JP5092338B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP5092338B2
JP5092338B2 JP2006276144A JP2006276144A JP5092338B2 JP 5092338 B2 JP5092338 B2 JP 5092338B2 JP 2006276144 A JP2006276144 A JP 2006276144A JP 2006276144 A JP2006276144 A JP 2006276144A JP 5092338 B2 JP5092338 B2 JP 5092338B2
Authority
JP
Japan
Prior art keywords
manufacturing
semiconductor device
semiconductor
wafer
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006276144A
Other languages
Japanese (ja)
Other versions
JP2008098269A (en
Inventor
岳志 藤井
勇一 小野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2006276144A priority Critical patent/JP5092338B2/en
Publication of JP2008098269A publication Critical patent/JP2008098269A/en
Application granted granted Critical
Publication of JP5092338B2 publication Critical patent/JP5092338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Dicing (AREA)
  • Formation Of Insulating Films (AREA)

Description

本発明は、製造プロセスとして、ポリイミドパッシベーション工程と半導体基板の裏面側を削って薄く加工する工程を備える半導体装置の製造方法に関する。特には、そのような製造方法により作製された半導体装置の順方向電圧降下特性のばらつきを少なくする製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device including a polyimide passivation step and a step of thinning a back surface side of a semiconductor substrate as a manufacturing process. In particular, the present invention relates to a manufacturing method for reducing variations in forward voltage drop characteristics of a semiconductor device manufactured by such a manufacturing method.

パワー半導体素子の低コスト化を図るため、例えば代表的なパワー半導体素子であるIGBT(Insulated Gate Bipolor Transistor)では高価なエピタキシャルウエハを用いた構造から、安価なFZシリコンウエハ(半導体基板)用いたノンパンチスルー型IGBT、さらに、そのようなFZシリコンウエハ(半導体基板)を薄型にして特性改善を図るフィールドストップ型IGBTへと改善が進められている。   In order to reduce the cost of a power semiconductor element, for example, an IGBT (Insulated Gate Bipolar Transistor) which is a typical power semiconductor element has a structure using an expensive epitaxial wafer, and a non-use using an inexpensive FZ silicon wafer (semiconductor substrate). Improvements are being made to punch-through type IGBTs, and further to field stop type IGBTs for improving characteristics by thinning such FZ silicon wafers (semiconductor substrates).

一方、前記IGBTなどと組み合わせて、電力変換回路などでフリーホイーリングダイオードとして用いられるパワーダイオードにおいても、安価なFZシリコンウエハ(半導体基板)を用い、裏面研削により薄化されたデバイスが適用されている。前述のIGBTと組み合わせて用いられる前記フリーホイーリングダイオードは、両者共に低オン電圧だけでなく、低スイッチング損失なデバイスであることも求められる。そのために、それらの製造プロセスにおいては、電子線照射とその後のアニール処理による少数キャリアのライフタイム制御が行われる。既に知られているように電子線照射によるライフタイム制御は、半導体基板に主要なpn接合構造を形成した後、電子線照射して基板中に、少数キャリアの再結合中心となる結晶欠陥を一様に誘起して一旦ライフタイムを小さくし、アニール処理による熱履歴により前記結晶欠陥を所要量だけ回復させて、所要のライフタイム値に調整する方法である。アニール温度を高くすると結晶欠陥の回復割合が高くなるので、ライフタイムは大きくなり、オン電圧は小さくなるが、スイッチング損失は大きくなる。アニール温度を低くすれば逆になる。従って、両特性を鑑みて要求されるデバイス特性に最適なライフタイムとなるように調整する必要がある。電子線照射については、たとえば、加速電圧を4.8MeVで、線量を100kGyとして半導体基板に結晶欠陥を導入した。電子線照射後、330℃〜350℃で1時間程度のアニール処理によれば、オン電圧とスイッチング損失について、好ましい特性が得られる。   On the other hand, in a power diode used as a freewheeling diode in a power conversion circuit or the like in combination with the IGBT or the like, an inexpensive FZ silicon wafer (semiconductor substrate) and a device thinned by back surface grinding are applied. Yes. Both of the freewheeling diodes used in combination with the above-described IGBT are required to be not only low on-voltage but also low switching loss devices. Therefore, in these manufacturing processes, lifetime control of minority carriers is performed by electron beam irradiation and subsequent annealing treatment. As already known, lifetime control by electron beam irradiation is performed by forming a main pn junction structure on a semiconductor substrate and then irradiating the electron beam to remove crystal defects that become recombination centers of minority carriers in the substrate. In this method, the lifetime is once reduced by induction, and the crystal defects are recovered by a required amount by a thermal history by annealing treatment, and adjusted to a required lifetime value. When the annealing temperature is increased, the recovery rate of crystal defects is increased, so that the lifetime is increased and the on-voltage is decreased, but the switching loss is increased. The reverse occurs if the annealing temperature is lowered. Therefore, it is necessary to adjust the lifetime to be optimal for the required device characteristics in view of both characteristics. For electron beam irradiation, for example, crystal defects were introduced into the semiconductor substrate with an acceleration voltage of 4.8 MeV and a dose of 100 kGy. According to the annealing treatment at 330 ° C. to 350 ° C. for about 1 hour after the electron beam irradiation, favorable characteristics can be obtained with respect to the on-voltage and switching loss.

図3は、そのようなn型FZシリコン半導体基板を用いたダイオードの製造プロセスのフロー図である。また、図3は、複数個の素子構造(チップ)が整列配置されて製造されるウエハ(半導体基板)の、一チップ部分を拡大して示す断面図を用いた製造プロセスフロー図である。
まず、n型FZシリコン半導体基板11の一方の表面に、アノードp層12、ガードリング構造などの周辺耐圧構造部13、アルミニウム系のアノード金属電極膜14等を形成する(図3(a))。次に裏面バックグラインド工程によるシリコン半導体基板の裏面側の研削、研磨およびエッチングを経てFZシリコン半導体基板11を耐圧によって決まる所要の厚さにまで薄くする(図3(b))。次に、裏面にカソードn層15を形成するために、リン、砒素などのイオン注入による不純物導入工程とその活性化工程を行う(図3(c))。その後、表面側にポリイミド膜16を塗布し、パターニングすることにより、周辺耐圧構造部13の上に選択的にパッシベーション膜を形成する(図3(d))。次に電子線照射とアニール処理を行い、前述したように設計素子特性にとって最適となるようにダイオードのライフタイムを調整する(図3(e))。最後に裏面のカソードn層15表面にTi/Ni/Auなどのカソード金属電極膜17を形成し、ウエハプロセスが完了する(図3(f))。この後、高速回転ダイアモンドブレードによるダイシングによりウエハからチップを切断し個別化してパッケージに組み立てる。前記図3に示されるダイオードウエハの製造工程では、ノンパンチスルーやフィールドストップ型IGBTの製造工程でも既に採用されているのと同様のバックグラインド技術による薄ウエハ加工技術とポリイミドパッシベーション技術を用いることを特徴としている。
FIG. 3 is a flow diagram of a diode manufacturing process using such an n-type FZ silicon semiconductor substrate. FIG. 3 is a manufacturing process flow diagram using an enlarged cross-sectional view of one chip portion of a wafer (semiconductor substrate) manufactured by arranging and arranging a plurality of element structures (chips).
First, on one surface of the n-type FZ silicon semiconductor substrate 11, an anode p + layer 12, a peripheral breakdown voltage structure portion 13 such as a guard ring structure, an aluminum-based anode metal electrode film 14 and the like are formed (FIG. 3A). ). Next, the FZ silicon semiconductor substrate 11 is thinned to a required thickness determined by the withstand voltage through grinding, polishing, and etching of the back surface side of the silicon semiconductor substrate by the back surface back grinding process (FIG. 3B). Next, in order to form the cathode n + layer 15 on the back surface, an impurity introduction step by ion implantation of phosphorus, arsenic or the like and an activation step thereof are performed (FIG. 3C). Thereafter, a polyimide film 16 is applied on the surface side and patterned to selectively form a passivation film on the peripheral voltage withstanding structure 13 (FIG. 3D). Next, electron beam irradiation and annealing are performed, and the lifetime of the diode is adjusted so as to be optimal for the design element characteristics as described above (FIG. 3E). Finally, a cathode metal electrode film 17 such as Ti / Ni / Au is formed on the surface of the cathode n + layer 15 on the back surface, and the wafer process is completed (FIG. 3F). Thereafter, chips are cut from the wafer by dicing with a high-speed rotating diamond blade, and are individually assembled into a package. In the manufacturing process of the diode wafer shown in FIG. 3, the same thin wafer processing technology and polyimide passivation technology as those already employed in the manufacturing process of the non-punch through and field stop type IGBTs are used. It is a feature.

一方、前記図3に示されるダイオードウエハの製造工程に含まれるポリイミドパッシベーション膜形成工程とオン電圧の大きさを調整する電子線照射工程を含む製造プロセスを備えるダイオードの製造方法については、既に特許文献が公開されており、さらに、同文献に同ダイオードの製造プロセスにおいて、オン電圧とポリイミド膜形成の際のキュア温度と電子線照射のアニール温度との関係についても明らかにされている(特許文献1)。
特開平8−274314号公報
On the other hand, a method for manufacturing a diode including a polyimide passivation film forming step included in the diode wafer manufacturing step shown in FIG. 3 and a manufacturing process including an electron beam irradiation step for adjusting the magnitude of the on-voltage has already been disclosed in Patent Documents. Furthermore, the relationship between the ON voltage, the curing temperature at the time of forming the polyimide film, and the annealing temperature for electron beam irradiation in the manufacturing process of the diode is also disclosed in the same document (Patent Document 1). ).
JP-A-8-274314

しかしながら、前述のダイオードなど半導体装置の重要な半導体特性の一つに順方向電圧降下(以後オン電圧とよぶ)があるが、前述の従来半導体装置の製造方法、特に、ウエハの製造プロセスにバックグラインド工程により、耐圧に必要な厚さ程度にウエハの裏面を削るウエハ薄化工程とウエハの表面側にポリイミド樹脂膜パッシベーション工程と荷電子粒子照射によるライフタイム制御工程とを備える半導体装置の製造方法では、ウエハ(半導体基板)径を大きくすると、特に直径6インチ以上のウエハでは、ウエハ内における複数チップ間のオン電圧のばらつきが大きくなり、オン電圧不良のチップを発生しやすいという問題がある。このウエハ内オン電圧のばらつきの分布状態は、たとえば、ウエハ内の中央部分のチップのオン電圧が高く、中央部から周辺部にかけてのチップのオン電圧が次第に低くなる分布状態を示す。特にウエハ径が6インチ以上になると、ウエハ中央部のチップがオン電圧の良品範囲から外れる程、大きくなり易いということである。このようなオン電圧のばらつきは、当然ながら、小さいことが良品率の向上に繋がるので、望ましい。   However, one of the important semiconductor characteristics of the semiconductor device such as the diode described above is a forward voltage drop (hereinafter referred to as an on-voltage). However, the conventional semiconductor device manufacturing method, particularly the wafer manufacturing process, is back grounded. In a method for manufacturing a semiconductor device comprising a wafer thinning process for scraping the back surface of the wafer to a thickness required for pressure resistance, a polyimide resin film passivation process and a lifetime control process by valence particle irradiation on the front surface side of the wafer. When the diameter of the wafer (semiconductor substrate) is increased, particularly in the case of a wafer having a diameter of 6 inches or more, there is a problem that on-voltage variation among a plurality of chips in the wafer increases, and a chip with a defective on-voltage is likely to be generated. The distribution state of the variation of the on-voltage in the wafer indicates, for example, a distribution state in which the on-voltage of the chip in the central portion in the wafer is high and the on-voltage of the chip from the central portion to the peripheral portion gradually decreases. In particular, when the wafer diameter is 6 inches or more, the larger the chip at the center of the wafer is, the more likely it is to be larger. Naturally, such a variation in the on-voltage is desirably small because it leads to an improvement in the yield rate.

本発明は、以上述べた点に鑑みてなされたものであり、本発明の目的は、直径6インチ以上のウエハを用いた場合でも、オン電圧のばらつきを小さくすることができ、オン電圧に関する良品率を向上させることのできる半導体装置の製造方法を提供することである。   The present invention has been made in view of the above points, and an object of the present invention is to reduce the variation in on-voltage even when a wafer having a diameter of 6 inches or more is used. Another object of the present invention is to provide a method of manufacturing a semiconductor device capable of improving the rate.

特許請求の範囲の請求項1記載の発明によれば、半導体基板の一方の主面に第一半導体機能領域を形成する工程、他方の主面を削る基板薄化工程、他方の主面側に第二半導体機能領域を形成する工程、ポリイミド樹脂膜パッシベーション処理工程、ライフタイム制御のための荷電粒子照射およびアニール処理工程を備える半導体装置の製造方法において、前記半導体基板の一方の主面に第一半導体機能領域を形成する工程の後であって、前記基板薄化工程の前に、前記ポリイミド樹脂膜パッシベーション処理工程とライフタイム制御のための荷電粒子照射およびアニール工程とを順に行う半導体装置の製造方法とすることにより、前記目的は達成される。   According to the first aspect of the present invention, the step of forming the first semiconductor functional region on one main surface of the semiconductor substrate, the substrate thinning step of cutting the other main surface, and the other main surface side In a method for manufacturing a semiconductor device comprising a step of forming a second semiconductor functional region, a polyimide resin film passivation treatment step, a charged particle irradiation and an annealing treatment step for lifetime control, a first surface on one main surface of the semiconductor substrate Manufacturing of a semiconductor device after the step of forming a semiconductor functional region and before the substrate thinning step, sequentially performing the polyimide resin film passivation treatment step and the charged particle irradiation and annealing step for lifetime control By the method, the object is achieved.

特許請求の範囲の請求項2記載の発明によれば、前記ポリイミド樹脂パッシベーション処理工程にかかる前記ポリイミド樹脂膜の硬化温度が370℃以上であり、前記ライフタイム制御のための荷電粒子照射およびアニール処理における処理温度が300℃乃至360℃のいずれかの温度であることを特徴とする請求項1記載の半導体装置の製造方法とすることが好ましい。   According to the invention of claim 2, the curing temperature of the polyimide resin film in the polyimide resin passivation treatment step is 370 ° C. or higher, and charged particle irradiation and annealing treatment for the lifetime control. The method for manufacturing a semiconductor device according to claim 1, wherein the processing temperature in step 1 is any one of 300 ° C. to 360 ° C.

特許請求の範囲の請求項3記載の発明によれば、半導体装置がダイオードである特許請求の範囲の請求項1または2に記載の半導体装置とすることがより好ましい。
特許請求の範囲の請求項4記載の発明によれば、n型半導体基板の一方の主面にp型の第一半導体機能領域が形成される工程を備える特許請求の範囲の請求項1乃至3のいずれか一項に記載の半導体装置の製造方法とすることが望ましい。
According to the invention described in claim 3, it is more preferable that the semiconductor device is a semiconductor device according to claim 1 or 2 in which the semiconductor device is a diode.
According to the invention of claim 4, the invention further comprises a step of forming a p-type first semiconductor functional region on one main surface of the n-type semiconductor substrate. It is desirable to use the method for manufacturing a semiconductor device according to any one of the above.

特許請求の範囲の請求項5記載の発明によれば、荷電粒子照射が電子線照射、プロトン照射、ヘリウム照射のいずれかである特許請求の範囲の請求項1乃至4のいずれか一項に記載の半導体装置の製造方法とすることがより好ましい。
要するに、本発明は、ダイオードなどの半導体装置のオン電圧ばらつきを抑制するために、ウエハの厚い状態でポリイミド塗布、パターニング工程を適用する。その後、電子線照射およびアニール処理工程、バックグラインド工程、裏面研削およびシリコンエッチング工程を経て、裏面nカソード層形成工程、裏面電極形成工程を行う半導体装置の製造方法とするものである。
According to the invention described in claim 5, the charged particle irradiation is any one of electron beam irradiation, proton irradiation, and helium irradiation. More preferably, the semiconductor device manufacturing method is used.
In short, the present invention applies a polyimide coating and patterning process in a thick wafer state in order to suppress variations in on-voltage of semiconductor devices such as diodes. After that, the manufacturing method of the semiconductor device performs the back surface n + cathode layer forming step and the back surface electrode forming step through the electron beam irradiation and annealing process, the back grinding step, the back surface grinding and the silicon etching step.

本発明によれば、オン電圧のウエハ内ばらつきを抑え、高いオン電圧の良品率で半導体装置の製造方法を提供することが可能となる。   According to the present invention, it is possible to provide a method for manufacturing a semiconductor device with a high on-voltage non-defective product rate while suppressing variations in on-voltage within a wafer.

図1は、本発明の実施例1にかかるダイオードの製造方法を示す半導体基板の要部断面図である。図2は、本発明と従来の製造方法により作製された、それぞれのダイオードの半導体基板内オン電圧分布図である。図3は、従来のダイオードの製造方法を示す半導体基板の要部断面図である。   FIG. 1 is a cross-sectional view of main parts of a semiconductor substrate showing a method for manufacturing a diode according to Example 1 of the present invention. FIG. 2 is an on-voltage distribution diagram in the semiconductor substrate of each diode produced by the present invention and the conventional manufacturing method. FIG. 3 is a fragmentary cross-sectional view of a semiconductor substrate showing a conventional diode manufacturing method.

以下、本発明にかかる半導体装置の製造方法について、図面を参照して詳細に説明する。本発明はその要旨を超えない限り、以下に説明する実施例の記載に限定されるものではない。
図1に本発明の半導体装置の製造方法にかかる実施例1を、主要な半導体基板の製造工程ごとに並べた半導体基板(ウエハ)の断面図を参照して説明する。実際には、この図1の断面構造がウエハ全体に複数個整列した状態で配置されている。
Hereinafter, a method of manufacturing a semiconductor device according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to the description of the examples described below unless it exceeds the gist.
FIG. 1 illustrates a first embodiment of a method for manufacturing a semiconductor device according to the present invention, with reference to cross-sectional views of semiconductor substrates (wafers) arranged for each manufacturing process of main semiconductor substrates. Actually, a plurality of the cross-sectional structures shown in FIG. 1 are arranged on the entire wafer.

たとえば、耐圧600V、1200のダイオードを製作するには、それぞれ30Ωcm程度、60Ωcm程度の比抵抗と500から600μm程度の厚さで、たとえば、6インチ径のn型FZシリコン半導体基板1の一方の主面(表面)に、第一半導体機能層として、ボロンのイオン注入により、表面不純物濃度が5×1016cm,深さ3μmのアノードp層2、このアノードp層の形成と同時に選択的に形成されるガードリングなどの周辺耐圧構造3、周辺耐圧構造の一つとして、その表面に形成されるフィールド酸化膜(図示せず)の形成、アノード層にオーム性接触するアノード金属電極膜4をアルミニウム系の金属膜などにより形成する(図1(a))。 For example, in order to manufacture a diode having a withstand voltage of 600 V and 1200, a specific resistance of about 30 Ωcm and about 60 Ωcm and a thickness of about 500 to 600 μm, respectively, for example, one main of an n-type FZ silicon semiconductor substrate 1 having a diameter of 6 inches. On the surface (surface), as the first semiconductor functional layer, by ion implantation of boron, an anode p + layer 2 having a surface impurity concentration of 5 × 10 16 cm 3 and a depth of 3 μm is selected simultaneously with the formation of this anode p + layer Peripheral breakdown voltage structure 3 such as a guard ring formed as an example, as one of the peripheral breakdown voltage structures, formation of a field oxide film (not shown) formed on the surface, anode metal electrode film in ohmic contact with the anode layer 4 is formed of an aluminum-based metal film or the like (FIG. 1A).

次に、前述した、プロセスへの投入当初の厚いシリコン半導体基板1の状態で表面パッシベーション膜としてポリイミド樹脂膜6を、主として周辺耐圧構造3の表面に塗布されるようにパターニングし、樹脂のガラス転移温度よりは高い380℃程度で硬化させる(図1(b))。
次にダイオードの少数キャリアのライフタイムを制御するため、電子線照射およびアニール処理を行う(図1(c))。電子線については、加速電圧を4.8MeVで、線量を100kGyで照射することによって、半導体基板に結晶欠陥を基板内に一様に導入する。電子線照射後、300℃〜360℃の範囲のいずれかの温度で1時間程度のアニール処理をすることにより、ライフタイムを所要の値に調整する。
Next, the polyimide resin film 6 is patterned as a surface passivation film in the state of the thick silicon semiconductor substrate 1 at the time of introduction into the process as described above so as to be mainly applied to the surface of the peripheral pressure-resistant structure 3, and the glass transition of the resin It hardens | cures at about 380 degreeC higher than temperature (FIG.1 (b)).
Next, in order to control the lifetime of minority carriers of the diode, electron beam irradiation and annealing treatment are performed (FIG. 1C). For the electron beam, crystal defects are uniformly introduced into the semiconductor substrate by irradiating with an acceleration voltage of 4.8 MeV and a dose of 100 kGy. After the electron beam irradiation, the lifetime is adjusted to a required value by annealing for about 1 hour at any temperature in the range of 300 ° C. to 360 ° C.

前記図3で説明したように、従来は、ポリイミド樹脂膜パッシベーション処理工程(図3(d))はシリコン半導体基板の裏面研削による基板薄化工程(図3(b))と裏面にカソードn層の形成工程(図3(c))の後に行われており、また、直径6インチ以上の大径ウエハウエハ厚さが、600V耐圧で80μm程度、1200V耐圧で150μmのように薄くされているので、ポリイミド膜塗布の影響によりウエハ反りが非常に大きく、電子線照射による結晶欠陥も反りの影響で一様ではないため、オン電圧にウエハ内ばらつきが大きくなると思われるという問題があった。これに対して、本発明の実施例1の場合は、ウエハ厚が投入当初の500μm〜600μm程度の厚いウエハにポリイミド膜が形成されるので、ウエハ反りが少ない。この本発明の実施例1ではウエハ反りが前述のように少なくなるため、6インチ以上の大径ウエハを使った場合でも、ウエハの歪が小さくなり、電子線照射をした場合の結晶欠陥がウエハ内で比較的一様な分布となり、オン電圧のばらつきが少なくなって、オン電圧良品率が向上したと思われる。 As described with reference to FIG. 3, conventionally, the polyimide resin film passivation process (FIG. 3D) is performed by the substrate thinning process (FIG. 3B) by grinding the back surface of the silicon semiconductor substrate and the cathode n + on the back surface. This is performed after the layer formation step (FIG. 3C), and the thickness of the large-diameter wafer having a diameter of 6 inches or more is reduced to about 80 μm at 600 V withstand voltage and 150 μm at 1200 V withstand voltage. The wafer warpage is very large due to the influence of the polyimide film coating, and the crystal defects due to electron beam irradiation are not uniform due to the warpage. On the other hand, in the case of Example 1 of the present invention, since the polyimide film is formed on a thick wafer having a wafer thickness of about 500 μm to 600 μm at the beginning, the wafer warpage is small. In the first embodiment of the present invention, since the wafer warpage is reduced as described above, even when a large-diameter wafer of 6 inches or more is used, the distortion of the wafer is reduced, and the crystal defect when the electron beam is irradiated is the wafer. It seems that the distribution of the on-voltage is relatively uniform, the variation in the on-voltage is reduced, and the on-voltage non-defective rate is improved.

前記ポリイミド工程と、電子線照射、アニール処理工程の工程順は以下の理由から決定している。ポリイミド硬化温度は380℃前後で行われるため、電子線照射後のアニール温度300℃〜360℃より高くなること。また、ポリイミド樹脂の硬化処理のためには、電子線照射後のアニール処理に求められる高精度な温度制御よりはるかに低精度の通常のベーク炉を用いるのが一般的であり、電子線照射後のアニール処理には適さないこと。さらに特にポリイミド樹脂の硬化温度が電子線照射後に必要なアニール温度より高いので、ポリイミド処理を、電子線照射、アニール工程前に行っておくことにより、後工程のアニール処理により調整されたライフタイムを、さらにその後の工程で変動させないようにすることなどから決定される。次にシリコン半導体基板の裏面側をバックグラインド(裏面薄化)工程により、耐圧で決まる所定の厚さまで薄くする(図1(d))。   The order of the polyimide process, the electron beam irradiation, and the annealing process is determined for the following reason. Since the polyimide curing temperature is around 380 ° C., the annealing temperature after electron beam irradiation should be higher than 300 ° C. to 360 ° C. In addition, for the polyimide resin curing treatment, it is common to use a normal baking furnace with much lower accuracy than the high-precision temperature control required for the annealing treatment after electron beam irradiation. It is not suitable for annealing treatment. In particular, since the curing temperature of the polyimide resin is higher than the annealing temperature required after electron beam irradiation, the polyimide treatment is performed before the electron beam irradiation and annealing process. Further, it is determined from the fact that it is not changed in the subsequent processes. Next, the back surface side of the silicon semiconductor substrate is thinned to a predetermined thickness determined by the withstand voltage by a back grind (back surface thinning) process (FIG. 1D).

例えば耐圧600Vではシリコン基板厚さ80μm程度、1200Vの素子耐圧では、150μm程度の厚さにまで薄く加工する。次に、裏面に第二半導体機能層としてリン、砒素などのイオン注入と活性化工程を行うことにより、不純物濃度1×1019cm、深さ1μm以下程度のカソードn層5を形成する(図1(e))。
前述の電子線照射工程と半導体基板の裏面側バックグラインド工程との工程順は以下の理由から決定している。一つは、バックグラインド工程後の薄く加工された半導体基板の状態でプロセスを流すことは、割れ、かけといった不良を発生する要因となりやすいこと。二つ目は、前述のようにバックグラインド工程後の薄く加工され、ウエハ反りがある半導体基板の状態で電子線照射することがオン電圧のばらつき増大の原因になっていることが測定結果から推測されることなどから決定している。そのため、薄く加工された半導体基板での工程フローを極力短くし、かつ厚い状態の半導体基板に対して電子線照射するために、バックグラインド工程を電子線照射工程の後の工程にしたのである。最後にカソードn層表面に、Ti/Ni/Auなどのカソード金属電極膜7を形成すると、ダイオードのウエハプロセスが完了する(図1(f))。
For example, when the breakdown voltage is 600 V, the silicon substrate is processed to a thickness of about 80 μm. Next, by performing ion implantation of phosphorous, arsenic, and the like as a second semiconductor functional layer and an activation process on the back surface, the cathode n + layer 5 having an impurity concentration of 1 × 10 19 cm 3 and a depth of about 1 μm or less is formed. (FIG. 1 (e)).
The process order of the electron beam irradiation process and the back-side back grinding process of the semiconductor substrate is determined for the following reason. One is that running the process in the state of a thinly processed semiconductor substrate after the back-grinding process is likely to cause defects such as cracks and cracks. Second, as described above, it is estimated from the measurement results that electron beam irradiation in the state of a semiconductor substrate that has been processed thinly after the back grinding process and has a warped wafer causes an increase in on-voltage variation. It is decided from what is done. Therefore, in order to shorten the process flow of the thinly processed semiconductor substrate as much as possible and to irradiate the thick semiconductor substrate with the electron beam, the back grinding process is performed after the electron beam irradiation process. Finally, when the cathode metal electrode film 7 such as Ti / Ni / Au is formed on the surface of the cathode n + layer, the wafer process of the diode is completed (FIG. 1 (f)).

図2は、実施例1の効果を示すオン電圧のウエハ内ばらつきを示すために、横軸に6インチウエハ面の左右および上下方向を採り、縦軸にオン電圧(順方向電圧降下)を採ったダイオードのオン電圧分布図である。(a)、(b)はそれぞれ、従来と本発明にかかる半導体装置の製造方法による効果を示すダイオードのオン電圧分布図である。先に、半導体基板の裏面側バックグラインド工程を行って薄いウエハに加工してからポリイミド工程を適用し、その後に電子線照射を行う一連の従来の製造方法にかかる図2(a)に対し、実施例1に示した本発明にかかる製造工程順によるダイオードでは、半導体基板内のオン電圧分布のばらつきが大幅に改善されることが明らかである。   FIG. 2 shows the horizontal and vertical directions of the 6-inch wafer surface on the horizontal axis and the on-voltage (forward voltage drop) on the vertical axis in order to show the in-wafer variation of the on-voltage showing the effect of the first embodiment. FIG. 6 is an on-voltage distribution diagram of a diode. (A), (b) is an on-voltage distribution diagram of the diode which shows the effect by the manufacturing method of the semiconductor device concerning the past and this invention, respectively. First, the backside grinding process on the back side of the semiconductor substrate is processed into a thin wafer and then the polyimide process is applied, and then the electron beam irradiation is applied to a series of conventional manufacturing methods shown in FIG. In the diode according to the order of the manufacturing process according to the present invention shown in Example 1, it is apparent that the variation in the on-voltage distribution in the semiconductor substrate is greatly improved.

前述の実施例1の説明では、ライフタイム制御に利用される荷電子粒子照射として、電子線照射を用いたが、その他に、プロトン照射、ヘリウム照射等も利用することができる。
表面保護膜にポリイミドを用い、荷電子粒子照射によりライフタイムをコントロールする工程を備えるMOSFET、IGBTといった他の半導体装置の製造方法においても、同様の半導体基板の薄化工程を経る場合には同様の効果があるのはもちろんのことである。
In the description of the first embodiment, the electron beam irradiation is used as the valence particle irradiation used for lifetime control, but proton irradiation, helium irradiation, and the like can also be used.
In the manufacturing method of other semiconductor devices such as MOSFET and IGBT using polyimide as a surface protective film and having a process of controlling lifetime by irradiation with charged electron particles, the same process is performed when the same semiconductor substrate thinning process is performed. Of course it is effective.

本発明の実施例1にかかるダイオードの製造方法を示す半導体基板の要部断面図である。It is principal part sectional drawing of the semiconductor substrate which shows the manufacturing method of the diode concerning Example 1 of this invention. 本発明と従来の製造方法により作製された、各ダイオードの半導体基板内オン電圧分布図である。It is an on-voltage distribution diagram in a semiconductor substrate of each diode produced by the present invention and a conventional manufacturing method. 従来のダイオードの製造方法を示す半導体基板の要部断面図である。It is principal part sectional drawing of the semiconductor substrate which shows the manufacturing method of the conventional diode.

符号の説明Explanation of symbols

1、… ウエハ、半導体基板、シリコン半導体基板
2、… アノードp層、第一半導体機能層
3、… 周辺耐圧構造、ガードリング
4、… アノード金属電極膜
5、… nカソード層、第二半導体機能層
6、… ポリイミド樹脂膜
7、… カソード金属電極膜
DESCRIPTION OF SYMBOLS 1, ... Wafer, semiconductor substrate, silicon semiconductor substrate 2, ... anode p + layer, 1st semiconductor functional layer 3, ... peripheral pressure | voltage resistant structure, guard ring 4, ... anode metal electrode film 5, ... n + cathode layer, 2nd Semiconductor functional layer 6, ... Polyimide resin film 7, ... Cathode metal electrode film

Claims (5)

半導体基板の一方の主面に第一半導体機能領域を形成する工程、他方の主面を削る基板薄化工程、他方の主面側に第二半導体機能領域を形成する工程、ポリイミド樹脂膜パッシベーション処理工程、ライフタイム制御のための荷電粒子照射およびアニール工程を備える半導体装置の製造方法において、前記半導体基板の一方の主面に第一半導体機能領域を形成する工程の後であって、前記基板薄化工程の前に、前記ポリイミド樹脂パッシベーション処理工程とライフタイム制御のための荷電粒子照射およびアニール処理工程とを順に行うことを特徴とする半導体装置の製造方法。 Forming a first semiconductor functional region on one main surface of a semiconductor substrate; thinning a substrate on the other main surface; forming a second semiconductor functional region on the other main surface; polyimide resin film passivation treatment In a manufacturing method of a semiconductor device including a charged particle irradiation and annealing process for lifetime control, after the process of forming a first semiconductor functional region on one main surface of the semiconductor substrate, A method for manufacturing a semiconductor device, comprising: sequentially performing the polyimide resin passivation processing step, and charged particle irradiation and annealing processing steps for lifetime control, before the forming step. 前記ポリイミド樹脂パッシベーション処理工程にかかる前記ポリイミド樹脂膜の硬化温度が370℃以上であり、前記ライフタイム制御のための荷電粒子照射およびアニール処理における処理温度が300℃乃至360℃のいずれかの温度であることを特徴とする請求項1記載の半導体装置の製造方法。 The curing temperature of the polyimide resin film in the polyimide resin passivation treatment step is 370 ° C. or higher, and the treatment temperature in the charged particle irradiation and annealing treatment for the lifetime control is any one of 300 ° C. to 360 ° C. 2. The method of manufacturing a semiconductor device according to claim 1, wherein: 半導体装置がダイオードであることを特徴とする請求項1または2に記載の半導体装置の製造方法。 3. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor device is a diode. n型半導体基板の一方の主面にp型の第一半導体機能領域が形成される工程を備えることを特徴とする請求項1乃至3のいずれか一項に記載の半導体装置の製造方法。 4. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of forming a p-type first semiconductor functional region on one main surface of the n-type semiconductor substrate. 5. 荷電粒子照射が電子線照射、プロトン照射、ヘリウム照射のいずれかであることを特徴とする請求項1乃至4のいずれか一項に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein the charged particle irradiation is any one of electron beam irradiation, proton irradiation, and helium irradiation.
JP2006276144A 2006-10-10 2006-10-10 Manufacturing method of semiconductor device Active JP5092338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006276144A JP5092338B2 (en) 2006-10-10 2006-10-10 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006276144A JP5092338B2 (en) 2006-10-10 2006-10-10 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2008098269A JP2008098269A (en) 2008-04-24
JP5092338B2 true JP5092338B2 (en) 2012-12-05

Family

ID=39380826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006276144A Active JP5092338B2 (en) 2006-10-10 2006-10-10 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5092338B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210391481A1 (en) * 2018-11-20 2021-12-16 Abb Power Grids Switzerland Ag Power Semiconductor Device and Shadow-Mask Free Method for Producing Such Device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236169A (en) * 1985-04-12 1986-10-21 Internatl Rectifier Corp Japan Ltd Manufacture of semiconductor rectifier element
DE19837944A1 (en) * 1998-08-21 2000-02-24 Asea Brown Boveri Method of manufacturing a semiconductor device
JP4539011B2 (en) * 2002-02-20 2010-09-08 富士電機システムズ株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP2008098269A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
US11469297B2 (en) Semiconductor device and method for producing semiconductor device
US10651269B2 (en) Semiconductor device and method for producing semiconductor device
WO2017047285A1 (en) Semiconductor device and semiconductor device manufacturing method
US8999768B2 (en) Semiconductor device manufacturing method
JP2007158320A (en) Semiconductor device and method of manufacturing the same
JP5735077B2 (en) Manufacturing method of semiconductor device
JP2006196710A (en) Manufacturing method of semiconductor element
JP4665429B2 (en) Manufacturing method of semiconductor device
JP2009224511A (en) Method of manufacturing semiconductor device
JP5092338B2 (en) Manufacturing method of semiconductor device
JP2015207733A (en) Method for manufacturing reverse conducting igbt
JP6268948B2 (en) Method for manufacturing MOS type semiconductor device
JP7135352B2 (en) Semiconductor device manufacturing method
JP2015041720A (en) Semiconductor device manufacturing method
JP2005026428A (en) Method for manufacturing semiconductor device
JP6844130B2 (en) Semiconductor devices and their manufacturing methods
JP5857575B2 (en) Manufacturing method of semiconductor device
JP5353036B2 (en) Manufacturing method of semiconductor device
CN111952171A (en) Method for preparing SiC IGBT (insulated gate bipolar transistor) based on graphical process and SiC IGBT
TWM547186U (en) Reverse-conduction gate-control bipolar conduction device with reduced warpage risk

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090714

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R150 Certificate of patent or registration of utility model

Ref document number: 5092338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250