JP5089924B2 - Method for purifying IgM type antibody, adsorbent for IgM type antibody recognition antigen - Google Patents

Method for purifying IgM type antibody, adsorbent for IgM type antibody recognition antigen Download PDF

Info

Publication number
JP5089924B2
JP5089924B2 JP2006166542A JP2006166542A JP5089924B2 JP 5089924 B2 JP5089924 B2 JP 5089924B2 JP 2006166542 A JP2006166542 A JP 2006166542A JP 2006166542 A JP2006166542 A JP 2006166542A JP 5089924 B2 JP5089924 B2 JP 5089924B2
Authority
JP
Japan
Prior art keywords
igm
type antibody
antibody
igm type
sodium urate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006166542A
Other languages
Japanese (ja)
Other versions
JP2007332080A (en
Inventor
英信 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2006166542A priority Critical patent/JP5089924B2/en
Publication of JP2007332080A publication Critical patent/JP2007332080A/en
Application granted granted Critical
Publication of JP5089924B2 publication Critical patent/JP5089924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は試料中より高純度かつ高活性なIgM型抗体を簡便で安価に精製する新規な方法、またはIgM型抗体認識抗原の吸着材に関する。   The present invention relates to a novel method for purifying IgM-type antibodies having higher purity and higher activity than those in a sample at a low cost, or an adsorbent for IgM-type antibody recognition antigen.

抗体、即ち免疫グロブリンはIgM、IgG、IgA、IgE及びIgDというクラスに分類される。そのうちIgM型抗体は最も大きな分子量を有し、一般に10個の重鎖と10個の軽鎖からなるペンタマーとして存在する。IgM型抗体は免疫応答において最も早期に産出される抗体であり、細菌の感染を防御する際に主要な役割を担っていると考えられている。IgM型抗体は血液中の主要免疫グロブリンであるIgG型抗体に比べると抗原に対する親和性は低いものの、抗原と多点結合でき効率良く動物の補体系を刺激できることから、IgG型抗体に替わる抗体医薬としての能力も期待されている。また多糖類に対して高特異性を有することから、癌関連糖鎖に特異的な免疫グロブリンとして癌診断への応用も試みられている。以上のことからIgM型抗体の医療分野における利用価値は今日、極めて高まっている。   Antibodies, or immunoglobulins, are classified into the classes IgM, IgG, IgA, IgE, and IgD. Among them, the IgM type antibody has the largest molecular weight, and generally exists as a pentamer composed of 10 heavy chains and 10 light chains. IgM antibodies are the earliest antibodies produced in the immune response and are thought to play a major role in protecting against bacterial infections. IgM antibodies have a lower affinity for antigens than IgG antibodies, which are the main immunoglobulins in blood, but they can bind to antigens at multiple points and can efficiently stimulate the complement system of animals. The ability as is expected. In addition, since it has high specificity for polysaccharides, it has been attempted to apply it to cancer diagnosis as an immunoglobulin specific to a cancer-related sugar chain. For these reasons, the utility value of IgM antibodies in the medical field is extremely high today.

モノクローナルIgM型抗体を作成する最も一般的な方法としてはハイブリドーマ細胞を用いる細胞融合法が考えられる(G.Kohler、C.Milstain、Nature 256巻、495項、1975年)。ハイブリドーマ細胞とは抗体生産能を有するB細胞と増殖能を有するミエローマ細胞とを細胞融合し、モノクローナルなIgM型抗体を合成するように調製した細胞である。ハイブリドーマ細胞からIgM型抗体溶液を得る方法としては、ハイブリドーマ細胞を血清培地および無血清培地などで細胞培養することによってモノクローナルIgM型抗体を含む溶液を得る方法、マウスやラットの腹腔に移植・増殖させ、その腹水からモノクローナルIgM型抗体を含む溶液を得る方法などが考えられる。他にIgM型抗体を作成する方法としてはミエローマ患者由来のB細胞からモノクローナルIgM型抗体を得る方法やマクログロブリン血症患者の血中から得る方法などが挙げられる。   The most common method for producing a monoclonal IgM antibody is a cell fusion method using hybridoma cells (G. Kohler, C. Milstein, Nature 256, 495, 1975). A hybridoma cell is a cell prepared by synthesizing a monoclonal IgM antibody by fusing a B cell having antibody-producing ability and a myeloma cell having proliferative ability. As a method for obtaining an IgM type antibody solution from a hybridoma cell, a method of obtaining a solution containing a monoclonal IgM type antibody by culturing the hybridoma cell in a serum medium and a serum-free medium, etc. A method for obtaining a solution containing a monoclonal IgM antibody from the ascites can be considered. Other methods for preparing an IgM type antibody include a method for obtaining a monoclonal IgM type antibody from B cells derived from a myeloma patient and a method for obtaining it from the blood of a macroglobulinemia patient.

しかしながら、それらのIgM型抗体を含む血液や培養液には目的とするIgM型抗体以外の蛋白質、脂質や細胞培養液に由来する成分が混在しているため、その不純物が精製IgM型抗体の純度と回収率に与える影響は極めて大きいと考えられる。特に血清・血漿成分には低比重リポ蛋白質(LDL)などの夾雑蛋白質の占める割合が高く、高純度のIgM型抗体を得ることはさらに困難を極める。   However, since blood and culture solution containing these IgM antibodies contain proteins, lipids, and components derived from the cell culture solution other than the target IgM antibodies, the impurities are the purity of the purified IgM antibodies. The effect on the recovery rate is considered to be extremely large. In particular, serum and plasma components account for a high proportion of low-density lipoprotein (LDL) and other contaminating proteins, making it extremely difficult to obtain highly pure IgM antibodies.

IgG型抗体の精製においてはプロテインAやプロテインG固定化材料の使用が一般的な手法となっているが、これはIgM型抗体に対しては親和性が低くIgM型抗体の精製には適当でない。また抗体とプロテインAまたはプロテインGとの結合が非常に強固なために、結合した抗体を分離回収するのに約pH3という強酸性溶液を用いる必要がある。そのため、元来の抗体活性を保持したままの状態で回収してくることが難しいという問題がある。さらにプロテインAやプロテインGは抗体の動物種によっては使用できない、そしてプロテインAやプロテインGは菌類から産生されるものであるので大量生産が困難であり、抗体を精製する材料としては非常に高価であるという問題もある。加えて材料が菌類由来であるために毒性物質の混入が懸念され安全性の問題も完全に払拭することはできない。   In the purification of IgG type antibodies, the use of protein A or protein G immobilization materials has become a common technique, but this has low affinity for IgM type antibodies and is not suitable for purification of IgM type antibodies. . Further, since the binding between the antibody and protein A or protein G is very strong, it is necessary to use a strongly acidic solution of about pH 3 to separate and recover the bound antibody. For this reason, there is a problem that it is difficult to recover in a state where the original antibody activity is retained. Furthermore, protein A and protein G cannot be used depending on the animal species of the antibody, and since protein A and protein G are produced from fungi, mass production is difficult, and materials for purifying the antibody are very expensive. There is also the problem of being. In addition, since the material is derived from fungi, there is concern about the introduction of toxic substances, and safety problems cannot be completely eliminated.

IgM型抗体の精製に関しても抗IgM抗体を固定化した材料などのアフィニティクロマトグラフィが開発されているが、上記と同様の問題が考えられる。他にも様々な精製方法があるが、それら単独での精製では不十分で複数の精製方法を組み合わせる必要があり、精製には煩雑で長時間の操作が必要とされるという問題もある。そこで簡便で高純度かつ高活性なIgM型抗体精製方法の開発が望まれている。   Regarding the purification of IgM-type antibodies, affinity chromatography such as a material on which anti-IgM antibodies are immobilized has been developed, but the same problems as described above are considered. There are various other purification methods, but purification alone is not sufficient, and it is necessary to combine a plurality of purification methods, and there is a problem that purification requires complicated and long-time operation. Therefore, development of a simple, highly pure and highly active IgM-type antibody purification method is desired.

本発明の目的は試料中から簡便に高純度かつ高活性のIgM型抗体を精製する新規な方法、またはIgM型抗体が認識する抗原の吸着材を提供することである。   An object of the present invention is to provide a novel method for easily purifying a highly pure and highly active IgM antibody from a sample, or an antigen adsorbent recognized by an IgM antibody.

本発明者らは、夾雑成分を含むIgM型抗体試料中から簡便に高純度かつ高活性なIgM型抗体を精製する方法について鋭意検討を行った。その結果、IgM型抗体含有液に前処理を施し尿酸ナトリウム結晶に高親和性を有するIgM型抗体以外の物質を除去した後、尿酸ナトリウム結晶と接触させIgM型抗体を尿酸ナトリウム結晶に選択的に結合させることにより、簡便に高純度かつ高活性なIgM型抗体を精製しうることを見出し、本発明を完成した。   The present inventors diligently studied a method for simply purifying a highly pure and highly active IgM antibody from an IgM antibody sample containing contaminating components. As a result, the IgM-type antibody-containing solution was pretreated to remove substances other than the IgM-type antibody having high affinity for the sodium urate crystals, and then contacted with the sodium urate crystals to selectively convert the IgM-type antibodies to the sodium urate crystals. It was found that IgM type antibodies having high purity and high activity can be easily purified by binding, and the present invention was completed.

即ち、本発明は効率良く高純度かつ高活性なIgM型抗体を精製する方法に関する。   That is, the present invention relates to a method for efficiently purifying a highly pure and highly active IgM type antibody.

本発明における前処理とはIgM型抗体含有液をカチオン交換能を有する吸着材と接触させることであり、具体的に言えばカチオン交換能を有する吸着材とはデキストラン硫酸などのアニオン性化合物を固定化してなる吸着材である。   The pretreatment in the present invention is to bring an IgM-type antibody-containing solution into contact with an adsorbent having a cation exchange ability. Specifically, the adsorbent having a cation exchange ability immobilizes an anionic compound such as dextran sulfate. It is an adsorbent formed.

また、前処理としてIgM型抗体含有液をアニオン交換能を有する吸着材と接触させても良く、カチオン交換能を有する吸着材とアニオン交換能を有する吸着材を併用しても良い。   Further, as a pretreatment, the IgM antibody-containing liquid may be brought into contact with an adsorbent having an anion exchange ability, or an adsorbent having a cation exchange ability and an adsorbent having an anion exchange ability may be used in combination.

本発明のIgM型抗体の精製方法は治療薬、診断薬に応用が期待されるIgM型抗体を効率良く簡便に、回収・精製を行うことを可能にするものであり、さらには回収されたIgM型抗体は高い活性を保持させることができる。尚且つ、抗体に対して高親和性を有するプロテインAやプロテインGというアフィニティクロマトグラフィを用いる必要がなく、安価に分離精製することも可能にする。   The method for purifying IgM-type antibodies of the present invention makes it possible to efficiently and simply collect and purify IgM-type antibodies that are expected to be applied to therapeutic agents and diagnostic agents. Type antibodies can retain high activity. In addition, it is not necessary to use affinity chromatography called Protein A or Protein G having high affinity for the antibody, and it is possible to separate and purify at low cost.

本発明における前処理とは、IgM型抗体含有液をカチオン交換能を有する吸着材と接触させることによって、尿酸ナトリウム結晶に高親和性を有するIgM型抗体以外の物質を吸着除去することである。   The pretreatment in the present invention is to adsorb and remove substances other than the IgM-type antibody having high affinity for sodium urate crystals by bringing the IgM-type antibody-containing liquid into contact with an adsorbent having a cation exchange ability.

またカチオン交換能を有する吸着材とはデキストラン硫酸などのアニオン性化合物を固定化してなる吸着材である。   The adsorbent having cation exchange capacity is an adsorbent obtained by immobilizing an anionic compound such as dextran sulfate.

吸着材としては常温常圧で固体の水不溶性担体が好ましい。水不溶性担体には粒状、板状、繊維状、中空糸状等があるが形状は問わず、その大きさもとくに限定されない。例えば、ガラスビーズ、シリカゲルなどの無機担体、架橋ポリビニルアルコール、架橋ポリアクリレート、架橋ポリアクリルアミド、架橋ポリスチレンなどの合成高分子や結晶性セルロース、架橋セルロース、架橋アガロース、架橋デキストリンなどの多糖類からなる有機担体、さらにはこれらの組み合わせによってえられる有機−有機、有機−無機などの複合担体などが代表例としてあげられる。   The adsorbent is preferably a water-insoluble carrier that is solid at normal temperature and pressure. Water-insoluble carriers include granular, plate-like, fiber-like, and hollow fiber-like shapes, but the shape is not particularly limited. For example, organic beads composed of inorganic carriers such as glass beads and silica gel, synthetic polymers such as crosslinked polyvinyl alcohol, crosslinked polyacrylate, crosslinked polyacrylamide, and crosslinked polystyrene, and polysaccharides such as crystalline cellulose, crosslinked cellulose, crosslinked agarose, and crosslinked dextrin Representative examples include carriers, and composite carriers such as organic-organic and organic-inorganic obtained by combinations thereof.

本発明におけるIgM型抗体含有液には血液、血漿、血清、腹水、リンパ液、関節内液およびこれらから得たれた分画成分、ならびにその他の生体由来の液体成分、あるいはin vitro細胞培養液の上清などが考えられるが、特にこれらに限定されるものではない。   The IgM-type antibody-containing liquid in the present invention includes blood, plasma, serum, ascites, lymph, intra-articular fluid, fractional components obtained therefrom, and other liquid components derived from living organisms, or in vitro cell culture fluid. Although Kiyoshi etc. can be considered, it is not particularly limited to these.

IgM型抗体含有液、例えば、血液を始めとする生体由来の液体成分や細胞培養液にはLDLなどの脂質・蛋白質成分、細胞培養液に由来する成分他、多くの夾雑成分が混在している。その為、高純度のIgM型抗体を精製分離するのは非常に困難である。本発明による前処理を施すことにより尿酸ナトリウム結晶に高親和性を有するIgM型抗体以外の物質を吸着除去できるため、IgM型抗体を尿酸ナトリウム結晶に選択的に結合させ高純度のIgM型抗体を得ることが可能である。   IgM-type antibody-containing liquids, for example, blood-derived liquid components such as blood and cell culture fluids contain many contaminating components in addition to lipid / protein components such as LDL, components derived from cell culture fluids, etc. . Therefore, it is very difficult to purify and separate highly pure IgM type antibodies. Since the pretreatment according to the present invention can adsorb and remove substances other than the IgM type antibody having a high affinity for the sodium urate crystals, the IgM type antibody can be selectively bound to the sodium urate crystals to obtain a high purity IgM type antibody. It is possible to obtain.

具体的な使用法として、例えば以下の操作により夾雑成分を含むIgM型抗体含有液から高純度そして高活性なIgM型抗体が精製できるが、本発明は以下の具体例に限定されるものではない。即ち、前処理として、LDL、VLDL、Lp(a)に対して高い吸着能を有する吸着型血漿浄化器リポソーバー(株式会社カネカ)をカラムに充填し、IgM型抗体含有液をカラムに通液することにより夾雑成分を吸着除去する。その後、McCarty(マックカーティー)とFaires(フェアーズ)の方法(Curr Ther Res 5巻、284頁、1963年)に準じて作成した尿酸ナトリウム結晶をカラムに充填し、尿酸ナトリウム結晶に高親和性を有する夾雑成分を除いたIgM型抗体含有液を通液し、IgM型抗体を尿酸ナトリウム結晶に選択的に結合させる。続いて適当な溶液で残存する夾雑成分を洗浄した後に、尿酸ナトリウム結晶に結合したIgM型抗体を溶出させ、高純度かつ高活性なIgM型抗体を回収する。   As a specific method of use, for example, a highly pure and highly active IgM type antibody can be purified from an IgM type antibody-containing solution containing contaminating components by the following procedure, but the present invention is not limited to the following specific examples. . That is, as a pretreatment, an adsorption type plasma purifier liposorber (Kaneka Co., Ltd.) having a high adsorption capacity for LDL, VLDL, and Lp (a) is packed in the column, and an IgM type antibody-containing solution is passed through the column. By adsorbing and removing impurities. Then, the column was filled with sodium urate crystals prepared according to the method of McCarty (McCarty) and Faires (Curr Ther Res 5, Vol. 284, 1963). An IgM-type antibody-containing solution excluding contaminating components is passed through to selectively bind the IgM-type antibody to sodium urate crystals. Subsequently, the remaining contaminating components are washed with an appropriate solution, and then the IgM type antibody bound to the sodium urate crystal is eluted to recover the highly pure and highly active IgM type antibody.

本発明により得られるIgM型抗体が結合した尿酸ナトリウム結晶は、IgM型抗体が認識する抗原を吸着させるアフィニティーカラムに適用することが可能である。   The sodium urate crystals to which the IgM antibody bound by the present invention is bound can be applied to an affinity column that adsorbs the antigen recognized by the IgM antibody.

また、本発明の方法により得られるIgM型抗体は高活性であるため、他の担体に固定化させ、IgM型抗体が認識する抗原を吸着させるアフィニティーカラムに適用することが可能である。   In addition, since the IgM antibody obtained by the method of the present invention has high activity, it can be applied to an affinity column that is immobilized on another carrier and adsorbs an antigen recognized by the IgM antibody.

以下、実施例において本発明についてさらに詳細に述べるが、本発明は以下の実施例
のみに限定されるものではない。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited only to a following example.

(実施例1)
全血清をリポソーバー(株式会社カネカ製)を充填したLDL除去カラムに通し、LDL除去画分と1M塩化ナトリウム溶液で溶出したLDL画分を得た。LDL除去画分をさらに微顆粒性セルロースの陰イオン交換カラムDE52(Whatman)に通しIgG画分とIgG除去画分を得た。またLDL除去画分にZymosanを加え37℃で30分インキュベートして補体消費画分を得た。
Example 1
Whole serum was passed through an LDL removal column packed with Liposorber (manufactured by Kaneka Corporation) to obtain an LDL-removed fraction and an LDL fraction eluted with a 1M sodium chloride solution. The LDL-removed fraction was further passed through a microgranular cellulose anion exchange column DE52 (Whatman) to obtain an IgG fraction and an IgG-removed fraction. Further, Zymosan was added to the LDL-removed fraction and incubated at 37 ° C. for 30 minutes to obtain a complement consumption fraction.

全血清または各血清画分をMcCarty & Fairesの方法で作成した尿酸ナトリウム結晶に加え37℃で30分インキュベートし、尿酸ナトリウム飽和生理食塩水で数回洗浄した後、分画分子量6−8000の限外濾過膜(Spectra/Por 1)に入れて尿酸ナトリウムが完全に溶解するまで純水透析することで尿酸ナトリウム吸着蛋白質を得た。これらの操作工程を図1に示した。   Total serum or each serum fraction is added to sodium urate crystals prepared by the method of McCarty & Faires, incubated at 37 ° C. for 30 minutes, washed several times with sodium urate saturated physiological saline, and then limited molecular weight of 6-8000. A sodium urate adsorbed protein was obtained by placing in an outer filtration membrane (Spectra / Por 1) and dialyzing with pure water until sodium urate was completely dissolved. These operation steps are shown in FIG.

上述の方法で得た血清および血清画分とそれぞれの尿酸ナトリウム吸着蛋白質のSDS−PAGEを行い、CBB染色したところ図2のような結果となった。全血清およびLDL除去画分の尿酸ナトリウム吸着蛋白質についてはCBB染色で濃染したバンドを切り出し、トリプシンでゲル内消化後、LC−MSで分析を行い、得られたペプチドマップより蛋白質の同定を行い図3の結果を得た。   SDS-PAGE of the serum and serum fractions obtained by the above-described method and the respective sodium urate adsorbed protein was performed and CBB staining was performed, and the results shown in FIG. 2 were obtained. For the sodium urate adsorbed protein from the whole serum and LDL-removed fractions, cut out the band that was highly stained by CBB staining, digest it in gel with trypsin, analyze it by LC-MS, and identify the protein from the obtained peptide map The result of FIG. 3 was obtained.

図2の通り、全血清にはアルブミンが濃く染色されているが(レーン1)、リポソーバーを通すと、分子量50万のアポ蛋白質B−100とそのフラグメントが除かれ(レーン2)、LDL除去画分が得られる(レーン3)。その後、陰イオン交換カラムで処理すると、IgG画分はIgGのγ鎖と軽鎖が染色され(レーン6)、得られたIgG除去画分はIgGγ鎖がほぼ消失し、IgG軽鎖も薄まっている(レーン5)。補体消費画分もLDL除去画分と同様の傾向を示す(レーン4)。   As shown in FIG. 2, albumin is densely stained in the whole serum (lane 1), but when passing through a liposorber, apoprotein B-100 having a molecular weight of 500,000 and its fragment are removed (lane 2), and an LDL-removed image is obtained. Minutes are obtained (lane 3). Thereafter, when treated with an anion exchange column, the IgG fraction is stained with IgG γ chain and light chain (lane 6), and the obtained IgG-removed fraction is almost free of IgG γ chain and diluted with IgG light chain. (Lane 5). Complement consumption fraction shows the same tendency as LDL-removed fraction (lane 4).

LDL除去画分、補体消費画分、IgG除去画分の尿酸ナトリウム結晶吸着蛋白質のSDS−PAGEの結果はそれぞれレーン9、レーン10、レーン11となり、70kDa付近と25kDa付近に濃染するバンドが見られた。   The results of SDS-PAGE of the sodium urate crystal adsorbed protein from the LDL-removed fraction, complement-consumed fraction, and IgG-removed fraction are lane 9, lane 10, and lane 11, respectively, and there are dark bands around 70 kDa and 25 kDa. It was seen.

図3より全血清の尿酸ナトリウム結晶吸着蛋白質の3つの濃染するバンドはすべてアポリポ蛋白質B−100「のフラグメント」であり、LDL除去画分の尿酸ナトリウム吸着蛋白質については68kDaのバンドはイムノグロブリンμ鎖、25kDaのバンドはイムノグロブリン軽鎖であった。   From FIG. 3, all three dark-stained bands of sodium serum urate adsorbed protein in whole serum are “fragments of apolipoprotein B-100”. The 25 kDa band was the immunoglobulin light chain.

以上の結果よりヒト血清からリポソーバーゲルでLDLを除去する前処理を行った後に尿酸ナトリウム結晶を使用することで、IgM型抗体を選択的に回収することが可能である。   Based on the above results, IgM antibodies can be selectively recovered by using sodium urate crystals after pretreatment for removing LDL from human serum with a liposorber gel.

(実施例2)
マウスモノクローナル抗体を以下のようにして作成した。ヒト尿細管分泌尿蛋白質に対するIgM型(UP509、UP599)およびIgG1型マウスモノクローナル抗体(UP720)を産生するハイブリドーマ(日本泌尿器科学会雑誌.87巻、1120頁、1996年)を、牛胎児血清を10%含む培養液(RPMI1640)で培養し上清を採取した。
(Example 2)
A mouse monoclonal antibody was prepared as follows. A hybridoma (Japanese Journal of Urology, Vol. 87, 1120, 1996) producing IgM type (UP509, UP599) and IgG1 type mouse monoclonal antibody (UP720) against human tubular secretory urinary protein, The culture supernatant (RPMI 1640) containing 1% was cultured and the supernatant was collected.

リポソーバーゲルをカラムに充填し、Mg濃度1mMになるように硫酸マグネシウム注射液(日本薬局方)を添加した生理食塩水でプライミングを行った。上述のハイブリドーマ培養上清に塩酸を加えてpH7に調製した後、リポソーバーゲルカラムに通し前処理を行った。   Liposorber gel was packed in a column, and priming was performed with physiological saline to which a magnesium sulfate injection solution (Japanese Pharmacopoeia) was added so that the Mg concentration became 1 mM. Hydrochloric acid was added to the above hybridoma culture supernatant to adjust the pH to 7, and then passed through a liposorber gel column for pretreatment.

実施例1と同様の方法で作成した尿酸ナトリウム結晶を尿酸ナトリウム飽和生理食塩水で数回洗浄した後、繊維セルロースCF1(Whatman)と混和してカラムに充填し、尿酸ナトリウム飽和生理食塩水でプライミングを行った。   Sodium urate crystals prepared in the same manner as in Example 1 were washed several times with sodium urate saturated saline, mixed with fiber cellulose CF1 (Whatman), filled into a column, and primed with sodium urate saturated saline. Went.

リポソーバーゲルカラムを通した培養上清を尿酸ナトリウム結晶カラムに通した後、1M NaClで洗浄した。0.5M KH2PO4溶液(pH4.4)でIgM型抗体を溶出させ、NaOH溶液でpH7に調整し、IgM型抗体を得た。 The culture supernatant passed through the liposorber gel column was passed through a sodium urate crystal column and then washed with 1M NaCl. The IgM type antibody was eluted with 0.5M KH 2 PO 4 solution (pH 4.4) and adjusted to pH 7 with NaOH solution to obtain an IgM type antibody.

上述の方法で得たIgM型抗体をSDS−PAGEで分析した。結果を図4、図5に示す。   The IgM type antibody obtained by the above-mentioned method was analyzed by SDS-PAGE. The results are shown in FIGS.

図4、つまり、マウスモノクローナルIgM型抗体(UP509)の培養上清ならびに培養上清を通したリポソーバーゲルカラムおよび尿酸ナトリウム結晶カラムから溶出した蛋白質のSDS−PAGEの結果より、尿酸ナトリウムに吸着した蛋白質はIgMのμ鎖と軽鎖であった。図5より、マウスの抗体においてもIgM型抗体であるUP509とUP599は尿酸ナトリウム結晶に結合したが、IgG型抗体であるUP720は吸着しなかった。   From the results of SDS-PAGE of FIG. 4, that is, the mouse monoclonal IgM type antibody (UP509) culture supernatant and the protein eluted from the liposorber gel column and sodium urate crystal column through the culture supernatant, it was adsorbed to sodium urate. The proteins were IgM μ and light chains. As shown in FIG. 5, Ig509 type UP509 and UP599 were bound to sodium urate crystals, but IgG type UP720 was not adsorbed in the mouse antibody.

(実施例3)
IgM型抗体を産生する3種類のハイブリドーマ(UP70、UP509、UP599)をBALB/cマウスの腹腔内に注射して貯留した腹水を採取した。
(Example 3)
Ascitic fluid collected by injecting three types of hybridomas (UP70, UP509, UP599) producing IgM antibodies into the abdominal cavity of BALB / c mice was collected.

リポソーバーゲルをカラムに充填し、Mg濃度1mMになるように硫酸マグネシウム注射液(日本薬局方)を添加した生理食塩水でプライミングを行った。上述の腹水をリポソーバーゲルカラムに通し前処理を行った。   Liposorber gel was packed in a column, and priming was performed with physiological saline to which a magnesium sulfate injection solution (Japanese Pharmacopoeia) was added so that the Mg concentration became 1 mM. The ascites as described above was passed through a liposorber gel column for pretreatment.

実施例1と同様の方法で作成した尿酸ナトリウム結晶を尿酸ナトリウム飽和生理食塩水で数回洗浄した後、繊維セルロース(CF1:Whatman)と混和してカラムに充填し、尿酸ナトリウム飽和生理食塩水でプライミングを行った。   The sodium urate crystals prepared in the same manner as in Example 1 were washed several times with sodium urate saturated saline, mixed with fiber cellulose (CF1: Whatman), filled into a column, and sodium urate saturated saline with Priming was performed.

リポソーバーゲルカラムを通した腹水を尿酸ナトリウム結晶カラムに通した後、1M NaClで洗浄した。   Ascites fluid that passed through the liposorber gel column was passed through a sodium urate crystal column and then washed with 1M NaCl.

腐食剤としてアジ化ナトリウム存在下に蓄尿し、No.1濾紙、次いで5μm、さらに0.22μmのフィルターで濾過した。濾過尿を分画分子量3万の限外濾過膜を用いて濃縮した。IgM型抗体を吸着させた尿酸ナトリウム結晶に尿蛋白濃縮液を通し、1M NaCl溶液で十分洗浄した後、0.5M KH2PO4溶液(pH4.4)でIgM型抗体と抗原を溶出し、IgM型抗体と抗原の混合試料を得た。 As a caustic agent, urine was stored in the presence of sodium azide. It was filtered through 1 filter paper, then 5 μm and then 0.22 μm filter. The filtered urine was concentrated using an ultrafiltration membrane with a molecular weight cut off of 30,000. A urine protein concentrate is passed through a sodium urate crystal adsorbed with an IgM type antibody, thoroughly washed with a 1M NaCl solution, and then the IgM type antibody and antigen are eluted with a 0.5M KH 2 PO 4 solution (pH 4.4). A mixed sample of IgM type antibody and antigen was obtained.

上述の方法で得たIgM型抗体と抗原の混合試料をSDS−PAGEで分析した。結果を図6に示す。さらにイムノブロット法により抗原の吸着を確認した結果も図6に示す。   The mixed sample of IgM type antibody and antigen obtained by the above method was analyzed by SDS-PAGE. The results are shown in FIG. Furthermore, the result of confirming the adsorption of the antigen by immunoblotting is also shown in FIG.

図6の左図は尿蛋白と尿酸ナトリウム結晶カラムから溶出したIgM型抗体および抗原のCBB染色したSDS−PAGEの結果である。図6の右図はそのイムノブロットで、UP70、UP509は分子量3万以下の同じ抗原を認識するIgM型抗体であり、UP599は分子量100万以上の抗原を認識するIgM型抗体であり、精製したIgM型抗体は高い抗原吸着活性を有していることが明らかになった。   The left figure of FIG. 6 shows the results of SDS-PAGE of IgM antibody eluted from urine protein and sodium urate crystal column and CBB staining of antigen. The right figure of FIG. 6 is the immunoblot, UP70 and UP509 are IgM type antibodies recognizing the same antigen with a molecular weight of 30,000 or less, and UP599 is an IgM type antibody recognizing an antigen with a molecular weight of 1 million or more. It was revealed that the IgM type antibody has a high antigen adsorption activity.

また、リポソーバーで前処理したIgM型抗体含有液を通した尿酸ナトリウム結晶カラムは、アフィニティーカラムとして、IgM型抗体が認識する抗原を吸着できることが示唆された。   In addition, it was suggested that the sodium urate crystal column through the IgM antibody-containing solution pretreated with a liposorber can adsorb the antigen recognized by the IgM antibody as an affinity column.

操作工程の概念図Conceptual diagram of operation process 実施例1におけるSDS−PAGEの結果を示す図である。It is a figure which shows the result of SDS-PAGE in Example 1. 実施例1における尿酸ナトリウム吸着蛋白質のLC−MSの結果を示す図である。FIG. 2 is a diagram showing the results of LC-MS of sodium urate adsorbed protein in Example 1. 実施例2におけるSDS−PAGEの結果を示す図である。It is a figure which shows the result of SDS-PAGE in Example 2. 実施例2におけるSDS−PAGEの結果を示す図である。It is a figure which shows the result of SDS-PAGE in Example 2. 実施例3におけるSDS−PAGE、及びそのイムノブロットの結果を示す図である。It is a figure which shows the result of SDS-PAGE in Example 3, and its immunoblot.

Claims (1)

IgM型抗体含有液を尿酸ナトリウム結晶と接触させることによりIgM型抗体を尿酸ナトリウム結晶に選択的に結合させ、その後にIgM型抗体を尿酸ナトリウム結晶から解離、回収することを特徴とするIgM型抗体の分離精製方法であって、前記分離精製方法は、IgM型抗体含有液をデキストラン硫酸を固定してなる吸着材と接触させる前処理を含むことを特徴とするIgM型抗体の分離精製方法。

An IgM-type antibody characterized in that an IgM-type antibody is selectively bound to a sodium urate crystal by contacting the IgM-type antibody-containing solution with the sodium urate crystal, and then the IgM-type antibody is dissociated and recovered from the sodium urate crystal. The method for separating and purifying IgM antibodies, comprising a pretreatment in which an IgM antibody-containing solution is brought into contact with an adsorbent formed by immobilizing dextran sulfate.

JP2006166542A 2006-06-15 2006-06-15 Method for purifying IgM type antibody, adsorbent for IgM type antibody recognition antigen Active JP5089924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006166542A JP5089924B2 (en) 2006-06-15 2006-06-15 Method for purifying IgM type antibody, adsorbent for IgM type antibody recognition antigen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006166542A JP5089924B2 (en) 2006-06-15 2006-06-15 Method for purifying IgM type antibody, adsorbent for IgM type antibody recognition antigen

Publications (2)

Publication Number Publication Date
JP2007332080A JP2007332080A (en) 2007-12-27
JP5089924B2 true JP5089924B2 (en) 2012-12-05

Family

ID=38931885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006166542A Active JP5089924B2 (en) 2006-06-15 2006-06-15 Method for purifying IgM type antibody, adsorbent for IgM type antibody recognition antigen

Country Status (1)

Country Link
JP (1) JP5089924B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5565723B2 (en) * 2009-04-07 2014-08-06 学校法人北里研究所 Anti-DCD monoclonal antibody
JP2010284607A (en) * 2009-06-12 2010-12-24 Toshiba Corp Phosphorus adsorbent and system for recovering phosphorus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559036A (en) * 1978-07-04 1980-01-22 Green Cross Corp:The Purification of igm

Also Published As

Publication number Publication date
JP2007332080A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
KR101569783B1 (en) A Method of Antibody Purification
JP4831436B2 (en) Chromatographic ligand
US10131714B2 (en) Protein purification using bis-tris buffer
US20050272917A1 (en) Methods for immunoglobulin purification
EP2768843B1 (en) Solid phase for mixed-mode chromatographic purification of proteins
KR20160005047A (en) Continuous multistep process for purifying antibodies
SG162806A1 (en) Methods of purifying anti a beta antibodies
MX2012013411A (en) Apparatus and process of purification of proteins.
US20190330269A1 (en) Method for purifying antibodies using pbs
JP5089924B2 (en) Method for purifying IgM type antibody, adsorbent for IgM type antibody recognition antigen
JP2011036128A (en) Method for producing antibody
JP2010070490A (en) Method for antibody purification
FI116569B (en) Method for Preparation of Virus-Activated Factor VIII-Containing Fraction by Chromatographic Methods
Bresolin et al. Evaluation of Iminodiacetic Acid (IDA) as an Ionogenic Group for Adsorption of IgG 1 Monoclonal Antibodies by Membrane Chromatography
CN108085358A (en) A kind of preparation method of canine parvovirus monoclonal antibody IgG2b-Fab segments
KR20150084836A (en) Method of isolating synagis® in the absence of benzonase
US20090264630A1 (en) Method of separating monomeric protein(s)
JPH0449299A (en) Purification of immunoglobulin fragment
US20210317163A1 (en) Compositions And Methods For Simplified High Efficiency Isolation of Proteins
JP3747322B2 (en) A method of selectively separating antibody isoforms from egg yolk.
Kordzangene et al. Reduction of Purification Time of Polyspecific Equine F (ab´) 2 Antivenom against Scorpion Envenomation
JP2017025025A (en) Protein purification method
BRPI0900276A2 (en) process of purifying immunoglobulin g (igg) from human serum or plasma by (omega) aminohexyl agarose or (omega) aminodecyl agarose chromatography
JPH0459797A (en) Purification of antibody
JPH07146280A (en) Adsorption body for affinity chromatography, separation method for antibody using the same, measurement method for antibody concentration, and refinery concentration method for antibody piece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5089924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250