JP5091059B2 - Self-assembled nanotubes with fullerenes on the inner and outer wall surfaces and tuned photoconductive properties - Google Patents

Self-assembled nanotubes with fullerenes on the inner and outer wall surfaces and tuned photoconductive properties Download PDF

Info

Publication number
JP5091059B2
JP5091059B2 JP2008222836A JP2008222836A JP5091059B2 JP 5091059 B2 JP5091059 B2 JP 5091059B2 JP 2008222836 A JP2008222836 A JP 2008222836A JP 2008222836 A JP2008222836 A JP 2008222836A JP 5091059 B2 JP5091059 B2 JP 5091059B2
Authority
JP
Japan
Prior art keywords
self
group
compound
och
fullerene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008222836A
Other languages
Japanese (ja)
Other versions
JP2010053109A (en
Inventor
洋平 山本
武松 金
孝典 福島
卓三 相田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2008222836A priority Critical patent/JP5091059B2/en
Publication of JP2010053109A publication Critical patent/JP2010053109A/en
Application granted granted Critical
Publication of JP5091059B2 publication Critical patent/JP5091059B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Description

本発明は、金属を内包していてもよいフラーレンを有する基を分子中に有するヘキサペリヘキサベンゾコロネン誘導体及び金属を内包していてもよいフラーレンを有する基を有していないヘキサペリヘキサベンゾコロネン誘導体を含有してなる自己組織化ナノサイズ構造体並びに前記ナノサイズ構造体を用いた光検出素子、光スイッチング素子及び光応答性電荷輸送素子に関する。   The present invention relates to a hexaperihexabenzobenzocorene derivative having a group having a fullerene which may include a metal in the molecule and a hexaperihexabenzobenzocorene which does not have a group having a fullerene which may include a metal. The present invention relates to a self-organized nanosize structure containing a derivative, and a photodetecting element, a photoswitching element and a photoresponsive charge transport element using the nanosize structure.

近年、有機EL素子や有機トランジスタ、有機薄膜太陽電池など、有機分子や高分子化合物を用いた電子デバイスに関する研究、開発が盛んに行われている。有機化合物を電子デバイスとして用いる利点としては、素子の軽量化やフレキシブル化、またプロセスを簡便化できる点などが挙げられる。中でも、近年のエネルギー問題や地球温暖化などの環境問題ともあいまって、有機薄膜太陽電池の開発には大きな注目が集まっている。
有機薄膜太陽電池においては、
A.光吸収
B.生成した電子−ホール対の分離(電子供与体分子からアクセプター分子への光誘起電子移動)
C.電子及びホールそれぞれを対向する電極へ流す。
の3プロセスが必要である。
この3プロセスを有効に実現して有機薄膜太陽電池における光−電気変換効率を向上するための方法として、電子供与体と受容体が分子レベルで相分離した構造を実現することが重要である。
In recent years, research and development on electronic devices using organic molecules and polymer compounds such as organic EL elements, organic transistors, and organic thin-film solar cells have been actively conducted. Advantages of using an organic compound as an electronic device include reduction in the weight and flexibility of the element and simplification of the process. In particular, the development of organic thin-film solar cells has attracted a great deal of attention, coupled with recent energy issues and environmental issues such as global warming.
In organic thin film solar cells,
A. Light absorption Separation of generated electron-hole pairs (photo-induced electron transfer from electron donor molecule to acceptor molecule)
C. Electrons and holes are allowed to flow to opposite electrodes.
3 processes are required.
As a method for effectively realizing these three processes to improve the photoelectric conversion efficiency in the organic thin film solar cell, it is important to realize a structure in which an electron donor and an acceptor are phase-separated at a molecular level.

本発明者らがすでに提案している電子供与体であるヘキサベンゾコロネン(HBC)と電子受容体であるフラーレン(C60)が1分子層レベルでヘテロ接合した化合物からなる自己組織化同軸ナノチューブ(特許文献1)は、電子供与体と受容体のナノ相分離構造と広い面積での各層の接合という2つの条件を満たしており、今後有機太陽電池開発へ向けた応用研究が期待されている。 Self-assembled coaxial nanotubes comprising a compound in which hexabenzocoronene (HBC), which has already been proposed by the present inventors, and fullerene (C 60 ), which is an electron acceptor, are heterojunction at the molecular layer level ( Patent Document 1) satisfies the two conditions of a nanophase separation structure of an electron donor and an acceptor and bonding of each layer in a wide area, and application research for organic solar cell development is expected in the future.

特願2008−52565号Japanese Patent Application No. 2008-52565

本発明は、電子ドナー部位及び電子アクセプター部位としてのフラーレンを同一分子内に有する分子を用いた、光電導性を調整することができる新規なナノサイズ構造体及びそれを用いた光電導性材料を提供する。   The present invention relates to a novel nanosize structure capable of adjusting photoconductivity using a molecule having fullerene as an electron donor site and electron acceptor site in the same molecule, and a photoconductive material using the same. provide.

本発明者らは、フラーレンを分子中に有する化合物からなる自己組織化ナノチューブを既に報告してきた(特許文献1参照)。このものは図1に示されるように層状の構造を有するナノチューブであり、π−スタックを形成するHBC骨格と、ナノチューブ壁の内面及び外面の両面を覆うフラーレンにより構成される。このナノチューブは、顕著な光電導性を示し、今後有機太陽電池開発へ向けた応用研究が期待されているが、光電導特性が固定化されており、光電導特性を変化させることが困難であった。
本発明者らは、このような光電導性を有するナノチューブ材料に、更に他のナノチューブ材料を導入させることにより、ナノチューブ表面の電子受容性の基の被覆率を系統的に変化させることにより、ナノチューブの光電導性をチューニング(調整)することができることを見出した。さらに、本発明者らは、このような調整により、フラーレンを分子中に有する化合物のみからなる自己組織化ナノチューブよりも、大きな光電導特性を示すナノチューブを得ることができることを見出し、本発明に到達した。
The present inventors have already reported a self-assembled nanotube comprising a compound having fullerene in the molecule (see Patent Document 1). This is a nanotube having a layered structure as shown in FIG. 1, and is composed of an HBC skeleton forming a π-stack and fullerene covering both the inner and outer surfaces of the nanotube wall. These nanotubes show remarkable photoconductivity and are expected to be applied for organic solar cell development in the future, but the photoconductivity is fixed and it is difficult to change the photoconductivity. It was.
The present inventors have introduced a nanotube material having such photoconductivity into another nanotube material, thereby systematically changing the coverage ratio of the electron-accepting group on the nanotube surface. It has been found that the photoconductivity of can be tuned (adjusted). Furthermore, the present inventors have found that, by such adjustment, nanotubes exhibiting larger photoconductive properties than self-assembled nanotubes consisting only of compounds having fullerenes in the molecule can be obtained, and the present invention has been achieved. did.

即ち、本発明は、金属を内包していてもよいフラーレンを有する基を分子中に有するヘキサペリヘキサベンゾコロネン誘導体及び金属を内包していてもよいフラーレンを有する基を分子中に有していないヘキサペリヘキサベンゾコロネン誘導体を含有してなる自己組織化ナノサイズ構造体、より詳細には、本発明は、次の一般式(1)、   That is, the present invention does not have a hexaperihexabenzocoronene derivative having a group having a fullerene which may contain a metal in the molecule and a group having a fullerene which may contain a metal in the molecule. A self-assembled nano-sized structure containing a hexaperihexabenzocoronene derivative, more specifically, the present invention comprises the following general formula (1),

[式中、Rはアルキル基を表し、R及びRはCOCHCH(OCHCH)nOR(但し、Rは水素原子、アルキル基又は金属を内包していてもよいフラーレンCmを有する基を表し、R及びRは互いに同一でも異なっていてもよいがR及びRの少なくともどちらか一方はフラーレンCmを有する基を有する(nは正の整数を表しmはCmが球殻状構造を形成し得る正の整数)。]
で表される金属を内包していてもよいフラーレンを有する基を分子中に有するヘキサペリヘキサベンゾコロネン誘導体、及び次の一般式(2)、
[Wherein, R 1 represents an alkyl group, R 2 and R 3 are C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2 ) nOR 4 (where R 4 includes a hydrogen atom, an alkyl group or a metal) R 2 and R 3 may be the same or different from each other, but at least one of R 2 and R 3 has a group having fullerene Cm (n is a positive group) Represents an integer, and m is a positive integer that allows Cm to form a spherical shell structure.]
A hexaperihexabenzocoronene derivative having in its molecule a group having fullerene which may contain a metal represented by the following general formula (2),

[式中、Rはアルキル基を表し、RはCOCHCH(OCHCH)nOR(但し、Rは水素原子又はアルキル基を表し、nは正の整数を表す。]
で表される金属を内包していてもよいフラーレンを有する基を分子中に有していないヘキサペリヘキサベンゾコロネン誘導体を含有してなる自己組織化ナノサイズ構造体に関する。
本発明の自己組織化ナノサイズ構造体は光電導特性を有しており、本発明は、前記した本発明の自己組織化ナノサイズ構造体を用いてなる光検出素子、光スイッチング素子、及び光応答性電荷輸送素子などの各種の光関連素子、並びにこれらの素子の少なくとも1種を含有してなる電子部品材料に関する。
[Wherein R 5 represents an alkyl group, R 6 represents C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2 ) nOR 7 (where R 7 represents a hydrogen atom or an alkyl group, and n represents a positive integer) Represents.]
The present invention relates to a self-assembled nano-sized structure comprising a hexaperihexabenzocoronene derivative that does not have a fullerene-containing group that may contain a metal represented by
The self-assembled nano-sized structure of the present invention has photoconductive properties, and the present invention includes a photodetecting element, an optical switching element, and an optical device using the above-described self-assembled nano-sized structure of the present invention. The present invention relates to various light-related elements such as a responsive charge transport element and an electronic component material containing at least one of these elements.

本発明をさらに詳細に説明すれば以下のとおりとなる。
(1)金属を内包していてもよいフラーレンを有する基を分子中に有するヘキサペリヘキサベンゾコロネン誘導体及び金属を内包していてもよいフラーレンを有する基を分子中に有していないヘキサペリヘキサベンゾコロネン誘導体を含有してなる自己組織化ナノサイズ構造体。
(2)自己組織化ナノサイズ構造体が、自己組織化により形成されるナノチューブである前記(1)に記載の自己組織化ナノサイズ構造体。
(3)金属を内包していてもよいフラーレンが、C60フラーレンである前記(1)又は(2)に記載の自己組織化ナノサイズ構造体。
(4)金属を内包していてもよいフラーレンを有する基を分子中に有するヘキサペリヘキサベンゾコロネン誘導体及び金属を内包していてもよいフラーレンを有する基を分子中に有していないヘキサペリヘキサベンゾコロネン誘導体の合計のモル数に対する、金属を内包していてもよいフラーレンを有する基を分子中に有するヘキサペリヘキサベンゾコロネン誘導体のモル分率が5〜90%である前記(1)〜(3)のいずれかに記載の自己組織化ナノサイズ構造体。
(5)金属を内包していてもよいフラーレンを有する基を分子中に有するヘキサペリヘキサベンゾコロネン誘導体のモル分率が5〜50%である前記(1)〜(4)に記載の自己組織化ナノサイズ構造体。
(6)金属を内包していてもよいフラーレンを有する基を分子中に有するヘキサペリヘキサベンゾコロネン誘導体が次の一般式(1)、
The present invention will be described in more detail as follows.
(1) A hexaperihexabenzocoronene derivative having a group having a fullerene which may include a metal in the molecule and a hexaperihexa having no group having a fullerene which may include a metal in the molecule A self-assembled nano-sized structure containing a benzocoronene derivative.
(2) The self-assembled nanosize structure according to (1), wherein the self-assembled nanosize structure is a nanotube formed by self-assembly.
(3) Good fullerenes also be encapsulating metal, wherein a C 60 fullerene (1) or self-assembled nano-sized structure according to (2).
(4) A hexaperihexabenzocoronene derivative having a group having a fullerene which may encapsulate a metal in the molecule and a hexaperihexa having no group having a fullerene which may encapsulate a metal in the molecule (1) to (1) in which the mole fraction of the hexaperihexabenzobenzocorene derivative having a group having a fullerene which may contain a metal in the molecule with respect to the total number of moles of the benzocoronene derivative is 5 to 90%. 3) The self-organized nanosize structure according to any one of the above.
(5) The self-organization according to any one of (1) to (4) above, wherein the mole fraction of a hexaperihexabenzocoronene derivative having a fullerene-containing group which may include a metal in the molecule is 5 to 50%. Nano-sized structure.
(6) A hexaperihexabenzocoronene derivative having a group having a fullerene which may contain a metal in the molecule is represented by the following general formula (1),

[式中、Rはアルキル基を表し、R及びRはCOCHCH(OCHCH)nOR(但し、Rは水素原子、アルキル基又は金属を内包していてもよいフラーレンCmを有する基を表し、R及びRは互いに同一でも異なっていてもよいがR及びRの少なくともどちらか一方はフラーレンCmを有する基を有する(nは正の整数を表しmはCmが球殻状構造を形成し得る正の整数)。]
で表されるヘキサペリヘキサベンゾコロネン誘導体であり、金属を内包していてもよいフラーレンを有する基を分子中に有していないヘキサペリヘキサベンゾコロネン誘導体が次の一般式(2)、
[Wherein, R 1 represents an alkyl group, R 2 and R 3 are C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2 ) nOR 4 (where R 4 includes a hydrogen atom, an alkyl group or a metal) R 2 and R 3 may be the same or different from each other, but at least one of R 2 and R 3 has a group having fullerene Cm (n is a positive group) Represents an integer, and m is a positive integer that allows Cm to form a spherical shell structure.]
The hexaperihexabenzocoronene derivative represented by the following general formula (2) is a hexaperihexabenzocoronene derivative that does not have a fullerene-containing group in the molecule.

[式中、Rはアルキル基を表し、RはCOCHCH(OCHCH)nOR(但し、Rは水素原子又はアルキル基を表し、nは正の整数を表す。]
で表されるヘキサペリヘキサベンゾコロネン誘導体である前記(1)〜(5)のいずれかに記載の自己組織化ナノサイズ構造体。
(7)一般式(1)のR基が、式(3)で表されるメタノ[60]フラーレンカルボン酸基である前記(6)に記載の自己組織化ナノサイズ構造体。
[Wherein R 5 represents an alkyl group, R 6 represents C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2 ) nOR 7 (where R 7 represents a hydrogen atom or an alkyl group, and n represents a positive integer) Represents.]
The self-assembled nano-sized structure according to any one of (1) to (5), which is a hexaperihexabenzocoronene derivative represented by the formula:
(7) The self-assembled nanosize structure according to (6), wherein the R 4 group of the general formula (1) is a methano [60] fullerenecarboxylic acid group represented by the formula (3).

(8)一般式(1)のR、及び一般式(2)のRが、それぞれ独立して炭素数10〜30のアルキル基である前記(6)又は(7)に記載の自己組織化ナノサイズ構造体。
(9)一般式(1)で表されるヘキサペリヘキサベンゾコロネン誘導体が、次の式(4)
(8) The self-organization according to (6) or (7), wherein R 1 in general formula (1) and R 5 in general formula (2) are each independently an alkyl group having 10 to 30 carbon atoms. Nano-sized structure.
(9) The hexaperihexabenzocoronene derivative represented by the general formula (1) has the following formula (4)

で表される化合物である前記(6)〜(8)のいずれかに記載の自己組織化ナノサイズ構造体。
(10)
一般式(2)で表されるヘキサペリヘキサベンゾコロネン誘導体が、次の式(5)
で表される化合物である前記(6)〜(9)のいずれかに記載の自己組織化ナノサイズ構造体。
(11)前記(1)〜(10)のいずれかに記載の自己組織化ナノサイズ構造体からなる光検出素子。
(12)前記(1)〜(10)のいずれかに記載の自己組織化ナノサイズ構造体からなる光スイッチング素子。
(13)前記(1)〜(10)のいずれかに記載の自己組織化ナノサイズ構造体からなる光応答性荷輸送素子。
(14)
前記(11)〜(13)のいずれかに記載の素子の少なくとも1種を含有してなる電子部品材料。
The self-organized nanosize structure according to any one of (6) to (8), which is a compound represented by the formula:
(10)
The hexaperihexabenzocoronene derivative represented by the general formula (2) has the following formula (5)
The self-organized nanosize structure according to any one of (6) to (9), which is a compound represented by the formula:
(11) A photodetecting element comprising the self-assembled nanosize structure according to any one of (1) to (10).
(12) An optical switching element comprising the self-organized nanosize structure according to any one of (1) to (10).
(13) A photoresponsive load transport element comprising the self-assembled nanosize structure according to any one of (1) to (10).
(14)
An electronic component material comprising at least one element according to any one of (11) to (13).

本発明は、分子内に金属を内包していてもよいフラーレンを有する自己組織化ナノサイズ構造体における光電導性が調整されたナノサイズ光電導性構造体を提供するものである。本発明のナノサイズ構造体は、金属を内包していてもよいフラーレン分子を有するヘキサペリヘキサベンゾコロネン誘導体、及び金属を内包していてもよいフラーレン分子を有していないヘキサペリヘキサベンゾコロネン誘導体を混合するという極めて簡便な方法により光電導性が調整されたナノサイズ光電導性構造体を得ることができ、これらのヘキサペリヘキサベンゾコロネン(HBC)誘導体は、親水性及び疎水性置換基を有し、両親媒性の特性とHBCによるπ−πスタッキング効果を介して自己集積し、超分子ナノチューブを形成することができるだけでなく、さらに調整された光伝導特性を併せ持ち、光応答性の新規な素子材料を提供するものである。
本発明のナノサイズ構造体は、光検出素子、光スイッチング素子、光応答性電荷輸送素子などとして多くの電子部品材料に適用されるだけでなく、光を利用した各種の電子材料の新規な機能性素子を提供することができるものである。
The present invention provides a nanosized photoconductive structure in which the photoconductivity of a self-assembled nanosize structure having a fullerene which may contain a metal in the molecule is adjusted. The nano-sized structure of the present invention includes a hexaperihexabenzobenzocorene derivative having a fullerene molecule that may contain a metal, and a hexaperihexabenzobenzocorene derivative that does not have a fullerene molecule that may contain a metal Nano-sized photoconductive structures with adjusted photoconductivity can be obtained by a very simple method of mixing these hexaperihexabenzocoronene (HBC) derivatives with hydrophilic and hydrophobic substituents. It has self-assembly through amphiphilic properties and π-π stacking effect by HBC, and can form supramolecular nanotubes, and also has adjusted photoconducting properties and a novel photoresponsiveness Provide a simple element material.
The nano-sized structure of the present invention is not only applied to many electronic component materials as a light detection element, a light switching element, a photoresponsive charge transport element, etc., but also has a novel function of various electronic materials using light. An element can be provided.

本発明の金属を内包していてもよいフラーレンを有するヘキサペリヘキサベンゾコロネン誘導体は、電子供与体であるHBCと電子受容体であるフラーレンを同一分子内に有していることを特徴とするものであり、さらに親水性の部分及び疎水性の部分の両方を有しており、この化合物の溶液中での自己集合化により形成される超分子ナノチューブは、πスタックを形成するHBC骨格をナノチューブの内面及び外面をフラーレンが被覆することにより構成されることを特徴とするものである(図1参照)。
本発明の金属を内包していてもよいフラーレンを有する基を有するヘキサペリヘキサベンゾコロネン誘導体としては、前記した一般式(1)で表されるようなポリエーテル構造などの親水性の基を有し、かつ金属を内包していてもよいフラーレンを有する基を有するものであって、両親媒性と疎水効果、更に、分子面の重なりによるπ−πスタッキングの共同効果を介して自己集積し、自己組織化してナノサイズの集積体を形成することができるものであればよい。
The hexaperihexabenzocoronene derivative having fullerene which may contain the metal of the present invention is characterized by having HBC as an electron donor and fullerene as an electron acceptor in the same molecule. Supramolecular nanotubes, which have both hydrophilic and hydrophobic portions and are formed by self-assembly of this compound in solution, have an HBC skeleton that forms a π stack. The inner surface and the outer surface are covered with fullerene (see FIG. 1).
The hexaperihexabenzocoronene derivative having a group having a fullerene which may include the metal of the present invention has a hydrophilic group such as a polyether structure represented by the general formula (1). And having a group having a fullerene which may contain a metal, and self-assemble through amphiphilicity and hydrophobic effect, and further through the joint effect of π-π stacking due to overlap of molecular planes, Any material can be used as long as it can self-assemble to form a nano-sized aggregate.

前記一般式(1)において、Rで表されるアルキル基としては、例えば、炭素数が1〜30、好ましくは10〜30、より好ましくは10〜20の直鎖状、分枝状又は環状のアルキル基が挙げられ、好ましい具体例としては、例えば、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシルル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基などが挙げられ、これらは直鎖状、分枝状又は環状の何れであってもよい。また、炭素数が10以下のアルキル基の場合は、例えばt−ブチル基のような嵩高い基が好ましい。 In the general formula (1), the alkyl group represented by R 1 is, for example, linear, branched or cyclic having 1 to 30, preferably 10 to 30, more preferably 10 to 20 carbon atoms. Specific examples of preferred alkyl groups include decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, and the like. May be linear, branched or cyclic. In the case of an alkyl group having 10 or less carbon atoms, a bulky group such as a t-butyl group is preferable.

前記一般式(1)において、R及びRで表されるCOCHCH(OCHCHORにおけるRで表されるアルキル基としては、例えば、炭素数が1〜20、好ましくは1〜10、より好ましくは1〜6の直鎖状、分枝状又は環状のアルキル基が挙げられ、具体例としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、第二級ブチル基、第三級ブチル基、ペンチル基、ヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる。 In the general formula (1), examples of the alkyl group represented by R 4 in C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2 ) n OR 4 represented by R 2 and R 3 include carbon number 1-20, preferably 1-10, more preferably 1-6 linear, branched or cyclic alkyl groups. Specific examples include, for example, methyl group, ethyl group, propyl group, Examples include isopropyl group, butyl group, isobutyl group, secondary butyl group, tertiary butyl group, pentyl group, hexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group and the like.

また前記一般式(1)において、R及びRで表されるCOCHCH(OCHCHORにおけるRで表されるフラーレンCmを有する基としてはポリエチレングリコール鎖の先端に結合できるものであれば特に制限はないが、カルボキシル基を有するフラーレンCmが合成の容易さから好適である。フラーレンCmにおけるmはCmが球殻状構造を形成し得る正の整数をとりうるが、30,60,70,76,78,80,82,84,86,88,90,92,94,96が好ましく、60が特に好ましい。また金属を内包するフラーレン類も用いることができる。nは任意の正の整数であるが、2以上の整数がより好ましい。R及びRで表されるCOCHCH(OCHCHORの好ましい具体例としては、例えば、
OCHCH(OCHCHOH、
OCHCH(OCHCHOCH
等が挙げられ、中でも、
OCHCH(OCHCHOH、
OCHCH(OCHCHOH、
OCHCH(OCHCHOH、
OCHCH(OCHCHOCH
OCHCH(OCHCHOCH
OCHCH(OCHCHOCH
OCHCH(OCHCHOR、[Rは前記式(3)で表されるメタノ[60]フラーレンカルボン酸基]
等がより好ましい例として挙げられるが、勿論これに限定されるものではない。
In the general formula (1), the group having a fullerene Cm represented by R 4 in C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2 ) n OR 4 represented by R 2 and R 3 is polyethylene. There is no particular limitation as long as it can be bonded to the end of the glycol chain, but fullerene Cm having a carboxyl group is preferable from the viewpoint of ease of synthesis. M in the fullerene Cm can be a positive integer with which Cm can form a spherical shell-like structure, but 30, 60, 70, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96 Is preferable, and 60 is particularly preferable. In addition, fullerenes containing metal can also be used. n is an arbitrary positive integer, but an integer of 2 or more is more preferable. Preferred examples of C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) n OR 4 represented by R 2 and R 3, for example,
C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) n OH,
C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) n OCH 3
Etc., among others,
C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) 2 OH,
C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) 3 OH,
C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) 4 OH,
C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) 2 OCH 3,
C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) 3 OCH 3,
C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) 4 OCH 3,
C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2 ) 3 OR 8 , [R 8 is a methano [60] fullerenecarboxylic acid group represented by the formula (3)]
Etc. are mentioned as a more preferable example, but of course, it is not limited to this.

前記一般式(1)で表される化合物として最も好ましい化合物の例は前記式(4)で表される。   The most preferable example of the compound represented by the general formula (1) is represented by the formula (4).

本発明の金属を内包していてもよいフラーレンを有する基を有しないヘキサペリヘキサベンゾコロネン誘導体としては、前記一般式(2)で表されるようなポリエーテル構造などの親水性の基を有し、かつ金属を内包していてもよいフラーレンを有する基を有しないものであって、両親媒性と疎水効果、更に、分子面の重なりによるπ−πスタッキングの共同効果を介して自己集積し、自己組織化してナノサイズの集積体を形成することができるものであればよい。   The hexaperihexabenzocoronene derivative having no fullerene-containing group which may contain the metal of the present invention has a hydrophilic group such as a polyether structure represented by the general formula (2). However, it does not have a group having a fullerene which may encapsulate a metal, and self-assembles through amphiphilicity and hydrophobic effect, and also through the joint effect of π-π stacking due to overlap of molecular planes. Any material can be used as long as it can form a nano-sized aggregate by self-assembly.

前記一般式(2)において、Rで表されるアルキル基としては、例えば、炭素数が1〜30、好ましくは10〜30、より好ましくは10〜20の直鎖状、分枝状又は環状のアルキル基が挙げられ、好ましい具体例としては、例えば、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシルル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基などが挙げられ、これらは直鎖状、分枝状又は環状の何れであってもよい。また、炭素数が10以下のアルキル基の場合は、例えばt−ブチル基のような嵩高い基が好ましい。 In the general formula (2), the alkyl group represented by R 5 is, for example, a linear, branched or cyclic group having 1 to 30 carbon atoms, preferably 10 to 30 carbon atoms, more preferably 10 to 20 carbon atoms. Specific examples of preferred alkyl groups include decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, and the like. May be linear, branched or cyclic. In the case of an alkyl group having 10 or less carbon atoms, a bulky group such as a t-butyl group is preferable.

前記一般式(2)において、Rで表されるCOCHCH(OCHCHORにおけるRで表されるアルキル基としては、例えば、炭素数が1〜20、好ましくは1〜10、より好ましくは1〜6の直鎖状、分枝状又は環状のアルキル基が挙げられ、具体例としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、第二級ブチル基、第三級ブチル基、ペンチル基、ヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる。nは任意の正の整数であるが、2以上の整数がより好ましい。
で表されるCOCHCH(OCHCH)nORの好ましい具体例としては、例えば、
OCHCH(OCHCH)nOH、
OCHCH(OCHCH)nOCH
等が挙げられ、中でも、
OCHCH(OCHCHOH、
OCHCH(OCHCHOH、
OCHCH(OCHCHOH、
OCHCH(OCHCHOCH
OCHCH(OCHCHOCH
OCHCH(OCHCHOCH
等がより好ましい例として挙げられるが、勿論これらに限定されるものではない。
In the general formula (2), the alkyl group represented by R 7 in C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) n OR 3 represented by R 6, for example, 1 carbon atoms 20, preferably 1 to 10, more preferably 1 to 6 linear, branched or cyclic alkyl groups. Specific examples include, for example, methyl group, ethyl group, propyl group, isopropyl group, Examples thereof include a butyl group, an isobutyl group, a secondary butyl group, a tertiary butyl group, a pentyl group, a hexyl group, a cyclopropyl group, a cyclopentyl group, and a cyclohexyl group. n is an arbitrary positive integer, but an integer of 2 or more is more preferable.
Preferable specific examples of C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2 ) nOR 7 represented by R 6 include, for example,
C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) nOH,
C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) nOCH 3
Etc., among others,
C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) 2 OH,
C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) 3 OH,
C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) 4 OH,
C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) 2 OCH 3,
C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) 3 OCH 3,
C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) 4 OCH 3
These are given as more preferred examples, but of course not limited thereto.

前記一般式(2)で表される化合物として最も好ましい化合物の例は前記式(5)で表される。   The most preferable example of the compound represented by the general formula (2) is represented by the formula (5).

一般式(1)及び一般式(2)で表される化合物の合計のモル数に対する一般式(1)化合物で表される化合物のモル分率は5〜90%が好ましく、5〜80%がより好ましく、5〜50%が更に好ましい(後述する実施例6、7及び8参照)。   The molar fraction of the compound represented by the general formula (1) compound with respect to the total number of moles of the compound represented by the general formula (1) and the general formula (2) is preferably 5 to 90%, and 5 to 80%. More preferably, 5 to 50% is still more preferable (see Examples 6, 7 and 8 described later).

本発明の一般式(1)及び一般式(2)で表される化合物は、任意の公知の方法又はこれに準じた方法で製造することができる。例えば、特許文献1に準じて、基R又はRにフラーレンを有する基を有する中間体を製造し、これを特許文献1に記載の方法に準じて閉環することにより製造することができる。 The compounds represented by general formula (1) and general formula (2) of the present invention can be produced by any known method or a method analogous thereto. For example, an intermediate having a group having a fullerene in the group R 2 or R 3 can be produced according to Patent Document 1, and the ring can be produced according to the method described in Patent Document 1.

本発明の一般式(1)で表される化合物の製造法の例として、例えば、前記した式(4)で表される化合物の具体的の製造方法の例を次の反応経路で示しておく。    As an example of the method for producing the compound represented by the general formula (1) of the present invention, for example, a specific example of the method for producing the compound represented by the above formula (4) is shown by the following reaction route. .

まず、トシル基(Ts)で保護された化合物1を製造し、これをブロモビフェニル化して化合物2とし、これをアセチル化して化合物3を製造する。化合物3とビフェニルアセチレン誘導体とを反応させてアセチレン誘導体(化合物4)を製造し、これとテトラフェニルシクロペンタジエノン誘導体とを反応させて、ヘキサフェニルベンゼン誘導体(化合物5)を製造する。得られたヘキサフェニルベンゼン誘導体5の末端のアセトキシ基を加水分解してヒドロキシ体(化合物6)とした後、ルイス酸の存在下に環化することにより、コロネン骨格を有する化合物7とする。
得られた化合物7とフラーレンのカルボン酸誘導体(化合物8)とを、DCCなどの縮合剤の存在下にエステル化、目的の式(4)で表される化合物9を製造することができる。
First, compound 1 protected with a tosyl group (Ts) is produced, and this is bromobiphenylated to give compound 2, which is acetylated to produce compound 3. Compound 3 and a biphenylacetylene derivative are reacted to produce an acetylene derivative (compound 4), and this is reacted with a tetraphenylcyclopentadienone derivative to produce a hexaphenylbenzene derivative (compound 5). The terminal acetoxy group of the obtained hexaphenylbenzene derivative 5 is hydrolyzed to a hydroxy form (compound 6), and then cyclized in the presence of a Lewis acid to obtain a compound 7 having a coronene skeleton.
The resulting compound 7 and fullerene carboxylic acid derivative (compound 8) are esterified in the presence of a condensing agent such as DCC to produce the desired compound 9 represented by the formula (4).

このようにして製造される本発明の一般式(1)で表される化合物は、以前に本発明者らが報告してきた側鎖に疎水性の基と親水性の基を有するヘキサペリヘキサベンゾコロネン誘導体(HBC誘導体)(特許文献1参照)と同様な挙動をとることがわかった。
即ち、トルエンなどの溶媒中で図1に模式的に示されるような自己集積体を形成し、らせん状リボン構造やチューブ構造が形成される。
このようならせん状リボン構造やチューブの形成は、本発明の一般式(1)で表される化合物が有する両親媒性とπ−πスタッキング効果により、2層からなる幅〜20nmのリボン状集積体が形成され、次いで、このリボンは、らせん状にぐるぐる巻きになると考えられる。このときの巻きの強さは基R及びRの部分のポリエチレングリコール鎖の水和の程度によって調整されと考えられる。
The compound represented by the general formula (1) of the present invention thus produced is a hexaperihexabenzobenzo having a hydrophobic group and a hydrophilic group in the side chain previously reported by the present inventors. It was found that the same behavior as that of the coronene derivative (HBC derivative) (see Patent Document 1) was obtained.
That is, a self-assembled body as schematically shown in FIG. 1 is formed in a solvent such as toluene to form a spiral ribbon structure or a tube structure.
The helical ribbon structure and the tube are formed in a ribbon-like shape having a width of 20 nm consisting of two layers by the amphiphilicity and the π-π stacking effect of the compound represented by the general formula (1) of the present invention. The body is formed, and then the ribbon is considered to spiral around. The strength of the winding at this time is considered to be adjusted by the degree of hydration of the polyethylene glycol chain in the R 2 and R 3 moieties.

本発明の一般式(1)で表される化合物の例として、前記式(4)で表される化合物9、一般式(2)で表される化合物の例として、前記式(5)で表される化合物13について、種々の混合比率で溶媒中での自己組織化を試みたところ、黄色から茶色の自己組織化により形成されるナノサイズの構造体を得た。
得られた析出物を走査型電子顕微鏡(SEM)で観察した結果、この構造体は、均一な20〜22nmのナノチューブであることがわかった。さらに透過型電子顕微鏡(TEM)でくわしく観察した結果、化合物9と化合物13の合計のモル数に対する壁の内外表面が系統的にフラーレンで覆われている様子が確認された。
Examples of the compound represented by the general formula (1) of the present invention include the compound 9 represented by the above formula (4) and the compound represented by the general formula (2) as represented by the above formula (5). For the compound 13, the self-assembly in a solvent was attempted at various mixing ratios, and nano-sized structures formed by yellow to brown self-assembly were obtained.
As a result of observing the obtained precipitate with a scanning electron microscope (SEM), it was found that this structure was a uniform 20 to 22 nm nanotube. As a result of further observation with a transmission electron microscope (TEM), it was confirmed that the inner and outer surfaces of the wall with respect to the total number of moles of Compound 9 and Compound 13 were systematically covered with fullerene.

本発明者らは前記ナノチューブの被覆率(化合物9のモル分率)を0%〜100%まで変化させた場合における光電導特性の変化を、フラッシュフォトリシスによるマイクロ波電導度測定(FP−TRMC)法により評価した。その結果、被覆率が5−90%の範囲で、被覆率100%(つまり、化合物9のみからなるナノチューブ)と同等もしくはそれ以上の大きな光電導特性を示すことが明らかとなった。中でも被覆率25%の時に最大値(被覆率100%の時の約12倍)を示すことが明らかとなった。光子から電荷キャリアへの変換効率(φ)は被覆率が高くなるにつれ大きくなると考えられるが、同時に逆電子移動による電荷再結合も加速されるため、電荷分離状態の寿命も短くなる。被覆率を減少させることにより、電荷再結合を抑制した結果、光電導特性の向上に成功した。   The present inventors measured changes in photoelectric conductivity when the coverage of the nanotubes (molar fraction of compound 9) was changed from 0% to 100%, and measured the microwave conductivity by flash photolysis (FP-TRMC). ) Method. As a result, it has been clarified that when the coverage is in the range of 5-90%, the photoconductive property is as large as or greater than that of 100% coverage (that is, a nanotube composed only of Compound 9). In particular, it was clarified that the maximum value (about 12 times that when the coverage was 100%) was exhibited when the coverage was 25%. The conversion efficiency (φ) from photons to charge carriers is considered to increase as the coverage increases, but at the same time, charge recombination due to reverse electron transfer is accelerated, so the life of the charge separation state is also shortened. As a result of suppressing the charge recombination by decreasing the coverage, the photoconductive property was successfully improved.

以上のように、本発明は、同時自己組織化により形成されるナノサイズの構造体、好ましくは超分子ナノチューブからなる光伝導性材料を提供するものであり、本発明の光伝導性材料は、新規な電子材料を提供するものであり、光検出素子、光スイッチング素子、光応答性電荷輸送素子などとして多くの電子部品材料に適用されるものである。本発明の電子部品材料は、例えば、太陽電池材料、光検出素子材料、分子導線などナノデバイスなどへ応用可能なものである。   As described above, the present invention provides a photoconductive material comprising a nano-sized structure formed by simultaneous self-assembly, preferably a supramolecular nanotube, and the photoconductive material of the present invention comprises: The present invention provides a novel electronic material, and is applied to many electronic component materials as a light detection element, a light switching element, a photoresponsive charge transport element, and the like. The electronic component material of the present invention can be applied to, for example, a solar cell material, a light detection element material, a nanodevice such as a molecular lead, and the like.

以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。
以下に示す実施例においては、試薬は特に断らない限り、市販品をそのまま使用した。ジクロロメタン(CHCl)及びブロモベンゼンはアルゴン雰囲気下にカルシウムハイドライド(CaH)で乾燥し、使用前に蒸留した。H及び13CNMRはJEOL model NM-Excalibur500スペクトロメーターを用いて298°Kで、それぞれ500MHz及び125MHzで測定した。MALDI−TOF質量分析はApplied Biosystems BioSpectrometryTM Workstation model Voyager-DETM STRスペクトロメーターを用いて、ジスラノールをマトリックスとして測定した。電子スペクトルは温度制御機構付きJASCO model V-560 UV/VISスペクトロメーターを用いて光路長1cmの石英セルで測定した。赤外吸収スペクトルはJASCO model FT/IR-660Plusフーリエ変換赤外スベクトロメーターを用いて25℃で測定した。X線回折パターンはRigaku model RINT-2500回折計を用いてCuKαを線源として室温で測定した。走査型電子顕微鏡写真(SEM)はJEOL model JSM-6700F FE-SEMを用いて5KVで撮影した。透過型電子顕微鏡写真はPhilips model Tecnai F20電子顕微鏡を用い、Gatan slow scan CCDカメラで低線量状態下に測定した。メタノ[60]フラーレンカルボン酸(化合物8)は、Y-P. Sunらの方法により合成した。
EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited at all by these Examples.
In the following examples, commercially available reagents were used as they were, unless otherwise specified. Dichloromethane (CH 2 Cl 2 ) and bromobenzene were dried over calcium hydride (CaH 2 ) under an argon atmosphere and distilled before use. 1 H and 13 C NMR were measured using a JEOL model NM-Excalibur 500 spectrometer at 298 ° K. at 500 MHz and 125 MHz, respectively. MALDI-TOF mass spectrometry was measured using an Applied Biosystems BioSpectrometry Workstation model Voyager-DE STR spectrometer with dithranol as the matrix. The electronic spectrum was measured in a quartz cell with an optical path length of 1 cm using a JASCO model V-560 UV / VIS spectrometer with a temperature control mechanism. The infrared absorption spectrum was measured at 25 ° C. using a JASCO model FT / IR-660 Plus Fourier transform infrared spectrometer. The X-ray diffraction pattern was measured at room temperature using a Rigaku model RINT-2500 diffractometer with CuKα as the radiation source. Scanning electron micrographs (SEM) were taken at 5 KV using a JEOL model JSM-6700F FE-SEM. Transmission electron micrographs were measured using a Philips model Tecnai F20 electron microscope with a Gatan slow scan CCD camera under low dose conditions. Methano [60] fullerenecarboxylic acid (Compound 8) was synthesized by the method of YP. Sun et al.

化合物9(前記式(4)で表される化合物)の合成: Synthesis of Compound 9 (Compound represented by Formula (4)):

合成ルート
Synthetic route

(1)化合物1の合成
トリエチレングリコール(20.00g,133.18mmol)をテトラヒドロフラン(THF,50ml)に溶解させ、水酸化ナトリウム(10ml,2.66M水溶液)を0℃で加え、30分攪拌した。この溶液に20mlのTHFに溶解させたp−トルエンスルフォニルクロライド(5.07g,26.62mmol)を滴下し1時間攪拌して室温まで昇温し、さらに9時間攪拌した。反応液を氷水に注ぎ、ジクロロメタン(CHCl)で抽出し、有機層を水、次いで塩酸(0.5N)、更に水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後、得られた残渣をシリカゲルクロマトグラフィー(CHCl/メタノール(MeOH))により精製し、化合物1を無色油状物として得た(6.67g,収率82.24%)。
(1) Synthesis of Compound 1 Triethylene glycol (20.00 g, 133.18 mmol) was dissolved in tetrahydrofuran (THF, 50 ml), sodium hydroxide (10 ml, 2.66 M aqueous solution) was added at 0 ° C., and the mixture was stirred for 30 minutes. did. To this solution, p-toluenesulfonyl chloride (5.07 g, 26.62 mmol) dissolved in 20 ml of THF was added dropwise, stirred for 1 hour, warmed to room temperature, and further stirred for 9 hours. The reaction mixture was poured into ice water and extracted with dichloromethane (CH 2 Cl 2 ). The organic layer was washed with water, then hydrochloric acid (0.5N), and further with water, and then dried over anhydrous sodium sulfate. After the solvent was distilled off, the resulting residue was purified by silica gel chromatography (CH 2 Cl 2 / methanol (MeOH)) to obtain Compound 1 as a colorless oil (6.67 g, yield 82.24%).

(2)化合物2の合成
アルゴン雰囲気下、化合物1(6.00g,19.71mmol)と4−ブロモ−4’ −ヒドロキシビフェニル(4.46g,17.92mmol)を乾燥THF(100ml)に溶解させ、水酸化カリウム(2.01g,35.84mmol)を加えた後、19時間加熱還留させた。反応混合物を室温まで降温させた後、水を加え、CHClで抽出し、有機層を水、次いで塩酸(0.5N)、更に水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後、得られた残渣をシリカゲルクロマトグラフィー(CHCl/アセトン)により精製し、化合物2を白色個体として得た(4.80g,収率70%)。
H−NMR(500MHz,CDCl)δ:
7.504 (d, J = 8.5Hz, 2H), 7.453 (d, J = 8.5 Hz, 2H),
7.386 (d, J = 8.5 Hz, 2H), 6.970 (d, J = 8.5 Hz, 2H),
4.161 (t, J = 5.0 Hz, 2H), 3.872 (t, J = 5.0 Hz, 2H),
3.700 (m, 6H), 3.611 (t, J = 4.0 Hz, 2H)
(2) Synthesis of Compound 2 Compound 1 (6.00 g, 19.71 mmol) and 4-bromo-4′-hydroxybiphenyl (4.46 g, 17.92 mmol) were dissolved in dry THF (100 ml) under an argon atmosphere. , Potassium hydroxide (2.01 g, 35.84 mmol) was added, followed by heating for 19 hours. The reaction mixture was cooled to room temperature, water was added, and the mixture was extracted with CH 2 Cl 2. The organic layer was washed with water, then hydrochloric acid (0.5 N), and further with water, and then dried over anhydrous sodium sulfate. After distilling off the solvent, the resulting residue was purified by silica gel chromatography (CH 2 Cl 2 / acetone) to obtain Compound 2 as a white solid (4.80 g, yield 70%).
1 H-NMR (500 MHz, CDCl 3 ) δ:
7.504 (d, J = 8.5Hz, 2H), 7.453 (d, J = 8.5 Hz, 2H),
7.386 (d, J = 8.5 Hz, 2H), 6.970 (d, J = 8.5 Hz, 2H),
4.161 (t, J = 5.0 Hz, 2H), 3.872 (t, J = 5.0 Hz, 2H),
3.700 (m, 6H), 3.611 (t, J = 4.0 Hz, 2H)

(3)化合物3の合成
アルゴン雰囲気下、化合物2を乾燥CHCl(35ml)に溶解させ、0℃まで冷却した。この溶液にピリジン(1.16ml,15.74mmol)を加え、無水酢酸(1.49ml,15.74mmol)を加えて1時間攪拌し、室温まで昇温し、さらに一晩攪拌した。反応混合物を飽和塩化アンモニウム水溶液で2回、ついで水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後、得られた残渣をシリカゲルクロマトグラフィー(CHCl/アセトン)により精製し、化合物3を白色個体として得た(3.37g,収率76%)。
H−NMR(500MHz,CDCl)δ:
7.506 (d, J = 9.0Hz, 2H), 7.452 (d, J = 9.0Hz, 2H),
7.387 (d, J = 9.0Hz, 2H), 6.963 (d, J = 9.0Hz, 2H),
4.211 (t, J = 5.0Hz, 2H), 4.156 (t, J = 5.0Hz, 2H),
3.865 (t, J = 5.0Hz, 2H), 3.696 (m, 6H), 2.052 (s, 3H)
(3) Synthesis of Compound 3 Under an argon atmosphere, Compound 2 was dissolved in dry CH 2 Cl 2 (35 ml) and cooled to 0 ° C. Pyridine (1.16 ml, 15.74 mmol) was added to this solution, acetic anhydride (1.49 ml, 15.74 mmol) was added, and the mixture was stirred for 1 hour, warmed to room temperature, and further stirred overnight. The reaction mixture was washed twice with a saturated aqueous ammonium chloride solution and then with water, and then dried over anhydrous sodium sulfate. After distilling off the solvent, the obtained residue was purified by silica gel chromatography (CH 2 Cl 2 / acetone) to obtain Compound 3 as a white solid (3.37 g, yield 76%).
1 H-NMR (500 MHz, CDCl 3 ) δ:
7.506 (d, J = 9.0Hz, 2H), 7.452 (d, J = 9.0Hz, 2H),
7.387 (d, J = 9.0Hz, 2H), 6.963 (d, J = 9.0Hz, 2H),
4.211 (t, J = 5.0Hz, 2H), 4.156 (t, J = 5.0Hz, 2H),
3.865 (t, J = 5.0Hz, 2H), 3.696 (m, 6H), 2.052 (s, 3H)

(4)化合物4の合成
アルゴン雰囲気下、化合物3(3.24g,7.64mmol)とビス−トリフェニルフォスフォパラジウムジクロライド(0.27g,0.38mmol)、ヨウ化銅(0.14g,0.76mmol)を1,8−ジアゾビシクロ[5,4,0]−7−ウンデセン(DBU)(35ml)と、ベンゼン(25ml)に溶解し、ベンゼン(25ml)に溶解した4’−{2−[2−(2−メトキシエトキシ)エトキシ]エトキシ}−4−ビフェニリルエチン(2.06g,7.64mmol)を滴下し、60℃で一晩加熱攪拌した。室温まで降温後、反応混合物にCHClを加えて抽出し、飽和塩化アンモニウム水溶液にて洗浄、有機層を硫酸ナトリウムにて乾燥した。デカンテーションにて硫酸ナトリウムを除去し、CHCl懸濁液から白色固体状の化合物4を濾取して得た(3.13g,収率60%)。
H−NMR(500MHz,CDCl)δ:
7.567(d, J = 8.0Hz, 4H), 7.526 (m, 8H), 6.982 (d, J = 8.0Hz, 4H),
4.219 (t, J = 4.5Hz, 2H), 4.168 (t, J = 4.5Hz, 4H),
3.873 (t, J = 5.0Hz, 4H), 3.690 (m, 13H), 3.539 (t, J = 5.0Hz, 2H),
3.366 (s, 3H), 2.057 (s, 3H) ;
MALDI−TOF−MS: m/z:
4146として、計算値: [M] 682.3;
実測値: 682.4.
(4) Synthesis of Compound 4 Under an argon atmosphere, Compound 3 (3.24 g, 7.64 mmol), bis-triphenylphosphopalladium dichloride (0.27 g, 0.38 mmol), copper iodide (0.14 g, 0 .76 mmol) was dissolved in 1,8-diazobicyclo [5,4,0] -7-undecene (DBU) (35 ml) and benzene (25 ml), and 4 '-{2- dissolved in benzene (25 ml) [2- (2-Methoxyethoxy) ethoxy] ethoxy} -4-biphenylylethyne (2.06 g, 7.64 mmol) was added dropwise, and the mixture was heated and stirred at 60 ° C. overnight. After cooling to room temperature, the reaction mixture was extracted by adding CH 2 Cl 2 , washed with a saturated aqueous ammonium chloride solution, and the organic layer was dried over sodium sulfate. Sodium sulfate was removed by decantation, and white solid compound 4 was collected by filtration from the CH 2 Cl 2 suspension (3.13 g, yield 60%).
1 H-NMR (500 MHz, CDCl 3 ) δ:
7.567 (d, J = 8.0Hz, 4H), 7.526 (m, 8H), 6.982 (d, J = 8.0Hz, 4H),
4.219 (t, J = 4.5Hz, 2H), 4.168 (t, J = 4.5Hz, 4H),
3.873 (t, J = 5.0Hz, 4H), 3.690 (m, 13H), 3.539 (t, J = 5.0Hz, 2H),
3.366 (s, 3H), 2.057 (s, 3H);
MALDI-TOF-MS: m / z:
As C 41 H 46 O 9 , calculated: [M] + 682.3;
Actual value: 682.4.

(5)化合物5の合成
アルゴン雰囲気下、化合物4(1.00g,1.46mmol)と2,5−ジフェニル−3,4−ビス(4−n−ドデシルフェニル)シクロペンタジエノン(1.06g,1.46mmol)をジフェニルエーテル(4ml)に溶解し、350℃で 2日間加熱攪拌した。反応混合物を室温まで降温しシリカゲルクロマトグラフィー(CHCl/アセトン)、さらに中圧液体クロマトグラフィー(CHCl/アセトン)により精製し、化合物5を白色個体として得た(1.47g,収率73%)。
H−NMR(500MHz,CDCl)δ:
7.320 (d, J = 8.0Hz, 4H), 7.047 (d, J = 8.0Hz, 4H), 6.830 (m, 18H),
6.662 (d, J = 8.0Hz, 4H), 6.610 (d, J = 8.0Hz, 4H),
4.195 (t, J = 4.5Hz, 2H), 4.090 (t, J = 4.5Hz, 4H), 3.819 (m, 4H),
3.678 (m, 12H), 3.515 (m, 2H), 3.342 (s, 3H), 2.321(t, J = 4.5 Hz, 4H),
2.037 (s, 3H), 1.369 (m, 4H), 1.236 (s, 32H), 1.073 (b, 4H),
0.859 (t, J = 7.0Hz, 6H),
MALDI−TOF−MS: m/z:
93115として、計算値: [M+H] 1375.8;
実測値: 1375.5.
(5) Synthesis of Compound 5 Compound 4 (1.00 g, 1.46 mmol) and 2,5-diphenyl-3,4-bis (4-n-dodecylphenyl) cyclopentadienone (1.06 g) under an argon atmosphere. , 1.46 mmol) was dissolved in diphenyl ether (4 ml) and stirred at 350 ° C. for 2 days. The reaction mixture was cooled to room temperature and purified by silica gel chromatography (CH 2 Cl 2 / acetone) and further by medium pressure liquid chromatography (CH 2 Cl 2 / acetone) to obtain Compound 5 as a white solid (1.47 g, Yield 73%).
1 H-NMR (500 MHz, CDCl 3 ) δ:
7.320 (d, J = 8.0Hz, 4H), 7.047 (d, J = 8.0Hz, 4H), 6.830 (m, 18H),
6.662 (d, J = 8.0Hz, 4H), 6.610 (d, J = 8.0Hz, 4H),
4.195 (t, J = 4.5Hz, 2H), 4.090 (t, J = 4.5Hz, 4H), 3.819 (m, 4H),
3.678 (m, 12H), 3.515 (m, 2H), 3.342 (s, 3H), 2.321 (t, J = 4.5 Hz, 4H),
2.037 (s, 3H), 1.369 (m, 4H), 1.236 (s, 32H), 1.073 (b, 4H),
0.859 (t, J = 7.0Hz, 6H),
MALDI-TOF-MS: m / z:
Calculated as C 93 H 115 O 9 : [M + H] + 1375.8;
Actual value: 1375.5.

(6)化合物6の合成
化合物5(300mg,0.22mmol)をメタノール(20ml)とTHF(10ml)に溶解し、水酸化カリウム(002g,0.33mmol)を水(1ml)に溶解させた溶液を加え、室温で1時間攪拌した。溶媒を留去後、残渣にCHClを加え水で洗浄した後、有機層を無水硫酸ナトリウムで乾燥し、溶媒を留去後し、化合物6を白色固体として得た(0.27g,収率93%)。
H−NMR(500MHz,CDCl)δ:
7.320 (m, 4H), 7.046 (d, J = 9.0 Hz, 4H), 6.827 (m, 18H),
6.663 (d, J = 8.0 Hz, 4H), 6.611 (d, J = 8.0 Hz, 4H), 4.194 (m, 4H),
3.821 (m, 4H), 3.647 (m, 14H), 3.513 (t, J = 5.0 Hz, 2H), 3.342 (s, 3H),
2.322 (t, J = 8.0 Hz, 4H), 1.370 (m, 4H), 1.236 (m, 32H), 1.071 (b, 4H),
0.860 (t, J = 7.0 Hz, 6H);
MALDI−TOF−MS: m/z:
91113として、計算値: [M+H] 1333.8;
実測値: 1333.8.
(6) Synthesis of Compound 6 Compound 5 (300 mg, 0.22 mmol) dissolved in methanol (20 ml) and THF (10 ml), and potassium hydroxide (002 g, 0.33 mmol) dissolved in water (1 ml) And stirred at room temperature for 1 hour. After the solvent was distilled off, CH 2 Cl 2 was added to the residue and washed with water. The organic layer was then dried over anhydrous sodium sulfate and the solvent was distilled off to obtain Compound 6 as a white solid (0.27 g, Yield 93%).
1 H-NMR (500 MHz, CDCl 3 ) δ:
7.320 (m, 4H), 7.046 (d, J = 9.0 Hz, 4H), 6.827 (m, 18H),
6.663 (d, J = 8.0 Hz, 4H), 6.611 (d, J = 8.0 Hz, 4H), 4.194 (m, 4H),
3.821 (m, 4H), 3.647 (m, 14H), 3.513 (t, J = 5.0 Hz, 2H), 3.342 (s, 3H),
2.322 (t, J = 8.0 Hz, 4H), 1.370 (m, 4H), 1.236 (m, 32H), 1.071 (b, 4H),
0.860 (t, J = 7.0 Hz, 6H);
MALDI-TOF-MS: m / z:
As C 91 H 113 O 8 , calculated: [M + H] + 1333.8;
Actual value: 1333.8.

(7)化合物7(HBC−TNF)の合成
化合物6(300mg,0.22mmol)を乾燥CHCl(100ml)に溶解し、溶液に乾燥アルゴンを10分間バブリングした後、MeNO(4ml)に溶解した塩化鉄(III)を徐々に加え、さらに25℃で1時間攪拌した。反応混合物を攪拌しながらメタノール(200ml)中に注ぎ込み、析出した固体を濾取し、シリカゲルカラムクロマトグラフィー(SiO/hot THF)で精製した。さらにTHFから再結晶して化合物7を黄色粘脹固体として得た(140mg,収率62%)。
H−NMR(500MHz,THF−d,55℃)δ:
8.47 (s, 2H), 8.38 (s, 2H), 8.23-8.07 (br, 8H), 7.73 (br, 4H),
7.37 (br, 2H), 7.14 (br, 4H), 4.30 (br, 4H), 3.98(br, 4H),
3.79-3.61 (m, 16H), 3.35 (s, 3H), 2.88 (br, 4H), 1.89 (br, 4H),
1.58-1.28 (br, 36H), 0.85 (br, 6H);
MALDI−TOF−MS: m/z:
91100として、計算値: [M] 1320.74 ;
実測値: 1320.89.
(7) Synthesis of Compound 7 (HBC-TNF) Compound 6 (300 mg, 0.22 mmol) was dissolved in dry CH 2 Cl 2 (100 ml), dry argon was bubbled into the solution for 10 minutes, and then MeNO 2 (4 ml). Iron (III) chloride dissolved in was gradually added and further stirred at 25 ° C. for 1 hour. The reaction mixture was poured into methanol (200 ml) with stirring, and the precipitated solid was collected by filtration and purified by silica gel column chromatography (SiO 2 / hot THF). Further, recrystallization from THF gave Compound 7 as a yellow viscous solid (140 mg, 62% yield).
1 H-NMR (500 MHz, THF-d 8 , 55 ° C.) δ:
8.47 (s, 2H), 8.38 (s, 2H), 8.23-8.07 (br, 8H), 7.73 (br, 4H),
7.37 (br, 2H), 7.14 (br, 4H), 4.30 (br, 4H), 3.98 (br, 4H),
3.79-3.61 (m, 16H), 3.35 (s, 3H), 2.88 (br, 4H), 1.89 (br, 4H),
1.58-1.28 (br, 36H), 0.85 (br, 6H);
MALDI-TOF-MS: m / z:
As C 91 H 100 O 8 , calculated: [M] + 1320.74;
Actual value: 1320.89.

(8)化合物9の合成
アルゴン雰囲気下、化合物7(107mg,0.081mmol)、ジシクロヘキシルカルボジイミド(DCC)(62mg,0.30mmol)及びジメチルアミノピリジン(DMAP)(37mg,0.30mmol)を室温で乾燥CHCl−Bromobenzene混合溶媒(8ml)(V/V,3/1)に溶解し、メタノ[60]フラーレンカルボン酸(化合物8)(94mg,0.12mmol)を加えて生成した懸濁液を還流下に24時間反応させた。反応液を濾過して沈殿物を除去した後、濾液を塩酸(0.1N)、NaHCO飽和水溶液及びBrainで洗浄した。有機層を分離して、MgSOで乾燥した後、溶媒を減圧下に留去した。残渣をシリカゲルクロマトグラフィー(CHCl/CHOH,100/1,v/v)で精製し、更に、CHCl/THFから3回再沈殿で精製して化合物9を茶色固体として得た(100mg,収率59%)。
MALDI−TOF−MS: m/z:
153100として、計算値: [M] 2080.74 ;
実測値: 2080.88.
紫外可視吸収スペクトル測定で、365,395nmにヘキサペリヘキサベンゾコロネン(HBC)に基づく吸収が観測された(図2)。
(8) Synthesis of Compound 9 Compound 7 (107 mg, 0.081 mmol), dicyclohexylcarbodiimide (DCC) (62 mg, 0.30 mmol) and dimethylaminopyridine (DMAP) (37 mg, 0.30 mmol) were added at room temperature under an argon atmosphere. A suspension formed by dissolving in a dry CH 2 Cl 2 -Bromobenzene mixed solvent (8 ml) (V / V, 3/1) and adding methano [60] fullerenecarboxylic acid (compound 8) (94 mg, 0.12 mmol). The liquid was reacted under reflux for 24 hours. The reaction solution was filtered to remove the precipitate, and then the filtrate was washed with hydrochloric acid (0.1N), a saturated aqueous NaHCO 3 solution, and Brain. The organic layer was separated and dried over MgSO 4 , and then the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (CHCl 3 / CH 3 OH, 100/1, v / v), and further purified by reprecipitation from CHCl 3 / THF three times to give compound 9 as a brown solid (100 mg Yield 59%).
MALDI-TOF-MS: m / z:
As C 153 H 100 O 9 , calculated: [M] + 2080.74;
Actual measurement value: 2080.88.
Absorption based on hexaperihexabenzocoronene (HBC) was observed at 365 and 395 nm in the UV-visible absorption spectrum measurement (FIG. 2).

化合物13(前記式(5)で表される化合物)の合成: Synthesis of Compound 13 (Compound represented by Formula (5)):

合成ルート
Synthetic route

(1)化合物2(4−ブロモ−4’−{2−[2−(2−メトキシエトキシ)エトキシ]エトキシ}ビフェニル)の合成
4−(4’−ブロモフェニル)フェノール(3.00g,0.012mol)と1−(4−トルエンスルホニル)トリエチレングリコールモノメチルエーテル(化合物1)(4.2g,0.0132mol,1.1当量)を最少量の無水N,N−ジメチルホルムアミド(〜30ml)に溶解し、無水炭酸カリウム(4g,3.3当量)を添加した。生成した懸濁液を撹拌しながら24時間加熱し反応させ、反応液を室温まで冷却した後、水(100ml)に注ぎ生成した白色沈殿を濾過した。濾別した白色沈殿はジクロロメタン(100ml)に溶解しNaSOで一晩乾燥した。NaSOを濾別後、濾液のジクロロメタンを留去して4−ブロモ−4’−{2−[2−(2−メトキシエトキシ)エトキシ]エトキシ}ビフェニル(化合物2)を白色粉末として得た(4.3g,0.0109mol,収率91%)。得られた白色粉末はそのまま次の反応に供した。
分析値:H−NMR(500MHz,CDCl): δ
7.50 (d, J = 8.55 Hz, 2H), 7.45 (d, J = 8.55 Hz, 2H),
7.39 (d, J = 8.55 Hz, 2H), 6.96 (d, J = 8.55 Hz, 2H),
4.15 (t, J = 4.88 Hz, 2H), 3.86(t, J = 4.88 Hz, 2H),
3.74(m, 2H), 3.67(m, 2H), 3.65(m, 2H) 3.53(m, 2H), 3.36(s, 3H).
(1) Synthesis of compound 2 (4-bromo-4 ′-{2- [2- (2-methoxyethoxy) ethoxy] ethoxy} biphenyl)
4- (4′-bromophenyl) phenol (3.00 g, 0.012 mol) and 1- (4-toluenesulfonyl) triethylene glycol monomethyl ether (Compound 1) (4.2 g, 0.0132 mol, 1.1 equivalents) ) Was dissolved in a minimum amount of anhydrous N, N-dimethylformamide (˜30 ml) and anhydrous potassium carbonate (4 g, 3.3 eq) was added. The resulting suspension was heated and reacted for 24 hours with stirring, and the reaction solution was cooled to room temperature, and then poured into water (100 ml) and the produced white precipitate was filtered. The white precipitate separated by filtration was dissolved in dichloromethane (100 ml) and dried over Na 2 SO 4 overnight. After filtering off Na 2 SO 4 , dichloromethane in the filtrate was distilled off to give 4-bromo-4 ′-{2- [2- (2-methoxyethoxy) ethoxy] ethoxy} biphenyl (compound 2) as a white powder. (4.3 g, 0.0109 mol, yield 91%). The obtained white powder was subjected to the next reaction as it was.
Analytical value: 1 H-NMR (500 MHz, CDCl 3 ): δ
7.50 (d, J = 8.55 Hz, 2H), 7.45 (d, J = 8.55 Hz, 2H),
7.39 (d, J = 8.55 Hz, 2H), 6.96 (d, J = 8.55 Hz, 2H),
4.15 (t, J = 4.88 Hz, 2H), 3.86 (t, J = 4.88 Hz, 2H),
3.74 (m, 2H), 3.67 (m, 2H), 3.65 (m, 2H) 3.53 (m, 2H), 3.36 (s, 3H).

(2)化合物10(1,2−ビス−(4’−{2−[2−(2−メトキシエトキシ)エトキシ]エトキシ}−4−ビフェニリルエチン)の合成
4−ブロモ−4’−{2−[2−(2−メトキシエトキシ)−エトキシ]−エトキシ}−ビフェニル(化合物2)(4g,0.01mol),DBU(9.2g,6eq), PdCl(PPh(425mg,6%)及びCuI(192mg,10%)をベンゼン(20ml)中、室温で撹拌して溶解させ、60℃に加温してトリメチルシリルエチン(TMSE)(0.71ml,0,496g,0.5eq) を加え、直ちに水 (70μL,0.4eq)を加えた。60℃で24時間反応させたのち生成物を濾別し、少量の氷冷したジクロロメタンで洗浄した。生成物はシリカゲルを用いたカラムクロマトグラフィーでジクロロメタン/メタノール(濃度勾配1−5%メタノール)で溶離して精製するか又はトルエン溶液から再結晶して、うす茶色のフレークとして1,2−ビス−(4’−{2−[2−(2−メトキシエトキシ)エトキシ]エトキシ}−4−ビフェニリルエチン(化合物10)を得た(2.3g,収率71%)。
分析値:H−NMR(500MHz,CDCl): δ
7.57 - 7.51 (m, 6H), 6.97 (d, J = 9.15 Hz, 4H),
4.15 (t, J = 4.88 Hz, 4H), 3.86 (t, J = 4.89 Hz, 4H),
3.74 (m, 4H), 3.68, (m, 4H), 3.64 (m, 4H), 3.54 (m, 4H),
3.36 (s, 6H).
MALDI−TOF (dithranol):m/z=655.31(M+H)
(2) Synthesis of Compound 10 (1,2-bis- (4 ′-{2- [2- (2-methoxyethoxy) ethoxy] ethoxy} -4-biphenylylethyne) 4-bromo-4 ′-{2 -[2- (2-methoxyethoxy) -ethoxy] -ethoxy} -biphenyl (compound 2) (4 g, 0.01 mol), DBU (9.2 g, 6 eq), PdCl 2 (PPh 3 ) 2 (425 mg, 6 %) And CuI (192 mg, 10%) dissolved in benzene (20 ml) at room temperature with stirring and warmed to 60 ° C. to trimethylsilylethine (TMSE) (0.71 ml, 0, 496 g, 0.5 eq) Water (70 μL, 0.4 eq) was immediately added, and after 24 hours of reaction at 60 ° C., the product was filtered off and washed with a small amount of ice-cold dichloromethane. Purify by column chromatography eluting with dichloromethane / methanol (gradient gradient 1-5% methanol) or recrystallize from toluene solution to give 1,2-bis- (4 '-{2- [2- (2-Methoxyethoxy) ethoxy] ethoxy} -4-biphenylylethyne (Compound 10) was obtained (2.3 g, yield 71%).
Analytical value: 1 H-NMR (500 MHz, CDCl 3 ): δ
7.57-7.51 (m, 6H), 6.97 (d, J = 9.15 Hz, 4H),
4.15 (t, J = 4.88 Hz, 4H), 3.86 (t, J = 4.89 Hz, 4H),
3.74 (m, 4H), 3.68, (m, 4H), 3.64 (m, 4H), 3.54 (m, 4H),
3.36 (s, 6H).
MALDI-TOF (dithranol): m / z = 655.31 (M + H) + .

(3)化合物11(2,5−ジフェニル−3,4−ビス(4−n−ドデシルフェニル)シクロペンタジエノン)の合成
1,2−ビス−(4−n−ドデシルフェニル)−1,2−ジケトン(1.5g,2.75×10−3mol)とジベンジルケトン(0.58g,2.76×10−3mol)をジオキサンに溶解し100℃に加熱して、テトラブチルアンモニウムヒドロキシド(1.0M solution in methanol)(1eq,2.76ml)を一度に加え、更に15分間加熱した。反応混合物を水に注ぎジクロロメタンで抽出し、抽出液を蒸発乾涸した後、シリカゲルを用いたカラムクロマトグラフィーでジクロロメタン/ヘキサン(濃度勾配10−50% ジクロロメタン)で溶離して精製した。ジクロロメタン/n−ヘキサン(1:3)を溶離液として分取HPLCで更に精製し、蒸発乾涸して2,5−ジフェニル−3,4−ビス(4−n−ドデシルフェニル)シクロペンタジエノン(化合物11)を紫色の粉末として得た(0.88g,収率44%)。
分析値:H−NMR(500MHz,CDCl):δ
〜7.24(m),6.96(d, J = 7.94 Hz, 4H), 6.80 (d, J = 7.94 Hz, 4H),
2.55 (t, J = 7.63 Hz, 4H), 1.56 (br., 4H), 1.26 (br., 36H),
0.88 (t, J = 6.71 Hz, 6H).
MALDI−TOF (dithranol):m/z=720(M).
(3) Synthesis of Compound 11 (2,5-diphenyl-3,4-bis (4-n-dodecylphenyl) cyclopentadienone) 1,2-bis- (4-n-dodecylphenyl) -1,2 -Dissolve diketone (1.5 g, 2.75 x 10 -3 mol) and dibenzyl ketone (0.58 g, 2.76 x 10 -3 mol) in dioxane and heat to 100 ° C to obtain tetrabutylammonium hydroxy 1.0M solution in methanol (1 eq, 2.76 ml) was added in one portion and heated for an additional 15 minutes. The reaction mixture was poured into water and extracted with dichloromethane, and the extract was evaporated to dryness and purified by column chromatography using silica gel eluting with dichloromethane / hexane (gradient gradient 10-50% dichloromethane). Further purification by preparative HPLC, eluting with dichloromethane / n-hexane (1: 3), evaporated to dryness and 2,5-diphenyl-3,4-bis (4-n-dodecylphenyl) cyclopentadienone ( Compound 11) was obtained as a purple powder (0.88 g, 44% yield).
Analytical value: 1 H-NMR (500 MHz, CDCl 3 ): δ
~ 7.24 (m), 6.96 (d, J = 7.94 Hz, 4H), 6.80 (d, J = 7.94 Hz, 4H),
2.55 (t, J = 7.63 Hz, 4H), 1.56 (br., 4H), 1.26 (br., 36H),
0.88 (t, J = 6.71 Hz, 6H).
MALDI-TOF (dithranol): m / z = 720 (M + ).

(4)化合物12(1,4−ジフェニル−2,3−ビス(4−n−ドデシルフェニル) −5,6−ビス(4’−{2−[2−(2−メトキシエトキシ)エトキシ]エトキシ}−4−ビフェニリル)ベンゼン)の合成
2,5−ジフェニル−3,4−ビス(4−n−ドデシルフェニル)シクロペンタジエノン(化合物11)(0.6g,8.3×10−4mol)と1,2−ビス−(4’−{2−[2−(2−メトキシエトキシ)エトキシ]エトキシ}−4−ビフェニリルエチン(化合物12)(0.52g,7.9×10−4mol)をシュレンク中でジフェニルエーテル(1.5ml)に懸濁させ、24時間リフラックス(〜300℃)させた後、室温まで冷却した。反応混合液はアセトンに溶解させシリカのカラムを通して未反応の1,2−ビス−(4’−{2−[2−(2−メトキシエトキシ)エトキシ]エトキシ}−4−ビフェニリルエチンを除去した。次いで溶液から溶媒を留去した後、シリカゲルのクロマトグラフィー(溶離液:ジクロロメタン/ヘキサン、濃度勾配ジクロロメタン/ヘキサン(3/2)〜ジクロロメタン(100%))にかけて精製してうす茶色の粉末を得た(0.75g,収率70%)。
分析値:1H−NMR(500MHz,CDCl):δ
7.32 (d, J = 9.16 Hz, 4H), 7.05 (d, J = 8.55 Hz, 4H),
6.82 (m, 18H) 6.67 (d, J = 7.94 Hz, 4H), 6.61 (d, J = 8.55 Hz, 4H),
4.09 (t, J = 4.88 Hz, 4H), 3.82, (t, J = 4.88 Hz, 4H),
3.71 (m, 4H), 3.64 (m, 8H) 3.52 (m, 4H), 3.34 (s, 6H),
2.33 (t, J = 7.63 Hz, 4H), 1.37 (m, 4H) 1.24 (m, 34H),
1.08 (br., 4H), 0.86 (t, J = 6.71 Hz, 6H).
MALDI−TOF (dithranol):m/z=1348.27(M).
(4) Compound 12 (1,4-diphenyl-2,3-bis (4-n-dodecylphenyl) -5,6-bis (4 ′-{2- [2- (2-methoxyethoxy) ethoxy] ethoxy } -4-biphenylyl) benzene) 2,5-diphenyl-3,4-bis (4-n-dodecylphenyl) cyclopentadienone (Compound 11) (0.6 g, 8.3 × 10 −4 mol) ) And 1,2-bis- (4 ′-{2- [2- (2-methoxyethoxy) ethoxy] ethoxy} -4-biphenylylethyne (Compound 12) (0.52 g, 7.9 × 10 −4 mol) was suspended in Schlenk in diphenyl ether (1.5 ml), refluxed (~ 300 ° C) for 24 hours, and then cooled to room temperature.The reaction mixture was dissolved in acetone and unreacted through a silica column. 1, 2 Bis- (4 ′-{2- [2- (2-methoxyethoxy) ethoxy] ethoxy} -4-biphenylylethyne was removed, and then the solvent was distilled off from the solution, followed by chromatography on silica gel (eluent: Dichloromethane / hexane, concentration gradient dichloromethane / hexane (3/2) to dichloromethane (100%)) to obtain a light brown powder (0.75 g, yield 70%).
Analytical value: 1H-NMR (500 MHz, CDCl 3 ): δ
7.32 (d, J = 9.16 Hz, 4H), 7.05 (d, J = 8.55 Hz, 4H),
6.82 (m, 18H) 6.67 (d, J = 7.94 Hz, 4H), 6.61 (d, J = 8.55 Hz, 4H),
4.09 (t, J = 4.88 Hz, 4H), 3.82, (t, J = 4.88 Hz, 4H),
3.71 (m, 4H), 3.64 (m, 8H) 3.52 (m, 4H), 3.34 (s, 6H),
2.33 (t, J = 7.63 Hz, 4H), 1.37 (m, 4H) 1.24 (m, 34H),
1.08 (br., 4H), 0.86 (t, J = 6.71 Hz, 6H).
MALDI-TOF (dithranol): m / z = 1348.27 (M + ).

(5)化合物13(2,5−ジn−ドデシル−11,14−ビス(4−{2−[2−(2−メトキシエトキシ)エトキシ]エトキシ}フェニル)−ヘキサ−ペリ−ヘキサベンゾコロネン)の合成
1,4−ジフェニル−2,3−ビス(4−n−ドデシルフェニル)−5,6−ビス(4’−{2−[2−(2−メトキシエトキシ)エトキシ]エトキシ}−4−ビフェニリル)ベンゼン(0.70g,5×10−4mol)を乾燥したジクロロメタン(200ml) に溶解させガラス管の中でアルゴンガスを吹き込みながら室温で撹拌した。無水FeCl(2.7g,0.017mol,34eq)をニトロメタン(5ml)に溶解し上記の溶液に少しずつ加えると溶液の色が暗赤色〜黒色からオレンジ色に変化した。更に90分間撹拌を続けその後、メタノール(100ml)を加えクエンチした。生成した黄色の沈殿を濾別し、最初にカラムクロマトグラフィー(シリカゲル、CHCl/メタノール=300:10)で精製し、次いでGPC(Bio-Rad BioBeads X-1,ジクロロメタン溶離液)で精製した。更にジクロロメタン/メタノールで精製すると、黄色のゲル状物が得られ、これを真空乾燥して2,5−ジn−ドデシル−11,14−ビス(4−{2−[2−(2−メトキシエトキシ)エトキシ]エトキシ}フェニル)−ヘキサ−ペリ−ヘキサベンゾコロネンを黄褐色の固体として得た(0.49g,収率73%)。
分析値:H−NMR(500MHz,CDCl):δ
8.05 (s, 2H), 7.95 (s, 2H), 7.79 (d, J = 8.54 Hz, 2H),
7.71 (d, J = 7.94 Hz, 2H) 7.59 (s, 2H), 7.56 (s, 2H),
7.52 (d, J = 7.93 Hz, 4H), 7.10 (d, J = 7.93 Hz, 4H),
7.07 (m, 2H), 4.32 (br. 2H), 4.06 (t, J = 4.56 Hz, 4H),
3.92 (m, 4H), 3.85 (m, 4H), 3.79 (m, 4H), 3.67 (m, 4H),
3.47 (s, 6H), 2.59 (br. t, 4H), 1.69 (br., 4H),
1.46-1.30 (m, 36H), 0.89 (t, J = 7.02 Hz, 6H).
MALDI−TOF (dithranol):m/z=1335.75(M
(5) Compound 13 (2,5-di-n-dodecyl-11,14-bis (4- {2- [2- (2-methoxyethoxy) ethoxy] ethoxy} phenyl) -hexa-peri-hexabenzocoronene) Synthesis of 1,4-diphenyl-2,3-bis (4-n-dodecylphenyl) -5,6-bis (4 ′-{2- [2- (2-methoxyethoxy) ethoxy] ethoxy} -4- Biphenylyl) benzene (0.70 g, 5 × 10 −4 mol) was dissolved in dry dichloromethane (200 ml) and stirred at room temperature while blowing argon gas through a glass tube. When anhydrous FeCl 3 (2.7 g, 0.017 mol, 34 eq) was dissolved in nitromethane (5 ml) and added little by little to the above solution, the color of the solution changed from dark red to black to orange. Stirring was continued for another 90 minutes, after which methanol (100 ml) was added to quench. The yellow precipitate formed was filtered off and purified first by column chromatography (silica gel, CH 2 Cl 2 / methanol = 300: 10) and then purified by GPC (Bio-Rad BioBeads X-1, dichloromethane eluent). did. Further purification with dichloromethane / methanol gave a yellow gel which was dried in vacuo and 2,5-di-n-dodecyl-11,14-bis (4- {2- [2- (2-methoxy Ethoxy) ethoxy] ethoxy} phenyl) -hexa-peri-hexabenzocoronene was obtained as a tan solid (0.49 g, 73% yield).
Analytical value: 1 H-NMR (500 MHz, CDCl 3 ): δ
8.05 (s, 2H), 7.95 (s, 2H), 7.79 (d, J = 8.54 Hz, 2H),
7.71 (d, J = 7.94 Hz, 2H) 7.59 (s, 2H), 7.56 (s, 2H),
7.52 (d, J = 7.93 Hz, 4H), 7.10 (d, J = 7.93 Hz, 4H),
7.07 (m, 2H), 4.32 (br. 2H), 4.06 (t, J = 4.56 Hz, 4H),
3.92 (m, 4H), 3.85 (m, 4H), 3.79 (m, 4H), 3.67 (m, 4H),
3.47 (s, 6H), 2.59 (br. T, 4H), 1.69 (br., 4H),
1.46-1.30 (m, 36H), 0.89 (t, J = 7.02 Hz, 6H).
MALDI-TOF (dithranol): m / z = 1335.75 (M + )

同時自己組織化
実施例1で得た化合物9と実施例2で得た化合物13をモル比0:100,10:90,25:75,40:60,50:50,60:40,75:25,90:10,100:0で混合し加熱溶解して得たトルエン溶液(いずれも両分子をあわせて0.2mM)を室温まで放冷し1日静置したところ、黄色から茶色の懸濁液を得た。
Simultaneous self-assembly The molar ratio of the compound 9 obtained in Example 1 and the compound 13 obtained in Example 2 is 0: 100, 10:90, 25:75, 40:60, 50:50, 60:40, 75: A toluene solution obtained by mixing at 25, 90:10, 100: 0 and heating and dissolving (both 0.2 mM in total for both molecules) was allowed to cool to room temperature and allowed to stand for 1 day. A turbid liquid was obtained.

電子顕微鏡観察
実施例3で得たそれぞれの懸濁液から析出物を回収し、走査型電子顕微鏡(SEM)像及び透過型電子顕微鏡(TEM)像を観察した。結果を図3及び図4に示す(化合物9と化合物13の混合比率(a)0:100、(b)25:75、(c)50:50、(d)75:25、(e)100:0)。いずれの混合比においてもナノチューブ構造体が定量的に生成していることが確認できた(図3、図4)。
また、透過型電子顕微鏡より観測されたナノチューブの直径をプロットしたところ、化合物9の混合比が増すにつれ直径が20ナノメートルから22ナノメートルに増大していることが確認できた(図5)。
さらには、ナノチューブの壁の構造を詳細にみてみると、化合物13のモル分率が100%のときは壁が黒い線一本で観測されているのに対し、化合物9の割合が増えるにつれ、2本線に変化しており、壁の内外表面が系統的にフラーレンで覆われている様子が確認できた(図6)。これらのことは、同時自己組織化により、それぞれの分子が別々にナノチューブを形成しているのではなく、それぞれのナノチューブ内に両分子が混合されていることを強く示唆している。
Electron microscope observation Precipitates were collected from each suspension obtained in Example 3, and a scanning electron microscope (SEM) image and a transmission electron microscope (TEM) image were observed. The results are shown in FIGS. 3 and 4 (mixing ratio of compound 9 and compound 13 (a) 0: 100, (b) 25:75, (c) 50:50, (d) 75:25, (e) 100. : 0). It was confirmed that the nanotube structure was quantitatively generated at any mixing ratio (FIGS. 3 and 4).
Moreover, when the diameter of the nanotube observed from the transmission electron microscope was plotted, it was confirmed that the diameter increased from 20 nanometers to 22 nanometers as the mixing ratio of Compound 9 increased (FIG. 5).
Furthermore, when the structure of the wall of the nanotube is examined in detail, when the molar fraction of compound 13 is 100%, the wall is observed with a single black line, whereas the proportion of compound 9 increases. It changed into two lines, and it was confirmed that the inner and outer surfaces of the wall were systematically covered with fullerene (FIG. 6). These strongly suggest that both molecules are mixed in each nanotube, rather than each molecule forming a nanotube separately due to simultaneous self-assembly.

蛍光の消光
実施例3で得たそれぞれの懸濁液から析出物を回収し、蛍光を測定して図7に示す結果を得た。化合物13からなるナノチューブにおいて励起波長355ナノメートルの光照射により520ナノメートル付近に観測される蛍光が、化合物9を10モル%添加することにより、90%以上が消光し、25モル%以上ではほぼ完全に消光した。このことは、光照射により励起されてHBC部位で生成した電子がフラーレン部位へ移動していることを示している。
Fluorescence Quenching Precipitates were collected from each suspension obtained in Example 3, and fluorescence was measured to obtain the results shown in FIG. Fluorescence observed in the vicinity of 520 nanometers when irradiated with light having an excitation wavelength of 355 nanometers in the nanotube made of compound 13 is 90% or more quenched by adding 10 mol% of compound 9, and almost 25% or more. Quenched completely. This indicates that electrons excited by light irradiation and generated at the HBC site have moved to the fullerene site.

過渡光吸収スペクトル
実施例3で得た化合物13のみよりなる懸濁液及び化合物9を10%含有する懸濁液をそれぞれ、基板上に滴下して作製した薄膜を用いて、過渡光吸収スペクトルを測定し図8及び図9に示す結果を得た。化合物13のみからなるナノチューブの薄膜を用いた、波長355ナノメートルの励起光照射後の過渡光吸収スペクトルにおいては、460ナノメートルに強いブリーチが観測されるのみであるが、化合物9が10モル%添加されたナノチューブの過渡光吸収スペクトルにおいては、605ナノメートル付近に、HBCラジカルカチオンに由来するピークが観測された(図8)。このことは、光励起後のHBCからフラーレンへの電子移動が起こることを強く示唆している。
化合物9を10%添加したナノチューブ薄膜の過渡光吸収スペクトルにおいて605ナノメートルに観測されたピークの時間分解プロファイルは、同じ試料を用いたマイクロ波伝導度の時間分解プロファイルと非常によい一致を示した(図9)。このことは、光誘起電子移動による電荷分離状態の生成・消滅が、光キャリアの生成・消滅と一致していることを強く示す。
Transient light absorption spectrum Using a thin film prepared by dropping a suspension consisting only of compound 13 obtained in Example 3 and a suspension containing 10% of compound 9 onto a substrate, a transient light absorption spectrum was obtained. Measurements were made and the results shown in FIGS. 8 and 9 were obtained. In the transient light absorption spectrum after irradiation with excitation light having a wavelength of 355 nanometers using a thin film of nanotubes consisting only of compound 13, only strong bleaching is observed at 460 nanometers, but compound 9 is 10 mol%. In the transient light absorption spectrum of the added nanotube, a peak derived from the HBC radical cation was observed around 605 nanometers (FIG. 8). This strongly suggests that electron transfer from HBC to fullerene occurs after photoexcitation.
The time-resolved profile of the peak observed at 605 nanometers in the transient light absorption spectrum of the nanotube thin film to which 10% of compound 9 was added showed very good agreement with the time-resolved profile of microwave conductivity using the same sample. (FIG. 9). This strongly indicates that the generation / annihilation of the charge separation state by photoinduced electron transfer coincides with the generation / annihilation of photocarriers.

定常光による光伝導特性の測定
酸化シリコン膜(200ナノメートル)を有するシリコン基板上にナノチューブ薄膜を作製し、その上から金電極を真空熱蒸着し、定常光照射による光伝導度測定を行った。図11(a)に、化合物9からなるナノチューブの定常光(キセノンランプ、波長300−650ナノメートル)照射時及び非照射時における電流−電圧特性を、図11(b)に、光の照射/非照射にともなう電流のスイッチング特性を、また図11(c)にナノチューブ中の化合物9のモル分率を変えた場合の電流−電圧特性を示す。光照射下での電流−電圧特性はオーミックな挙動を示し、また光量にほぼ比例して光電流が観測された。このことは、光の強度に応じて光キャリアが生成していることを示す。また、光のオンオフにより、急峻かつ繰り返し再現性よく光電流のスイッチングができることを明らかとした。
Measurement of photoconductivity characteristics by stationary light A nanotube thin film was fabricated on a silicon substrate having a silicon oxide film (200 nanometers), a gold electrode was vacuum-deposited on it, and the photoconductivity was measured by irradiation of steady light. . FIG. 11 (a) shows the current-voltage characteristics when the nanotube 9 comprising the compound 9 is irradiated with stationary light (xenon lamp, wavelength 300-650 nanometers) and when it is not irradiated, and FIG. FIG. 11C shows the current-voltage characteristics when the molar fraction of the compound 9 in the nanotube is changed. The current-voltage characteristics under light irradiation showed an ohmic behavior, and a photocurrent was observed almost in proportion to the amount of light. This indicates that optical carriers are generated according to the light intensity. It was also clarified that photocurrent can be switched sharply and reproducibly by turning light on and off.

定常光伝導度とマイクロ波伝導度の相関
一般に光電流は、キャリアの移動度(μ)、寿命(/1/e)、光−キャリア変換効率(φ)の積に比例する。そこで、マイクロ波伝導度で求められたφΣμmax X τ/1/eをナノチューブのモル分率に対してプロットしたところ、この挙動と、定常光伝導測定における一定条件下(外部電圧+10V、光密度0.91mW/mm)における光電流値のプロットの挙動が大変よく一致することを確認した(図12)。
Correlation between Steady Photoconductivity and Microwave Conduction Generally, photocurrent is proportional to the product of carrier mobility (μ), lifetime (/ 1 / e ), and light-carrier conversion efficiency (φ). Therefore, when φΣμmax X τ / 1 / e obtained by the microwave conductivity is plotted against the molar fraction of the nanotube, this behavior and certain conditions in the steady state photoconductivity measurement (external voltage +10 V, light density 0 It was confirmed that the behaviors of the plots of the photocurrent values at .91 mW / mm 2 ) matched very well (FIG. 12).

以上のように、本発明は、同時自己組織化により形成されるナノサイズの構造体、好ましくは超分子ナノチューブからなる光伝導性材料を提供するものであり、本発明の光伝導性材料は、新規な電子材料を提供するものであり、光検出素子、光スイッチング素子、光応答性電荷輸送素子などとして多くの電子部品材料に適用されるものである。本発明の電子部品材料は、例えば、太陽電池材料、光検出素子材料、分子導線などナノデバイスなどへ応用可能なものである。   As described above, the present invention provides a photoconductive material comprising a nano-sized structure formed by simultaneous self-assembly, preferably a supramolecular nanotube, and the photoconductive material of the present invention comprises: The present invention provides a novel electronic material, and is applied to many electronic component materials as a light detection element, a light switching element, a photoresponsive charge transport element, and the like. The electronic component material of the present invention can be applied to, for example, a solar cell material, a light detection element material, a nanodevice such as a molecular lead, and the like.

図1は、本発明の一般式(1)で表される化合物と一般式(2)で表される化合物を同時に自己組織化させたナノチューブの層構造を模式的に示したものである。FIG. 1 schematically shows a layer structure of a nanotube in which a compound represented by the general formula (1) and a compound represented by the general formula (2) of the present invention are simultaneously self-assembled. 図2は、本発明の化合物9(HBC−C60)のクロロホルム溶液中での紫外可視吸収スペクトルのチャートである。FIG. 2 is a chart of an ultraviolet-visible absorption spectrum of the compound 9 (HBC-C 60 ) of the present invention in a chloroform solution. 図3は、本発明の化合物9及び化合物13を各混合比率(化合物9:化合物13)において同時自己組織化することにより生成したナノチューブのSEM像を示す、図面に代わる写真である。FIG. 3 is a photograph, instead of a drawing, showing an SEM image of a nanotube produced by simultaneously self-assembling compound 9 and compound 13 of the present invention at each mixing ratio (compound 9: compound 13). 図4は、本発明の化合物9及び化合物13を各混合比率(化合物9:化合物13)において同時自己組織化することにより生成したナノチューブのTEM像を示す、図面に代わる写真である。FIG. 4 is a photograph, instead of a drawing, showing a TEM image of a nanotube produced by simultaneously self-assembling compound 9 and compound 13 of the present invention at each mixing ratio (compound 9: compound 13). 図5は、本発明の化合物9及び化合物13を各混合比率(化合物9:化合物13)において同時自己組織化することにより生成したナノチューブの直径を示すチャートである。FIG. 5 is a chart showing the diameters of nanotubes produced by simultaneous self-assembly of Compound 9 and Compound 13 of the present invention at each mixing ratio (Compound 9: Compound 13). 図6は、本発明の化合物9及び化合物13を各混合比率(化合物9:化合物13)において同時自己組織化することにより生成したナノチューブの壁厚み(TEM像)を示す、図面に代わる写真である。FIG. 6 is a photograph replacing a drawing, showing the wall thickness (TEM image) of a nanotube produced by simultaneously self-assembling compound 9 and compound 13 of the present invention at each mixing ratio (compound 9: compound 13). . 図7は、本発明の化合物9及び化合物13から成るナノチューブの蛍光スペクトルのチャートを示す(図7(a))。図7(a)において、化合物9のモル分率は0%(原図では赤),10%(原図では青),100%(原図では緑)である。図7(b)は化合物9のモル分率に対する蛍光強度をプロットしたグラフである。FIG. 7 shows a chart of the fluorescence spectrum of a nanotube comprising the compounds 9 and 13 of the present invention (FIG. 7 (a)). In FIG. 7A, the molar fraction of compound 9 is 0% (red in the original drawing), 10% (blue in the original drawing), and 100% (green in the original drawing). FIG. 7B is a graph plotting the fluorescence intensity against the molar fraction of Compound 9. 図8は、化合物13から成るナノチューブの過渡光吸収スペクトルのチャートを示す(図8(a))。図8(b)は10モル%の化合物9及び90モル%の化合物13から成るナノチューブの過渡光吸収スペクトルのチャートを示す。FIG. 8 shows a chart of the transient light absorption spectrum of the nanotube made of the compound 13 (FIG. 8 (a)). FIG. 8 (b) shows a chart of transient light absorption spectra of a nanotube composed of 10 mol% of Compound 9 and 90 mol% of Compound 13. 図9は、10モル%の化合物9及び90モル%の化合物13から成るナノチューブにおける、波長605ナノメートルにおける過渡光吸収スペクトル強度(原図では赤)とマイクロ波伝導度の時間分解プロファイル(原図では青)のチャートを示す。FIG. 9 shows the time-resolved profile of the transient light absorption spectrum intensity (red in the original figure) and microwave conductivity (blue in the original figure) at a wavelength of 605 nanometers in a nanotube composed of 10 mol% of compound 9 and 90 mol% of compound 13. ) Chart. 図10は、化合物9及び化合物13から成るナノチューブの時間分解マイクロ波伝導度プロファイルのチャートを示す(図10(a))。図10(a)において、化合物9のモル分率はそれぞれ0%(原図では赤),10%(原図では青),25%(原図ではオレンジ),40%(原図では黄),50%(原図ではピンク),75%(原図では紫),100%(原図では緑)である。図10(b)は光伝導度の最大値をプロットしたグラフである。FIG. 10 shows a chart of the time-resolved microwave conductivity profile of nanotubes composed of compound 9 and compound 13 (FIG. 10 (a)). In FIG. 10 (a), the molar fraction of compound 9 is 0% (red in the original drawing), 10% (blue in the original drawing), 25% (orange in the original drawing), 40% (yellow in the original drawing), 50% ( Pink in the original map), 75% (purple in the original map), 100% (green in the original map). FIG. 10B is a graph plotting the maximum value of photoconductivity. 図11は、化合物9から成るナノチューブの光非照射時(原図では紫)及び光照射時の電流−電圧特性(光密度0.076mW/mm(原図では青),0.35mW/mm(原図では赤),0.91mW/mm(原図では緑))を示す(図11(a))。図11(b)は光密度0.91mW/mmにおける光照射/非照射による電流のスイッチング特性のチャートを示す。図11(c)は光密度0.91mW/mmにおける、化合物9を種々のモル分率で含むナノチューブの光照射時の電流−電圧特性を示すグラフであり、図中の数字は化合物9のモル分率を表す。11, when the nanotubes of light non-irradiated consisting of compounds 9 (purple in originals) and the light irradiation time of the current - voltage characteristics (optical density 0.076mW / mm 2 (blue in originals), 0.35 mW / mm 2 ( (Red in the original map), 0.91 mW / mm 2 (green in the original map)) is shown (FIG. 11 (a)). FIG. 11B shows a chart of current switching characteristics by light irradiation / non-irradiation at a light density of 0.91 mW / mm 2 . FIG. 11 (c) is a graph showing current-voltage characteristics during light irradiation of a nanotube containing compound 9 in various molar fractions at a light density of 0.91 mW / mm 2 . Represents the mole fraction. 図12は、時間分解マイクロ波伝導度プロファイルから求めた光キャリアの寿命をプロットしたグラフである(図12(a))。図12(b)定常光伝導測定において、10V電圧印加時、0.91mW/mmの光照射下における光電流値のプロット(原図では緑)と時間分解マイクロ波伝導度測定における光伝導度の最大値と光キャリアの寿命の積(原図では赤)のプロットである。FIG. 12 is a graph in which the lifetime of the optical carrier obtained from the time-resolved microwave conductivity profile is plotted (FIG. 12 (a)). FIG. 12 (b) shows a plot of photocurrent value (green in the original figure) under time-resolved microwave conductivity measurement and a plot of photocurrent value under 0.91 mW / mm 2 light irradiation when a 10 V voltage is applied. It is a plot of the product of the maximum value and the lifetime of the optical carrier (red in the original figure).

Claims (10)

次の一般式(1)、
[式中、R は炭素数10〜30のアルキル基を表し、R 及びR はC OCH CH (OCH CH )nOR (但し、R は水素原子、アルキル基又は式(3)
で表される金属を内包していてもよいメタノ[60]フラーレンカルボン酸基を表し、R 及びR は互いに同一でも異なっていてもよいがR 及びR の少なくともどちらか一方は金属を内包していてもよいメタノ[60]フラーレンカルボン酸基を有し、nは正の整数を表す。)を表す。]
で表される金属を内包していてもよいフラーレンを有する基を分子中に有するヘキサペリヘキサベンゾコロネン誘導体、及び次の一般式(2)、
[式中、R は炭素数10〜30のアルキル基を表し、R はC OCH CH (OCH CH )nOR (但し、R は水素原子又はアルキル基を表し、nは正の整数を表す。]
で表される金属を内包していてもよいフラーレンを有する基を分子中に有していないヘキサペリヘキサベンゾコロネン誘導体を含有してなる自己組織化ナノサイズ構造体。
The following general formula (1),
[Wherein, R 1 represents an alkyl group having 10 to 30 carbon atoms, R 2 and R 3 represent C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2 ) nOR 4 (where R 4 represents a hydrogen atom, an alkyl group) Group or formula (3)
Represents a methano [60] fullerenecarboxylic acid group which may include a metal represented by the formula: R 2 and R 3 may be the same or different from each other, but at least one of R 2 and R 3 is a metal And methano [60] fullerenecarboxylic acid group which may encapsulate n, and n represents a positive integer. ). ]
A hexaperihexabenzocoronene derivative having in its molecule a group having fullerene which may contain a metal represented by the following general formula (2),
[Wherein, R 5 represents an alkyl group having 10 to 30 carbon atoms, and R 6 represents C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2 ) nOR 7 (where R 7 represents a hydrogen atom or an alkyl group. , N represents a positive integer.]
A self-assembled nano-sized structure comprising a hexaperihexabenzocoronene derivative that does not have a fullerene-containing group that may contain a metal represented by
自己組織化ナノサイズ構造体が、自己組織化により形成されるナノチューブである請求項1に記載の自己組織化ナノサイズ構造体。   The self-assembled nano-sized structure according to claim 1, wherein the self-assembled nano-sized structure is a nanotube formed by self-assembly. 金属を内包していてもよいフラーレンを有する基を分子中に有するヘキサペリヘキサベンゾコロネン誘導体、及び金属を内包していてもよいフラーレンを有する基を分子中に有していないヘキサペリヘキサベンゾコロネン誘導体の合計のモル数に対する、金属を内包していてもよいフラーレンを有する基を分子中に有するヘキサペリヘキサベンゾコロネン誘導体のモル分率が5〜90%である請求項1又は2に記載の自己組織化ナノサイズ構造体。 Hexperihexabenzocoronene derivative having in its molecule a group having fullerene which may contain metal and hexaperihexabenzobenzocorene having no group having fullerene which may contain metal in its molecule to the number of moles of the total derivative, according to claim 1 or 2 mole fraction of hexamethylene Peri hexabenzocoronene derivative is 5% to 90% having a group having a good fullerenes also be contained metal in the molecule Self-assembled nano-sized structure. 金属を内包していてもよいフラーレンを有する基を分子中に有するヘキサペリヘキサベンゾコロネン誘導体のモル分率が5〜50%である請求項1〜に記載の自己組織化ナノサイズ構造体。 The self-assembled nano-sized structure according to any one of claims 1 to 3 , wherein a mole fraction of a hexaperihexabenzocoronene derivative having a group having a fullerene which may include a metal in a molecule is 5 to 50%. 一般式(1)で表されるヘキサペリヘキサベンゾコロネン誘導体が、次の式(4)
で表される化合物である請求項1〜4に記載の自己組織化ナノサイズ構造体。
The hexaperihexabenzocoronene derivative represented by the general formula (1) is represented by the following formula (4)
The self-assembled nano-sized structure according to claim 1 , wherein
一般式(2)で表されるヘキサペリヘキサベンゾコロネン誘導体が、次の式(5)
で表される化合物である請求項1〜5のいずれかに記載の自己組織化ナノサイズ構造体。
The hexaperihexabenzocoronene derivative represented by the general formula (2) has the following formula (5)
The self-assembled nanosized structure according to any one of claims 1 to 5 , wherein
請求項1〜のいずれかに記載の自己組織化ナノサイズ構造体からなる光検出素子。 Light detecting elements consisting of self-assembled nano-sized structure according to any one of claims 1-6. 請求項1〜のいずれかに記載の自己組織化ナノサイズ構造体からなる光スイッチング素子。 The optical switching element which consists of a self-organization nanosize structure in any one of Claims 1-6 . 請求項1〜のいずれかに記載の自己組織化ナノサイズ構造体からなる光応答性電荷輸送素子。 Photoresponsive charge transporting device consisting of self-assembled nano-sized structure according to any one of claims 1-6. 請求項7〜9のいずれかに記載の素子の少なくとも1種を含有してなる電子部品材料。 The electronic component material containing at least 1 sort (s) of the element in any one of Claims 7-9 .
JP2008222836A 2008-08-29 2008-08-29 Self-assembled nanotubes with fullerenes on the inner and outer wall surfaces and tuned photoconductive properties Expired - Fee Related JP5091059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008222836A JP5091059B2 (en) 2008-08-29 2008-08-29 Self-assembled nanotubes with fullerenes on the inner and outer wall surfaces and tuned photoconductive properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008222836A JP5091059B2 (en) 2008-08-29 2008-08-29 Self-assembled nanotubes with fullerenes on the inner and outer wall surfaces and tuned photoconductive properties

Publications (2)

Publication Number Publication Date
JP2010053109A JP2010053109A (en) 2010-03-11
JP5091059B2 true JP5091059B2 (en) 2012-12-05

Family

ID=42069395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008222836A Expired - Fee Related JP5091059B2 (en) 2008-08-29 2008-08-29 Self-assembled nanotubes with fullerenes on the inner and outer wall surfaces and tuned photoconductive properties

Country Status (1)

Country Link
JP (1) JP5091059B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9786848B2 (en) 2010-10-14 2017-10-10 University Of Utah Research Foundation Nanofiber-based heterojunction approach for high photoconductivity on organic materials

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11311815A (en) * 1998-04-28 1999-11-09 Mitsubishi Electric Corp Photorefractive organic and inorganic composite material and its production
JP2006066838A (en) * 2004-08-30 2006-03-09 Teikoku Tsushin Kogyo Co Ltd Circuit board
JP5004151B2 (en) * 2006-03-10 2012-08-22 独立行政法人科学技術振興機構 Novel hexabenzocoronene derivative and photoconductive nanotube comprising the same
JP2007335760A (en) * 2006-06-16 2007-12-27 Fujifilm Corp Photoelectric converting film, and solar battery photoelectric converting element, or imaging element including same
JP2008272916A (en) * 2007-05-07 2008-11-13 Japan Science & Technology Agency Self-assembled nanotube with tuned photoelectric conductive property

Also Published As

Publication number Publication date
JP2010053109A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
KR20100065323A (en) Fullerene derivative
WO2015068858A1 (en) Solvent-free photon upconversion system
Lu et al. New frog-type Dibenzo [a, c][1, 2, 5] thiadiazolo [3, 4-i] phenazine heterocyclic derivatives with aggregation-enhanced one-and two-photon excitation NIR fluorescence
JP2012519382A (en) Photosensitive optoelectronic device containing a polycyclic aromatic compound
EP3626801A1 (en) Novel fluorescent pyrene derivatives, methods for preparing the same, and uses thereof
JP5757609B2 (en) Donor-π-acceptor compound, fluorescent dye compound, and fluorescent dye compound for dye-sensitized solar cell
JP5515069B2 (en) Perylenetetracarboxylic acid bisimide derivative, n-type semiconductor, method for producing n-type semiconductor, and electronic device
JP5004151B2 (en) Novel hexabenzocoronene derivative and photoconductive nanotube comprising the same
JP2007063364A (en) New donor acceptor connection-based derivative
JP2010056492A (en) Bipolar field-effect transistor where carrier mobility is tuned up
JP4625947B2 (en) Optoelectronic device
JP5091059B2 (en) Self-assembled nanotubes with fullerenes on the inner and outer wall surfaces and tuned photoconductive properties
JP2008272916A (en) Self-assembled nanotube with tuned photoelectric conductive property
JP4913007B2 (en) Novel liquid crystalline n-type organic conductor material
JP4921400B2 (en) Supramolecular nanotubes with fullerenes on the inner and outer wall surfaces
JP2011102271A (en) Modulation of photoconductivity by coaxial nanotube composed of hexabenzocoronene-diarylethene linked molecule
JP2012236777A (en) Indolocarbazole-containing imide compound, and intermediate for synthesizing the same, method for producing them, organic semiconductor composition, and organic solar cell element
JP5503184B2 (en) Fullerene derivative, composition and organic photoelectric conversion device
JP5009716B2 (en) Field-effect transistor using hexabenzocoronene nanotubes
CN113816974B (en) Porphyrin covalent connection sym-triazacyclonium compound and preparation and application thereof
Hur et al. Highly crystalline 2, 6, 9, 10-tetrakis ((4-hexylphenyl) ethynyl) anthracene for efficient solution-processed field-effect transistors
CN113045598B (en) Oligothiophene functionalized ortho-carborane derivatives, and synthesis method and optical amplitude limiting application thereof
KR102159301B1 (en) Conjugated small molecule for donor of organic solar cell and organic solar cell including the same
JP6400268B2 (en) Fulvalene compound, production method thereof, solar cell material and organic transistor material
JP5015040B2 (en) Field effect transistor using supramolecular nanotubes with fullerenes on the inner and outer wall surfaces

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees