JP5090842B2 - Flapping flight equipment - Google Patents

Flapping flight equipment Download PDF

Info

Publication number
JP5090842B2
JP5090842B2 JP2007262093A JP2007262093A JP5090842B2 JP 5090842 B2 JP5090842 B2 JP 5090842B2 JP 2007262093 A JP2007262093 A JP 2007262093A JP 2007262093 A JP2007262093 A JP 2007262093A JP 5090842 B2 JP5090842 B2 JP 5090842B2
Authority
JP
Japan
Prior art keywords
wing
blade
center
blade surface
vicinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007262093A
Other languages
Japanese (ja)
Other versions
JP2009090770A (en
Inventor
浩 得竹
茂 砂田
龍一 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Osaka Prefecture University
Original Assignee
Ricoh Co Ltd
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd, Osaka Prefecture University filed Critical Ricoh Co Ltd
Priority to JP2007262093A priority Critical patent/JP5090842B2/en
Publication of JP2009090770A publication Critical patent/JP2009090770A/en
Application granted granted Critical
Publication of JP5090842B2 publication Critical patent/JP5090842B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Toys (AREA)

Description

本発明は、主翼の振り下ろし動作と振り上げ動作とが繰り返される羽ばたき運動によって飛行する羽ばたき飛行装置に関する。 The present invention relates to a flapping flight apparatus that flies by a flapping motion in which a main wing swing-down operation and a swing-up operation are repeated.

羽ばたき運動を利用して飛行する羽ばたき飛行装置は、ヘリコプタのような回転翼機とともに、低速飛行が可能な飛行装置として開発がなされており、たとえば飛行玩具として利用されている。 A flapping flight apparatus that uses a flapping motion to fly is developed as a flying apparatus capable of low-speed flight together with a rotary wing aircraft such as a helicopter. For example, it is used as a flying toy.

低速飛行を行う羽ばたき飛行装置では、羽ばたき運動により推力を発生させるとともに、羽ばたき運動の振り下ろし動作および振り上げ動作によって発生する揚力をできるだけ大きくすることが求められている。 In a flapping flight apparatus that performs low-speed flight, it is required to generate thrust by flapping motion and to increase as much as possible the lift generated by the swing-down and swing-up operations of the flapping motion.

揚力を得る一つの方法として、振り下ろし時の主翼のピッチ角と振り上げ時の主翼のピッチ角とを周期的に変更するフェザリング運動により、所望の揚力を得るようにすることが開示されている(特許文献1参照)。 As one method of obtaining lift, it is disclosed to obtain a desired lift by a feathering motion that periodically changes the pitch angle of the main wing when swinging down and the pitch angle of the main wing when swinging up (See Patent Document 1).

また、別の方法として、羽ばたき翼の後縁を非固定とするとともに、非固定にした羽ばたき翼の背骨部分にバネを設け、このバネの後端部に後縁高調節糸を結ぶようにし、羽ばたき翼を振り下ろすときは後縁高調節糸が張って翼面膜の上昇を制限し、羽ばたき翼を振り上げるときは空気の抵抗で翼面膜が一時的に下降するようにして、空気抵抗を逸らし、主翼スパーの振り上げを素早く行って機体降下を最小限に抑えるようにした羽ばたき飛行機が開示されている(特許文献2参照)。
特開2005−119658号公報 特開2002−85860号公報
As another method, the trailing edge of the flapping wing is unfixed, and a spring is provided on the spine portion of the flapping wing that is not fixed, and a trailing edge height adjusting thread is tied to the rear end of the spring, When swinging down the flapping wing, the trailing edge height adjusting thread is stretched to restrict the rise of the blade surface film, and when swinging up the flapping wing, the air surface resistance is temporarily lowered by the air resistance to divert the air resistance. In addition, a flapping airplane is disclosed in which the main wing spar is quickly swung up to minimize the aircraft descent (see Patent Document 2).
JP 2005-119658 A JP 2002-85860 A

フェザリング運動を利用して揚力を生み出す飛行装置では、主翼(羽ばたき翼)による振り下ろし動作と振り上げ動作(一般にフラッピング運動ともいう)を行うとともに、フェザリング軸(例えば主翼スパーをフェザリング軸とする)の回りに、主翼をねじる運動を与える必要があり、どうしても構造が複雑になる。 In a flying device that generates lift using a feathering motion, the main wing (flapping wing) swings down and swings up (generally referred to as a flapping motion) and a feathering shaft (for example, a main wing spar is used as a feathering shaft). It is necessary to give a motion of twisting the main wing around the structure, which inevitably complicates the structure.

これに対し、特許文献2に記載されているような、主翼を支える背骨部分をバネ構造にして、振り下ろし動作時と振り上げ動作時の背骨の位置・形状を変化させるようにした構造の飛行装置では、フェザリング運動を利用しなくても、振り下ろし動作時と振り上げ動作時の主翼の形状が受動的に変化させられることにより、振り下ろし時の上昇力と振り上げ時の下降力とに差異が生じる結果、揚力が発生するようにしている。
この場合、簡単な構造で揚力を得ることができるが、横風等で背骨部分が左右に変形してしまうと主翼が左右非対称になり安定した飛行ができなくなるおそれがある。
On the other hand, as described in Patent Document 2, the spine portion supporting the main wing has a spring structure, and the flying device has a structure in which the position and shape of the spine during the swing-down operation and the swing-up operation are changed. Then, even if the feathering motion is not used, the shape of the main wing during the swing-down operation and the swing-up operation can be passively changed, so that there is a difference between the ascending force when swinging down and the descending force when swinging up. As a result, lift is generated.
In this case, lift can be obtained with a simple structure. However, if the spine portion is deformed to the left or right due to a crosswind or the like, the main wing may become asymmetrical, and stable flight may not be possible.

そこで、本発明は、フェザリング運動を利用することなく、簡単な構造で羽ばたき運動による低速飛行を可能にすることができ、安定した飛行ができる羽ばたき飛行装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a flapping flight apparatus that can enable low-speed flight by a flapping motion with a simple structure without using a feathering motion and can perform a stable flight.

上記課題を解決するためになされた本発明の羽ばたき飛行装置は、胴部と、胴部を軸にして羽ばたき運動を行う左右一対の主翼とを備え、各主翼がシート状の翼面部材と翼面部材の前縁を支持する翼骨部材とを有する羽ばたき飛行装置であって、胴部に支持される動力源と、動力源で発生した動力を翼骨部材に伝達して翼骨部材の振り下ろし動作および振り上げ動作を行わせる翼骨運動機構と、少なくとも振り下ろし動作時の翼面部材の形状、または、振り上げ動作時の翼面部材の形状のいずれかを能動的に変形させる翼面形状変形手段とを備えるようにしている。 A flapping flight device of the present invention made to solve the above-described problem includes a trunk portion and a pair of left and right main wings that perform flapping motion about the trunk portion, and each main wing is a sheet-like wing surface member and a wing. A flapping flight apparatus having a wing bone member that supports a leading edge of a face member, the power source supported by the trunk, and the power generated by the power source is transmitted to the wing bone member to swing the wing bone member. The blade motion mechanism that performs the lowering operation and the swing-up operation, and the blade surface shape deformation that actively deforms at least the shape of the blade member during the swing-down operation or the shape of the blade member during the swing-up operation Means.

すなわち、本発明によれば、翼面部材の形状を変化させる簡単な機構を設けて、振り下ろし動作時の翼面部材の形状と振り上げ動作時の翼面部材の形状とを、能動的に変化させる。ここで「能動的」とは、動力によって翼骨部材を振り下ろしたり、振り上げたりしたときに、空気の影響を受けて受動的に翼面形状が変化することを利用するものではなく、翼面部材に何らかの拘束力を働かせて変形することを意味する。
振り下ろし動作時の翼面部材の形状と振り上げ動作時の翼面部材の形状とを能動的に変化させることにより、振り下ろし動作時の翼面部材の形状と振り上げ動作時の翼面部材とを能動的に変化させることにより、振り下ろし動作時と振り上げ時の空気力が変化する。その結果、羽ばたき機の姿勢を制御する力を発生させることができる。
That is, according to the present invention, a simple mechanism for changing the shape of the blade surface member is provided to actively change the shape of the blade surface member during the swing-down operation and the shape of the blade surface member during the swing-up operation. Let Here, “active” does not use the fact that the blade surface shape is passively changed by the influence of air when the blade member is shaken down or lifted by power. It means that the member is deformed by applying some restraining force.
By actively changing the shape of the blade member during the swing-down operation and the shape of the blade member during the swing-up operation, the shape of the blade member during the swing-down operation and the blade member during the swing-up operation are changed. By actively changing, the aerodynamic force at the time of swinging down and swinging up changes. As a result, it is possible to generate a force that controls the posture of the flapping machine.

本発明によれば、翼面部材の形状を能動的に変化させたことによりフェザリング運動を用いることなく、大きな揚力を発生させることができ、簡単な構造で羽ばたき飛行を安定して行うことができる。 According to the present invention, it is possible to generate a large lift force without using a feathering motion by actively changing the shape of the wing surface member, and to perform flapping flight stably with a simple structure. it can.

(他の課題を解決するための手段および効果)
上記発明において、翼面形状変形手段は、翼面部材を能動的に変形させる変形量を調整する変形量調整機構をさらに備えるようにしてもよい。
これにより、振り下ろし動作時または振り上げ動作時の翼面形状を調整することができ、飛行時の環境に応じて姿勢を制御するための空気力を調整することができる。
(Means and effects for solving other problems)
In the above invention, the blade surface shape deforming means may further include a deformation amount adjusting mechanism for adjusting a deformation amount for actively deforming the blade surface member.
Thereby, the shape of the wing surface during the swing-down operation or the swing-up operation can be adjusted, and the aerodynamic force for controlling the attitude can be adjusted according to the environment during flight.

上記発明において、ピッチ方向の角速度計と、ピッチ方向の角速度に応じて前記変形量調整機構を作動して翼面部材を能動的に変形させる変形量を調整する変形量制御部とを備えるようにしてもよい。
これにより、変形量制御部が、角速度計により求めたピッチ方向の角速度に応じて、翼面部材を能動的に変形させる変形量を調整して頭上げモーメント、頭下げモーメントを制御することができるので、ピッチ方向の姿勢を安定化させることができる。
In the above invention, an angular velocity meter in the pitch direction and a deformation amount control unit that adjusts a deformation amount that actively deforms the blade member by operating the deformation amount adjusting mechanism according to the angular velocity in the pitch direction. May be.
Thereby, the deformation amount control unit can control the head-up moment and the head-down moment by adjusting the amount of deformation that actively deforms the blade member according to the angular velocity in the pitch direction obtained by the angular velocity meter. Therefore, the posture in the pitch direction can be stabilized.

上記発明において、翼面形状変形手段は、振り下ろし動作時に翼面中央付近の下降を制限して翼面中央付近が上に凸となるように翼面部材を斜め上方に能動的に引張る糸部材、または、振り上げ動作時に翼面中央付近の上昇を制限して翼面中央付近が下に凸となるように翼面部材を斜め下方に能動的に引張る糸部材からなるようにしてもよい。
ここで糸部材は、ほとんど変形しない非弾性糸であってもよいし、ゴム糸のような弾性糸であってもよい。好ましくは翼面部材に用いる材料が弾性を有するときには非弾性糸を用い、翼面部材に用いる材料が弾性を有しないときは弾性糸を用いるようにして、何らかの原因で大きな力が加わったときに翼面部材または糸の弾性力で吸収させることで衝撃を吸収するようにしてもよい。
これによれば、振り下ろし動作時に翼面中央付近が糸部材により引張られて翼面中央付近が上に凸となり、あるいは、振り上げ動作時に翼面中央付近が糸部材により引張られて翼面中央付近が下に凸となり、翼が発生する空気力を変化させることができる。
In the above invention, the blade surface shape deforming means is a yarn member that actively pulls the blade surface member obliquely upward so as to limit the lowering of the blade surface near the center during swinging operation so that the vicinity of the blade surface is convex upward. Alternatively, it may be made of a thread member that actively pulls the blade surface member obliquely downward so that the vicinity of the blade surface center is restricted during the swing-up operation so that the vicinity of the blade surface center is convex downward.
Here, the thread member may be an inelastic thread that hardly deforms, or may be an elastic thread such as a rubber thread. Preferably, when the material used for the wing surface member has elasticity, use an inelastic thread, and when the material used for the wing surface member does not have elasticity, use an elastic thread. You may make it absorb an impact by making it absorb with the elastic force of a blade surface member or a thread | yarn.
According to this, near the center of the blade surface is pulled by the thread member during the swing-down operation and the vicinity of the center of the blade surface is convex upward, or near the center of the blade surface is pulled by the thread member during the swing-up operation Becomes convex downward, and the aerodynamic force generated by the wing can be changed.

上記発明において、翼面形状変形手段は、振り下ろし動作時に翼面中央付近の下降を制限して翼面中央付近が上に凸となるように翼面部材を斜め上方に能動的に引張る糸部材、または、振り上げ動作時に翼面中央付近の上昇を制限して翼面中央付近が下に凸となるように翼面部材を斜め下方に能動的に引張る糸部材からなり、前記変形量調整機構は胴部に傾動自在に取り付けられた支点部材により構成され、前記糸部材の一端が左翼面、他端が右翼面の中央付近にそれぞれ固定されるとともに、支点部材が前記糸部材の中間付近を支え、支点部材の傾き角の調整により翼面中央の下降量または上昇量を制限するようにしてもよい。
これによれば、1つの変形量調整機構で、左右同時かつ均等に翼の形状を制限することができる。
In the above invention, the blade surface shape deforming means is a yarn member that actively pulls the blade surface member obliquely upward so as to limit the lowering of the blade surface near the center during swinging operation so that the vicinity of the blade surface is convex upward. Or a thread member that actively pulls the blade surface member obliquely downward so that the vicinity of the blade surface center is restricted downward during swinging operation so that the vicinity of the blade surface center is convex downward. The fulcrum member is tiltably attached to the body, and one end of the thread member is fixed to the left wing surface and the other end is fixed near the center of the right wing surface, and the fulcrum member supports the vicinity of the middle of the thread member. The lowering amount or rising amount at the center of the blade surface may be limited by adjusting the tilt angle of the fulcrum member.
According to this, it is possible to restrict the shape of the wings at the same time on the left and right simultaneously with one deformation amount adjusting mechanism.

上記発明において、翼面形状変形手段は、振り下ろし動作時に翼面中央付近の下降を制限して翼面中央付近が上に凸となるように翼面部材を斜め上方に能動的に引張る糸部材、または、振り上げ動作時に翼面中央付近の上昇を制限して翼面中央付近が下に凸となるように翼面部材を斜め下方に能動的に引張る糸部材からなり、前記変形量調整機構は、胴部にそれぞれ独立に傾動自在に取り付けられた左翼支点部材と右翼支点部材とにより構成され、前記糸部材は左翼面中央付近と左翼支点部材とを結ぶ左翼糸部材、および、右翼面中央付近と右翼支点部材とを結ぶ右翼糸部材とからなり、各支点部材の傾き角の調整により各翼面中央付近の下降量または上昇量を独立に制限するようにしてもよい。
これによれば、左右の翼の形状を独立に制限することができるので、飛行方向を調整することができるようになる。
In the above invention, the blade surface shape deforming means is a yarn member that actively pulls the blade surface member obliquely upward so as to limit the lowering of the blade surface near the center during swinging operation so that the vicinity of the blade surface is convex upward. Or a thread member that actively pulls the blade surface member obliquely downward so that the vicinity of the blade surface center is restricted downward during swinging operation so that the vicinity of the blade surface center is convex downward. A left wing fulcrum member and a right wing fulcrum member that are independently tiltably attached to the body, and the thread member is a left wing thread member that connects the vicinity of the left wing surface center and the left wing fulcrum member, and the vicinity of the right wing surface center And a right wing thread member connecting the right wing fulcrum member, and the descent amount or the ascending amount near the center of each wing surface may be independently limited by adjusting the inclination angle of each fulcrum member.
According to this, since the shapes of the left and right wings can be independently restricted, the flight direction can be adjusted.

上記発明において、翼面形状変形手段は、振り下ろし動作時に、翼面を下方から押圧して翼面中央付近の下降を制限することにより翼面中央付近が上に凸となるように能動的に変形させる押圧部材、または、振り上げ動作時に翼面を上方から押圧して翼面中央付近の上昇を制限することにより翼面中央付近が下に凸となるように能動的に変形させる押圧部材からなるようにしてもよい。
これによれば、振り下ろし動作時に翼面中央付近が押圧部材に押し上げられて翼面中央付近が上に凸となり、あるいは振り上げ動作時に翼面中央付近が押圧部材により押し下げられて翼面中央付近が下に凸となり、翼が発生する空気力を変化させることができる。
In the above invention, the wing surface shape deforming means actively presses the wing surface from below and restricts the lowering of the wing surface center so that the vicinity of the wing surface center is convex upward during the swing-down operation. It consists of a pressing member that deforms, or a pressing member that actively deforms so that the vicinity of the center of the blade surface is convex downward by pressing the blade surface from above during swinging operation and restricting the rise near the center of the blade surface You may do it.
According to this, near the center of the blade surface is pushed up by the pressing member during the swinging operation, and the vicinity of the center of the blade surface is convex upward, or near the center of the blade surface is pushed down by the pressing member during the swinging operation, It becomes convex downward and the aerodynamic force generated by the wing can be changed.

上記発明において、翼面形状変形手段は、胴部にそれぞれ独立に支持された左翼押圧部材と右翼押圧部材とにより構成され、各押圧部材は各翼面中央付近に接する高さが独立に調整できるよう構成されてもよい。
これによれば、押圧部材を用いた調整においても、左右の翼の形状を独立に制限することができるので、飛行方向を調整することができるようになる。
In the above invention, the blade surface shape deforming means is constituted by a left wing pressing member and a right wing pressing member that are independently supported by the trunk portion, and each pressing member can independently adjust the height in contact with the vicinity of the center of each wing surface. It may be configured as follows.
According to this, even in the adjustment using the pressing member, the shape of the left and right wings can be independently restricted, so that the flight direction can be adjusted.

上記発明において、翼面形状変形手段は、翼面に貼り付けられ翼面を能動的に変形させる圧電素子またはバイオメタルからなる翼変形素子と、翼骨部材の振り下ろし動作および振り上げ動作に同期して翼変形素子を作動して翼面形状を周期的に変形する翼変形素子制御部とからなるようにしてもよい。
これによれば、翼変形素子制御部が、翼骨部材の振り下ろし動作および振り上げ動作に同期して翼変形素子を作動して翼面形状を周期的に変形し、例えば、振り下ろし動作時に翼を上に凸にして強い上昇力を発生し、振り上げ動作時に解除して制御を解除することで空気力を変化させることができる。
In the above invention, the blade surface shape deforming means is synchronized with the blade deformation element made of a piezoelectric element or biometal attached to the blade surface and actively deforming the blade surface, and the swinging and swinging operations of the blade member. The blade deformation element controller may be configured to operate the blade deformation element to periodically deform the blade surface shape.
According to this, the wing deformation element control unit operates the wing deformation element in synchronization with the swing-down operation and the swing-up operation of the wing bone member to periodically deform the blade surface shape. The aerodynamic force can be changed by generating a strong ascending force with a convex upward and releasing the control during the swing-up operation.

上記発明において、翼面形状変形手段は、左翼用の翼変形素子と右翼用の翼変形素子とが独立に設けられ、翼変形素子制御部は、左翼用の翼変形素子と右翼用の翼変形素子とを独立に制御するようにしてもよい。
これによれば、翼変形素子を用いた調整においても、左右の翼の形状を独立に制限することができるので、飛行方向を調整することができるようになる。
In the above invention, the wing surface shape deforming means is provided with the left wing wing deforming element and the right wing wing deforming element independently, and the wing deforming element control unit is configured to control the left wing wing deforming element and the right wing wing deforming element. You may make it control an element independently.
According to this, even in the adjustment using the wing deforming element, the shape of the left and right wings can be independently restricted, so that the flight direction can be adjusted.

上記発明において、翼面形状変形手段は、左右の主翼それぞれに対し左右の主翼が胴部に固定された位置の近傍を胴部に沿って前後に並ぶ複数の位置で、それぞれ下方に能動的に引張る糸部材からなるようにしてもよい。
これによれば、振り下ろし動作時あるいは振り上げ動作時に左右の主翼が胴部に固定された位置の近傍(主翼の付け根近傍部分)の張力を変化させることにより、翼が発生する空気力を変化させることができる。
In the above invention, the wing surface shape deforming means actively lowers each of the left and right main wings at a plurality of positions lined up and down along the trunk in the vicinity of the position where the left and right main wings are fixed to the trunk. You may make it consist of the thread | yarn member to pull.
According to this, the aerodynamic force generated by the wing is changed by changing the tension in the vicinity of the position where the left and right main wings are fixed to the trunk (the vicinity of the base of the main wing) during the swing-down operation or the swing-up operation. be able to.

上記発明において、翼面形状変形手段は、左右の主翼それぞれに対し左右の主翼が胴部に固定された位置の近傍を胴部に沿って前後に並ぶ複数の位置で、それぞれ下方に能動的に引張る糸部材からなり、変形量調整機構は、胴部に沿って前後に並ぶ複数の位置で、胴部に傾動自在に取り付けられた支点部材およびローラにより構成され、前記糸部材は一端が胴部近傍の左翼面または胴部近傍の右翼面にそれぞれ固定されるとともに、他端がローラを介して支点部材に固定されるようにしてもよい。
これによれば、翼が発生する空気力を制御することができる。
In the above invention, the wing surface shape deforming means actively lowers each of the left and right main wings at a plurality of positions lined up and down along the trunk in the vicinity of the position where the left and right main wings are fixed to the trunk. The deformation adjustment mechanism is composed of a fulcrum member and a roller that are tiltably attached to the body at a plurality of positions aligned in the front-rear direction along the body, and the thread member has one end at the body. The other end may be fixed to the left wing surface in the vicinity or the right wing surface in the vicinity of the trunk portion, and the other end may be fixed to the fulcrum member via a roller.
According to this, the aerodynamic force generated by the wing can be controlled.

以下、本発明の実施形態について、図面を用いて説明する。なお、以下に説明するいくつかの実施例は、一例にすぎず、本発明の要旨を逸脱しない範囲で変形実施することが可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that some of the embodiments described below are merely examples, and modifications can be made without departing from the scope of the present invention.

(実施形態1)
最初に、糸を用いて翼面の移動を制限することにより、主翼形状を能動的に変形させる実施形態について説明する。
図1は本発明の一実施形態である羽ばたき飛行装置の構成を示す斜視図である。また、図2は機体前方から見た正面図である。
羽ばたき飛行装置1の構造は、主として胴部11と、主翼12(左翼12a、右翼12b)、尾翼13、小型モータ21(電池を含む)、リンク機構22、翼拘束糸23、糸調節機構24からなる。
(Embodiment 1)
First, an embodiment in which the main wing shape is actively deformed by restricting the movement of the wing surface using a thread will be described.
FIG. 1 is a perspective view showing a configuration of a flapping flight apparatus according to an embodiment of the present invention. FIG. 2 is a front view seen from the front of the aircraft.
The structure of the flapping flight apparatus 1 mainly includes a trunk 11, a main wing 12 (left wing 12 a and right wing 12 b), a tail wing 13, a small motor 21 (including a battery), a link mechanism 22, a wing restraint thread 23, and a thread adjustment mechanism 24. Become.

胴部11は棒状体からなり、主翼12(左翼12a、右翼12b)、尾翼13の他に、小型モータ21が取り付けられる。胴部11自体は強度を持たせるとともに軽量化を図るために木材、アルミ材が用いられる。 The trunk portion 11 is formed of a rod-like body, and a small motor 21 is attached in addition to the main wing 12 (the left wing 12a and the right wing 12b) and the tail wing 13. The body 11 itself is made of wood or aluminum in order to give strength and reduce weight.

主翼12は、胴部11を中心にして左右対称に延びる翼骨14(左翼骨14a、右翼骨14b)と、翼面15(左翼面15a、右翼面15b)とからなる。翼骨14は木材、アルミ材で形成される。翼面15は合成樹脂フィルムや紙等の変形可能なシート材で形成され、胴部11に接着剤で張り付けるようにしてある。翼面15の前縁は翼骨14で支持するようにしてある。一方、翼面15の後縁は自由に変形できるようにしてある。これにより、主翼12(左翼12a、右翼12b)の翼骨14を振り下ろしたり、振り上げたりして羽ばたき運動を行うと、翼面15の前縁側は翼骨15の動きに追随して上下に移動するが、翼面15の中央から後縁にかけては風圧の抵抗を受け、撓りながら追従することになる。 The main wing 12 includes a wing bone 14 (left wing bone 14a and right wing bone 14b) that extends symmetrically about the trunk 11 and a wing surface 15 (left wing surface 15a and right wing surface 15b). The wing bone 14 is made of wood or aluminum. The blade surface 15 is formed of a deformable sheet material such as a synthetic resin film or paper, and is attached to the trunk portion 11 with an adhesive. The leading edge of the wing surface 15 is supported by the wing bone 14. On the other hand, the rear edge of the blade surface 15 can be freely deformed. As a result, when the wingbone 14 of the main wing 12 (the left wing 12a and the right wing 12b) is swung down or swung up and flapping, the leading edge side of the wing surface 15 moves up and down following the movement of the wingbone 15. However, the wind pressure resistance is received from the center of the blade surface 15 to the rear edge, and the blade 15 follows while bending.

尾翼13は、固定翼にするため、翼面の周囲を翼骨により支持するようにしてある。尾翼13は飛行姿勢を安定させるための補助翼として用いられる。 Since the tail 13 is a fixed wing, the periphery of the wing surface is supported by a wing bone. The tail 13 is used as an auxiliary wing for stabilizing the flight posture.

小型モータ21は胴部11に支持され、羽ばたき運動の駆動装置として作用する。
リンク機構22は小型モータ21と翼骨14(14a、14b)との間を連結し、小型モータ21により発生した回転運動を、周知のリンク構造によって翼骨14の上下動に変換することにより、翼骨14の羽ばたき運動を起こさせる。
The small motor 21 is supported by the body 11 and functions as a driving device for flapping motion.
The link mechanism 22 connects the small motor 21 and the wing bone 14 (14a, 14b), and converts the rotational motion generated by the small motor 21 into the vertical movement of the wing bone 14 by a known link structure, The flapping motion of the wing bone 14 is caused.

翼拘束糸23は、一端が左翼面15aの中央付近に固定され、他端が右翼面15bの中央付近に固定され、両翼を結ぶようにしてある。糸調節機構24は、アーム24aと、アーム24aを傾動させるモータ24bとからなり、アーム24aの先に設けた孔24cを、翼拘束糸23の中間部分が貫通するようにしてある。
アーム24aの傾動角を調整することにより、翼面15が振り下ろされたときに翼面の中央付近が翼拘束糸23によって引かれる結果、翼面形状が能動的に変形するようになる。
One end of the wing restraint yarn 23 is fixed near the center of the left wing surface 15a, and the other end is fixed near the center of the right wing surface 15b so that both wings are connected. The yarn adjusting mechanism 24 includes an arm 24a and a motor 24b that tilts the arm 24a, and an intermediate portion of the blade restraining yarn 23 passes through a hole 24c provided at the tip of the arm 24a.
By adjusting the tilt angle of the arm 24a, when the blade surface 15 is swung down, the vicinity of the center of the blade surface is pulled by the blade restraining thread 23, so that the blade surface shape is actively deformed.

そしてモータ24bを駆動して傾動角を変化させて、翼拘束糸23による翼面15(15a、15b)の拘束状態を変化させることで、振り下ろし動作の際に翼面15の下降できる限界を調整することにより、翼面形状が調整されるようにしてある。 Then, by driving the motor 24b and changing the tilt angle to change the restraint state of the blade surface 15 (15a, 15b) by the blade restraining yarn 23, the limit that the blade surface 15 can be lowered during the swing-down operation is set. By adjusting, the blade surface shape is adjusted.

次に、飛行動作について説明する。図3は羽ばたき運動の1周期における主翼12(左翼12a、右翼12b)の状態を模式的に示した図である。
主翼12を最も振り上げた状態(図3(a))から、振り下ろして水平に近づけ(図3(b))、さらに振り下ろして最も振り下ろした状態(図3(c))になると、再び振り上げて水平に近づけ(図3(d))、さらに振り上げて最も振り上げた状態(図3(a))に戻ることで、1回の羽ばたき運動が完結する。この1回の羽ばたき動作のうちで図3(b)と図3(c)で示した状態の間で翼拘束糸23が主翼12の翼面15の拘束を始め、図3(c)と図3(d)で示した状態の間で翼拘束糸23が主翼12の翼面15の拘束を解除する。
Next, the flight operation will be described. FIG. 3 is a diagram schematically showing the state of the main wing 12 (left wing 12a, right wing 12b) in one cycle of flapping motion.
When the main wing 12 is swung up most (FIG. 3 (a)), it is swung down to be almost horizontal (FIG. 3 (b)) and further swung down to the most swung down state (FIG. 3 (c)). By swinging up and approaching the horizontal position (FIG. 3 (d)) and further swinging back to the most swung state (FIG. 3 (a)), one flapping motion is completed. Of the one flapping operation, the blade restraining yarn 23 starts restraining the blade surface 15 of the main wing 12 between the states shown in FIGS. 3B and 3C, and FIG. 3C and FIG. The blade restraining thread 23 releases the restraint of the blade surface 15 of the main wing 12 between the states shown by 3 (d).

図4は主翼12を最も振り上げた状態(すなわち図3(a)の状態)ときの羽ばたき飛行装置10の正面図であり、図5は主翼12を最も振り下ろした状態(すなわち図3(c)の状態)ときの羽ばたき飛行装置10の正面図である。最も振り上げた状態(図3(a))のとき翼拘束糸23は緩んでおり、翼面15は羽ばたき運動によって自然に撓るだけの動きをしている。これに対し、最も振り下ろした状態(図3(c))のとき翼拘束糸23は翼面15を引張って翼面15が大きく上に凸になるように調整している。
この結果、翼が発生する空気力を変化させることができる。
4 is a front view of the flapping flight apparatus 10 when the main wing 12 is swung up most (ie, the state shown in FIG. 3A), and FIG. 5 is a state where the main wing 12 is most swung down (ie, FIG. 3C). It is a front view of the flapping flight apparatus 10 when In the most swung up state (FIG. 3A), the blade restraining yarn 23 is loose, and the blade surface 15 moves so as to be naturally bent by the flapping motion. On the other hand, the blade restraining thread 23 is adjusted so that the blade surface 15 is greatly convex upward by pulling the blade surface 15 in the most swung down state (FIG. 3C).
As a result, the aerodynamic force generated by the blade can be changed.

比較のため、図6に翼拘束糸23を用いないで羽ばたき運動を行ったときの主翼の状態を示す。図6(a)は最も振り上げた状態、図6(c)は最も振り下ろした状態である。
図3(a)と図6(a)とではほとんど同じである。図3(c)と図6(c)とを比較すると、図6(c)では翼拘束糸によって翼面15の下降が制限されていないためあまり撓っていない。
図3と図6との比較により、翼拘束糸23によって振り下ろし動作時での翼面15の下降が制限されて大きく撓らせることができ、これにより、空気力を変化させることができる。
For comparison, FIG. 6 shows the state of the main wing when the flapping motion is performed without using the wing restraint yarn 23. FIG. 6 (a) shows a state where it is most up, and FIG. 6 (c) shows a state where it is most down.
FIG. 3A and FIG. 6A are almost the same. Comparing FIG. 3 (c) and FIG. 6 (c), in FIG. 6 (c), the lowering of the blade surface 15 is not restricted by the blade restraining yarn, so that it is not bent very much.
By comparing FIG. 3 with FIG. 6, the lowering of the blade surface 15 during the swing-down operation is restricted by the blade restraining thread 23, and the blade surface 15 can be largely bent, thereby changing the aerodynamic force.

なお、飛行中に風の影響等を受ける場合のように、空気力を調整する必要があるときは、糸調節機構24を作動して、翼拘束糸23の引張り具合を調整することができる。
また、本実施形態では翼拘束糸23によって振り下ろし動作時での翼面15の下降が制限されて大きく撓らせたが、振り上げ動作時での翼面15の上昇を制限するようにした場合も同様に、空気力を変化させることができる。
When it is necessary to adjust the aerodynamic force, such as when being affected by wind during flight, the tension adjusting mechanism 24 can be operated to adjust the tension of the wing restraint thread 23.
Further, in the present embodiment, the lowering of the blade surface 15 during the swing-down operation is restricted and greatly bent by the blade restraining thread 23, but the rise of the blade surface 15 during the swing-up operation is limited. Similarly, the aerodynamic force can be changed.

(実施形態2)
図7は本発明の第二実施形態である羽ばたき飛行装置2の構成を示す斜視図である。
図1で説明した羽ばたき飛行装置1と同様の部分については同符号を付すことにより、説明の一部を省略する。
本実施形態では、図1で説明した羽ばたき飛行装置10の胴部11に角速度センサ31と角速度センサ31からの角速度信号に基づいて糸調節機構24を作動して、翼拘束糸23の引張り具合を調整する制御機器32とが搭載されている。制御機器32はマイコンからなり、角速度信号に基づいて機体のピッチ角の変位を測定し、それに応じて羽ばたき運動を調整することでピッチ角が一定になるようにフィードバック制御を行う。これにより、ピッチ角が大きく変化しないように頭上げモーメント、あるいは頭下げモーメントを発生することができ、安定した飛行を行わせることができる。
(Embodiment 2)
FIG. 7 is a perspective view showing the configuration of the flapping flight apparatus 2 according to the second embodiment of the present invention.
Parts similar to those of the flapping flight apparatus 1 described with reference to FIG.
In this embodiment, the tension adjusting mechanism 24 is operated on the trunk 11 of the flapping flight apparatus 10 described with reference to FIG. 1 based on the angular velocity sensor 31 and the angular velocity signal from the angular velocity sensor 31 to adjust the tension of the wing restraint yarn 23. A control device 32 to be adjusted is mounted. The control device 32 is composed of a microcomputer and measures the displacement of the pitch angle of the airframe based on the angular velocity signal, and performs feedback control so that the pitch angle becomes constant by adjusting the flapping motion accordingly. Thereby, a head-up moment or a head-down moment can be generated so that the pitch angle does not change greatly, and stable flight can be performed.

(実施形態3)
図8は本発明の第三実施形態である羽ばたき飛行装置3の構成を示す斜視図である。本実施形態では、図1で説明した羽ばたき飛行装置10の胴部11に設けた翼拘束糸23および糸調節機構24を、左右それぞれ独立にし、左翼拘束糸23a,右翼拘束糸23b、左翼糸調節機構26、右翼糸調節機構27にする。
これにより、左翼12aと右翼12bとが独立に揚力を調整することができるようになり、左旋回、右旋回などの飛行方向の制御を加えることができるようになる。
(Embodiment 3)
FIG. 8 is a perspective view showing the configuration of the flapping flight apparatus 3 according to the third embodiment of the present invention. In the present embodiment, the wing restraint thread 23 and the thread adjustment mechanism 24 provided in the trunk portion 11 of the flapping flight apparatus 10 described in FIG. 1 are made independent on the left and right sides, and the left wing restraint thread 23a, the right wing restraint thread 23b, and the left wing thread adjuster. The mechanism 26 and the right wing thread adjusting mechanism 27 are used.
As a result, the left wing 12a and the right wing 12b can independently adjust the lift, and control of the flight direction such as a left turn and a right turn can be added.

(実施形態4)
図9は本発明の第四実施形態である羽ばたき飛行装置4の構成を示す斜視図である。本実施形態では、図1で説明した翼拘束糸23、糸調節機構24に代えて、押圧アーム41(左アーム41a、右アーム41b)を傾動させるアーム傾動機構42(左アーム傾動機構42a、右アーム傾動機構42b)が胴部11に取り付けられている。
そして、アーム傾動機構42(左アーム傾動機構42a、右アーム傾動機構42b)により、翼面15が振り下ろされたときに翼面15の中央付近が押圧アーム41(左アーム41a、右アーム41b)に接する高さを調整して翼面15が下降できる限界を適切にしておくことで、振り下ろし動作のときに翼面15中央付近が能動的に変形するようにする。
(Embodiment 4)
FIG. 9 is a perspective view showing the configuration of the flapping flight apparatus 4 according to the fourth embodiment of the present invention. In this embodiment, instead of the blade restraining thread 23 and the thread adjusting mechanism 24 described in FIG. 1, an arm tilting mechanism 42 (left arm tilting mechanism 42a, right arm) that tilts the pressing arm 41 (left arm 41a, right arm 41b). An arm tilting mechanism 42 b) is attached to the body 11.
When the blade surface 15 is swung down by the arm tilt mechanism 42 (left arm tilt mechanism 42a, right arm tilt mechanism 42b), the vicinity of the center of the blade surface 15 is the pressing arm 41 (left arm 41a, right arm 41b). By adjusting the height at which the blade surface 15 comes into contact with an appropriate limit for lowering the blade surface 15, the vicinity of the center of the blade surface 15 is actively deformed during the swing-down operation.

そしてアーム傾動機構42を駆動して傾動角を変化させて、押圧アーム41による拘束状態を変化させることで、振り下ろし動作の際に翼面15の中央付近の下降量が制限され、翼面形状が調整されるようにしてある。
これにより、図3で説明した実施形態と同様に、羽ばたき動作の1周期のうち、振り下ろし動作の途中で押圧アーム41が主翼12の翼面15の拘束を始め、振り上げ動作の途中で翼面15の拘束を解除する。なお、本実施形態においても左右の押圧アーム41を独立に制御してもよい。
また、振り上げ動作のときに翼面15の中央付近の上昇量が制限されるようにして翼面15中央付近が能動的に変形するようにしてもよい。
Then, by driving the arm tilting mechanism 42 to change the tilting angle and changing the restraint state by the pressing arm 41, the amount of lowering near the center of the blade surface 15 is limited during the swing-down operation, and the blade surface shape Is adjusted.
Thus, as in the embodiment described with reference to FIG. 3, the pressing arm 41 starts to restrain the blade surface 15 of the main wing 12 during the swing-down operation in one cycle of the flapping operation, and the blade surface during the swing-up operation. The restriction of 15 is released. In the present embodiment, the left and right pressing arms 41 may be controlled independently.
Further, the vicinity of the center of the blade surface 15 may be actively deformed so that the amount of increase near the center of the blade surface 15 is limited during the swing-up operation.

(実施形態5)
図10は本発明の第五実施形態である羽ばたき飛行装置5の構成を示す斜視図である。本実施形態では、図1で説明した翼拘束糸23、糸調節機構24に代えて、翼面15を機械的に歪ませて変形を与える圧電素子51(翼変形素子)と、リンク機構22の回転状態を検出して主翼12の振り下ろし動作および振り上げ動作を検出するセンサ52と、センサ52からの信号に基づいて振り下ろし動作および振り上げ動作に同期させて圧電素子51を作動し翼面形状を周期的に変形する翼変形素子制御部53とが胴部11に取り付けられている。なお、圧電素子51に代えてバイオメタルを用いてもよい。またセンサ52は直接主翼12の翼骨14の動きを検出してもよい。
翼変形素子制御部52は、マイコンからなり、図3で説明した実施形態と同様に、羽ばたき動作の1周期のうち、振り下ろし動作の途中で圧電素子51が主翼12の翼面15の能動的な変形を始め、振り上げ動作の途中で翼面15の能動的な変形を解除する。
これにより、空気力を変化させることができる。なお、本実施形態においても左右の圧電素子51を独立に制御してもよい。また、羽ばたきに同期させずに圧電素子を作動させてもよい。
(Embodiment 5)
FIG. 10 is a perspective view showing the configuration of the flapping flight apparatus 5 according to the fifth embodiment of the present invention. In the present embodiment, instead of the blade restraining thread 23 and the thread adjusting mechanism 24 described with reference to FIG. 1, a piezoelectric element 51 (blade deforming element) that mechanically distorts the blade surface 15 to deform and the link mechanism 22. A sensor 52 that detects the rotation state and detects the swing-down operation and the swing-up operation of the main wing 12, and the piezoelectric element 51 is operated in synchronization with the swing-down operation and the swing-up operation based on the signal from the sensor 52 to change the blade surface shape. A wing deformation element control unit 53 that periodically deforms is attached to the body 11. Note that biometal may be used instead of the piezoelectric element 51. The sensor 52 may directly detect the movement of the wing bone 14 of the main wing 12.
The wing deformation element control unit 52 is composed of a microcomputer, and in the same way as the embodiment described with reference to FIG. 3, the piezoelectric element 51 is active on the blade surface 15 of the main wing 12 during the swing-down operation in one cycle of the flapping operation. The active deformation of the blade surface 15 is released during the swing-up operation.
Thereby, aerodynamic force can be changed. In the present embodiment, the left and right piezoelectric elements 51 may be controlled independently. Further, the piezoelectric element may be operated without synchronizing with flapping.

(実施形態6)
図11は本発明の第六実施形態である羽ばたき飛行装置6の構成を示す図であり、図11(a)はその斜視図、図11(b)はその底面側から見た要部拡大図である。
本実施形態では、図1で説明した翼拘束糸23、糸調節機構24に代えて、前から、翼拘束糸61(左翼拘束糸61a,右翼拘束糸61b)、翼拘束糸62(左翼拘束糸62a,右翼拘束糸62b)、翼拘束糸63(左翼拘束糸63a,右翼拘束糸63b)が、この順で翼面15a,15bに固定され、また、糸調節機構64(アーム64a,モータ64b、孔64c,ローラ64d)、糸調節機構65(アーム65a,モータ65b、孔65c,ローラ65d)、糸調節機構66(アーム66a,モータ66b、孔66c,ローラ66d)がこの順で胴部11に支持されている。
(Embodiment 6)
FIG. 11 is a diagram showing the configuration of a flapping flight apparatus 6 according to a sixth embodiment of the present invention, FIG. 11 (a) is a perspective view thereof, and FIG. 11 (b) is an enlarged view of a main part viewed from the bottom side. It is.
In this embodiment, instead of the wing restraint thread 23 and the thread adjustment mechanism 24 described in FIG. 1, the wing restraint thread 61 (left wing restraint thread 61a, right wing restraint thread 61b) and wing restraint thread 62 (left wing restraint thread) are arranged from the front. 62a, right wing restraint thread 62b) and wing restraint thread 63 (left wing restraint thread 63a, right wing restraint thread 63b) are fixed to the blade surfaces 15a, 15b in this order, and a thread adjusting mechanism 64 (arm 64a, motor 64b, Hole 64c, roller 64d), thread adjusting mechanism 65 (arm 65a, motor 65b, hole 65c, roller 65d), thread adjusting mechanism 66 (arm 66a, motor 66b, hole 66c, roller 66d) in this order in the body 11. It is supported.

左翼拘束糸61aは、一端が左翼面15aに固定され、他端が糸の方向を変えるためのローラ64dを介してアーム64aの孔64cに結ばれている。同様に、右翼拘束糸61bは、一端が右翼面15bに固定され、他端が糸の方向を変えるためのローラ64dを介してアーム64aの孔64cに結ばれている。ローラ64dは左翼拘束糸用と右翼拘束糸用との一対のローラが同軸状に取り付けてあり、それぞれが逆方向に回転できるようにしてある。なお、摩擦を小さくした円筒側面を有する丸棒体をローラ64として取り付け、各糸が円筒側面上を滑るようにしてもよい。
同様に、左翼拘束糸62aは、一端が左翼面15aに固定され、他端がローラ65dを介してアーム65aの孔65cに結ばれている。右翼拘束糸62bは、一端が右翼面15bに固定され、他端がローラ65dを介してアーム65aの孔65cに結ばれている。
同様に、左翼拘束糸63aは、一端が左翼面15aに固定され、他端がローラ66dを介してアーム66aの孔66cに結ばれている。右翼拘束糸63bは、一端が右翼面15bに固定され、他端がローラ66dを介してアーム66aの孔66cに結ばれている。
The left wing restraint yarn 61a has one end fixed to the left wing surface 15a and the other end tied to a hole 64c of the arm 64a via a roller 64d for changing the direction of the yarn. Similarly, the right wing restraint thread 61b has one end fixed to the right wing surface 15b and the other end connected to a hole 64c of the arm 64a via a roller 64d for changing the direction of the thread. The roller 64d has a pair of rollers for a left wing restraint yarn and a right wing restraint yarn attached coaxially so that they can rotate in opposite directions. A round bar having a cylindrical side surface with reduced friction may be attached as the roller 64 so that each thread slides on the cylindrical side surface.
Similarly, one end of the left wing restraint thread 62a is fixed to the left wing surface 15a, and the other end is tied to the hole 65c of the arm 65a via a roller 65d. One end of the right wing restraining thread 62b is fixed to the right wing surface 15b, and the other end is tied to the hole 65c of the arm 65a via a roller 65d.
Similarly, one end of the left wing restraint thread 63a is fixed to the left wing surface 15a, and the other end is connected to the hole 66c of the arm 66a via a roller 66d. The right wing restraint thread 63b has one end fixed to the right wing surface 15b and the other end connected to a hole 66c of the arm 66a via a roller 66d.

アーム64a,65a,66aの傾動角を調整することにより、翼拘束糸61、62、63の張力を独立に変化させることができ、これにより胴部11に取り付けられた位置近傍の翼面15の翼形状が変形されるようにしてある。
これにより、空気力を変化させることができる。なお、本実施形態においても左右の翼抑制糸を独立に制御してもよい。その場合は左右の主翼ごとに糸調節機構を設けることになる。
By adjusting the tilt angles of the arms 64a, 65a, 66a, the tension of the blade restraining yarns 61, 62, 63 can be changed independently, so that the blade surface 15 in the vicinity of the position attached to the trunk portion 11 can be changed. The wing shape is deformed.
Thereby, aerodynamic force can be changed. In the present embodiment, the left and right blade suppression yarns may be controlled independently. In that case, a thread adjusting mechanism is provided for each of the left and right main wings.

本発明は、羽ばたき動作により低速で飛行を行う羽ばたき飛行装置に利用することができ、具体的には飛行玩具、あるいはセンサや軽量カメラを搭載した監視用飛行装置として利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used for a flapping flight apparatus that flies at a low speed by a flapping operation. Specifically, the present invention can be used as a flying toy or a monitoring flying apparatus equipped with a sensor or a lightweight camera.

本発明の一実施形態であるはばたき飛行装置の斜視図。The perspective view of the flapping flight apparatus which is one Embodiment of this invention. 図1の羽ばたき飛行装置の正面図。The front view of the flapping flight apparatus of FIG. 羽ばたき運動の1周期における主翼12(左翼12a、右翼12b)の状態を模式的に示した図(拘束を与えた場合)。The figure which showed typically the state of the main wing | blade 12 (left wing 12a, right wing 12b) in 1 cycle of flapping movement (when restraint was given). 主翼12を最も振り上げた状態ときの羽ばたき飛行装置の正面図。The front view of the flapping flight apparatus when the main wing 12 is swung up most. 主翼12を最も振り下げた状態ときの羽ばたき飛行装置の正面図。The front view of the flapping flight apparatus when the main wing 12 is most swung down. 羽ばたき運動の1周期における主翼12(左翼12a、右翼12b)の状態を模式的に示した図(拘束を与えない場合)。The figure which showed typically the state of the main wing | blade 12 (left wing 12a, right wing 12b) in 1 cycle of flapping movement (when constraint is not given). 本発明の第二実施形態である羽ばたき飛行装置2の構成を示す斜視図。The perspective view which shows the structure of the flapping flight apparatus 2 which is 2nd embodiment of this invention. 本発明の第三実施形態である羽ばたき飛行装置3の構成を示す斜視図。The perspective view which shows the structure of the flapping flight apparatus 3 which is 3rd embodiment of this invention. 本発明の第四実施形態である羽ばたき飛行装置4の構成を示す斜視図。The perspective view which shows the structure of the flapping flight apparatus 4 which is 4th embodiment of this invention. 本発明の第五実施形態である羽ばたき飛行装置5の構成を示す斜視図。The perspective view which shows the structure of the flapping flight apparatus 5 which is 5th embodiment of this invention. 本発明の第六実施形態である羽ばたき飛行装置5の構成を示す斜視図および底面図。The perspective view and bottom view which show the structure of the flapping flight apparatus 5 which is 6th embodiment of this invention.

符号の説明Explanation of symbols

1〜5: 羽ばたき飛行装置
11: 胴部
12(12a、12b): 主翼(左翼、右翼)
13: 尾翼
14(14a、14b): 翼骨(左翼骨、右翼骨)
15(15a、15b): 翼面(左翼面、右翼面)
23、23a、23b: 翼拘束糸、左翼拘束糸、右翼拘束糸
24、24a、24b: 糸調節機構、左翼糸調節機構、右翼糸調節機構
31: 角速度センサ
32: 制御機器
41(41a、41b): 押圧アーム(左押圧アーム、右押圧アーム)
42(42a、42b): 押圧アーム傾動機構(左押圧アーム傾動機構、右押圧アーム傾動機構)
51: 圧電素子
52: センサ
53: 翼変形素子制御部
61〜63(61a〜63a、61b〜63b): 翼拘束糸、左翼拘束糸、右翼拘束糸
64〜66: 糸調節機構
1-5: Flapping flight device 11: Body 12 (12a, 12b): Main wing (left wing, right wing)
13: Tail 14 (14a, 14b): Wing bone (left wing bone, right wing bone)
15 (15a, 15b): Wing surface (left wing surface, right wing surface)
23, 23a, 23b: Wing restraint thread, left wing restraint thread, right wing restraint thread 24, 24a, 24b: Yarn adjusting mechanism, left wing thread adjusting mechanism, right wing thread adjusting mechanism 31: Angular velocity sensor 32: Control device 41 (41a, 41b) : Pressing arm (left pressing arm, right pressing arm)
42 (42a, 42b): Pressing arm tilting mechanism (left pressing arm tilting mechanism, right pressing arm tilting mechanism)
51: Piezoelectric element 52: Sensor 53: Wing deformation element control units 61-63 (61a-63a, 61b-63b): Wing restraint thread, left wing restraint thread, right wing restraint thread 64-66: Thread adjustment mechanism

Claims (12)

胴部と、胴部を軸にして羽ばたき運動を行う左右一対の主翼とを備え、各主翼がシート状の翼面部材と翼面部材の前縁を支持する翼骨部材とを有する羽ばたき飛行装置であって、
胴部に支持される動力源と、
動力源で発生した動力を翼骨部材に伝達して翼骨部材の振り下ろし動作および振り上げ動作を行わせる翼骨運動機構と、
少なくとも振り下ろし動作時の翼面部材の形状、または、振り上げ動作時の翼面部材の形状のいずれかを能動的に変形させる翼面形状変形手段とを備えたことを特徴とする羽ばたき飛行装置。
A flapping flight apparatus including a trunk portion and a pair of left and right main wings that perform flapping motion about the trunk portion, each main wing having a sheet-like wing surface member and a wing bone member that supports a leading edge of the wing surface member Because
A power source supported by the torso,
A wing bone motion mechanism that transmits the power generated by the power source to the wing bone member to perform the swing-down operation and the swing-up operation of the wing bone member;
A flapping flight apparatus comprising: wing surface shape deforming means for actively deforming at least either the shape of a wing surface member during a swing-down operation or the shape of a wing surface member during a swing-up operation.
翼面形状変形手段は、翼面部材を能動的に変形させる変形量を調整する変形量調整機構をさらに備えたことを特徴とする請求項1に記載の羽ばたき飛行装置。 The flapping flight apparatus according to claim 1, wherein the wing surface shape deforming means further includes a deformation amount adjusting mechanism for adjusting a deformation amount for actively deforming the wing surface member. ピッチ方向の角速度計と、ピッチ方向の角速度に応じて前記変形量調整機構を作動して翼面部材を能動的に変形させる変形量を調整する変形量制御部とを備えたことを特徴とする請求項2に記載の羽ばたき飛行装置。 An angular velocity meter in the pitch direction and a deformation amount control unit that adjusts a deformation amount that actively deforms the blade member by operating the deformation amount adjusting mechanism according to the angular velocity in the pitch direction. The flapping flight apparatus according to claim 2. 前記翼面形状変形手段は、振り下ろし動作時に翼面中央付近の下降を制限して翼面中央付近が上に凸となるように翼面部材を斜め上方に能動的に引張る糸部材、または、振り上げ動作時に翼面中央付近の上昇を制限して翼面中央付近が下に凸となるように翼面部材を斜め下方に能動的に引張る糸部材からなることを特徴とする請求項1に記載の羽ばたき飛行装置。 The blade surface shape deforming means is a yarn member that actively pulls the blade surface member obliquely upward so as to limit the lowering of the vicinity of the blade surface center at the time of the swing-down operation so that the vicinity of the blade surface center is convex upward, or 2. The yarn member according to claim 1, comprising a thread member that actively pulls the blade surface member obliquely downward so that rising near the blade surface center during swing-up operation is restricted and the vicinity of the blade surface center is convex downward. Flapping flight equipment. 前記翼面形状変形手段は、振り下ろし動作時に翼面中央付近の下降を制限して翼面中央付近が上に凸となるように翼面部材を斜め上方に能動的に引張る糸部材、または、振り上げ動作時に翼面中央付近の上昇を制限して翼面中央付近が下に凸となるように翼面部材を斜め下方に能動的に引張る糸部材からなり、前記変形量調整機構は胴部に傾動自在に取り付けられた支点部材により構成され、前記糸部材の一端が左翼面、他端が右翼面の中央付近にそれぞれ固定されるとともに、支点部材が前記糸部材の中間付近を支え、支点部材の傾き角の調整により翼面中央の下降量または上昇量を制限することを特徴とする請求項2に記載の羽ばたき飛行装置。 The blade surface shape deforming means is a yarn member that actively pulls the blade surface member obliquely upward so as to limit the lowering of the vicinity of the blade surface center at the time of the swing-down operation so that the vicinity of the blade surface center is convex upward, or It consists of a thread member that actively pulls the wing surface member obliquely downward so that the wing surface center is restricted upward during swinging operation so that the vicinity of the wing surface center is convex downward. The fulcrum member is mounted so as to be tiltable. One end of the thread member is fixed to the left wing surface and the other end is fixed near the center of the right wing surface, and the fulcrum member supports the vicinity of the middle of the thread member. The flapping flight apparatus according to claim 2, wherein the amount of descending or ascending at the center of the wing surface is limited by adjusting the inclination angle. 前記翼面形状変形手段は、振り下ろし動作時に翼面中央付近の下降を制限して翼面中央付近が上に凸となるように翼面部材を斜め上方に能動的に引張る糸部材、または、振り上げ動作時に翼面中央付近の上昇を制限して翼面中央付近が下に凸となるように翼面部材を斜め下方に能動的に引張る糸部材からなり、前記変形量調整機構は、胴部にそれぞれ独立に傾動自在に取り付けられた左翼支点部材と右翼支点部材とにより構成され、前記糸部材は左翼面中央付近と左翼支点部材とを結ぶ左翼糸部材、および、右翼面中央付近と右翼支点部材とを結ぶ右翼糸部材とからなり、各支点部材の傾き角の調整により各翼面中央付近の下降量または上昇量を独立に制限することを特徴とする請求項2に記載の羽ばたき飛行装置。 The blade surface shape deforming means is a yarn member that actively pulls the blade surface member obliquely upward so as to limit the lowering of the vicinity of the blade surface center at the time of the swing-down operation so that the vicinity of the blade surface center is convex upward, or It is composed of a thread member that actively pulls the wing surface member obliquely downward so that the vicinity of the wing surface center is restricted downward during swinging operation so that the vicinity of the wing surface center is convex downward. Each of the left wing fulcrum member and the right wing fulcrum member which are independently tiltably attached to the left wing fulcrum member, and the thread member is a left wing thread member connecting the left wing surface center and the left wing fulcrum member, and the right wing surface center and right wing fulcrum. The flapping flight apparatus according to claim 2, comprising a right wing thread member that connects the members, and independently limiting a descending amount or ascending amount near the center of each wing surface by adjusting an inclination angle of each fulcrum member. . 前記翼面形状変形手段は、振り下ろし動作時に、翼面を下方から押圧して翼面中央付近の下降を制限することにより翼面中央付近が上に凸となるように能動的に変形させる押圧部材、または、振り上げ動作時に翼面を上方から押圧して翼面中央付近の上昇を制限することにより翼面中央付近が下に凸となるように能動的に変形させる押圧部材からなる請求項1に記載の羽ばたき飛行装置。 The wing surface shape deforming means is a pressure that actively deforms so that the center of the wing surface is convex upward by pressing the wing surface from below and restricting the lowering of the vicinity of the wing surface center when swinging down. 2. A member or a pressing member that actively deforms so that the vicinity of the center of the blade surface protrudes downward by pressing the blade surface from above during swinging operation and restricting the rise near the center of the blade surface. The flapping flight device described in 1. 前記翼面形状変形手段は、胴部にそれぞれ独立に支持された左翼押圧部材と右翼押圧部材とにより構成され、各押圧部材は各翼面中央付近に接する高さが独立に調整できるよう構成されることを特徴とする請求項7に記載の羽ばたき飛行装置。 The blade surface shape deforming means includes a left wing pressing member and a right wing pressing member that are independently supported by the trunk, and each pressing member is configured to be able to independently adjust the height in contact with the vicinity of the center of each wing surface. The flapping flight apparatus according to claim 7. 前記翼面形状変形手段は、翼面に貼り付けられ翼面を能動的に変形させる圧電素子またはバイオメタルからなる翼変形素子と、翼骨部材の振り下ろし動作および振り上げ動作に同期して翼変形素子を作動して翼面形状を周期的に変形する翼変形素子制御部とからなる請求項1に記載の羽ばたき飛行装置。 The wing surface shape deforming means includes a wing deformation element made of a piezoelectric element or biometal that is attached to the wing surface and actively deforms the wing surface, and the blade deformation in synchronization with the swinging and swinging operations of the blade member. The flapping flight apparatus according to claim 1, further comprising a wing deformation element control unit that operates the element to periodically deform the wing surface shape. 前記翼面形状変形手段は、左翼用の翼変形素子と右翼用の翼変形素子とが独立に設けられ、翼変形素子制御部は、左翼用の翼変形素子と右翼用の翼変形素子とを独立に制御する請求項9に記載の羽ばたき飛行装置。 The wing surface shape deforming means includes a wing deforming element for the left wing and a wing deforming element for the right wing independently, and the wing deforming element control unit includes a wing deforming element for the left wing and a wing deforming element for the right wing. The flapping flight apparatus according to claim 9, which is controlled independently. 前記翼面形状変形手段は、左右の主翼それぞれに対し左右の主翼が胴部に固定された位置の近傍を胴部に沿って前後に並ぶ複数の位置で、それぞれ下方に能動的に引張る糸部材からなる請求項1に記載の羽ばたき飛行装置。 The wing surface shape deforming means is a yarn member that actively pulls downward at a plurality of positions lined up and down along the trunk portion near the position where the left and right main wings are fixed to the trunk portion with respect to the left and right main wings. The flapping flight apparatus according to claim 1, comprising: 前記翼面形状変形手段は、左右の主翼それぞれに対し左右の主翼が胴部に固定された位置の近傍を胴部に沿って前後に並ぶ複数の位置で、それぞれ下方に能動的に引張る糸部材からなり、前記変形量調整機構は、胴部に沿って前後に並ぶ複数の位置で胴部に傾動自在に取り付けられた支点部材およびローラにより構成され、前記糸部材は一端が胴部近傍の左翼面または胴部近傍の右翼面にそれぞれ固定されるとともに、他端がローラを介して支点部材に固定される請求項2に記載の羽ばたき飛行装置。 The wing surface shape deforming means is a yarn member that actively pulls downward at a plurality of positions lined up and down along the trunk portion near the position where the left and right main wings are fixed to the trunk portion with respect to the left and right main wings. The deformation amount adjusting mechanism is composed of a fulcrum member and a roller that are tiltably attached to the body at a plurality of positions aligned in the front-rear direction along the body, and the yarn member has one end on the left wing near the body The flapping flight apparatus according to claim 2, wherein the flapping flight device is fixed to the right wing surface near the surface or the trunk portion, and the other end is fixed to the fulcrum member via a roller.
JP2007262093A 2007-10-05 2007-10-05 Flapping flight equipment Expired - Fee Related JP5090842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007262093A JP5090842B2 (en) 2007-10-05 2007-10-05 Flapping flight equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007262093A JP5090842B2 (en) 2007-10-05 2007-10-05 Flapping flight equipment

Publications (2)

Publication Number Publication Date
JP2009090770A JP2009090770A (en) 2009-04-30
JP5090842B2 true JP5090842B2 (en) 2012-12-05

Family

ID=40663195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007262093A Expired - Fee Related JP5090842B2 (en) 2007-10-05 2007-10-05 Flapping flight equipment

Country Status (1)

Country Link
JP (1) JP5090842B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180012946A (en) * 2016-07-28 2018-02-07 이한결 flight supporting device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI386346B (en) * 2010-05-25 2013-02-21 Univ Nat Kaohsiung Applied Sci Flapping flapper
TW201305016A (en) * 2011-07-21 2013-02-01 wei-xiang Liao Flapping-wing aerial vehicle
JP5995745B2 (en) * 2013-02-21 2016-09-21 三菱重工業株式会社 Flapping machine
JP6192307B2 (en) 2013-02-21 2017-09-06 三菱重工業株式会社 Flapping machine
CN106585983A (en) * 2016-12-30 2017-04-26 方新国 Novel flying flapping wing moving mechanism
CN109436320B (en) * 2018-11-07 2023-12-15 杭州翼能科技有限公司 Aircraft
CN114604439B (en) * 2022-03-23 2022-10-18 北京科技大学 Aerial photography video image stabilization system for flapping wing flying robot

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417707A (en) * 1982-01-26 1983-11-29 Ken Leong Human powered hang glider
JPH05178293A (en) * 1991-12-27 1993-07-20 Komota Masayuki Flapping airplane
WO1998030445A1 (en) * 1997-01-10 1998-07-16 Kinei Tamashiro Flapping flying apparatus
JP2002085860A (en) * 2000-09-11 2002-03-26 Yohei Takatani Flapping modelplane of non-stationary type flapping wing
US20020173217A1 (en) * 2001-05-17 2002-11-21 Kinkade Andrew Sean Ornithopter
KR100451984B1 (en) * 2001-11-16 2004-10-08 주식회사 뉴로스 Power-Driven Ornithopter
JP4043289B2 (en) * 2002-05-27 2008-02-06 シャープ株式会社 Search robot system
JP4115349B2 (en) * 2002-07-12 2008-07-09 シャープ株式会社 Flapping levitation moving device
JP2006341623A (en) * 2003-10-27 2006-12-21 Shozo Ohashi Man-powered flapping machine utilizing repulsion of elastic body
JP4681062B2 (en) * 2004-03-08 2011-05-11 三菱電機株式会社 Floating body
JP2005119658A (en) * 2004-11-29 2005-05-12 Koji Isogai Ornithopter and flapping flight method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180012946A (en) * 2016-07-28 2018-02-07 이한결 flight supporting device
KR101888569B1 (en) * 2016-07-28 2018-08-16 이한결 flight supporting device

Also Published As

Publication number Publication date
JP2009090770A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP5090842B2 (en) Flapping flight equipment
US10919623B2 (en) Air vehicle flight mechanism and control method
EP1958681B1 (en) System for controlling flight direction
US9527577B2 (en) Rotorcraft with a fuselage and at least one main rotor
EP3630604A1 (en) Flapping wing aerial vehicle
JP3723820B2 (en) Coaxial inversion radio control helicopter
JPS59501742A (en) free flight structure
US20170364093A1 (en) Drone comprising lift-producing wings
US9745058B2 (en) Ornithopter
US9745057B2 (en) Ornithopter
JP2018064749A (en) Helicopter toy and balancing device for helicopter toy
NL2018549B1 (en) Flapping wing mav
JP3118316U (en) paper airplane

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5090842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees