沿った断面構造を表すものである。巻回体30は、正極33と負極34とをセパレータ35および電解質層36を介して積層し、巻回したものであり、最外周部は保護テープ37により保護されている。また、この巻回体30は、対向する一対の屈曲部30Aと、この一対の屈曲部30Aの間の平坦部30Bとを含む偏平な形状を有している。   FIG. 5 shows a cross-sectional structure taken along line VV of the wound body 30 shown in FIG. The wound body 30 is formed by laminating a positive electrode 33 and a negative electrode 34 with a separator 35 and an electrolyte layer 36 interposed therebetween, and is wound. The outermost peripheral portion is protected by a protective tape 37. Further, the wound body 30 has a flat shape including a pair of opposed bent portions 30A and a flat portion 30B between the pair of bent portions 30A.

正極33は、正極集電体33Aの巻回外面側に外面正極活物質層33B、巻回内面側に内面正極活物質層33Cがそれぞれ設けられた構造を有している。正極集電体33A,外面正極活物質層33Bおよび内面正極活物質層33Cの構成は、第1の実施の形態における正極集電体21A,外面正極活物質層21Bおよび内面正極活物質層21Cと同様である。   The positive electrode 33 has a structure in which an outer surface positive electrode active material layer 33B is provided on the winding outer surface side of the positive electrode current collector 33A, and an inner surface positive electrode active material layer 33C is provided on the winding inner surface side. The configurations of the positive electrode current collector 33A, the outer surface positive electrode active material layer 33B, and the inner surface positive electrode active material layer 33C are the same as the positive electrode current collector 21A, the outer surface positive electrode active material layer 21B, and the inner surface positive electrode active material layer 21C in the first embodiment. It is the same.

すなわち、正極33には、両面に外面正極活物質層33Bおよび内面正極活物質層33Cが設けられた両面活物質領域33Dが形成されており、外面正極活物質層33Bの厚みよりも内面正極活物質層33Cの厚みの方が薄くなっている。外面正極活物質層33Bの厚みおよび内面正極活物質層33Cの厚みは、第1の実施の形態における外面正極活物質層21Bの厚みおよび内面正極活物質層21Cの厚みと同様である。また、外面正極活物質層33Bおよび内面正極活物質層33Cの空隙率も、第1の実施の形態における外面正極活物質層21Bおよび内面正極活物質層21Cの空隙率と同様である。   That is, the positive electrode 33 is formed with a double-sided active material region 33D in which an outer surface positive electrode active material layer 33B and an inner surface positive electrode active material layer 33C are provided on both surfaces, and the inner surface positive electrode active material is larger than the thickness of the outer surface positive electrode active material layer 33B. The thickness of the material layer 33C is thinner. The thickness of the outer surface positive electrode active material layer 33B and the thickness of the inner surface positive electrode active material layer 33C are the same as the thickness of the outer surface positive electrode active material layer 21B and the thickness of the inner surface positive electrode active material layer 21C in the first embodiment. The porosity of the outer surface positive electrode active material layer 33B and the inner surface positive electrode active material layer 33C is also the same as that of the outer surface positive electrode active material layer 21B and inner surface positive electrode active material layer 21C in the first embodiment.

正極33の巻回中心側には、外面正極活物質層33Bおよび内面正極活物質層33Cが設けられずに正極集電体33Aの両面が露出された両面露出領域33Eが形成されており、リード31が取り付けられている。また、正極33の巻回中心側には、両面露出領域33Eと両面活物質領域33Dとの間に、外面正極活物質層33Bのみが設けられた外面活物質領域33Fが形成されている。   On the winding center side of the positive electrode 33, a double-sided exposed region 33E where both surfaces of the positive electrode current collector 33A are exposed without the outer surface positive electrode active material layer 33B and the inner surface positive electrode active material layer 33C being formed is formed. 31 is attached. On the winding center side of the positive electrode 33, an outer surface active material region 33F in which only the outer surface positive electrode active material layer 33B is provided is formed between the double-sided exposed region 33E and the double-sided active material region 33D.

この外面活物質領域33Fは、屈曲部30Aに少なくとも形成されており、屈曲部30Aにより生じる折れ曲がりを外面正極活物質層33Bにより緩和し、内面正極活物質層33Cに与える影響を小さくするようになっている。   The outer surface active material region 33F is formed at least in the bent portion 30A, and the bending generated by the bent portion 30A is relaxed by the outer surface positive electrode active material layer 33B, and the influence on the inner surface positive electrode active material layer 33C is reduced. ing.

すなわち、図6に示したように、両面活物質領域33Dは屈曲部30Aで折れ曲がっている。このとき、外面活物質領域33Fを設けることにより、外面活物質領域33Fの外面正極活物質層33Bの厚みが大きくなるにつれて、屈曲部30Aの巻回中心から両面活物質領域33Dまでの径が大きくなる。これにより、屈曲部30Aの折れ曲がり角度θが大きくなり、応力が緩和される。   That is, as shown in FIG. 6, the double-sided active material region 33D is bent at the bent portion 30A. At this time, by providing the outer surface active material region 33F, the diameter from the winding center of the bent portion 30A to the double-sided active material region 33D increases as the thickness of the outer surface positive electrode active material layer 33B of the outer surface active material region 33F increases. Become. As a result, the bending angle θ of the bent portion 30A increases, and the stress is relieved.

負極34は、負極集電体34Aの巻回外面側に外面負極活物質層34B、巻回内面側に内面負極活物質層34Cがそれぞれ設けられた構造を有している。負極34には、正極33と同様に、両面に外面負極活物質層34Bおよび内面負極活物質層34Cが設けられた両面活物質領域34Dが形成されている。負極集電体34A,外面負極活物質層34Bおよび内面負極活物質層34Cは、第1の実施の形態における負極集電体22A,外面負極活物質層22Bおよび内面負極活物質層22Cと同様に構成されている。   The negative electrode 34 has a structure in which an outer surface negative electrode active material layer 34B is provided on the winding outer surface side of the negative electrode current collector 34A, and an inner surface negative electrode active material layer 34C is provided on the winding inner surface side. Similarly to the positive electrode 33, the negative electrode 34 has a double-sided active material region 34 </ b> D in which an outer-surface negative electrode active material layer 34 </ b> B and an inner-surface negative electrode active material layer 34 </ b> C are provided on both surfaces. The negative electrode current collector 34A, the outer surface negative electrode active material layer 34B, and the inner surface negative electrode active material layer 34C are the same as the negative electrode current collector 22A, outer surface negative electrode active material layer 22B, and inner surface negative electrode active material layer 22C in the first embodiment. It is configured.

負極34の巻回外周側には、必要に応じて、負極集電体34Aの両面が露出された両面露出領域34Eが設けられていてもよい。また、負極34の巻回外周側には、内面負極活物質層34Cのみが設けられた内面活物質領域34Fが設けられている。   A double-sided exposed region 34E where both surfaces of the negative electrode current collector 34A are exposed may be provided on the winding outer peripheral side of the negative electrode 34 as necessary. Further, an inner surface active material region 34 </ b> F in which only the inner surface negative electrode active material layer 34 </ b> C is provided is provided on the winding outer peripheral side of the negative electrode 34.

負極34の巻回中心側には、例えば、外面負極活物質層34Bおよび内面負極活物質層34Cが設けられずに負極集電体34Aの両面が露出された両面露出領域34Gが形成されており、リード32が取り付けられている。また、負極34の巻回中心側には、図示しないが、両面露出領域34Gと両面活物質領域34Dとの間に、外面負極活物質層34Bまたは内面負極活物質層34Cのみが設けられた片面領域が形成されていてもよい。   On the winding center side of the negative electrode 34, for example, a double-sided exposed region 34G where both surfaces of the negative electrode current collector 34A are exposed without the outer negative electrode active material layer 34B and the inner negative electrode active material layer 34C being formed. The lead 32 is attached. Further, on the winding center side of the negative electrode 34, although not shown, only one side of the outer surface negative electrode active material layer 34B or the inner surface negative electrode active material layer 34C provided between the double-sided exposed region 34G and the double-sided active material region 34D. A region may be formed.

セパレータ35は、第1の実施の形態におけるセパレータ23と同様に構成されている。   The separator 35 is configured in the same manner as the separator 23 in the first embodiment.

電解質層36は、電解液と、この電解液を保持する保持体となる高分子化合物とを含み、いわゆるゲル状となっている。ゲル状の電解質は高いイオン伝導率を得ることができると共に、二次電池の漏液を防止することができるので好ましい。電解液の構成は、第1の実施の形態と同様である。高分子化合物としては、例えば、ポリエチレンオキサイドあるいはポリエチレンオキサイドを含む架橋体などのエーテル系高分子化合物、ポリメタクリレートなどのエステル系高分子化合物あるいはアクリレート系高分子化合物、またはポリフッ化ビニリデンあるいはフッ化ビニリデンとヘキサフルオロプロピレンとの共重合体などのフッ化ビニリデンの重合体が挙げられ、これらのうちのいずれか1種または2種以上が混合して用いられる。特に、酸化還元安定性の観点からは、フッ化ビニリデンの重合体などのフッ素系高分子化合物を用いることが望ましい。   The electrolyte layer 36 includes an electrolytic solution and a polymer compound serving as a holding body that holds the electrolytic solution, and has a so-called gel shape. The gel electrolyte is preferable because it can obtain high ionic conductivity and prevent leakage of the secondary battery. The configuration of the electrolytic solution is the same as that of the first embodiment. Examples of the polymer compound include, for example, an ether polymer compound such as polyethylene oxide or a crosslinked product containing polyethylene oxide, an ester polymer compound such as polymethacrylate, or an acrylate polymer compound, or polyvinylidene fluoride or vinylidene fluoride. Examples thereof include polymers of vinylidene fluoride such as a copolymer with hexafluoropropylene, and any one of these or a mixture of two or more thereof is used. In particular, from the viewpoint of redox stability, it is desirable to use a fluorine-based polymer compound such as a vinylidene fluoride polymer.

この二次電池は、例えば、次のようにして製造することができる。   For example, the secondary battery can be manufactured as follows.

まず、上述した第1の実施の形態と同様にして正極33および負極34を作製し、正極33および負極34のそれぞれに、電解液と、高分子化合物と、混合溶剤とを含む前駆溶液を塗布し、混合溶剤を揮発させて電解質層36を形成する。次いで、正極集電体33Aにリード31を取り付けると共に、負極集電体34Aにリード32を取り付ける。続いて、電解質層36が形成された正極33と負極34とをセパレータ35を介して積層し積層体としたのち、この積層体をその長手方向に巻回して、最外周部に保護テープ37を接着して巻回体30を形成する。そののち、例えば、外装部材40の間に巻回体30を挟み込み、外装部材40の外縁部同士を熱融着などにより密着させて封入する。その際、リード31,32と外装部材40との間には密着フィルム41を挿入する。これにより、図4,5に示した二次電池が完成する。   First, the positive electrode 33 and the negative electrode 34 are produced in the same manner as in the first embodiment described above, and a precursor solution containing an electrolytic solution, a polymer compound, and a mixed solvent is applied to each of the positive electrode 33 and the negative electrode 34. Then, the mixed solvent is volatilized to form the electrolyte layer 36. Next, the lead 31 is attached to the positive electrode current collector 33A, and the lead 32 is attached to the negative electrode current collector 34A. Subsequently, the positive electrode 33 and the negative electrode 34 on which the electrolyte layer 36 is formed are laminated via a separator 35 to form a laminated body, and then the laminated body is wound in the longitudinal direction, and the protective tape 37 is attached to the outermost peripheral portion. The wound body 30 is formed by bonding. After that, for example, the wound body 30 is sandwiched between the exterior members 40, and the outer edge portions of the exterior members 40 are sealed and sealed by thermal fusion or the like. At that time, an adhesive film 41 is inserted between the leads 31 and 32 and the exterior member 40. Thereby, the secondary battery shown in FIGS. 4 and 5 is completed.

また、この二次電池は、次のようにして作製してもよい。まず、上述した第1の実施の形態と同様にして正極33および負極34を作製し、正極33および負極34にリード31,32をそれぞれ取り付けたのち、正極33と負極34とをセパレータ35を介して積層して巻回し、最外周部に保護テープ37を接着して、巻回体30の前駆体を形成する。次いで、この前駆体を外装部材40に挟み、一辺を除く外周縁部を熱融着して袋状とし、外装部材40の内部に収納する。続いて、電解液と、高分子化合物の原料であるモノマーと、必要に応じて重合開始剤あるいは重合禁止剤などの他の材料とを含む電解質用組成物を用意し、外装部材40の内部に注入したのち、外装部材40の開口部を熱融着して密封する。そののち、熱を加えてモノマーを重合させて高分子化合物とすることによりゲル状の電解質層36を形成し、図4,5に示した二次電池を組み立てる。   Further, this secondary battery may be manufactured as follows. First, the positive electrode 33 and the negative electrode 34 are prepared in the same manner as in the first embodiment described above, and the leads 31 and 32 are respectively attached to the positive electrode 33 and the negative electrode 34, and then the positive electrode 33 and the negative electrode 34 are connected via the separator 35. Then, the protective tape 37 is bonded to the outermost peripheral portion to form a precursor of the wound body 30. Next, the precursor is sandwiched between the exterior members 40, and the outer peripheral edge except for one side is heat-sealed into a bag shape, and stored in the interior of the exterior member 40. Subsequently, an electrolyte composition including an electrolytic solution, a monomer that is a raw material of the polymer compound, and other materials such as a polymerization initiator or a polymerization inhibitor as necessary is prepared, and the interior of the exterior member 40 is prepared. After the injection, the opening of the exterior member 40 is heat-sealed and sealed. Thereafter, heat is applied to polymerize the monomer to form a polymer compound, thereby forming a gel electrolyte layer 36, and assembling the secondary battery shown in FIGS.

この二次電池は、第1の実施の形態と同様に作用し、同様の効果を得ることができる。   This secondary battery operates in the same manner as in the first embodiment, and can obtain the same effect.

更に、本発明の具体的な実施例について詳細に説明する。   Further, specific embodiments of the present invention will be described in detail.

実験例1〜5として、図1,2に示したような円筒型の二次電池を作製した。まず、正極活物質としてコバルト酸リチウム(LiCoO2 )を用い、このコバルト酸リチウムと導電材であるグラファイトと結着材であるポリフッ化ビニリデンとを混合して分散媒に分散させ、厚み15μmのアルミニウム箔よりなる正極集電体21Aの両面に塗布して乾燥させたのち、圧縮成型して外面正極活物質層21Bおよび内面正極活物質層21Cを形成し、正極21を作製した。その際、外面正極活物質層21Bおよび内面正極活物質層21Cについて、厚みを実験例1〜5で表1に示したように変化させ、空隙率を22%とした。また、巻回中心側には、外面正極活物質層21Bのみを設けた外面活物質領域21Fを形成した。次いで、正極集電体21Aの巻回中心側にアルミニウム製のリード25を取り付けた。なお、外面活物質領域21Fとリード25との位置は、図2に示したように重なるように調節した。 As Experimental Examples 1 to 5, cylindrical secondary batteries as shown in FIGS. First, lithium cobalt oxide (LiCoO 2 ) is used as a positive electrode active material, and the lithium cobalt oxide, graphite as a conductive material, and polyvinylidene fluoride as a binder are mixed and dispersed in a dispersion medium, and aluminum having a thickness of 15 μm. After applying and drying on both surfaces of the positive electrode current collector 21A made of foil, compression molding was performed to form the outer surface positive electrode active material layer 21B and the inner surface positive electrode active material layer 21C, and the positive electrode 21 was produced. At that time, the thickness of the outer surface positive electrode active material layer 21B and the inner surface positive electrode active material layer 21C was changed as shown in Table 1 in Experimental Examples 1 to 5, and the porosity was 22%. Further, an outer surface active material region 21F provided with only the outer surface positive electrode active material layer 21B was formed on the winding center side. Next, an aluminum lead 25 was attached to the winding center side of the positive electrode current collector 21A. The position of the outer surface active material region 21F and the lead 25 was adjusted so as to overlap as shown in FIG.

また、負極活物質としてCoSnC含有材料を用い、このCoSnC含有材料と、導電材および負極活物質である人造黒鉛およびカーボンブラックと、結着材であるポリフッ化ビニリデンとを混合して分散媒に分散させ、銅箔よりなる負極集電体22Aの両面に塗布して乾燥させたのち、圧縮成型して外面負極活物質層22Bおよび内面負極活物質層22Cを形成し、負極22を作製した。その際、外面負極活物質層22Bおよび内面負極活物質層22Cの厚みを実験例1〜5で表1に示したように変化させた。次いで、負極集電体22Aの巻回外周側にニッケル製のリード26を取り付けた。   In addition, a CoSnC-containing material is used as the negative electrode active material, and this CoSnC-containing material, the conductive material and the artificial graphite and carbon black as the negative electrode active material, and the polyvinylidene fluoride as the binder are mixed and dispersed in the dispersion medium. The negative electrode current collector 22A made of copper foil was applied to both surfaces and dried, and then compression molded to form the outer negative electrode active material layer 22B and the inner negative electrode active material layer 22C, thereby preparing the negative electrode 22. At that time, the thicknesses of the outer surface negative electrode active material layer 22B and the inner surface negative electrode active material layer 22C were changed as shown in Table 1 in Experimental Examples 1 to 5. Next, a nickel lead 26 was attached to the winding outer peripheral side of the negative electrode current collector 22A.

なお、CoSnC含有材料は、スズコバルト合金粉末と炭素粉末とを混合し、メカノケミカル反応を利用して合成した。合成したCoSnC含有材料について組成の分析を行ったところ、コバルトの含有量は29.3質量%、スズの含有量は49.9質量%、炭素の含有量は19.8質量%であった。なお、炭素の含有量は、炭素・硫黄分析装置により測定し、コバルトおよびスズの含有量は、ICP(Inductively Coupled Plasma:誘導結合プラズマ)発光分析により測定した。また、このCoSnC含有材料についてX線回折を行ったところ、回折角2θ=20°〜50°の間に、回折角2θが1.0°以上の広い半値幅を有する回折ピークが観察された。更に、このCoSnC含有材料についてXPS(X-ray Photoelectron Spectroscopy;X線光電子分光法)を行ったところ、CoSnC含有材料中におけるC1sのピークが284.5eVよりも低い領域に得られ、CoSnC含有材料中の炭素が他の元素と結合していることが確認された。   The CoSnC-containing material was synthesized by mixing a tin cobalt alloy powder and a carbon powder and utilizing a mechanochemical reaction. When the composition of the synthesized CoSnC-containing material was analyzed, the cobalt content was 29.3 mass%, the tin content was 49.9 mass%, and the carbon content was 19.8 mass%. The carbon content was measured by a carbon / sulfur analyzer, and the cobalt and tin contents were measured by ICP (Inductively Coupled Plasma) emission analysis. Further, when X-ray diffraction was performed on the CoSnC-containing material, a diffraction peak having a wide half-width with a diffraction angle 2θ of 1.0 ° or more was observed between the diffraction angle 2θ = 20 ° and 50 °. Further, when XPS (X-ray Photoelectron Spectroscopy) was performed on the CoSnC-containing material, the C1s peak in the CoSnC-containing material was obtained in a region lower than 284.5 eV, and the CoSnC-containing material It was confirmed that the carbon of this was bonded to other elements.

続いて、微孔性ポリプロピレンフィルムよりなるセパレータ23を用意し、正極21,セパレータ23,負極22,セパレータ23の順に積層したのち渦巻状に多数回巻回して、中心にセンターピン24を挿入した。そののち、リード25を安全弁機構15に接合すると共にリード26を電池缶11に接合し、巻回した正極21および負極22を絶縁板12,13で挟んで電池缶11の内部に収納した。次いで、電池缶11の内部に電解液を注入した。電解液には、炭酸エチレン50体積%と炭酸ジエチル50体積%とを混合した溶媒に、電解質塩としてLiPF6 を1mol/dm3 の含有量で溶解させたものを用いた。続いて、電池缶11の開放部に、安全弁機構15、熱感抵抗素子16および電池蓋14をガスケット17を介してかしめることにより固定した。これにより実験例1〜5の二次電池を得た。 Subsequently, a separator 23 made of a microporous polypropylene film was prepared, and the positive electrode 21, the separator 23, the negative electrode 22, and the separator 23 were laminated in this order, and then wound many times in a spiral shape, and the center pin 24 was inserted in the center. After that, the lead 25 was joined to the safety valve mechanism 15 and the lead 26 was joined to the battery can 11, and the wound positive electrode 21 and negative electrode 22 were sandwiched between the insulating plates 12 and 13 and stored inside the battery can 11. Next, an electrolytic solution was injected into the battery can 11. As the electrolytic solution, a solution obtained by dissolving LiPF 6 as an electrolyte salt at a content of 1 mol / dm 3 in a solvent obtained by mixing 50% by volume of ethylene carbonate and 50% by volume of diethyl carbonate was used. Subsequently, the safety valve mechanism 15, the heat sensitive resistance element 16, and the battery lid 14 were fixed to the open portion of the battery can 11 by caulking through the gasket 17. Thus, secondary batteries of Experimental Examples 1 to 5 were obtained.

なお、実験例1〜5についてそれぞれ3個の二次電池を作製し、巻き取り工程において正極21に亀裂または破断が発生したかどうかを観察したところ、すべてについて亀裂および破断が認められなかった。実験例1〜5におけるリード25による段差の大きさは、約100μmである。   In addition, when three secondary batteries were produced for each of Experimental Examples 1 to 5 and it was observed whether cracks or fractures occurred in the positive electrode 21 in the winding process, no cracks or fractures were observed in all of them. The size of the step due to the lead 25 in Experimental Examples 1 to 5 is about 100 μm.

比較例1,2として、外面正極活物質層、内面正極活物質層、外面負極活物質層、および内面負極活物質層の厚みを表1に示したように変えて、外面正極活物質層と内面正極活物質層との厚みを同一、外面負極活物質層と内面負極活物質層との厚みを同一としたことを除き、他は実験例1〜5と同様にして二次電池を作製した。また、比較例3として、図7に示したように、外面正極活物質層121Bと内面正極活物質層121Cとの巻回中心側の端部を揃えて外面活物質領域を形成せず、外面正極活物質層121B、内面正極活物質層121C、外面負極活物質層122B、および内面負極活物質層122Cの厚みを表1に示したように実験例2と同一としたことを除き、他は実験例1〜5と同様にして二次電池を作製した。さらに、比較例4として、正極集電体の厚みを20μmに変えたことを除き、他は比較例2と同様にして二次電池を作製した。   As Comparative Examples 1 and 2, the thicknesses of the outer surface positive electrode active material layer, the inner surface positive electrode active material layer, the outer surface negative electrode active material layer, and the inner surface negative electrode active material layer were changed as shown in Table 1, A secondary battery was fabricated in the same manner as in Experimental Examples 1 to 5, except that the thickness of the inner surface positive electrode active material layer was the same, and the thickness of the outer surface negative electrode active material layer and the inner surface negative electrode active material layer were the same. . As Comparative Example 3, as shown in FIG. 7, the outer surface active material region 121B and the inner surface positive electrode active material layer 121C are aligned with the end portions on the winding center side to form the outer surface active material region. Except that the thicknesses of the positive electrode active material layer 121B, the inner surface positive electrode active material layer 121C, the outer surface negative electrode active material layer 122B, and the inner surface negative electrode active material layer 122C are the same as those in Experimental Example 2 as shown in Table 1, Secondary batteries were fabricated in the same manner as in Experimental Examples 1-5. Further, as Comparative Example 4, a secondary battery was fabricated in the same manner as Comparative Example 2 except that the thickness of the positive electrode current collector was changed to 20 μm.

なお、比較例1〜4についてもそれぞれ3個の二次電池を作製し、巻き取り工程において正極に亀裂または破断が発生したかどうかを観察した。その結果、比較例1,4については、すべてについて亀裂および破断が認められなかったのに対して、比較例2については、すべてについて亀裂または破断が発生していた。また、比較例3については、2個に亀裂または破断が発生していた。   For Comparative Examples 1 to 4, three secondary batteries were prepared, and it was observed whether cracks or fractures occurred in the positive electrode in the winding process. As a result, in Comparative Examples 1 and 4, no cracks or breaks were observed in all, whereas in Comparative Example 2, cracks or breaks occurred in all. In Comparative Example 3, two cracks or breaks occurred.

また、作製した実験例1〜5および比較例1,3,4の二次電池について、以下の手順によって1サイクル目の放電容量および100サイクル目の放電容量を測定したのち、放電容量維持率を求めた。まず、上限電圧4.2V、電流0.7Cの条件で充電開始からの合計充電時間が3時間となるまで定電流定電圧充電を行ったのち、電流0.2C、終止電圧2. 5Vの条件で定電流放電を行い、1サイクル目の放電容量を測定した。続いて、同じ充放電条件においてサイクル数の合計が100サイクルとなるまで充放電を行い、100サイクル目の放電容量を測定した。最後に、放電容量維持率(%)=(100サイクル目の放電容量/1サイクル目の放電容量)×100を算出した。0.7Cは電池容量を(1/0.7)時間で放電しきる電流値であり、0.2Cは電池容量を5時間で放電しきる電流値である。得られた結果を表1に示す。表1に示した1サイクル目の放電容量、100サイクル目の放電容量および放電容量維持率は、いずれも3個の二次電池に関する平均値である。このように平均値を求めたことは、特に断りがない限り、以降においても同様である。なお、比較例2では、正極に亀裂および破断が発生したので、放電容量維持率は求められなかった。また、比較例3では、亀裂および破断が発生しなかった1個について放電容量維持率を求めた。   Further, for the fabricated secondary batteries of Experimental Examples 1 to 5 and Comparative Examples 1, 3, and 4, the discharge capacity at the first cycle and the discharge capacity at the 100th cycle were measured according to the following procedure, and then the discharge capacity maintenance ratio was determined. Asked. First, constant current / constant voltage charging was performed until the total charging time from the start of charging reached 3 hours under the conditions of an upper limit voltage of 4.2 V and a current of 0.7 C, and then a condition of a current of 0.2 C and a final voltage of 2.5 V. A constant current discharge was performed, and the discharge capacity at the first cycle was measured. Subsequently, charging / discharging was performed until the total number of cycles reached 100 under the same charging / discharging conditions, and the discharge capacity at the 100th cycle was measured. Finally, discharge capacity retention ratio (%) = (discharge capacity at the 100th cycle / discharge capacity at the first cycle) × 100 was calculated. 0.7 C is a current value at which the battery capacity can be discharged in (1 / 0.7) hours, and 0.2 C is a current value at which the battery capacity can be discharged in 5 hours. The obtained results are shown in Table 1. The discharge capacity at the first cycle, the discharge capacity at the 100th cycle, and the discharge capacity retention rate shown in Table 1 are all average values for three secondary batteries. The determination of the average value in this way is the same in the following unless otherwise specified. In Comparative Example 2, since the crack and fracture occurred in the positive electrode, the discharge capacity retention rate was not obtained. Moreover, in Comparative Example 3, the discharge capacity retention rate was determined for one piece in which no cracks or breakage occurred.

Figure 0005093054
Figure 0005093054

表1に示したように、実験例1〜5によれば、正極21の厚みを厚くしても亀裂および破断は発生せず、かつ1サイクル目の放電容量も向上させることができた。また、実験例1〜5では、100サイクル目の放電容量もおおむね向上させることができ、比較例1,3,4と同等(85%以上)の放電容量維持率が得られた。これに対して、正極の厚みを薄くした比較例1では、亀裂および破断は発生しなかったものの、1サイクル目の放電容量が低かった。また、外面正極活物質層と内面正極活物質層とを同一の厚みで厚くし、外面活物質領域をリードに重なる位置に設けた比較例2、および内面負極活物質層122Cの厚みを薄くし、外面活物質領域を設けなかった比較例3では、亀裂および破断が発生してしまった。   As shown in Table 1, according to Experimental Examples 1 to 5, cracks and breakage did not occur even when the thickness of the positive electrode 21 was increased, and the discharge capacity at the first cycle could be improved. Further, in Experimental Examples 1 to 5, the discharge capacity at the 100th cycle could be improved substantially, and a discharge capacity retention rate equivalent to that of Comparative Examples 1, 3, and 4 (85% or more) was obtained. In contrast, in Comparative Example 1 in which the thickness of the positive electrode was reduced, cracks and fractures did not occur, but the discharge capacity at the first cycle was low. Further, the outer surface positive electrode active material layer and the inner surface positive electrode active material layer are made thicker with the same thickness, and the thickness of the outer surface active material region 122C and the inner surface negative electrode active material layer 122C are made thinner. In Comparative Example 3 in which the outer surface active material region was not provided, cracks and fractures occurred.

すなわち、内面正極活物質層21Cの厚みを外面正極活物質層21Bよりも薄くすると共に、巻回中心側においてリード25と重なる位置に、外面正極活物質層21Bのみが設けられた外面活物質領域21Fを設けるようにすれば、負極活物質がスズおよびケイ素のうちの少なくとも一方を構成元素として含む場合に、正極21の厚みを厚くしても亀裂および破断の発生を抑制することができ、容量を向上させることができることが分かった。   That is, the outer surface active material region in which only the outer surface positive electrode active material layer 21B is provided at a position overlapping the lead 25 on the winding center side while making the thickness of the inner surface positive electrode active material layer 21C thinner than the outer surface positive electrode active material layer 21B. If 21F is provided, when the negative electrode active material contains at least one of tin and silicon as a constituent element, the occurrence of cracks and breaks can be suppressed even if the thickness of the positive electrode 21 is increased. It was found that can be improved.

また、実験例2と実験例4とを比較すれば分かるように、実験例2において1サイクル目の放電容量が高くなった。すなわち、外面負極活物質層22Bの厚みを内面負極活物質層22Cの厚みよりも薄くした方が、容量をより向上させることができることが分かった。   Further, as can be seen from a comparison between Experimental Example 2 and Experimental Example 4, the discharge capacity at the first cycle in Experimental Example 2 was increased. That is, it has been found that the capacity can be further improved by making the thickness of the outer negative electrode active material layer 22B thinner than the thickness of the inner negative electrode active material layer 22C.

実験例6〜10として、外面正極活物質層21Bおよび内面正極活物質層21Cの空隙率、ならびに外面負極活物質層22Bの厚みおよび内面負極活物質層22Cの厚みを表2に示したように変化させたことを除き、他は実験例1と同様にして二次電池を作製した。この際、空隙率を18%以上29%以下の範囲内で変化させた。   As Experimental Examples 6 to 10, the porosity of the outer surface positive electrode active material layer 21B and the inner surface positive electrode active material layer 21C, the thickness of the outer surface negative electrode active material layer 22B, and the thickness of the inner surface negative electrode active material layer 22C are as shown in Table 2. A secondary battery was fabricated in the same manner as in Experimental Example 1 except for the change. At this time, the porosity was changed within a range of 18% to 29%.

作製した実験例6〜10の二次電池について、高負荷条件での容量(高負荷放電容量)を調べるために、上限電圧4.2V、電流0.7Cの条件で充電開始からの合計充電時間が3時間となるまで定電流定電圧充電を行ったのち、電流2C、終止電圧2. 5Vの条件で定電流放電を行い、1サイクル目の高負荷放電容量を測定した。2Cは電池容量を0.5時間で放電しきる電流値である。得られた結果を実験例1の結果と併せて表2および図8に示す。   For the fabricated secondary batteries of Experimental Examples 6 to 10, in order to investigate the capacity under high load conditions (high load discharge capacity), the total charge time from the start of charging under the conditions of an upper limit voltage of 4.2 V and a current of 0.7 C After performing constant current and constant voltage charging until 3 hours, constant current discharge was performed under the conditions of a current of 2 C and a final voltage of 2.5 V, and the high load discharge capacity in the first cycle was measured. 2C is a current value at which the battery capacity can be discharged in 0.5 hours. The obtained results are shown in Table 2 and FIG. 8 together with the results of Experimental Example 1.

Figure 0005093054
Figure 0005093054

表2および図8に示したように、実験例1,6〜10によれば、高負荷放電容量は、空隙率が大きくなるにしたがって、上昇してほぼ一定となったのちに低下する傾向を示した。この場合には、空隙率が20%よりも小さくなるか、27%よりも大きくなると、高負荷放電容量が大幅に低下した。すなわち、外面正極活物質層21Bおよび内面正極活物質層21Cの空隙率を20%以上27%以下の範囲内とすることにより、亀裂および破断の発生が抑制されると共に容量が向上する上、高負荷電流で出力した場合においても高容量が維持されることが分かった。   As shown in Table 2 and FIG. 8, according to Experimental Examples 1 and 6 to 10, the high load discharge capacity tends to increase and become almost constant after increasing as the porosity increases. Indicated. In this case, when the porosity was smaller than 20% or larger than 27%, the high-load discharge capacity was greatly reduced. That is, by making the porosity of the outer surface positive electrode active material layer 21B and the inner surface positive electrode active material layer 21C in the range of 20% or more and 27% or less, the occurrence of cracks and breakage is suppressed and the capacity is improved. It was found that a high capacity was maintained even when output with a load current.

実験例11として、負極活物質兼導電材として人造黒鉛を用い、外面正極活物質層21B、内面正極活物質層21C、外面負極活物質層22B、および内面負極活物質層22Cの厚みを表3に示したようしたことを除き、他は実験例1〜5と同様にして二次電池を作製した。なお、実験例11についても3個の二次電池を作製し、巻き取り工程において正極21に亀裂または破断が発生したかどうかを観察したところ、すべてについて亀裂および破断が認められなかった。実験例11におけるリード25による段差の大きさは、実験例1と同様である。   As Experimental Example 11, artificial graphite was used as the negative electrode active material and conductive material, and the thicknesses of the outer surface positive electrode active material layer 21B, the inner surface positive electrode active material layer 21C, the outer surface negative electrode active material layer 22B, and the inner surface negative electrode active material layer 22C are shown in Table 3. A secondary battery was fabricated in the same manner as in Experimental Examples 1 to 5 except for the above. For Experimental Example 11, three secondary batteries were prepared, and it was observed whether cracks or fractures occurred in the positive electrode 21 in the winding process, and no cracks or fractures were observed in all of them. The size of the step due to the lead 25 in Experimental Example 11 is the same as in Experimental Example 1.

比較例5,6として、外面正極活物質層、内面正極活物質層、外面負極活物質層、および内面負極活物質層の厚みを表3に示したように変えて、外面正極活物質層と内面正極活物質層との厚みを同一、外面負極活物質層と内面負極活物質層との厚みを同一としたことを除き、他は実験例11と同様にして二次電池を作製した。また、比較例7として、外面正極活物質層および内面正極活物質層の空隙率を25%に変え、外面負極活物質層および内面負極活物質層の厚みを80μmに変えたことを除き、比較例6と同様にして二次電池を作製した。   As Comparative Examples 5 and 6, the outer surface positive electrode active material layer, the inner surface positive electrode active material layer, the outer surface negative electrode active material layer, and the inner surface negative electrode active material layer were changed in thickness as shown in Table 3, A secondary battery was fabricated in the same manner as in Experimental Example 11, except that the thickness of the inner surface positive electrode active material layer was the same, and the outer surface negative electrode active material layer and the inner surface negative electrode active material layer were the same thickness. Further, as Comparative Example 7, except that the porosity of the outer surface positive electrode active material layer and the inner surface positive electrode active material layer was changed to 25%, and the thickness of the outer surface negative electrode active material layer and the inner surface negative electrode active material layer was changed to 80 μm. A secondary battery was fabricated in the same manner as in Example 6.

なお、比較例5〜7についてもそれぞれ3個の二次電池を作製し、巻き取り工程において正極に亀裂または破断が発生したかどうかを観察した。その結果、比較例5,7については、すべてについて亀裂および破断が認められなかったのに対して、比較例6については、1個に亀裂または破断が発生していた。   For Comparative Examples 5 to 7, three secondary batteries were prepared, and it was observed whether cracks or breaks occurred in the positive electrode in the winding process. As a result, in Comparative Examples 5 and 7, no cracks or fractures were observed in all, whereas in Comparative Example 6, one crack or fracture occurred.

作製した実験例11および比較例5〜7の二次電池について、実験例1〜5と同様に、1サイクル目および100サイクル目の放電容量を測定して放電容量維持率を求めた。得られた結果を表3に示す。なお、比較例6については正極に亀裂および破断が発生しなかった2個について、放電容量維持率を求めた。   About the produced secondary battery of Experimental example 11 and Comparative Examples 5-7, the discharge capacity of 1st cycle and 100th cycle was measured similarly to Experimental example 1-5, and the discharge capacity maintenance factor was calculated | required. The obtained results are shown in Table 3. For Comparative Example 6, the discharge capacity maintenance rate was determined for two positive electrodes that did not crack or break.

Figure 0005093054
Figure 0005093054

表3に示したように、実験例11によれば、正極21の厚みを厚くしても亀裂および破断は発生せず、かつ1サイクル目および100サイクル目の放電容量もおおむね向上させることができた。さらに、実験例11では、比較例5〜7と同等以上の放電容量維持率が得られた。これに対して、正極の厚みを薄くした比較例5では、亀裂および破断は発生しなかったものの、1サイクル目の放電容量が低かった。また、外面正極活物質層と内面正極活物質層とを同一の厚みで厚くした比較例6では、亀裂および破断が発生してしまった。さらに、空隙率を大きくした比較例7では、亀裂および破断は発生しなかったものの、1サイクル目の放電容量が低かった。   As shown in Table 3, according to Experimental Example 11, cracks and fractures do not occur even when the thickness of the positive electrode 21 is increased, and the discharge capacity at the first cycle and the 100th cycle can be substantially improved. It was. Furthermore, in Experimental Example 11, a discharge capacity retention rate equal to or higher than that of Comparative Examples 5 to 7 was obtained. In contrast, in Comparative Example 5 in which the thickness of the positive electrode was reduced, cracks and fractures did not occur, but the discharge capacity at the first cycle was low. Further, in Comparative Example 6 in which the outer surface positive electrode active material layer and the inner surface positive electrode active material layer were thickened to the same thickness, cracks and breaks occurred. Furthermore, in Comparative Example 7 in which the porosity was increased, cracks and fractures did not occur, but the discharge capacity at the first cycle was low.

すなわち、内面正極活物質層21Cの厚みを外面正極活物質層21Bよりも薄くすると共に、巻回中心側においてリード25と重なる位置に、外面正極活物質層21Bのみが設けられた外面活物質領域21Fを設けるようにすれば、負極活物質が炭素材料を含む場合に、正極21の厚みを厚くしても亀裂および破断の発生を抑制することができ、容量を向上させることができることが分かった。   That is, the outer surface active material region in which only the outer surface positive electrode active material layer 21B is provided at a position overlapping the lead 25 on the winding center side while making the thickness of the inner surface positive electrode active material layer 21C thinner than the outer surface positive electrode active material layer 21B. It was found that if 21F is provided, when the negative electrode active material contains a carbon material, cracks and breakage can be suppressed even when the thickness of the positive electrode 21 is increased, and the capacity can be improved. .

上記した表1〜表3の結果から明らかなように、負極活物質の材料に関係なく、内面正極活物質層21Cの厚みを外面正極活物質層21Bよりも薄くすると共に、巻回中心側においてリード25と重なる位置に、外面正極活物質層21Bのみが設けられた外面活物質領域21Fを設けるようにすれば、正極21の厚みを厚くしても亀裂および破断の発生を抑制することができ、容量を向上させることができることが分かった。特に、負極活物質が高容量化に有利なスズおよびケイ素をのうちの少なくとも一方を構成元素として含む場合において、より高い効果が得られることがわかった。なお、図4および図5に示した偏平な形状の巻回体30を有する場合であっても、内面正極活物質層33Cの厚みを外面正極活物質層33Bよりも薄くすると共に、巻回中心側の屈曲部30Aに外面活物質領域33Fが形成されていれば、上記した円筒状の巻回体20と同様の効果が得られることは言うまでもない。   As apparent from the results of Tables 1 to 3, the inner surface positive electrode active material layer 21C is made thinner than the outer surface positive electrode active material layer 21B regardless of the material of the negative electrode active material, and at the winding center side. If the outer surface active material region 21F in which only the outer surface positive electrode active material layer 21B is provided is provided at a position overlapping the lead 25, the occurrence of cracks and breakage can be suppressed even if the thickness of the positive electrode 21 is increased. It was found that the capacity can be improved. In particular, it has been found that a higher effect can be obtained when the negative electrode active material contains at least one of tin and silicon, which are advantageous for increasing the capacity, as a constituent element. 4 and FIG. 5, even when the flat wound body 30 is provided, the inner surface positive electrode active material layer 33C is made thinner than the outer surface positive electrode active material layer 33B and the winding center. Needless to say, if the outer surface active material region 33F is formed in the bent portion 30A on the side, the same effect as that of the cylindrical wound body 20 described above can be obtained.

以上、実施の形態および実施例を挙げて本発明を説明したが、本発明は実施の形態および実施例に限定されず、種々の変形が可能である。例えば、上記第2の実施の形態では、対向する一対の屈曲部30Aと、この一対の屈曲部30Aの間の平坦部30Bとを含む偏平な巻回体30をアルミラミネートフィルムよりなる外装部材40に収容したものについて具体的に説明したが、本発明は、この巻回体30がニッケル(Ni)のめっきがされた鉄(Fe)などよりなる缶に収納されたいわゆる角型のものにも適用可能である。その場合、ゲル状の電解質層36は設けられず、第1の実施の形態と同様に電解液が缶の内部に注入され、セパレータに含浸されている。   Although the present invention has been described with reference to the embodiments and examples, the present invention is not limited to the embodiments and examples, and various modifications can be made. For example, in the second embodiment, the flat wound body 30 including a pair of opposed bent portions 30A and a flat portion 30B between the pair of bent portions 30A is replaced with an exterior member 40 made of an aluminum laminate film. However, the present invention is also applicable to a so-called square type in which the wound body 30 is housed in a can made of iron (Fe) plated with nickel (Ni). Applicable. In that case, the gel electrolyte layer 36 is not provided, and the electrolyte is injected into the inside of the can and impregnated in the separator as in the first embodiment.

また、例えば、上記実施の形態および実施例では、正極21および電解液などの材料について具体的に説明したが、本願発明は、上述した巻回構造を有していれば他の材料を用いてもよい。   Further, for example, in the above-described embodiment and examples, the materials such as the positive electrode 21 and the electrolytic solution are specifically described. However, the present invention uses other materials as long as it has the above-described winding structure. Also good.

本発明の第1の実施の形態に係る二次電池の構成を表す断面図である。It is sectional drawing showing the structure of the secondary battery which concerns on the 1st Embodiment of this invention. 図1に示した巻回体のII−II線に沿った構造を表す断面図である。It is sectional drawing showing the structure along the II-II line | wire of the wound body shown in FIG. 図2に示した巻回体の一部を拡大して表す断面図である。It is sectional drawing which expands and expresses a part of winding body shown in FIG. 本発明の第2の実施の形態に係る二次電池の構成を表す分解斜視図である。It is a disassembled perspective view showing the structure of the secondary battery which concerns on the 2nd Embodiment of this invention. 図4に示した巻回体のV−V線に沿った構成を表す断面図である。It is sectional drawing showing the structure along the VV line of the wound body shown in FIG. 図5に示した巻回体の一部を拡大して表す断面図である。It is sectional drawing which expands and represents a part of winding body shown in FIG. 比較例3の巻回構造を示す断面図である。10 is a cross-sectional view showing a winding structure of Comparative Example 3. FIG. 空隙率と高負荷放電容量との相関を表す特性図である。It is a characteristic view showing the correlation between porosity and high load discharge capacity.

符号の説明Explanation of symbols

11…電池缶、12,13…絶縁板、14…電池蓋、15…安全弁機構、15A…ディスク板、16…熱感抵抗素子、17…ガスケット、20,30…巻回体、21,33…正極、21A,33A…正極集電体、21B,33B…外面正極活物質層、21C,33C…内面正極活物質層、21F,33F…外面活物質領域、22,34…負極、22A,34A…負極集電体、22B,34B…外面負極活物質層、22C,34C…内面負極活物質層、23,35…セパレータ、24…センターピン、25,26,31,32…リード、36…電解質層、37…保護テープ、40…外装部材、41…密着フィルム。   DESCRIPTION OF SYMBOLS 11 ... Battery can, 12, 13 ... Insulation board, 14 ... Battery cover, 15 ... Safety valve mechanism, 15A ... Disc board, 16 ... Heat sensitive resistance element, 17 ... Gasket, 20, 30 ... Winding body, 21, 33 ... Positive electrode, 21A, 33A ... Positive electrode current collector, 21B, 33B ... Outer surface positive electrode active material layer, 21C, 33C ... Inner surface positive electrode active material layer, 21F, 33F ... Outer surface active material region, 22, 34 ... Negative electrode, 22A, 34A ... Negative electrode current collector, 22B, 34B ... outer surface negative electrode active material layer, 22C, 34C ... inner surface negative electrode active material layer, 23, 35 ... separator, 24 ... center pin, 25, 26, 31, 32 ... lead, 36 ... electrolyte layer 37 ... protective tape, 40 ... exterior member, 41 ... adhesive film.

Claims (6)

正極と負極とをセパレータを間にして積層し巻回した巻回体を備え、
前記巻回体は、巻回中心側に少なくとも1つのリードが取り付けられており、
前記正極は、一対の対向面を有する正極集電体と、この正極集電体の巻回外面側に設けられた外面正極活物質層と、巻回内面側に設けられた内面正極活物質層とを有し、
前記内面正極活物質層の厚みは、前記外面正極活物質層の厚みよりも薄く、
前記正極の巻回中心側には、前記リードと重なる位置に、前記外面正極活物質層のみが設けられた外面活物質領域が形成されており、
前記負極は、一対の対向面を有する負極集電体と、この負極集電体の巻回外面側に設けられた外面負極活物質層と、巻回内面側に設けられた内面負極活物質層とを有し、
前記外面負極活物質層の厚みは、前記内面負極活物質層の厚みと同じ、または、前記内面負極活物質層の厚みよりも薄く、
前記負極は、負極活物質として、スズ(Sn)とコバルト(Co)と炭素(C)とを構成元素として含むCoSnC含有材料を含み、
前記CoSnC含有材料において、炭素の含有量は16.8質量%以上24.8質量%以下であると共に、X線回折により得られる回折ピークの半値幅は1.0°以上である
二次電池。
A winding body in which a positive electrode and a negative electrode are laminated and wound with a separator in between,
The wound body has at least one lead attached to the winding center side;
The positive electrode includes a positive electrode current collector having a pair of opposed surfaces, an outer surface positive electrode active material layer provided on the winding outer surface side of the positive electrode current collector, and an inner surface positive electrode active material layer provided on the winding inner surface side. And
The thickness of the inner surface positive electrode active material layer is thinner than the thickness of the outer surface positive electrode active material layer,
On the winding center side of the positive electrode, an outer surface active material region provided with only the outer surface positive electrode active material layer is formed at a position overlapping the lead,
The negative electrode includes a negative electrode current collector having a pair of opposing surfaces, an outer surface negative electrode active material layer provided on the winding outer surface side of the negative electrode current collector, and an inner surface negative electrode active material layer provided on the winding inner surface side. And
The outer surface negative electrode active material layer has the same thickness as the inner surface negative electrode active material layer or thinner than the inner surface negative electrode active material layer,
The negative electrode includes, as a negative electrode active material, a CoSnC-containing material containing tin (Sn), cobalt (Co), and carbon (C) as constituent elements,
In the CoSnC-containing material, the carbon content is 16.8% by mass or more and 24.8% by mass or less, and the half width of a diffraction peak obtained by X-ray diffraction is 1.0 ° or more.
前記CoSnC含有材料において、スズとコバルトとの合計に対するコバルトの割合(Co/(Sn+Co))は30質量%以上45質量%以下である
請求項1記載の二次電池。
The secondary battery according to claim 1, wherein in the CoSnC-containing material, a ratio of cobalt to a total of tin and cobalt (Co / (Sn + Co)) is 30% by mass or more and 45% by mass or less.
前記外面正極活物質層および前記内面正極活物質層の空隙率は、20%以上27%以下の範囲内である
請求項1記載の二次電池。
The secondary battery according to claim 1, wherein a porosity of the outer surface positive electrode active material layer and the inner surface positive electrode active material layer is in a range of 20% to 27%.
正極と負極とをセパレータを間にして積層し巻回した巻回体を備え、
前記巻回体は、対向する一対の屈曲部と、前記一対の屈曲部の間の平坦部とを含む偏平な形状を有し、
前記正極は、一対の対向面を有する正極集電体と、この正極集電体の巻回外面側に設けられた外面正極活物質層と、巻回内面側に設けられた内面正極活物質層とを有し、
前記内面正極活物質層の厚みは、前記外面正極活物質層の厚みよりも薄く、
前記正極の巻回中心側には、前記屈曲部に、前記外面正極活物質層のみが設けられた外面活物質領域が形成されており、
前記負極は、一対の対向面を有する負極集電体と、この負極集電体の巻回外面側に設けられた外面負極活物質層と、巻回内面側に設けられた内面負極活物質層とを有し、
前記外面負極活物質層の厚みは、前記内面負極活物質層の厚みと同じ、または、前記内面負極活物質層の厚みよりも薄く、
前記負極は、負極活物質として、スズとコバルトと炭素とを構成元素として含むCoSnC含有材料を含み、
前記CoSnC含有材料において、炭素の含有量は16.8質量%以上24.8質量%以下であると共に、X線回折により得られる回折ピークの半値幅は1.0°以上である
次電池。
A winding body in which a positive electrode and a negative electrode are laminated and wound with a separator in between,
The wound body has a flat shape including a pair of opposed bent portions and a flat portion between the pair of bent portions,
The positive electrode includes a positive electrode current collector having a pair of opposed surfaces, an outer surface positive electrode active material layer provided on the winding outer surface side of the positive electrode current collector, and an inner surface positive electrode active material layer provided on the winding inner surface side. And
The thickness of the inner surface positive electrode active material layer is thinner than the thickness of the outer surface positive electrode active material layer,
On the winding center side of the positive electrode, an outer surface active material region in which only the outer surface positive electrode active material layer is provided in the bent portion is formed,
The negative electrode includes a negative electrode current collector having a pair of opposing surfaces, an outer surface negative electrode active material layer provided on the winding outer surface side of the negative electrode current collector, and an inner surface negative electrode active material layer provided on the winding inner surface side. And
The outer surface negative electrode active material layer has the same thickness as the inner surface negative electrode active material layer or thinner than the inner surface negative electrode active material layer,
The negative electrode includes a CoSnC-containing material containing tin, cobalt, and carbon as constituent elements as a negative electrode active material,
In the CoSnC-containing material, the carbon content is 16.8% by mass or more and 24.8% by mass or less, and the half width of the diffraction peak obtained by X-ray diffraction is 1.0 ° or more.
Secondary battery.
前記CoSnC含有材料において、スズとコバルトとの合計に対するコバルトの割合(Co/(Sn+Co))は30質量%以上45質量%以下である
請求項記載の二次電池。
The secondary battery according to claim 4 , wherein in the CoSnC-containing material, a ratio of cobalt to the total of tin and cobalt (Co / (Sn + Co)) is 30% by mass or more and 45% by mass or less.
前記外面正極活物質層および前記内面正極活物質層の空隙率は、20%以上27%以下の範囲内である
請求項記載の二次電池。
The secondary battery according to claim 4, wherein a porosity of the outer surface positive electrode active material layer and the inner surface positive electrode active material layer is in a range of 20% to 27%.
JP2008281151A 2006-05-23 2008-10-31 Secondary battery Active JP5093054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008281151A JP5093054B2 (en) 2006-05-23 2008-10-31 Secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006142723 2006-05-23
JP2006142723 2006-05-23
JP2008281151A JP5093054B2 (en) 2006-05-23 2008-10-31 Secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007064996A Division JP4658083B2 (en) 2006-05-23 2007-03-14 battery

Publications (2)

Publication Number Publication Date
JP2009054598A JP2009054598A (en) 2009-03-12
JP5093054B2 true JP5093054B2 (en) 2012-12-05

Family

ID=38906812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008281151A Active JP5093054B2 (en) 2006-05-23 2008-10-31 Secondary battery

Country Status (2)

Country Link
JP (1) JP5093054B2 (en)
CN (1) CN100539289C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8661231B2 (en) 2003-05-12 2014-02-25 International Business Machines Corporation Multi-function instruction that determines whether functions are installed on a system

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011070748A1 (en) * 2009-12-11 2013-04-22 パナソニック株式会社 Nonaqueous electrolyte secondary battery and charging method thereof
JP5656069B2 (en) * 2010-12-13 2015-01-21 ソニー株式会社 Secondary battery, battery pack, electronic device, electric tool, electric vehicle and power storage system
CN102088083A (en) * 2011-01-14 2011-06-08 深圳市量能科技有限公司 Electrode and manufacture method thereof
CN102637897B (en) * 2012-04-23 2015-04-29 宁德新能源科技有限公司 Lithium ion battery
CN103346356B (en) * 2013-07-09 2015-07-08 田秀君 Lithium ion battery as well as preparation method thereof and lithium-ion battery pack
KR102220904B1 (en) * 2014-05-21 2021-02-26 삼성에스디아이 주식회사 Electrode structure and lithium battery including the same
JPWO2018025469A1 (en) * 2016-08-05 2019-05-30 パナソニックIpマネジメント株式会社 Lithium ion secondary battery and method of manufacturing the same
WO2018061381A1 (en) * 2016-09-30 2018-04-05 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
CN108216753B (en) * 2018-01-25 2023-11-14 苏州三屹晨光自动化科技有限公司 Protective film feeding mechanism
EP3780242A4 (en) * 2018-04-06 2021-08-04 Panasonic Intellectual Property Management Co., Ltd. Winding-type electrode body of non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN110544796B (en) * 2018-05-28 2022-09-02 株式会社村田制作所 Secondary battery, battery pack, electric vehicle, electricity storage system, electric tool, and electronic device
CN109638343A (en) * 2018-12-28 2019-04-16 辽宁厚能科技股份有限公司 A kind of method of lithium battery increase-volume
CN115210925A (en) * 2021-02-04 2022-10-18 宁德时代新能源科技股份有限公司 Electrode assembly, manufacturing method and manufacturing system thereof, battery cell and battery
WO2023142024A1 (en) * 2022-01-29 2023-08-03 宁德时代新能源科技股份有限公司 Secondary battery having long service life, battery module, battery pack, and electric apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3489286B2 (en) * 1994-09-07 2004-01-19 宇部興産株式会社 Non-aqueous secondary battery
JP3580209B2 (en) * 2000-02-08 2004-10-20 新神戸電機株式会社 Lithium ion secondary battery
JP2002222651A (en) * 2001-01-25 2002-08-09 Gs-Melcotec Co Ltd Non-aqueous electrolyte secondary battery
JP4013036B2 (en) * 2001-12-19 2007-11-28 ソニー株式会社 Battery and manufacturing method thereof
JP4839671B2 (en) * 2004-05-11 2011-12-21 ソニー株式会社 battery
JP2006024464A (en) * 2004-07-08 2006-01-26 Sony Corp Secondary battery
JP4270109B2 (en) * 2004-11-05 2009-05-27 ソニー株式会社 battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8661231B2 (en) 2003-05-12 2014-02-25 International Business Machines Corporation Multi-function instruction that determines whether functions are installed on a system

Also Published As

Publication number Publication date
JP2009054598A (en) 2009-03-12
CN100539289C (en) 2009-09-09
CN101079500A (en) 2007-11-28

Similar Documents

Publication Publication Date Title
JP5093054B2 (en) Secondary battery
JP6123858B2 (en) Nonaqueous electrolyte secondary battery and separator
JP4229062B2 (en) Lithium ion secondary battery
JP4658083B2 (en) battery
JP4968503B2 (en) Lithium secondary battery
JP5338041B2 (en) Negative electrode for secondary battery and secondary battery
JP4940625B2 (en) Electrolyte and battery
JP5099398B2 (en) Positive electrode active material for secondary battery, positive electrode for secondary battery and secondary battery
JP4412304B2 (en) Secondary battery
JP2006134770A (en) Cathode and battery
JP4876495B2 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP2006286531A (en) Battery
JP2006252895A (en) Battery
JP2006156235A (en) Negative electrode and battery
JP2006344505A (en) Electrolyte solution and battery
JP2008305662A (en) Nonaqueous electrolyte secondary battery
JP5245425B2 (en) Negative electrode and secondary battery
KR20060106895A (en) Battery
JP2008053054A (en) Battery
JP2007103119A (en) Positive electrode material, positive electrode and battery
JP4821217B2 (en) Positive electrode active material, positive electrode and battery
KR20060052502A (en) Battery
JP4591674B2 (en) Lithium ion secondary battery
JP2005347222A (en) Electrolyte liquid and battery
JP4784133B2 (en) Secondary battery and battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R151 Written notification of patent or utility model registration

Ref document number: 5093054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250