JP5092220B2 - Insulated multiple piping for superconducting power transmission - Google Patents

Insulated multiple piping for superconducting power transmission Download PDF

Info

Publication number
JP5092220B2
JP5092220B2 JP2005266365A JP2005266365A JP5092220B2 JP 5092220 B2 JP5092220 B2 JP 5092220B2 JP 2005266365 A JP2005266365 A JP 2005266365A JP 2005266365 A JP2005266365 A JP 2005266365A JP 5092220 B2 JP5092220 B2 JP 5092220B2
Authority
JP
Japan
Prior art keywords
pipe
tube
power transmission
heat
metal coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005266365A
Other languages
Japanese (ja)
Other versions
JP2007080649A (en
Inventor
康英 石黒
良和 河端
修一 日下
雅之 坂口
進 板谷
坂田  敬
作太郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005266365A priority Critical patent/JP5092220B2/en
Publication of JP2007080649A publication Critical patent/JP2007080649A/en
Application granted granted Critical
Publication of JP5092220B2 publication Critical patent/JP5092220B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/14Superconductive or hyperconductive conductors, cables, or transmission lines characterised by the disposition of thermal insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/16Superconductive or hyperconductive conductors, cables, or transmission lines characterised by cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Thermal Insulation (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、超電導送電用断熱多重配管に関し、詳しくは、超電導送電に用いる超電導ケーブルを収納する断熱多重配管において、外環境から侵入する入熱をカットする(遮断若しくは減じる、の意、以下同じ)配管構造を有する超電導送電用断熱多重配管に関する。   The present invention relates to a heat insulating multiplex pipe for superconducting power transmission, and more specifically, cuts the heat input entering from the outside environment in the heat insulating multiplex pipe for housing a superconducting cable used for superconducting power transmission (meaning to cut off or reduce, the same applies hereinafter). The present invention relates to a heat insulating multiple pipe for superconducting power transmission having a pipe structure.

超電導送電を考えた場合、超電導ケーブルを超電導状態として安定して利用できるように図る必要があり、断熱二重管を始め、断熱多重管構造の配管構造が必要とされる。つまり、極低温で超電導性を発現する導体(電線ケーブル)を、多重管構造の最内管内に配置し、同管内を、液体窒素等の極低温冷媒を流して極低温に冷却すると共に、ケーブル全体が置かれる環境から侵入する熱を遮断する必要がある。従来は、内側の管(冷却されている管若しくはそれよりも外側に配置される管)と、その外側に位置する管との間を真空に保つと共に、それらの管同士が直接接触しないように、低熱伝導性材料からなるスペーサを挟んだ構造にするに留まらず、内側の管の外側に、スーパーインシュレーションと呼ばれる、輻射をカットする膜を幾重にも巻き付けて、遠赤外域を始めとした長波長域からの輻射エネルギーをカットすることが行われている。スーパーインシュレーションとは、ポリエステル等の有機樹脂フィルムに、アルミ等を蒸着、スパッタリング等で成膜した絶縁フィルムで、輻射熱をカットできるものである。ポリエステルの他には、ポリイミド等の材料もフィルム材料として用いられている。   When superconducting power transmission is considered, it is necessary to ensure that the superconducting cable can be stably used in a superconducting state, and a piping structure having a heat insulating multi-pipe structure such as a heat insulating double pipe is required. In other words, a conductor (wire cable) that exhibits superconductivity at cryogenic temperatures is placed in the innermost tube of the multi-tube structure, and the inside of the tube is cooled to cryogenic temperature by flowing a cryogenic refrigerant such as liquid nitrogen. It is necessary to block the heat entering from the environment where the whole is placed. Conventionally, a vacuum is maintained between the inner tube (cooled tube or a tube disposed outside thereof) and the tube located outside the tube, and the tubes are not in direct contact with each other. In addition to a structure with a spacer made of a low thermal conductivity material, a film that cuts radiation, called super-insulation, is wound around the outside of the inner tube several times, starting with the far infrared region. Cutting radiant energy from a long wavelength region is performed. Super insulation is an insulating film obtained by depositing aluminum or the like on an organic resin film such as polyester by vapor deposition, sputtering, or the like, and can cut radiant heat. In addition to polyester, materials such as polyimide are also used as film materials.

図2は、従来の超電導送電用断熱多重配管の例を示す横断面図である。この例では、二重管構造の内管2内に超電導ケーブル1を入れ、同管内に液体窒素を流して冷やし、内管2の外面には有機樹脂ベースのフィルムにアルミを基本とした金属を蒸着した絶縁フィルムからなるスーパーインシュレーション3を幾重にも巻いて、外管5を通り抜けてくる熱をカットするようにしている。又、内管2の外面と外管5の内面の間に、低熱伝導性のスペーサ4を入れて、内外両管が直接接触しないようにしている。尚、超電導送電用断熱多重配管の素管については、スーパーインシュレーション使用を前提としているために、輻射効果(即ち、輻射率を小さくする効果)の観点からは、特に、表面粗さは問題視されていなかった。   FIG. 2 is a cross-sectional view showing an example of a conventional heat insulation multiple pipe for superconducting power transmission. In this example, a superconducting cable 1 is placed in an inner tube 2 having a double-pipe structure, and liquid nitrogen is allowed to flow in the inner tube 2 for cooling. On the outer surface of the inner tube 2, an organic resin-based film is made of an aluminum-based metal. A super insulation 3 made of a vapor-deposited insulating film is wound several times so as to cut the heat passing through the outer tube 5. Further, a spacer 4 having low thermal conductivity is inserted between the outer surface of the inner tube 2 and the inner surface of the outer tube 5 so that the inner and outer tubes are not in direct contact with each other. In addition, since the base pipe of the heat insulation multiple piping for superconducting power transmission is premised on the use of super insulation, the surface roughness is particularly problematic from the viewpoint of the radiation effect (that is, the effect of reducing the radiation rate). Was not.

スーパーインシュレーションは、その利用が当然視されていることもあって、低温向け断熱二重管に用いた特許文献は見出していないが、高温向け断熱二重管への適用に関し、特許文献1に、同様な輻射熱カットの目的で、合成樹脂フィルム上にアルミ合金層をスパッタにより作成したシートを内管外面に巻いてなる断熱真空二重管が記載されている。
特開平11−125390号公報
The super-insulation is naturally considered to be used, and no patent document used for a low-temperature heat insulating double pipe has been found. For the same purpose of cutting radiant heat, a heat insulating vacuum double tube is described in which a sheet prepared by sputtering an aluminum alloy layer on a synthetic resin film is wound around an outer surface of an inner tube.
JP-A-11-125390

上記した従来の超電導送電用断熱多重配管は、単なる実験室レベルのミニスケールのものであれば特にこれといった問題はないものの、10mを超えるような装置や、実際の設営を想定した場合には、スーパーインシュレーションを使用していることから、施工時に火災を起し易い問題がある。つまり、断熱多重配管を現地で切断したり又は溶接したりする際に、火花が容易にスーパーインシュレーションに引火して、ケーブル自体を損傷するおそれがある。   The above-mentioned conventional heat insulation multiple piping for superconducting power transmission is not a problem as long as it is a lab-level mini-scale, but when assuming a device exceeding 10 m or an actual installation, Since super-insulation is used, there is a problem that a fire is likely to occur during construction. That is, when cutting or welding the heat-insulated multiple pipes on site, there is a risk that sparks will easily ignite the super insulation and damage the cable itself.

超電導電送網は、未だ敷設されているわけではない。然しながら、従来の送電ケーブルのように、全国又は世界各地に送電されることを想定し、特に、奥地等への設置を想定した場合、スーパーインシュレーションを使用した断熱多重配管を用いるのでは、施工時にケーブルの損傷や火災等の危険を孕む難点がある。
そこで、本発明は、設置される外環境からの入熱を、スーパーインシュレーションのような、火災やそれによる損傷の原因となる危険性のある手段によらず、かかる危険性のない手段によりカットし得る超電導送電用断熱多重配管を提供することを目的とする。
Superconducting grids are not yet laid. However, it is assumed that power is transmitted throughout the country or around the world like conventional power transmission cables. Sometimes there is a difficulty in damaging cables and fire.
Therefore, the present invention cuts heat input from the outside environment where it is installed by means without such danger, not by means such as super-insulation, which may cause fire or damage caused by it. An object of the present invention is to provide a heat insulating multiple pipe for superconducting power transmission.

前記目的を達成するための本発明は、多重管構造の内部に超電導ケーブルが収納され、隣接二重管間隙の少なくとも1つが真空断熱層とされた超電導送電用断熱多重配管において、前記隣接二重管間隙に低熱伝導性材料からなる多角形状の中心部に内管通し用の孔、他部に熱侵入抑制用の穴を設け、頂点の少なくとも一部を外管内面と点接触させる構成としたスペーサが配置されたこと、及び、配管素材に金属コーティングが形成されてなること、及び/又は、配管素材の1本以上が内面、外面の何れか一方又は両方の全面にRaで0.2μm以下の表面粗さを有してなることを特徴とする超電導送電用断熱多重配管である。本発明では、金属コーティングは、アルミニウム、亜鉛、若しくはそれらを含んだ合金からなることが好ましい The present invention for achieving the above object is innermost superconducting cable housed in the multi-tube structure, in at least one of heat-insulating multiple pipe superconducting power transmission, which is a vacuum insulation layer of the adjacent double tube gap, said adjacent two A structure in which a hole for passing through the inner tube is provided in the polygonal center portion made of a low thermal conductivity material in the gap between the heavy tubes and a hole for suppressing heat intrusion in the other portion, and at least a part of the apex is in point contact with the inner surface of the outer tube The spacer is arranged, and a metal coating is formed on the pipe material, and / or one or more of the pipe material is 0.2 μm or less in Ra on the entire inner surface, outer surface, or both It is the heat insulation multiple piping for superconducting power transmission characterized by having the surface roughness of. In the present invention, the metal coating is preferably made of aluminum, zinc, or an alloy containing them .

又、本発明では、金属コーティングは、片面当たりの付着量が10g/m2以上の膜であることが好ましい。この付着量は、より好ましくは50g/m2以上である。
尚、本発明にいう多重管構造とは、径の異なる複数の管を入れ子状に配置してなる構造を指す。又、隣接二重管間隙とは隣接する内側の管と外側の管との間の空間を指す。
In the present invention, the metal coating is preferably a film having an adhesion amount per side of 10 g / m 2 or more. This adhesion amount is more preferably 50 g / m 2 or more.
The multiple tube structure referred to in the present invention refers to a structure formed by nesting a plurality of tubes having different diameters. Further, the adjacent double pipe gap refers to a space between the adjacent inner pipe and outer pipe.

本発明によれば、超電導ケーブルを使って送電する断熱多重配管において、有機材料ベースの易燃性のスーパーインシュレーションを使うことなく、輻射入熱をカットすることができる。又、本発明に用いる金属コーティングは、施工時の切断作業や溶接作業等で不可避的に発生する火花等によって収縮や喪失することなく、外環境からの入熱をカットし、断熱効果を確保することができる。又、スーパーインシュレーションのように幾重にも巻く作業は不要であるから、施工作業性が格段に向上する。   According to the present invention, radiation heat input can be cut without using organic material-based flammable super-insulation in a heat-insulated multiple pipe that transmits power using a superconducting cable. In addition, the metal coating used in the present invention cuts heat input from the outside environment and secures a heat insulating effect without contraction or loss due to sparks inevitably generated by cutting work or welding work during construction. be able to. In addition, the work of wrapping over and over like super-insulation is unnecessary, so that the workability of construction is greatly improved.

本発明では、(1)金属コーティングを用いて、輻射による熱エネルギー侵入をカットする、及び/又は、(2)表面粗さを平滑にすることにより、輻射による熱エネルギー侵入をカットする。金属コーティングを形成する部位は、例えば断熱二重管構造であれば、超電導ケーブルを装入し且つ液体窒素等の冷媒を流す内管の外面、及び、外管の内面が好ましい。真空断熱される間隙を構成する面、内側の管の外面、外側の管の内面であることが望ましい。尚、更に、内管の内面や、外管の外面に、金属コーティングを形成してもよい。又、三重管以上の多重管構造の場合、超電導ケーブルを装入し且つ液体窒素等の冷媒を流す管(好ましくは最内管)の外面、或いは更に、多重管構造内の複数の隣接二重管間隙のうち真空断熱層とされる間隙を区画している内側の管の外面及び外側の管の内面に金属コーティングを形成するのが好ましい。尚、更に、これら以外の配管の内面及び/又は外面に、金属コーティングを形成してもよい。   In the present invention, (1) a metal coating is used to cut out thermal energy penetration due to radiation, and / or (2) the surface roughness is smoothed to cut out thermal energy penetration due to radiation. If the metal coating is formed, for example, in the case of a heat insulating double tube structure, the outer surface of the inner tube in which the superconducting cable is inserted and the refrigerant such as liquid nitrogen is passed and the inner surface of the outer tube are preferable. It is desirable that the surface constitutes a vacuum insulated gap, the outer surface of the inner tube, and the inner surface of the outer tube. Furthermore, a metal coating may be formed on the inner surface of the inner tube or the outer surface of the outer tube. In the case of a multi-tube structure having a triple tube or more, a superconducting cable is inserted and the outer surface of a tube (preferably the innermost tube) through which a refrigerant such as liquid nitrogen flows, or a plurality of adjacent double tubes in the multi-tube structure. It is preferable to form a metal coating on the outer surface of the inner tube and the inner surface of the outer tube that define the vacuum heat insulating layer among the tube gaps. Furthermore, you may form a metal coating in the inner surface and / or outer surface of piping other than these.

金属コーティングを志向する背景は、施工時に、切断や溶接を実施した時に、僅かではあるが不可避的に発生する火花に起因して火災が起り、特に、有機樹脂系材料で形成されているスーパーインシュレーションが焼け易く、且つ変形(収縮)して使い物にならなくなることを回避することにある。金属コーティングに用いる金属の種類は、特に限定しないが、当該金属の皮膜が、外から侵入する遠赤外光(エネルギー)をカットできる輻射効果の高いものである必要がある。   The background for metal coatings is that when cutting or welding is performed at the time of construction, a fire occurs due to a slight but unavoidable spark, and in particular, super-insulation made of organic resin materials. It is to avoid that the vibration is easily burned and is not deformed (contracted) to become useless. The type of metal used for the metal coating is not particularly limited, but the metal film needs to have a high radiation effect capable of cutting far-infrared light (energy) entering from the outside.

金属コーティングは、中でも、輻射効果の高さと製造し易さの点からみて、アルミニウム若しくは亜鉛の単体、又はこれらの何れか1種若しくは2種を含む合金を素材として形成することが好ましい。
金属コーティングの形成手法は、電気めっき法、溶融金属に浸漬しこれを付着させる方法(溶融めっき法)、スパッタリング、蒸着(PVD又はCVD)等の何れの方法も好ましく用い得る。金属コーティングの形成手法によっては、配管の内外両面とも同一種類の皮膜がほぼ同一厚みに成膜される場合、或いは両面で互いに異なる種類の皮膜が異なる厚みに成膜される場合があるが、本発明では何れの場合であっても採用することができ、期待する輻射効果に応じて、金属の種類、膜の付着量を決定すればよいが、付着量に関しては、片面当たり10g/m2以上であることが、輻射効果を達成するには好ましく、更に一層の効果を期待するには、片面当たり50g/m2以上であることが望ましい。又、金属コーティングの膜厚が厚いほど輻射効果が向上するので、本発明では膜厚の上限は特に限定されず、現在製造可能な上限の膜厚(おおよそ300μm)であってもよい。本発明によれば、スーパーインシュレーションを生産し、それを幾重にも巻くことに比べ、1回のコーティング作業で済ますことができ、生産性及び現地施工性が格段に向上する。
In particular, the metal coating is preferably formed from a single element of aluminum or zinc, or an alloy containing any one or two of them, from the viewpoint of high radiation effect and ease of manufacture.
As a method for forming the metal coating, any method such as an electroplating method, a method of dipping and adhering to a molten metal (a hot dipping method), sputtering, vapor deposition (PVD or CVD), or the like can be preferably used. Depending on the method of forming the metal coating, the same type of film may be formed on the inner and outer surfaces of the pipe with substantially the same thickness, or different types of films may be formed on the both surfaces with different thicknesses. In the invention, it can be adopted in any case, and depending on the expected radiation effect, it is sufficient to determine the type of metal and the amount of film attached, but the amount of adhesion is 10 g / m 2 or more per side. In order to achieve the radiation effect, it is preferable to be 50 g / m 2 or more per side in order to expect a further effect. Further, since the radiation effect is improved as the thickness of the metal coating is increased, the upper limit of the thickness is not particularly limited in the present invention, and the upper limit thickness (approximately 300 μm) that can be manufactured at present may be used. According to the present invention, compared to producing a super insulation and winding it several times, a single coating operation can be completed, and productivity and on-site workability are remarkably improved.

又、金属コーティングの形成有無に拘らず、素管の表面粗さをRaで0.2μm以下にすることによって、輻射効果を確保することができる。この方法によっても、スーパーインシュレーションの使用を回避できる。金属コーティングとの併用も可能である。Raが0.2μmを超えると輻射効果が期待できないため、0.2μm以下であることが必要である。機会研磨及び薬液による研磨の限界から、0.005μm程度であろうと推定される。しかしながら、技術の進歩によって、この下限レベルは、より一層小さくなる可能性はある。   Regardless of whether or not the metal coating is formed, the radiation effect can be ensured by setting the surface roughness of the raw tube to 0.2 μm or less by Ra. This method can also avoid the use of super insulation. Combination with metal coating is also possible. If Ra exceeds 0.2 μm, the radiation effect cannot be expected, so it is necessary to be 0.2 μm or less. From the limit of opportunity polishing and chemical polishing, it is estimated that it will be about 0.005 μm. However, as technology advances, this lower level can be even smaller.

表面粗さを調整した際、腐食等の影響によって、当初の表面粗さが期待できない場合があるため、クロメート皮膜等の非常に薄い金属コーティングを付着したり、有機樹脂を主成分とした皮膜を付けて、表面を保護してもよい。
又、多重管構造をなす複数の配管が互いに接触し、熱伝導により熱が侵入することを防ぐために、複数個の隣接二重管間隙の個々全てに、低熱伝導性材料からなるスペーサを配置することが好ましい。特に、本発明の最良の実施形態では、前記スペーサを、隣接二重管間隙のうち真空断熱層とした間隙に必須に配置するものとする。
When adjusting the surface roughness, the initial surface roughness may not be expected due to the influence of corrosion, etc., so a very thin metal coating such as a chromate film is attached or a film mainly composed of an organic resin is applied. In addition, the surface may be protected.
In addition, in order to prevent heat from entering through a plurality of pipes forming a multi-pipe structure, spacers made of a low heat conductive material are arranged in each of a plurality of adjacent double pipe gaps. It is preferable. In particular, in the best mode of the present invention, the spacer is essentially disposed in the gap formed as a vacuum heat insulating layer in the gap between adjacent double tubes.

スペーサをなす低熱伝導性材料としては、FRP(繊維強化プラスチック)、GFRP(ガラス繊維強化プラスチック)、テフロン(テトラフルオロエチレンC2F4の重合体)等が好ましく用い得る。スペーサの全体形状は、三角以上の多角形状の何れであってもよく、内側の管をスペーサ中央に開けた孔に通すことが可能で且つ外側の管の内面に多角形状の頂点の全部又は一部が接触することが可能に構成するのが好ましい。多角形状の頂点と外側の管の内面との接触状態は、熱伝導による熱の侵入をより抑制する観点から、面接触状態とするよりも、点接触状態とするのが好ましい。又、熱伝導による熱の侵入をより一層抑制する観点から、スペーサはその中央以外の部位にも適宜孔を開けた構造としてもよい。 As the low thermal conductive material forming the spacer, FRP (fiber reinforced plastic), GFRP (glass fiber reinforced plastic), Teflon (tetrafluoroethylene C 2 F 4 polymer) and the like can be preferably used. The overall shape of the spacer may be any polygonal shape, such as a triangle or more, and the inner tube can be passed through a hole formed in the center of the spacer, and all or one of the apexes of the polygonal shape is formed on the inner surface of the outer tube. It is preferable that the parts can be brought into contact with each other. The contact state between the polygonal apex and the inner surface of the outer tube is preferably a point contact state rather than a surface contact state from the viewpoint of further suppressing heat intrusion due to heat conduction. Further, from the viewpoint of further suppressing heat intrusion due to heat conduction, the spacer may have a structure in which holes are appropriately formed in portions other than the center.

図1は、本発明の実施例1(1)を示す横断面図である。この例は二重管構造に関するものである。超電導ケーブル1は内管2内に装入されている。内管2は、BA(ブライトアニール)材を製管してなるSUS316L鋼管を、電解研磨後、溶融アルミニウムめっき処理したものであり、内管2の内面及び外面にアルミニウムめっき層6が形成されている。
外管5は、BA材を製管してなるSUS316L鋼管を、電解研磨後、溶融アルミニウムめっき処理したものであり、外管5の内面及び外面にアルミニウムめっき層6が形成されている。
FIG. 1 is a cross-sectional view showing Example 1 (1) of the present invention. This example concerns a double tube structure. The superconducting cable 1 is inserted in the inner tube 2. The inner pipe 2 is a SUS316L steel pipe made of a BA (Bright Annealed) material, which has been subjected to hot-dip aluminum plating after electrolytic polishing, and an aluminum plating layer 6 is formed on the inner and outer surfaces of the inner pipe 2. Yes.
The outer tube 5 is obtained by electrolytically polishing a SUS316L steel tube made of a BA material and then subjecting it to hot-dip aluminum plating. An aluminum plating layer 6 is formed on the inner surface and the outer surface of the outer tube 5.

内管2と外管5との間隙には四角形状のスペーサ4を配置し、両管の直接相互接触を防いでいる。スペーサ4はGFRP製で、中央に開けた孔に内管2を通し、四角形状の頂点を外管5の内面と接触させるようにしているので、両管の間隔が保たれる。スペーサ4は、内管2の重量により割れない程度に負担重量を分散させるように、厚みを2mmとした複数のものを、断熱二重配管の長さ方向(紙面奥行き方向)に適当な間隔をおいて配置した。尚、スペーサ4は、四つの頂点近傍に孔7を開けた構造とし、低熱伝導性材料とはいえ僅かながらも侵入する熱の伝導パスをより長くして、入熱をより一層削減できるよう工夫した。尚、実施例1(1)においては、内管・外管共に、溶融めっき工程によって、アルミニウムめっき層6を、管の内外面両方に形成させた一例であるが、真空断熱部を構成する内管の外側、外管の内側のみに、アルミニウム層をコーティングさせた場合、及び、アルミニウム以外の金属を使って、例えば、亜鉛等を用いた場合も、本発明の規定する内容に包含される。   A square spacer 4 is disposed in the gap between the inner tube 2 and the outer tube 5 to prevent direct mutual contact between the two tubes. The spacer 4 is made of GFRP, and the inner tube 2 is passed through a hole opened in the center so that the square apex is brought into contact with the inner surface of the outer tube 5, so that the distance between the two tubes is maintained. The spacers 4 have a thickness of 2 mm so as to disperse the burden weight to the extent that the inner tube 2 is not broken by the weight of the inner pipe 2, and have an appropriate interval in the length direction (depth direction on the paper) of the heat insulating double pipe. Arranged. The spacer 4 has a structure in which holes 7 are formed in the vicinity of the four apexes, and although it is a low thermal conductivity material, the heat conduction path that invades slightly is made longer so that the heat input can be further reduced. did. In Example 1 (1), both the inner tube and the outer tube are an example in which the aluminum plating layer 6 is formed on both the inner and outer surfaces of the tube by the hot dipping process. The case where the aluminum layer is coated only on the outer side of the tube and the inner side of the outer tube, and the case where zinc or the like is used using a metal other than aluminum are also included in the contents defined by the present invention.

又、図3には、実施例1(2)を示す。この例は断熱二重管の内管2、外管5に金属コーティングをせず、内管2と外管5の内面粗さをRaで0.02μmにしたものである。
超電導ケーブル1は、内管2内に装入されている。内管2と外管5は、BA材を製管したSUS316L鋼管を、それぞれ外側、内側を電解研磨によって、更に表面粗さを小さくしてなり、その内管外側と外管内側全体の表面粗さがRaで0.02μmである表面粗さ調整面9となっている。
FIG. 3 shows Example 1 (2). In this example, the inner tube 2 and the outer tube 5 of the heat insulating double tube are not coated with metal, and the inner surface roughness of the inner tube 2 and the outer tube 5 is 0.02 μm in Ra.
The superconducting cable 1 is inserted in the inner tube 2. The inner pipe 2 and the outer pipe 5 are made of SUS316L steel pipe made of BA material, and the outer and inner sides are electropolished to further reduce the surface roughness. The surface roughness adjusting surface 9 has a roughness Ra of 0.02 μm.

内管2と外管5との間隙には、テフロン製の三角形状のスペーサ8を配置し、両管の直接相互接触を防いでいる。スペーサ4は、中央に開けた孔に内管2を通し、三頂点の内何れか二頂点を常に外管5の内面と接触させるようにしているので、両管の間隔が保たれる。スペーサ4は、内管2の重量により割れない程度に負担重量を分散させるように、厚みを2mmとした複数のものを、断熱二重配管の長さ方向(紙面奥行き方向)に適当な間隔をおいて配置した。尚、スペーサ4は、三頂点近傍に孔7を開けた構造とし、低熱伝導性材料とはいえ僅かながらも侵入する熱の伝導パスをより長くして、入熱をより一層削減できるよう工夫した。   A Teflon triangular spacer 8 is disposed in the gap between the inner tube 2 and the outer tube 5 to prevent direct contact between the two tubes. The spacer 4 allows the inner tube 2 to pass through a hole opened in the center, so that any two vertices of the three vertices are always in contact with the inner surface of the outer tube 5, so that the distance between the two tubes is maintained. The spacers 4 have a thickness of 2 mm so as to disperse the burden weight to the extent that the inner tube 2 is not broken by the weight of the inner pipe 2, and have an appropriate interval in the length direction (depth direction on the paper) of the heat insulating double pipe. Arranged. The spacer 4 has a structure in which holes 7 are formed in the vicinity of the three apexes, and although it is a low heat conductive material, it has been devised to further reduce heat input by lengthening the heat conduction path that invades slightly. .

又、図4は、実施例1(2)において、更に、外管5の表面粗さ調整面9を保護する表面保護膜としてクロメート皮膜10を形成させた実施例1(3)を示す。これによれば、断熱多重管の製造が完了するまでや、設営までに大気等にさらされる等の大気環境等の影響による表面粗さ調整面9での腐食進行を抑制でき、当初の輻射効果を維持できる。
送電する際には、内管と外管との間の空間を高真空状態とした後、内管内に極低温冷媒(例えば液体窒素)を流し、超電導ケーブルが超電導状態を保持できるようになってから送電する。又、実施例1(1)と、実施例1(2)を組み合わせたような場合も当然ありうる。つまり、外管に金属コーティングとし、内管を表面粗さ調整材にしたり、その逆もありうる。
FIG. 4 shows Example 1 (3) in which a chromate film 10 is further formed as a surface protective film for protecting the surface roughness adjusting surface 9 of the outer tube 5 in Example 1 (2). According to this, it is possible to suppress the progress of corrosion on the surface roughness adjusting surface 9 due to the influence of the atmospheric environment or the like, such as exposure to the atmosphere or the like until the manufacture of the heat insulating multi-pipe is completed, and the initial radiation effect Can be maintained.
When transmitting power, the space between the inner tube and the outer tube is brought into a high vacuum state, and then a cryogenic refrigerant (for example, liquid nitrogen) is allowed to flow through the inner tube so that the superconducting cable can maintain the superconducting state. Power is transmitted from. Further, there may naturally be a case where Example 1 (1) and Example 1 (2) are combined. That is, the outer tube may be made of a metal coating and the inner tube may be made of a surface roughness adjusting material, or vice versa.

上記実施例は、二重管構造に関するものであるが、三重以上の多重管構造の場合であっても、基本的な構成要件は同じである。尚、実施例1(3)では表面粗さ調整面の保護皮膜にクロメート皮膜を用いたが、表面粗さ調整面の保護皮膜はこれに限定されず、同様の保護機能を有する膜であれば如何なる種類の皮膜であってもよい。大気等へ放置して保管してあっても、腐食等が実質起きないような素材の場合には、表面粗さ調整面を保護する皮膜は必ずしも必要としない。つまり、易燃性のスーパーインシュレーションを用いない本発明によれば、実施工の際に不可避的に火花等が発生しても、輻射効果を有する構造体を損傷することがない、超電導送電用断熱多重配管の実現が可能である。又、製造コストも安価である。   The above embodiment relates to a double-pipe structure, but the basic configuration requirements are the same even in the case of a multi-pipe structure of triple or more. In Example 1 (3), the chromate film was used as the protective film on the surface roughness adjusting surface, but the protective film on the surface roughness adjusting surface is not limited to this, and any film having the same protective function may be used. Any kind of film may be used. In the case of a material that does not substantially corrode even if stored in the atmosphere or the like, a film that protects the surface roughness adjusting surface is not necessarily required. That is, according to the present invention that does not use flammable super-insulation, even if a spark or the like is inevitably generated during construction, the structure having radiation effect is not damaged. Realization of heat insulation multiple piping is possible. Also, the manufacturing cost is low.

図5に縦断面図を示す断熱二重管を使って、表面粗さ調整による断熱作用効果の確認試験を行った。図5の断熱二重管は、外管5aは径150Aとし、内管2aは径80Aとし、長さは共に1500mmとし、2mm厚のGFRP製の低熱伝導性スペーサ(図5では図示省略)を3枚、適当な間隔で配置して内管と外管の直接接触を防止しており、外管と内管とは、管軸方向の位相を200mmずらし、両端の開口部を超高真空用蓋フランジ11或いは超高真空用ICF12で封鎖可能とした。外管から突き出た側の内管端から内管内に液体窒素を導入可能である。   The confirmation test of the heat insulation effect by surface roughness adjustment was done using the heat insulation double pipe which shows a longitudinal cross-sectional view in FIG. The heat insulating double pipe shown in FIG. 5 has an outer pipe 5a having a diameter of 150A, an inner pipe 2a having a diameter of 80A, a length of 1500 mm, and a 2 mm-thick GFRP low thermal conductive spacer (not shown in FIG. 5). Three pieces are arranged at an appropriate interval to prevent direct contact between the inner tube and the outer tube. The outer tube and the inner tube are shifted in phase in the tube axis direction by 200 mm, and the openings at both ends are for ultra-high vacuum. Capable of being sealed with lid flange 11 or ICF12 for ultra-high vacuum. Liquid nitrogen can be introduced into the inner tube from the inner tube end protruding from the outer tube.

試験では、表1に示すように表面粗さ調整の仕様を違えた条件の各々について、内管と外管との間隙を真空に引いてから液体窒素を内管内にゆっくりと時間をかけて封入し、真空を引きながら真空の到達具合がどうなるかを調べた。真空系は同一のものを使用した。真空の具合の評価は、最長14日の試験時間内で真空度が、1.0×10-7torr以下に到達した場合を○、1.0×10-6torr超に留まった場合を×、○と×の間の段階(即ち1.0×10-7torr超1.0×10-6torr以下)であった場合を△とする三段階分級評価方法にて行った。同一の真空系では到達真空度が高いほど内管への熱エネルギー侵入を防止する効果が大きく、内管が液体窒素温度(77k)であることも相関して、上記三段階(○,△,×)が、真空度の低いほうから順に、内管への熱エネルギー侵入を防止する効果の、十分なレベル、許容し得るレベル、乏しいレベルに対応すると考えられるからである。尚、表1に示す表面粗さについては、管からは粗さ測定試験片が採れないため、管と同一材料の板状片に管と同一の表面粗さ調整を施したものを用意し、これを粗さ試験片として測定した。評価の結果を表1に示す。 In the test, for each of the conditions with different surface roughness adjustment specifications as shown in Table 1, the gap between the inner tube and the outer tube was evacuated and then liquid nitrogen was sealed in the inner tube over time. Then, while drawing a vacuum, it was investigated how the vacuum reached. The same vacuum system was used. The evaluation of the degree of vacuum is: ○ when the degree of vacuum reaches 1.0 × 10 -7 torr or less within the test time of 14 days at the maximum, × when it stays above 1.0 × 10 -6 torr, ○, × The evaluation was performed by a three-stage classification evaluation method in which the case in the middle of (ie, more than 1.0 × 10 −7 torr and less than 1.0 × 10 −6 torr) was Δ. In the same vacuum system, the higher the ultimate vacuum, the greater the effect of preventing the heat energy from entering the inner tube. The above three stages (○, △, This is because (x) corresponds to a sufficient level, an acceptable level, and a poor level of the effect of preventing the thermal energy from entering the inner tube in order from the lowest vacuum level. In addition, for the surface roughness shown in Table 1, since a test piece for roughness measurement cannot be taken from the tube, prepare a plate-shaped piece made of the same material as the tube and the same surface roughness adjustment as the tube, This was measured as a roughness test piece. The evaluation results are shown in Table 1.

Figure 0005092220
試験No.1はスーパーインシュレーションを使った従来例である。スーパーインシュレーションが有機樹脂基の膜であるゆえ、吸着する水分が真空引きに影響を与えるために時間はかかるものの1.0×10-7torr以下へ到達できる。尚、この例では、外管はSUS316LのBA材で、表面粗さがRaで0.08μmである。
Figure 0005092220
Test No. 1 is a conventional example using super insulation. Since super-insulation is an organic resin-based film, the adsorbed moisture affects the evacuation and takes time, but can reach 1.0 × 10 −7 torr or less. In this example, the outer tube is a SUS316L BA material, and the surface roughness Ra is 0.08 μm.

試験No.2〜4が本発明例にあたる。これらの内管はSUS316Lの電解研磨材であり、外面、内面共に表面粗さがRaで0.04μmに調整されたものである。試験No.2は外管がAP材(Acid-Peeling材=酸洗まま材)であり、やや時間がかかるものの、1.0×10-6torr以下へ到達できる。試験No.3は外管が電解研磨材であり、外管の外面はBAままの肌でRaが0.07μmであるが、内面が電解研磨されていてRaが0.03μmであり、1.0×10-7torr以下へ到達できる。試験No.4は外管がAlのポリッシュスキン材であり、Raが0.17μmに調整されており、1.0×10-7torr以下へ到達できる。 Test Nos. 2 to 4 correspond to examples of the present invention. These inner pipes are SUS316L electrolytic polishing material, and both the outer and inner surfaces are adjusted to have a surface roughness Ra of 0.04 μm. In Test No. 2, the outer tube is an AP material (Acid-Peeling material = as-washed material), and although it takes a little time, it can reach 1.0 × 10 −6 torr or less. In test No. 3, the outer tube is an electrolytic abrasive, and the outer surface of the outer tube is BA-skin and Ra is 0.07 μm, but the inner surface is electropolished and Ra is 0.03 μm, 1.0 × 10 Can reach 7 torr or less. Test No. 4 is a polished skin material whose outer tube is Al, Ra is adjusted to 0.17 μm, and can reach 1.0 × 10 −7 torr or less.

試験No.5は、外管として、低炭鋼(=低炭素鋼)の酸洗板を製管したものを用い、両面共に酸洗肌でRaが1.3μmと大きいため、1.0×10-6torr以下へは到達できない。
以上のように、二重管の内管及び/又は外管の内面、外面の少なくとも何れか一方に対し全面に亘って表面粗さをRaで0.2μm以下とすれば、スーパーインシュレーションを用いずに断熱二重管が成立し得る。
Test No. 5 uses a low-carbon steel (= low-carbon steel) pickled steel plate as the outer tube, and both surfaces are pickled and Ra is as large as 1.3 μm, so 1.0 × 10 −6 It cannot reach below torr.
As described above, if the surface roughness Ra is 0.2 μm or less over the entire inner surface and / or outer surface of the inner tube and / or outer tube of the double tube, super insulation is not used. Insulating double pipes can be established.

本実施例は、超電導送電用断熱二重管に留まらず、断熱多重管への適用可能性も示している。   This example shows not only the heat insulation double pipe for superconducting power transmission but also applicability to a heat insulation multiple pipe.

図5に縦断面図を示す断熱二重管を使って、金属コーティングによる断熱作用効果の確認試験を行った。
試験では、表2に示すように金属コーティングの仕様を違えた条件の各々について、実施例2と同様の方法にて試験及び評価を行った。各条件共、内管はRa0.02μmの電解研磨材とし、外管は金属コーティング形成材とした。評価の結果を表2に示す。
The confirmation test of the heat insulation effect by metal coating was done using the heat insulation double pipe which shows a longitudinal cross-sectional view in FIG.
In the test, tests and evaluations were performed in the same manner as in Example 2 for each of the conditions with different metal coating specifications as shown in Table 2. Under each condition, the inner tube was made of an electropolishing material of Ra 0.02 μm, and the outer tube was made of a metal coating forming material. The evaluation results are shown in Table 2.

Figure 0005092220
試験No.51は、外管が、酸洗まま状態の低炭鋼にAlめっきを施したもので、Alめっき付着量が少な目のため、到達真空度レベルは△である。試験No.52〜55は、素管下地と金属コーティングの組合せを表2のように違えたが、何れにおいても金属コーティングの片面当たりの付着量が好適範囲(10g/m2以上)内にあるので、評価は○(到達真空度レベルは1.0×10-7torr以下)である。尚、表2には示していないが、評価が○の試験No.52〜55の中でも、片面当たりの付着量が更なる好適範囲(50g/m2以上)内にある試験No.53〜55では、それを外れる試験No.52に比べ、より短い時間内に、真空度が1.0×10-7torr以下へ到達できる。
Figure 0005092220
In Test No. 51, the outer pipe is obtained by subjecting low-carbon steel with acid pickling to Al plating, and since the amount of Al plating attached is small, the ultimate vacuum level is Δ. In Test Nos. 52 to 55, the combination of the base tube base and the metal coating was changed as shown in Table 2, but the adhesion amount per one side of the metal coating was within the preferable range (10 g / m 2 or more) in any case. Therefore, the evaluation is ○ (the ultimate vacuum level is 1.0 × 10 −7 torr or less). Although not shown in Table 2, among Test Nos. 52 to 55 with an evaluation of ○, Test Nos. 53 to 55 in which the adhesion amount per one side is within a further preferable range (50 g / m 2 or more). Then, the degree of vacuum can reach 1.0 × 10 −7 torr or less in a shorter time as compared with test No. 52 that deviates from this.

以上のように、二重管の内管及び/又は外管の内面、外面の全面に亘って金属コーティングを、好ましくはその片面当たりの付着量が10g/m2以上、より好ましくは50g/m2以上となるように、形成すれば、スーパーインシュレーションを用いずに断熱二重管が成立し得る。
本実施例は、超電導送電用断熱二重管に留まらず、断熱多重管への適用可能性も示している。
As described above, the metal coating is applied over the entire inner surface and outer surface of the inner tube and / or outer tube of the double tube, preferably the amount of adhesion per side is 10 g / m 2 or more, more preferably 50 g / m. If formed so as to be 2 or more, an adiabatic double tube can be established without using super insulation.
This example shows not only the heat insulation double pipe for superconducting power transmission but also applicability to a heat insulation multiple pipe.

本発明の実施例1(1)を示す横断面図である。It is a cross-sectional view showing Example 1 (1) of the present invention. 従来技術の例を示す横断面図である。It is a cross-sectional view which shows the example of a prior art. 本発明の実施例1(2)を示す横断面図である。It is a cross-sectional view showing Example 1 (2) of the present invention. 本発明の実施例1(3)を示す横断面図である。It is a cross-sectional view showing Example 1 (3) of the present invention. 本発明の実施例2乃至3の試験に用いた断熱二重管を示す縦断面図である。It is a longitudinal cross-sectional view which shows the heat insulation double tube | pipe used for the test of Example 2 thru | or 3 of this invention.

符号の説明Explanation of symbols

1 超電導ケーブル
2 内管
2a 内管(径80A)
3 スーパーインシュレーション
4 スペーサ(四角形状)
5 外管
5a 外管(径150A)
6 アルミニウムめっき層(金属コーティング層)
7 孔
8 スペーサ(三角形状)
9 表面粗さ調整面
10 クロメート皮膜(表面保護膜)
11 超高真空用蓋フランジ
12 超高真空用 ICF
1 Superconducting cable 2 Inner tube
2a Inner pipe (diameter 80A)
3 Super insulation 4 Spacer (square shape)
5 outer pipe
5a Outer tube (diameter 150A)
6 Aluminum plating layer (metal coating layer)
7 holes 8 spacers (triangular)
9 Surface roughness adjustment surface
10 Chromate film (surface protective film)
11 Ultra high vacuum lid flange
12 ICF for ultra-high vacuum

Claims (4)

多重管構造の内部に超電導ケーブルが収納され、隣接二重管間隙の少なくとも1つが真空断熱層とされた超電導送電用断熱多重配管において、前記隣接二重管間隙に低熱伝導性材料からなる多角形状の中心部に内管通し用の孔、他部に熱侵入抑制用の穴を設け、頂点の少なくとも一部を外管内面と点接触させる構成としたスペーサが配置されたこと、及び、配管素材に金属コーティングが形成されてなること、及び/又は、配管素材の1本以上が内面、外面の何れか一方又は両方の全面にRaで0.2μm以下の表面粗さを有してなることを特徴とする超電導送電用断熱多重配管。 Is innermost superconducting cable housed in the multi-tube structure, in at least one of heat-insulating multiple pipe superconducting power transmission, which is a vacuum insulation layer of the adjacent double pipe gap, consisting of low thermal conductivity material into the adjacent double pipe gap polygonal A spacer having a configuration in which a hole for passing through the inner pipe is provided in the center of the shape, a hole for suppressing heat intrusion in the other part, and at least a part of the apex is in point contact with the inner surface of the outer pipe, and piping A metal coating is formed on the material, and / or one or more of the piping materials have a surface roughness of Ra or less of 0.2 μm or less on one or both of the inner surface and the outer surface. Insulated multiple piping for superconducting power transmission. 前記金属コーティングは、アルミニウム、亜鉛、若しくはそれらを含んだ合金からなることを特徴とする請求項1記載の超電導送電用断熱多重配管。   2. The insulated multipipe for superconducting power transmission according to claim 1, wherein the metal coating is made of aluminum, zinc, or an alloy containing them. 前記金属コーティングは、片面当たりの付着量が10g/m2以上の膜であることを特徴とする請求項1又は2記載の超電導送電用断熱多重配管。 The heat insulating multiple pipe for superconducting power transmission according to claim 1 or 2 , wherein the metal coating is a film having an adhesion amount per side of 10 g / m 2 or more. 前記10g/m2以上の膜に代えて、50g/m2以上の膜とした請求項記載の超電導送電用断熱多重配管。 The heat insulating multiple pipe for superconducting power transmission according to claim 3, wherein a membrane of 50 g / m 2 or more is used instead of the membrane of 10 g / m 2 or more.
JP2005266365A 2005-09-14 2005-09-14 Insulated multiple piping for superconducting power transmission Active JP5092220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005266365A JP5092220B2 (en) 2005-09-14 2005-09-14 Insulated multiple piping for superconducting power transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005266365A JP5092220B2 (en) 2005-09-14 2005-09-14 Insulated multiple piping for superconducting power transmission

Publications (2)

Publication Number Publication Date
JP2007080649A JP2007080649A (en) 2007-03-29
JP5092220B2 true JP5092220B2 (en) 2012-12-05

Family

ID=37940727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005266365A Active JP5092220B2 (en) 2005-09-14 2005-09-14 Insulated multiple piping for superconducting power transmission

Country Status (1)

Country Link
JP (1) JP5092220B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007043946A1 (en) * 2007-09-14 2009-03-19 Bayerisches Zentrum für Angewandte Energieforschung e.V. Fiber composites and their use in vacuum insulation systems
ATE517423T1 (en) * 2009-03-25 2011-08-15 Nexans SUPERCONDUCTIVE ELECTRICAL CABLE
EP2458256A1 (en) * 2010-11-30 2012-05-30 Converteam Technology Ltd Insulation for a cryogenic component
KR101384704B1 (en) * 2012-10-15 2014-04-14 한국과학기술연구원 A double-tube spacer for vacuum covered cryogenic liquid transfer line
JP6662468B2 (en) * 2017-05-31 2020-03-11 Jfeスチール株式会社 Adiabatic multi-tube for superconducting power transmission and its laying method
CN110612577B (en) * 2017-05-31 2021-04-20 杰富意钢铁株式会社 Heat-insulating multiple tube for superconducting power transmission
KR102277804B1 (en) 2017-05-31 2021-07-15 제이에프이 스틸 가부시키가이샤 Thermal-insulated multi-walled pipe for superconducting power transmission
WO2019146271A1 (en) * 2018-01-23 2019-08-01 住友電気工業株式会社 Superconductive cable
JP6751826B1 (en) * 2020-04-09 2020-09-09 日鉄エンジニアリング株式会社 Construction method of heat-insulated multiple pipes for superconducting power transmission, heat-insulated multiple pipes for superconducting power transmission, and construction method of superconducting cables
JP7098037B1 (en) 2021-11-17 2022-07-08 日鉄エンジニアリング株式会社 Insulated multiple pipes for superconducting power transmission, heat insulating multiple pipe laying equipment for superconducting power transmission, construction method of heat insulating multiple pipes for superconducting power transmission, and construction method of superconducting cables
KR102581440B1 (en) * 2022-07-26 2023-09-22 김미경 Pipe spacer for insulation member
KR102609754B1 (en) * 2022-07-26 2023-12-07 김미경 Pipe spacer for insulation member

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0136000Y2 (en) * 1988-02-19 1989-11-01
JPH05280698A (en) * 1992-03-30 1993-10-26 Nippon Ferrofluidics Kk Cryosubstance keeping device
JPH07127789A (en) * 1993-11-04 1995-05-16 Nisshin Steel Co Ltd Vacuum insulation pipe

Also Published As

Publication number Publication date
JP2007080649A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP5092220B2 (en) Insulated multiple piping for superconducting power transmission
NO327887B1 (en) Flexible conduit
US20120091144A1 (en) Flexible cryostat
RU120183U1 (en) MULTILAYER PIPE
CA1260375A (en) Composite pipes and process for manufacturing the same
EP3633695B1 (en) Thermal-insulated multi-walled pipe for superconducting power transmission
EP3633694B1 (en) Thermal-insulated multiple pipe for superconducting power transmission and laying method therefor
US10866013B2 (en) Solar selective coating
JP6451917B1 (en) Insulated multiple tube for superconducting power transmission
KR100560189B1 (en) A structure and manufacturing device of superconducting cable
CN216715457U (en) Steel pipe with heat preservation effect
JP2002250481A (en) Heat-resistant resin pipe and its manufacturing method
CN115163982A (en) Novel spraying winding heat supply insulating pipe
CN116658704A (en) High-corrosion-resistance fire-fighting plastic composite pipeline and pipeline manufacturing method
JPH02238295A (en) Heat pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R150 Certificate of patent or registration of utility model

Ref document number: 5092220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250