JP5091712B2 - Governor-free control device and governor-free control method - Google Patents

Governor-free control device and governor-free control method Download PDF

Info

Publication number
JP5091712B2
JP5091712B2 JP2008038675A JP2008038675A JP5091712B2 JP 5091712 B2 JP5091712 B2 JP 5091712B2 JP 2008038675 A JP2008038675 A JP 2008038675A JP 2008038675 A JP2008038675 A JP 2008038675A JP 5091712 B2 JP5091712 B2 JP 5091712B2
Authority
JP
Japan
Prior art keywords
control
governor
steam
output
correction amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008038675A
Other languages
Japanese (ja)
Other versions
JP2009197637A (en
Inventor
博之 天野
俊雄 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2008038675A priority Critical patent/JP5091712B2/en
Publication of JP2009197637A publication Critical patent/JP2009197637A/en
Application granted granted Critical
Publication of JP5091712B2 publication Critical patent/JP5091712B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Description

この発明は、コンバインドサイクル発電プラントのガバナフリー制御を行うガバナフリー制御装置およびガバナフリー制御方法に関し、特に、ガスタービン制御と協調のとれたガバナフリー制御によって電力系統の周波数変動を抑制し、もって電力品質を向上することができるガバナフリー制御装置およびガバナフリー制御方法に関するものである。   TECHNICAL FIELD The present invention relates to a governor-free control device and a governor-free control method for performing governor-free control of a combined cycle power plant, and in particular, suppresses frequency fluctuations of an electric power system by governor-free control coordinated with gas turbine control, thereby The present invention relates to a governor-free control device and a governor-free control method capable of improving quality.

発電効率が高いことや建設工期が短いことなどから、新設火力発電プラントとしてコンバインドサイクル発電プラント(ガスタービン、排熱回収ボイラ、蒸気タービンを組み合わせた高効率な発電方式)の導入が増えている。   Due to the high power generation efficiency and the short construction period, the introduction of combined cycle power plants (highly efficient power generation systems combining gas turbines, exhaust heat recovery boilers, and steam turbines) is increasing as new thermal power plants.

通常、コンバインドサイクル発電プラントのガスタービンにはガバナフリー制御を持たせているが、燃焼の安定性やガスタービン寿命の消費などの面から、制御信号の変化率や変化幅を制限したり(特許文献1〜3参照)、ロードリミット運転とする(ガバナフリー運転をしない)場合が少なくない。また、ガバナフリー運転の場合でも、最大出力で運転する場合においては、排ガス温度を許容上限内に収めるよう一定出力で運転するため、実質的にロードリミット運転と同じとなる。   Normally, the gas turbine of a combined cycle power plant has governor-free control, but the rate of change and the range of change of the control signal are limited in terms of combustion stability and gas turbine life consumption (patents). There are many cases where the load limit operation is performed (the governor-free operation is not performed). Further, even in the case of governor-free operation, when operating at the maximum output, the operation is performed at a constant output so that the exhaust gas temperature falls within the allowable upper limit, and therefore, it is substantially the same as the load limit operation.

また、コンバインドサイクル発電プラントの蒸気タービンは、蒸気加減弁を全開としてガバナフリー制御を行わない(出力制御自体を行わない)のが一般的である。   In general, a steam turbine of a combined cycle power plant does not perform governor-free control (does not perform output control itself) by fully opening a steam control valve.

特開昭63−90606号公報JP-A 63-90606 特開平8−218897号公報Japanese Patent Laid-Open No. 8-2188897 特開2003−148170号公報JP 2003-148170 A

このため、今後コンバインドサイクル発電プラントの導入がさらに増加すると、従来と比較してガバナフリー量が減少し、電力系統の周波数変動が増大する方向となる。   For this reason, if the introduction of combined cycle power plants further increases in the future, the governor-free amount will decrease as compared with the conventional case, and the frequency fluctuation of the power system will increase.

これを抑制する方法として、蒸気タービンの蒸気加減弁を制御することによりガバナフリー制御を実施する方法があるが(特開昭57−83821)、単純に蒸気タービンの蒸気加減弁を回転数偏差に応じて開閉した場合には、ガスタービン制御とうまく協調がとれず不具合が生じるという問題がある。   As a method of suppressing this, there is a method of performing governor-free control by controlling the steam control valve of the steam turbine (Japanese Patent Laid-Open No. 57-83821), but simply setting the steam control valve of the steam turbine to a rotational speed deviation. If it opens and closes accordingly, there is a problem that the gas turbine control cannot be well coordinated and a malfunction occurs.

すなわち、通常コンバインドサイクル発電プラントの出力制御は、ガスタービンのみで行われ、コンバインドサイクル発電プラント全体の出力が出力目標値と一致するようにガスタービン出力が調整される。このとき従来の制御のままであると、コンバインドサイクル発電プラント全体の出力と出力目標値が一致するように、ガバナフリー制御によって変化した蒸気タービン出力の変化分を打ち消すようにガスタービン出力が調整され、結果としてコンバインドサイクル発電プラント全体の出力にガバナフリーの効果が現れないという問題がある。   That is, the output control of the combined cycle power plant is normally performed only by the gas turbine, and the gas turbine output is adjusted so that the output of the entire combined cycle power plant matches the output target value. At this time, if the conventional control is maintained, the gas turbine output is adjusted so as to cancel the change in the steam turbine output changed by the governor-free control so that the output of the entire combined cycle power plant matches the output target value. As a result, there is a problem that the governor-free effect does not appear in the output of the combined cycle power plant as a whole.

この発明は、上述した従来技術による問題点を解消するためになされたものであり、ガスタービン制御と協調のとれたガバナフリー制御によって電力系統の周波数変動を抑制し、もって電力品質を向上することができるガバナフリー制御装置およびガバナフリー制御方法を提供することを目的とする。   The present invention has been made to solve the above-described problems caused by the prior art, and suppresses frequency fluctuations in the power system by governor-free control coordinated with gas turbine control, thereby improving power quality. An object of the present invention is to provide a governor-free control device and a governor-free control method.

上述した課題を解決し、目的を達成するため、請求項1に係る発明は、コンバインドサイクル発電プラントのガバナフリー制御を行うガバナフリー制御装置であって、蒸気タービンの蒸気加減弁の開閉を発電機の回転数偏差に基づいて制御する蒸気加減弁開閉制御手段と、前記蒸気加減弁開閉制御手段による制御に起因して生じる蒸気タービン出力の変動分を補正量として算出する補正量算出手段と、前記補正量算出手段により算出された補正量をコンバインドサイクル発電プラントの出力目標値に加算した値に基づいて負荷速度制御指令を算出する負荷速度制御指令算出手段とを備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, the invention according to claim 1 is a governor-free control device that performs governor-free control of a combined cycle power plant, and is configured to open and close a steam control valve of a steam turbine. A steam control valve opening / closing control means for controlling based on the rotation speed deviation, a correction amount calculating means for calculating a fluctuation amount of the steam turbine output caused by the control by the steam control valve opening / closing control means as a correction amount, Load speed control command calculation means for calculating a load speed control command based on a value obtained by adding the correction amount calculated by the correction amount calculation means to the output target value of the combined cycle power plant is provided.

この請求項1の発明によれば、蒸気タービンの蒸気加減弁の開閉を発電機の回転数偏差に基づいて制御し、この制御に起因して生じる蒸気タービン出力の変動分を補正量として算出し、算出した補正量をコンバインドサイクル発電プラントの出力目標値に加算した値に基づいて負荷速度制御指令を算出するよう構成したので、ガスタービン制御と協調のとれたガバナフリー制御によって電力系統の周波数変動を抑制することができる。   According to the first aspect of the present invention, the opening / closing of the steam control valve of the steam turbine is controlled based on the rotational speed deviation of the generator, and the fluctuation of the steam turbine output caused by this control is calculated as a correction amount. Since the load speed control command is calculated based on the value obtained by adding the calculated correction amount to the output target value of the combined cycle power plant, the frequency fluctuation of the power system is controlled by the governor-free control coordinated with the gas turbine control. Can be suppressed.

また、請求項2に係る発明は、上記の発明において、前記補正量算出手段は、蒸気加減弁の変動に、コンバインドサイクル発電プラントの出力から推定した蒸気タービン出力推定値を乗じた値に蒸気タービンの出力応動特性を適用して補正量を算出することを特徴とする。   According to a second aspect of the present invention, in the above invention, the correction amount calculation means is configured to multiply a steam turbine control valve by a steam turbine output estimated value estimated from the output of the combined cycle power plant to the steam control valve fluctuation. The correction amount is calculated by applying the output response characteristic.

この請求項2の発明によれば、蒸気加減弁の変動に、コンバインドサイクル発電プラントの出力から推定した蒸気タービン出力推定値を乗じた値に蒸気タービンの出力応動特性を適用して補正量を算出するよう構成したので、ガバナフリー制御による蒸気タービン出力の変動量を適切に算出することができる。   According to the invention of claim 2, the correction amount is calculated by applying the output response characteristic of the steam turbine to the value obtained by multiplying the fluctuation of the steam control valve by the estimated value of the steam turbine output estimated from the output of the combined cycle power plant. Since it comprised so, the fluctuation | variation amount of the steam turbine output by governor free control can be calculated appropriately.

また、請求項3に係る発明は、上記発明において、前記蒸気加減弁開閉制御手段は、不感帯、変化率制限、変化幅上限の少なくとも一つを設けて蒸気タービンの蒸気加減弁の開閉を制御することを特徴とする。   According to a third aspect of the present invention, in the above invention, the steam control valve opening / closing control means provides at least one of a dead zone, a change rate limit, and a change width upper limit to control the opening / closing of the steam control valve of the steam turbine. It is characterized by that.

この請求項3の発明によれば、不感帯、変化率制限、変化幅上限の少なくとも一つを設けて蒸気タービンの蒸気加減弁の開閉を制御するよう構成したので、ガバナフリー制御が過度に動作することを防ぐことができる。   According to the third aspect of the present invention, since at least one of the dead zone, the change rate limit, and the change width upper limit is provided to control the opening / closing of the steam control valve of the steam turbine, the governor-free control operates excessively. Can be prevented.

また、請求項4に係る発明は、コンバインドサイクル発電プラントのガバナフリー制御を行うガバナフリー制御方法であって、蒸気タービンの蒸気加減弁の開閉を発電機の回転数偏差に基づいて制御する蒸気加減弁開閉制御ステップと、前記蒸気加減弁開閉制御ステップによる制御に起因して生じる蒸気タービン出力の変動分を補正量として算出する補正量算出ステップと、前記補正量算出ステップにより算出された補正量をコンバインドサイクル発電プラントの出力目標値に加算した値に基づいて負荷速度制御指令を算出する負荷速度制御指令算出ステップとを含んだことを特徴とする。   According to a fourth aspect of the present invention, there is provided a governor-free control method for performing governor-free control of a combined cycle power plant, wherein the steam control valve controls the opening and closing of the steam control valve of the steam turbine based on the rotational speed deviation of the generator. A valve opening / closing control step, a correction amount calculating step for calculating a fluctuation amount of the steam turbine output caused by the control by the steam control valve opening / closing control step as a correction amount, and a correction amount calculated by the correction amount calculating step. And a load speed control command calculation step for calculating a load speed control command based on a value added to the output target value of the combined cycle power plant.

この請求項4の発明によれば、蒸気タービンの蒸気加減弁の開閉を発電機の回転数偏差に基づいて制御し、この制御に起因して生じる蒸気タービン出力の変動分を補正量として算出し、算出した補正量をコンバインドサイクル発電プラントの出力目標値に加算した値に基づいて負荷速度制御指令を算出するよう構成したので、ガスタービン制御と協調のとれたガバナフリー制御によって電力系統の周波数変動を抑制することができる。   According to the fourth aspect of the present invention, the opening and closing of the steam control valve of the steam turbine is controlled based on the rotational speed deviation of the generator, and the fluctuation of the steam turbine output caused by this control is calculated as a correction amount. Since the load speed control command is calculated based on the value obtained by adding the calculated correction amount to the output target value of the combined cycle power plant, the frequency fluctuation of the power system is controlled by the governor-free control coordinated with the gas turbine control. Can be suppressed.

本発明によれば、電力系統の周波数変動を抑制するので、電力品質を向上することができるという効果を奏する。また、電力系統の周波数変動が抑制される分、コンバインドサイクル発電プラントのガスタービン出力の変動が抑制され、ガスタービンの寿命を延伸することができるという効果を奏する。また、電力系統の周波数変動が抑制される分、他の火力発電プラントの負担も減り、他の火力発電プラントの寿命を延伸することができるという効果を奏する。   According to the present invention, since the frequency fluctuation of the power system is suppressed, there is an effect that the power quality can be improved. Moreover, since the fluctuation of the frequency of the power system is suppressed, the fluctuation of the gas turbine output of the combined cycle power plant is suppressed, and the life of the gas turbine can be extended. Moreover, since the frequency fluctuation of the power system is suppressed, the burden on the other thermal power plant is reduced, and the life of the other thermal power plant can be extended.

以下に添付図面を参照して、この発明に係るガバナフリー制御装置およびガバナフリー制御方法の好適な実施例を詳細に説明する。   Exemplary embodiments of a governor-free control device and a governor-free control method according to the present invention will be described below in detail with reference to the accompanying drawings.

まず、本実施例に係るガバナフリー制御装置の構成について説明する。図1は、本実施例に係るガバナフリー制御装置の構成を示す図である。このガバナフリー制御装置は、蒸気タービンの蒸気加減弁を発電機の回転数偏差に比例して開閉する。   First, the configuration of the governor-free control device according to this embodiment will be described. FIG. 1 is a diagram illustrating a configuration of a governor-free control device according to the present embodiment. This governor-free control device opens and closes the steam control valve of the steam turbine in proportion to the rotational speed deviation of the generator.

すなわち、図1に示すように、このガバナフリー制御装置は、蒸気加減弁変動算出部72により回転数偏差10および調定率Rに基づいて算出される蒸気加減弁変動14の符号を反転した変動量と、加減弁開度基準値15とを加算器45により加えて蒸気タービン加減弁開度指令16とする。ここで、調定率Rは回転数偏差に対してどの程度加減弁開度を変化させるかを定める定数である。また、蒸気タービンへの熱応力を考慮し、蒸気タービン加減弁開度指令16に対して不感帯や変化率制限、変化幅の上限を設けることもできる。   That is, as shown in FIG. 1, the governor-free control device includes a fluctuation amount obtained by inverting the sign of the steam control valve fluctuation 14 calculated based on the rotation speed deviation 10 and the regulation rate R by the steam control valve fluctuation calculation unit 72. Then, the control valve opening reference value 15 is added by an adder 45 to obtain a steam turbine control valve opening command 16. Here, the regulation rate R is a constant that determines how much the valve opening degree is changed with respect to the rotational speed deviation. In consideration of the thermal stress on the steam turbine, a dead zone, a change rate limit, and an upper limit of the change width can be provided for the steam turbine control valve opening degree command 16.

そして、このガバナフリー制御装置は、蒸気タービン出力がガバナフリー制御によって変化すると予想される変動分(ガバナフリー変動分)を見積り、ガスタービン制御側の出力目標値に加算するような補正を行う。   The governor-free control apparatus estimates a fluctuation (governor-free fluctuation) that the steam turbine output is expected to change by the governor-free control, and performs correction so as to add it to the output target value on the gas turbine control side.

すなわち、図1に示すように、このガバナフリー制御装置は、加算器42により出力目標値4に蒸気タービン出力のガバナフリー変動分5を補正量として加算した値を補正後の出力目標値6とする。この補正後の出力目標値6にコンバインドサイクル発電プラント全体の電気的出力7の符号を反転した値を加算器43により加えた値がPI制御部50への入力信号8となる。   That is, as shown in FIG. 1, the governor-free control device uses the adder 42 to add the output target value 4 to the output target value 6 as a corrected output target value 6 by adding the governor-free fluctuation 5 of the steam turbine output as a correction amount. To do. A value obtained by adding the value obtained by inverting the sign of the electrical output 7 of the entire combined cycle power plant to the output target value 6 after correction by the adder 43 becomes the input signal 8 to the PI control unit 50.

そして、このガバナフリー制御装置は、PI制御部50が出力する操作量9に、変動量算出部71により回転数偏差10および調定率Rに基づいて算出される変動量11の符号を反転した変動量を加算器44により加えて負荷速度制御指令12を生成する。生成された負荷速度制御指令12は、ロードリミット信号、排ガス温度制御信号等の他の燃料制御指令とともに低値選択部60に入力され、低値選択部60は入力値の中で最も低い値をガスタービン燃料制御指令13として選択する。   In this governor-free control device, the fluctuation amount obtained by inverting the sign of the fluctuation amount 11 calculated by the fluctuation amount calculation unit 71 based on the rotational speed deviation 10 and the settling rate R is added to the operation amount 9 output from the PI control unit 50. The amount is added by the adder 44 to generate the load speed control command 12. The generated load speed control command 12 is input to the low value selection unit 60 together with other fuel control commands such as a load limit signal and an exhaust gas temperature control signal, and the low value selection unit 60 sets the lowest value among the input values. The gas turbine fuel control command 13 is selected.

なお、出力目標値4は、中給(中央給電指令所)からの指令値1に電力系統の周波数偏差2に応じた補正量3を加算器41により加えた値である。電力系統の周波数偏差2に応じた補正量3は電力系統の周波数偏差2に関数F(x)30を適用して生成される。また、蒸気タービン出力のガバナフリー変動分5、すなわち出力目標の補正量は補正量算出部100によって算出される。   The output target value 4 is a value obtained by adding a correction amount 3 corresponding to the frequency deviation 2 of the power system by the adder 41 to the command value 1 from the middle supply (central power supply command station). The correction amount 3 corresponding to the frequency deviation 2 of the power system is generated by applying the function F (x) 30 to the frequency deviation 2 of the power system. Further, the governor-free fluctuation amount 5 of the steam turbine output, that is, the output target correction amount is calculated by the correction amount calculation unit 100.

このように、出力目標値4に蒸気タービン出力のガバナフリー変動分5を補正量として加算した値を補正後の出力目標値6としてPI制御を行うことによって、ガスタービン制御では蒸気タービンによるガバナフリー制御と干渉することがなく、ガスタービン制御と協調のとれたガバナフリー制御を実現することができる。   In this way, by performing PI control using the value obtained by adding the governor-free fluctuation portion 5 of the steam turbine output as the correction amount to the output target value 4 as the corrected output target value 6, the gas turbine control allows the governor-free by the steam turbine. A governor-free control coordinated with the gas turbine control can be realized without interfering with the control.

次に、補正量算出部100について説明する。図2は、補正量算出部100の構成を示す図である。この補正量算出部100は、ガバナフリーによる蒸気加減弁の変動に、コンバインドサイクル発電プラント全体の電気的出力7から推定した蒸気タービン出力推定値を乗じ(蒸気圧力は蒸気タービン出力にほぼ比例するため、ガバナフリーによる出力変動も蒸気タービン出力にほぼ比例する)、蒸気タービンの出力応動特性(本例では進み遅れで表現)を考慮して出力目標値の補正量5を算出する。   Next, the correction amount calculation unit 100 will be described. FIG. 2 is a diagram illustrating a configuration of the correction amount calculation unit 100. This correction amount calculation unit 100 multiplies the fluctuation of the steam control valve by the governor-free by the steam turbine output estimated value estimated from the electrical output 7 of the entire combined cycle power plant (because the steam pressure is substantially proportional to the steam turbine output). The output fluctuation due to the governor-free is also substantially proportional to the steam turbine output), and the output target value correction amount 5 is calculated in consideration of the output response characteristic of the steam turbine (expressed in this example by the advance and delay).

すなわち、図2に示すように、補正量算出部100は、蒸気加減弁変動算出部91により回転数偏差10および調定率Rに基づいて算出される蒸気加減弁変動の符号を反転した変動量81と、コンバインドサイクル発電プラント全体の電気的出力7に関数F(x)92を適用して推定した蒸気タービン出力推定値82とを乗算器93により乗じた蒸気タービン出力変動推定値83に蒸気タービンの出力応動特性94を適用して出力目標値の補正量5を算出する。   That is, as shown in FIG. 2, the correction amount calculation unit 100 has a fluctuation amount 81 obtained by inverting the sign of the steam control valve fluctuation calculated by the steam control valve fluctuation calculation section 91 based on the rotation speed deviation 10 and the regulation rate R. The steam turbine output fluctuation estimated value 83 obtained by multiplying the steam turbine output estimated value 82 estimated by applying the function F (x) 92 to the electrical output 7 of the combined cycle power plant as a whole by the multiplier 93 is The output response characteristic 94 is applied to calculate the output target value correction amount 5.

このように、ガバナフリーによる蒸気加減弁の変動に、コンバインドサイクル発電プラント全体の電気的出力7から推定した蒸気タービン出力推定値を乗じ、蒸気タービンの出力応動特性を考慮することによって、出力目標値の補正量5を適切に算出することができる。   Thus, by multiplying the fluctuation of the steam control valve due to the governor-free by the steam turbine output estimated value estimated from the electrical output 7 of the combined cycle power plant as a whole, the output response characteristic of the steam turbine is taken into consideration, thereby obtaining the output target value. The correction amount 5 can be appropriately calculated.

次に、本実施例に係るガバナフリー制御のシミュレーション結果について説明する。シミュレーションは、コンバインドサイクル発電プラントと従来の火力発電プラントが同程度の容量設置されているような電力系統を対象として行った。   Next, the simulation result of the governor free control according to the present embodiment will be described. The simulation was conducted for an electric power system in which a combined cycle power plant and a conventional thermal power plant have the same capacity.

なお、コンバインドサイクル発電プラント、従来の火力発電プラントのモデルは、次の文献を参考に作成した。
・Kakimoto, N.; Baba,“Performance of gas turbine-based plants during frequency drops”, Power Systems, IEEE Transactions on Volume18, Issue 3, Aug. 2003 Page(s):1110-1115
・CIGRE Technical Brochure “Modeling of gas turbines and steam turbines in combined-cycle power plants”, 2003
・天野博之 川口直樹 井上俊雄,”負荷周波数制御シミュレーション用火力プラントモデルの開発”,電力中央研究所 研究報告T03044(平成16年4月)
In addition, the model of the combined cycle power plant and the conventional thermal power plant was created with reference to the following documents.
・ Kakimoto, N .; Baba, “Performance of gas turbine-based plants during frequency drops”, Power Systems, IEEE Transactions on Volume18, Issue 3, Aug. 2003 Page (s): 1110-1115
・ CIGRE Technical Brochure “Modeling of gas turbines and steam turbines in combined-cycle power plants”, 2003
・ Hiroyuki Amano Naoki Kawaguchi Toshio Inoue, “Development of thermal power plant model for load frequency control simulation”, Research report T03044 (April 2004)

また、ガスタービンは、ロードリミット運転の場合を想定した。図3に示すように需要が変化した場合の電力系統の周波数や発電プラントの動きをシミュレーションした結果を図4に示す。本実施例に係るガバナフリー制御のシミュレーションの結果(図4の右)に加えて、比較として、蒸気タービンにおいてガバナフリー制御を行わなかった場合(図4の左)と、蒸気タービンにおいてガバナフリー制御を行うがガスタービン制御における出力目標値の補正を行わなかった場合(図4の真中)の結果も示す。   The gas turbine is assumed to be in a load limit operation. FIG. 4 shows the result of simulating the frequency of the power system and the movement of the power plant when the demand changes as shown in FIG. In addition to the simulation result of the governor-free control according to the present embodiment (right in FIG. 4), as a comparison, when the governor-free control is not performed in the steam turbine (left in FIG. 4), the governor-free control is performed in the steam turbine. The results when the output target value in the gas turbine control is not corrected (middle of FIG. 4) are also shown.

シミュレーション結果としては、周波数変動(上段)、コンバインドサイクル発電プラント(CCGT)と火力発電プラントの発電機出力(中段)、ガスタービン出力(GT出力)と蒸気タービン出力(ST出力)(下段)を示す。   As simulation results, frequency fluctuation (upper stage), combined cycle power plant (CCGT) and thermal power plant generator output (middle stage), gas turbine output (GT output) and steam turbine output (ST output) (lower stage) are shown. .

また、図5に、周波数、コンバインドサイクル発電プラント出力(CCGT出力)、ガスタービン出力(GT出力)、蒸気タービン出力(ST出力)、他の火力機(火力発電プラント)の出力の各変化分の標準偏差を示す。図5で、GFなしはガバナフリー制御を行わない場合を示し、GFありはガバナフリー制御を行う場合を示す。   FIG. 5 shows changes in frequency, combined cycle power plant output (CCGT output), gas turbine output (GT output), steam turbine output (ST output), and other thermal power plant (thermal power plant) outputs. Standard deviation is shown. In FIG. 5, “without GF” indicates a case where governor-free control is not performed, and “with GF” indicates a case where governor-free control is performed.

図4および5から、本実施例に係るガバナフリー制御の適用により周波数変動が抑制されており、火力発電プラントの出力の変動も抑制されていることが分かる。なお、ガスタービン制御における出力目標値の補正を行わなかった場合は、周波数変動の抑制効果はあまりないことが確認できる。これは、ガスタービン制御における出力目標値の補正を行わないと、ガスタービン制御において蒸気タービンがガバナフリー制御によって変動した分をガスタービンが打ち消すように変動してしまい、結局コンバインドサイクル発電プラントの出力はあまり変動しないためである。また、このとき、ガスタービンは蒸気タービンのガバナフリーなしの場合に比べて変動が増加してしまっているが、これは周波数変動の抑制に寄与しないものである。   4 and 5, it is understood that the frequency fluctuation is suppressed by the application of the governor-free control according to the present embodiment, and the fluctuation of the output of the thermal power plant is also suppressed. In addition, when correction | amendment of the output target value in gas turbine control is not performed, it can confirm that there is not much suppression effect of a frequency fluctuation. This is because if the output target value in gas turbine control is not corrected, the gas turbine will fluctuate so that the steam turbine will fluctuate due to the governor-free control, and the output of the combined cycle power plant will end up. This is because there is not much fluctuation. Further, at this time, although the fluctuation of the gas turbine is increased as compared with the case where the steam turbine is not governor-free, this does not contribute to the suppression of the frequency fluctuation.

一方、本実施例に係るガバナフリー制御では、蒸気タービンが変動するであろう分を予測し、ガスタービン制御における出力目標値を補正しており、ガスタービンの出力はほぼ一定となり、蒸気タービン出力の変動がコンバインドサイクル発電プラント出力の変動に反映され周波数変動の抑制に寄与していることが分かる。   On the other hand, in the governor-free control according to the present embodiment, the amount that the steam turbine will fluctuate is predicted, the output target value in the gas turbine control is corrected, the output of the gas turbine becomes substantially constant, and the output of the steam turbine It can be seen that this fluctuation is reflected in the fluctuation of the combined cycle power plant output and contributes to the suppression of the frequency fluctuation.

このように、蒸気タービンにおいてガバナフリー制御を行う場合には、ガスタービン制御と協調した制御を行わないと周波数変動の抑制に効果がなく、また、ガスタービン出力の余計な変動を発生させてしまうことが分かる。   As described above, when governor-free control is performed in a steam turbine, if control in cooperation with gas turbine control is not performed, there is no effect in suppressing frequency fluctuations, and extra fluctuations in gas turbine output are generated. I understand that.

上述してきたように、本実施例では、蒸気タービンにおいてガバナフリー制御を行うとともに、出力目標値4に蒸気タービン出力のガバナフリー変動分5を補正量として加算した値を補正後の出力目標値6としてPI制御を行うこととしたので、電力系統の周波数変動を抑制し、電力品質を向上することができる。   As described above, in this embodiment, the governor-free control is performed in the steam turbine, and the output target value 6 after correction is obtained by adding the value obtained by adding the governor-free fluctuation amount 5 of the steam turbine output to the output target value 4 as the correction amount. Since the PI control is performed, it is possible to suppress the frequency fluctuation of the power system and improve the power quality.

また、電力系統の周波数変動が抑制される分、コンバインドサイクル発電プラントのガスタービン出力の変動が抑制され、ガスタービンの寿命を延伸することができる。また、電力系統の周波数変動が抑制される分、他の火力発電プラントの負担も減り、他の火力発電プラントの寿命を延伸することができる。   Moreover, the fluctuation | variation of the gas turbine output of a combined cycle power plant is suppressed by the part by which the frequency fluctuation | variation of an electric power system is suppressed, and the lifetime of a gas turbine can be extended. Moreover, since the frequency fluctuation of the power system is suppressed, the burden on other thermal power plants can be reduced, and the life of other thermal power plants can be extended.

以上のように、本発明は電力系統の周波数変動抑制、また、コンバインドサイクル発電プラントのガスタービン・他の火力発電プラントの負担軽減に有効であり、特にコンバインドサイクル発電プラントの導入率が高く、周波数が変動し易い電力系統に適している。   As described above, the present invention is effective for suppressing frequency fluctuations in the power system, and for reducing the burden on the gas turbine of the combined cycle power plant and other thermal power plants, in particular, the introduction rate of the combined cycle power plant is high, and the frequency This is suitable for power systems that tend to fluctuate.

本実施例に係るガバナフリー制御装置の構成を示す図である。It is a figure which shows the structure of the governor free control apparatus which concerns on a present Example. 補正量算出部の構成を示す図である。It is a figure which shows the structure of a correction amount calculation part. シミュレーションにおいて想定した需要の変動を示す図である。It is a figure which shows the fluctuation | variation of the demand assumed in simulation. シミュレーション結果を示す図である。It is a figure which shows a simulation result. 周波数変動、発電プラントの出力変動の標準偏差を示す図である。It is a figure which shows the standard deviation of a frequency fluctuation and the output fluctuation of a power plant.

符号の説明Explanation of symbols

1 中給からの指令値
2 電力系統の周波数偏差
3 周波数偏差に応じた補正量
4 出力目標値
5 蒸気タービン出力のガバナフリー変動分(出力目標値の補正量)
6 補正後の出力目標値
7 コンバインドサイクル発電プラント全体の電気的出力
8 PI制御部への入力信号
9 操作量
10 回転数偏差
11 回転数偏差および調定率に基づく変動量
12 負荷速度制御指令
13 ガスタービン燃料制御指令
14 蒸気加減弁変動
15 加減弁開度基準値
16 蒸気タービン加減弁開度指令
30 周波数偏差に応じた補正量を算出する関数F(x)
41,42,43,44,45 加算器
50 PI制御部
60 低値選択部
71 変動量算出部
72,91 蒸気加減弁変動算出部
81 蒸気加減弁変動の符号を反転した変動量
82 蒸気タービン出力推定値
83 蒸気タービン出力変動推定値
92 蒸気タービン出力を推定する関数F(x)
93 乗算器
94 蒸気タービンの出力応動特性
100 補正量算出部
1 Command value from middle supply 2 Frequency deviation of power system 3 Correction amount according to frequency deviation 4 Output target value 5 Steam turbine output governor-free fluctuation (correction amount of output target value)
6 Output target value after correction 7 Electrical output of combined cycle power plant as a whole 8 Input signal to PI control unit 9 Amount of operation 10 Speed deviation 11 Amount of fluctuation based on speed deviation and settling rate 12 Load speed control command 13 Gas Turbine fuel control command 14 Steam control valve fluctuation 15 Control valve opening reference value 16 Steam turbine control valve opening command 30 Function F (x) for calculating a correction amount according to the frequency deviation
41, 42, 43, 44, 45 Adder 50 PI control unit 60 Low value selection unit 71 Fluctuation amount calculation unit 72, 91 Steam control valve variation calculation unit 81 Fluctuation amount obtained by inverting the sign of the steam control valve variation 82 Steam turbine output Estimated value 83 Steam turbine output fluctuation estimated value 92 Function F (x) for estimating steam turbine output
93 Multiplier 94 Output Response Characteristics 100 of Steam Turbine Correction Value Calculation Unit

Claims (4)

コンバインドサイクル発電プラントのガバナフリー制御を行うガバナフリー制御装置であって、
蒸気タービンの蒸気加減弁の開閉を発電機の回転数偏差に基づいて制御する蒸気加減弁開閉制御手段と、
前記蒸気加減弁開閉制御手段による制御に起因して生じる蒸気タービン出力の変動分を補正量として算出する補正量算出手段と、
前記補正量算出手段により算出された補正量をコンバインドサイクル発電プラントの出力目標値に加算した値に基づいて負荷速度制御指令を算出する負荷速度制御指令算出手段と
を備えたことを特徴とするガバナフリー制御装置。
A governor-free control device that performs governor-free control of a combined cycle power plant,
Steam control valve opening / closing control means for controlling the opening / closing of the steam control valve of the steam turbine based on the rotational speed deviation of the generator;
A correction amount calculating means for calculating a fluctuation amount of the steam turbine output caused by the control by the steam control valve opening / closing control means as a correction amount;
A load speed control command calculating means for calculating a load speed control command based on a value obtained by adding the correction amount calculated by the correction amount calculating means to an output target value of the combined cycle power plant. Free control device.
前記補正量算出手段は、蒸気加減弁の変動に、コンバインドサイクル発電プラントの出力から推定した蒸気タービン出力推定値を乗じた値に蒸気タービンの出力応動特性を適用して補正量を算出することを特徴とする請求項1に記載のガバナフリー制御装置。   The correction amount calculating means calculates the correction amount by applying the output response characteristic of the steam turbine to a value obtained by multiplying the fluctuation of the steam control valve by the steam turbine output estimated value estimated from the output of the combined cycle power plant. The governor-free control device according to claim 1, wherein 前記蒸気加減弁開閉制御手段は、不感帯、変化率制限、変化幅上限の少なくとも一つを設けて蒸気タービンの蒸気加減弁の開閉を制御することを特徴とする請求項1または2に記載のガバナフリー制御装置。   The governor according to claim 1 or 2, wherein the steam control valve opening / closing control means controls at least one of a dead zone, a change rate limit, and a change width upper limit to control the steam control valve of the steam turbine. Free control device. コンバインドサイクル発電プラントのガバナフリー制御を行うガバナフリー制御方法であって、
蒸気タービンの蒸気加減弁の開閉を発電機の回転数偏差に基づいて制御する蒸気加減弁開閉制御ステップと、
前記蒸気加減弁開閉制御ステップによる制御に起因して生じる蒸気タービン出力の変動分を補正量として算出する補正量算出ステップと、
前記補正量算出ステップにより算出された補正量をコンバインドサイクル発電プラントの出力目標値に加算した値に基づいて負荷速度制御指令を算出する負荷速度制御指令算出ステップと
を含んだことを特徴とするガバナフリー制御方法。
A governor-free control method for performing governor-free control of a combined cycle power plant,
A steam control valve opening / closing control step for controlling the opening / closing of the steam control valve of the steam turbine based on the rotational speed deviation of the generator;
A correction amount calculating step for calculating, as a correction amount, a variation in steam turbine output caused by the control by the steam control valve opening / closing control step;
A load speed control command calculating step for calculating a load speed control command based on a value obtained by adding the correction amount calculated in the correction amount calculating step to an output target value of the combined cycle power plant. Free control method.
JP2008038675A 2008-02-20 2008-02-20 Governor-free control device and governor-free control method Expired - Fee Related JP5091712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008038675A JP5091712B2 (en) 2008-02-20 2008-02-20 Governor-free control device and governor-free control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008038675A JP5091712B2 (en) 2008-02-20 2008-02-20 Governor-free control device and governor-free control method

Publications (2)

Publication Number Publication Date
JP2009197637A JP2009197637A (en) 2009-09-03
JP5091712B2 true JP5091712B2 (en) 2012-12-05

Family

ID=41141424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008038675A Expired - Fee Related JP5091712B2 (en) 2008-02-20 2008-02-20 Governor-free control device and governor-free control method

Country Status (1)

Country Link
JP (1) JP5091712B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5534357B2 (en) * 2011-05-31 2014-06-25 株式会社日立製作所 Turbine controller
JP6212281B2 (en) * 2013-05-22 2017-10-11 株式会社日立製作所 Turbine control device and turbine control method
JP7328155B2 (en) * 2020-01-17 2023-08-16 三菱重工業株式会社 Steam turbine controller and steam turbine generator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674723B2 (en) * 1985-10-16 1994-09-21 株式会社東芝 Power plant control equipment
JPS6390606A (en) * 1986-10-03 1988-04-21 Hitachi Ltd Governor free control device for combined plant
JP2749123B2 (en) * 1989-06-02 1998-05-13 中国電力株式会社 Power plant control method and device
JP2839668B2 (en) * 1990-08-09 1998-12-16 株式会社東芝 Output control device of cogeneration plant
JP3792853B2 (en) * 1997-09-08 2006-07-05 株式会社東芝 Combined cycle control device and gas turbine control device

Also Published As

Publication number Publication date
JP2009197637A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
CN101446807B (en) Realization method for heat-engine plant speed regulating system model in power system simulation
CA2914954C (en) Model-based combined cycle power plant load control
JP5177382B2 (en) Power system frequency controller using natural energy power generation equipment
JP2015017606A (en) Systems and methods for control of gas turbine
CN108054766A (en) A kind of setting method, system and the device of Automatic Generation Control frequency bias coefficient
EP2647811B1 (en) Gas turbine control device and power generation system
Haji et al. Adaptive model predictive control design for the speed and temperature control of a V94. 2 gas turbine unit in a combined cycle power plant
US9882453B2 (en) Method for providing a frequency response for a combined cycle power plant
JP5091712B2 (en) Governor-free control device and governor-free control method
Beus et al. Practical implementation of a hydro power unit active power regulation based on an MPC algorithm
JP2014047728A (en) Control device of gas turbine, gas turbine, and method of controlling gas turbine
Martínez–Lucas et al. Combined hydro-wind frequency control scheme: Modal analysis and isolated power system case example
EP3366893B1 (en) System and method for predicting and enhancing power plant startup time
Hashmi et al. Dynamic performance and control strategies of micro gas turbines: State-of-the-art review, methods, and technologies
JP3479672B2 (en) Gas turbine control method and control device
Krpan et al. The mathematical model of a wind power plant and a gas power plant
WO2014001864A1 (en) A method for optimization of control and fault analysis in a thermal power plant
Palmieri et al. An innovative sliding mode load controller for gas turbine power generators: Design and experimental validation via real-time simulation
JP5595221B2 (en) Gas turbine control device, gas turbine, and gas turbine control method
Zaccaria et al. Adaptive control of micro gas turbine for engine degradation compensation
Zhang et al. Study on multi-loop control strategy of three-shaft gas turbine for electricity generation
KR101595619B1 (en) Turbine control device, turbine control method, and recording medium storing turbine control program
Haji et al. H∞ robust control design for a combined cycle power plant
JP2017160811A (en) Fuel control system, combustor, gas turbine, fuel control method and program
CN111752203A (en) Variable-load air classification dynamic control system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5091712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees