JP5088851B2 - Silicon nitride sintered body for wear-resistant member, method for producing the same, and wear-resistant member using the same - Google Patents

Silicon nitride sintered body for wear-resistant member, method for producing the same, and wear-resistant member using the same Download PDF

Info

Publication number
JP5088851B2
JP5088851B2 JP2006125123A JP2006125123A JP5088851B2 JP 5088851 B2 JP5088851 B2 JP 5088851B2 JP 2006125123 A JP2006125123 A JP 2006125123A JP 2006125123 A JP2006125123 A JP 2006125123A JP 5088851 B2 JP5088851 B2 JP 5088851B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
wear
nitride sintered
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006125123A
Other languages
Japanese (ja)
Other versions
JP2007297231A (en
Inventor
悦幸 福田
純一 多々見
勝利 米屋
智文 片島
実 高尾
裕 小森田
弘喜 藤内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Materials Co Ltd
Yokohama National University NUC
Original Assignee
Toshiba Materials Co Ltd
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Materials Co Ltd, Yokohama National University NUC filed Critical Toshiba Materials Co Ltd
Priority to JP2006125123A priority Critical patent/JP5088851B2/en
Publication of JP2007297231A publication Critical patent/JP2007297231A/en
Application granted granted Critical
Publication of JP5088851B2 publication Critical patent/JP5088851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、耐摩耗性部材用窒化珪素焼結体、その製造方法、およびそれを用いた耐摩耗性部材に係り、特に導電性付与材を含有させて放電加工を可能とし、静電気の蓄積が無い耐摩耗性部材用窒化珪素焼結体とその効率的な製造方法、およびその耐摩耗性部材用窒化珪素焼結体を用いて静電気による不具合などを改善した耐摩耗性部材に関する。 The present invention relates to a silicon nitride sintered body for wear-resistant members, a method for producing the same, and a wear-resistant member using the same, and in particular, by incorporating a conductivity-imparting material, electric discharge machining is possible, and static electricity is accumulated. The present invention relates to a non- wearable silicon nitride sintered body for a wear-resistant member , an efficient manufacturing method thereof, and a wear-resistant member that uses the silicon nitride sintered body for wear-resistant member to improve problems caused by static electricity.

近年、ハードディスクドライブ(HDD)などの磁気記録装置、CD−ROMやDVDなどの光ディスク装置、各種ゲーム機器などの発達には目覚しいものがある。これらのディスク媒体を有する電子機器においては、通常、スピンドルモータなどの回転駆動装置により回転軸を高速回転させ、この回転軸に装着された各種ディスクを機能させている。   In recent years, there have been remarkable developments in magnetic recording devices such as hard disk drives (HDD), optical disk devices such as CD-ROM and DVD, and various game machines. In an electronic apparatus having these disk media, a rotary shaft is usually rotated at a high speed by a rotary drive device such as a spindle motor, and various disks mounted on the rotary shaft are functioned.

上述したような電子機器用回転駆動部の回転軸を支持する軸受部材、特にベアリングボールには、軸受鋼などの金属材料が主として用いられてきた。しかしながら、軸受鋼等の金属材料では耐摩耗性が不十分であることから、例えば電子機器等のように5000rpm以上の高速回転が要求される分野においては寿命のばらつきが大きく長期間に渡り高い信頼性を有する回転駆動を保証できない問題点があった。   Metal materials such as bearing steel have been mainly used for bearing members, particularly bearing balls, that support the rotating shaft of the rotary drive unit for electronic equipment as described above. However, since metal materials such as bearing steel have insufficient wear resistance, for example, in fields where high-speed rotation of 5000 rpm or more is required, such as electronic equipment, the life varies widely and is highly reliable over a long period of time. However, there is a problem that it is not possible to guarantee the rotational drive having the property.

このような問題点を解決するために、近年ではベアリングボールの構成材として窒化珪素焼結体などのセラミックス材料が用いられるようになってきている(例えば特許文献1参照)。窒化珪素焼結体はセラミックス材料の中でも摺動特性に優れ、良好な耐摩耗性を有するものである。従って、高速回転を行う場合においても、機械的に信頼性のある回転駆動を提供することができることが確認されている。   In order to solve such problems, in recent years, ceramic materials such as a silicon nitride sintered body have been used as a component of a bearing ball (see, for example, Patent Document 1). A silicon nitride sintered body is excellent in sliding characteristics among ceramic materials and has good wear resistance. Therefore, it has been confirmed that a mechanically reliable rotational drive can be provided even when high-speed rotation is performed.

しかしながら、窒化珪素製ベアリングボールは電気的に絶縁物であるため、高速回転を行った際に発生する静電気を、軸受鋼などの金属材料からなる回転軸やボール受け部などのベアリングボール以外の軸受部材に効果的に放散させることができないといった問題が発生する。このように静電気が円滑に放散されずにベアリングや周辺部品が必要以上に帯電してしまうと、例えばハードディスクドライブ等のように磁気的信号を用いる記録媒体を有する電子機器に悪影響を与えてしまい、その結果ハードディスク等の電子機器そのものを破壊してしまうと言った現象が起きていた。   However, since a silicon nitride bearing ball is an electrically insulating material, static electricity generated during high-speed rotation is generated by a bearing other than the bearing ball such as a rotating shaft or ball receiving portion made of a metal material such as bearing steel. There arises a problem that the member cannot be effectively diffused. Thus, if static electricity is not smoothly dissipated and the bearings and peripheral components are charged more than necessary, it will adversely affect an electronic device having a recording medium using a magnetic signal such as a hard disk drive, for example. As a result, there was a phenomenon that the electronic devices such as hard disks were destroyed.

そこで、必要以上に静電気が蓄積することを防止するために、絶縁性を低下させた窒化珪素製ベアリングボールの開発が進められている。例えば、電気抵抗値が10−5Ω・m程度の導電性窒化珪素焼結体は従来から知られている(特許文献2など参照)。この導電性窒化珪素焼結体においては、金属炭化物や金属窒化物などの導電性付与材が添加されている。金属炭化物や金属窒化物などの導電性化合物を含む窒化珪素焼結体に関しては、特許文献3、特許文献4、特許文献5、特許文献6などにも記載されている。電子機器の回転駆動部などに用いられるベアリングボールにおいても、金属炭化物や金属窒化物などの導電性付与材を利用して、絶縁性を低下させた窒化珪素焼結体を使用することが検討されている。 Therefore, in order to prevent the accumulation of static electricity more than necessary, development of bearing balls made of silicon nitride with reduced insulation has been underway. For example, a conductive silicon nitride sintered body having an electric resistance value of about 10 −5 Ω · m has been conventionally known (see, for example, Patent Document 2). In this conductive silicon nitride sintered body, a conductivity imparting material such as metal carbide or metal nitride is added. A silicon nitride sintered body containing a conductive compound such as metal carbide or metal nitride is also described in Patent Document 3, Patent Document 4, Patent Document 5, Patent Document 6, and the like. Also in bearing balls used for rotation drive parts of electronic devices, it has been studied to use a silicon nitride sintered body with reduced insulation by using a conductivity imparting material such as metal carbide or metal nitride. ing.

また、別の問題では、電子機器例えば携帯用パソコン、電子手帳、各種モバイル製品等は年々小型化、携帯化されており、それらの電子機器に用いるハードディスクも年々高容量化、小型化に対する技術的要望が強くなっている。このような高容量化、小型化に対応するためには、さらなる高速回転化が前提となっており、将来的には約10000rpm程度以上の高速回転が実現化されることが予測される。   Another problem is that electronic devices such as portable personal computers, electronic notebooks, and various mobile products are becoming smaller and more portable year by year, and the hard disks used in these electronic devices are also becoming more technical and technical. The demand is getting stronger. In order to cope with such high capacity and small size, it is premised on further high speed rotation, and it is predicted that high speed rotation of about 10,000 rpm or more will be realized in the future.

通常、上記のような高速回転を実現する機構は、回転軸部材、ベアリングボール部、ボール受け部から成る軸受部材であり、回転運動によって生じる過大な圧力は実質的にベアリングボールに集中することとなる。従来の軸受鋼ベアリングボールは剛性が低いことから高速回転を長時間継続した際には、回転騒音の上昇やベアリングボール自体が破壊され易いと言った問題が起きていた。これに対し、安定した高速回転を実現し、絶縁性を低下させた窒化珪素を使用することにより静電気の帯電量を低下させ、ハードディスクドライブ(HDD)等の電子機器を回転駆動させるための軸受部材に適したベアリングボールが適用されている。
特開2000−314426号公報 特公平2−43699号公報 特公平7−29855号公報 特許第2566580号公報 特開平6−227870号公報 特開2003−292378号公報
Usually, the mechanism for realizing the high-speed rotation as described above is a bearing member including a rotating shaft member, a bearing ball portion, and a ball receiving portion, and excessive pressure generated by the rotational motion is substantially concentrated on the bearing ball. Become. Since conventional bearing steel bearing balls have low rigidity, there has been a problem that when high-speed rotation is continued for a long time, the rotational noise increases and the bearing balls themselves are easily destroyed. On the other hand, a bearing member for rotationally driving an electronic device such as a hard disk drive (HDD) by realizing stable high-speed rotation and reducing the amount of static electricity by using silicon nitride with reduced insulation. Suitable bearing balls are applied.
JP 2000-314426 A Japanese Patent Publication No. 2-343699 Japanese Patent Publication No. 7-29855 Japanese Patent No. 2566580 JP-A-6-227870 JP 2003-292378 A

前記特許文献6等に示すように、本来絶縁性を有する窒化珪素焼結体に導電性を付与する方法として、多量のSiC等の炭化物或いはTiN等の窒化物を添加する方法がある。この場合、窒化珪素焼結体の粒界には、焼結助剤と導電性付与材としての炭化物や窒化物が存在することになる。特に炭化物は窒化珪素結晶の粒成長を抑制する作用を示し、焼結体の機械的強度を損なう傾向が顕著である。すなわち、粒成長が阻害されるため、多数の針状結晶が複雑に入り込んだ窒化珪素本来の微構造が形成されにくくなると同時に、粒界強度も低下するため、粒界が選択的に摩耗する問題が明らかになった。この摩耗は、大きさが数nm程度の微小摩耗であるが、上述したような窒化珪素焼結体から成るベアリングボールをHDDなどの回転駆動部に適用した場合、ベアリングボールの摩耗が数nm程度であっても、軸受部の騒音を上昇させる問題があった。   As shown in Patent Document 6 and the like, there is a method of adding a large amount of carbide such as SiC or nitride such as TiN as a method for imparting conductivity to a silicon nitride sintered body that originally has insulation. In this case, carbide and nitride as a sintering aid and a conductivity imparting material are present at the grain boundaries of the silicon nitride sintered body. In particular, carbides have the effect of suppressing the grain growth of silicon nitride crystals, and the tendency to impair the mechanical strength of the sintered body is remarkable. In other words, since grain growth is hindered, it becomes difficult to form the original microstructure of silicon nitride in which a large number of needle-like crystals are intricate, and at the same time the grain boundary strength is reduced, so that the grain boundary is selectively worn. Became clear. This wear is a minute wear having a size of about several nanometers. However, when a bearing ball made of a silicon nitride sintered body as described above is applied to a rotary drive unit such as an HDD, the wear of the bearing ball is about several nm. Even so, there is a problem of increasing the noise of the bearing portion.

このようなことから、金属炭化物や金属窒化物などの導電性付与材の配合に起因する窒化珪素焼結体の耐摩耗性の低下、特に粒界相の強度低下などに基づく選択的な摩耗を抑制することが、導電性を付与した電子機器用ベアリングボールの課題となっている。   For this reason, selective wear based on a decrease in wear resistance of the silicon nitride sintered body caused by the compounding of a conductivity imparting material such as a metal carbide or metal nitride, particularly a decrease in the strength of the grain boundary phase. Suppression is a problem of a bearing ball for electronic equipment to which conductivity is imparted.

また、上記の微小摩耗の問題を解決するために、窒化珪素焼結体に添加し組織中に分散させる炭化物の粒径を400nm以下に規定することにより、粒成長を阻害させない方法も知られている。しかしながら、これらの炭化物粒子は、窒化珪素結晶粒内に進入するため、窒化珪素焼結体の絶縁性を低下させる効果はほとんど見られない。したがって、このような絶縁性を有する窒化珪素焼結体では、放電加工が困難であり、焼結体から放電加工を利用して精細で複雑な形状を有する治工具を製作することは実質上不可能であるという問題点があった。   In addition, in order to solve the above-mentioned problem of micro-abrasion, there is also known a method that does not inhibit grain growth by defining the grain size of carbide added to the silicon nitride sintered body and dispersed in the structure to 400 nm or less. Yes. However, since these carbide particles enter the silicon nitride crystal grains, the effect of lowering the insulating properties of the silicon nitride sintered body is hardly seen. Therefore, with such a silicon nitride sintered body having insulating properties, electric discharge machining is difficult, and it is virtually impossible to manufacture a jig having a fine and complicated shape from the sintered body using electric discharge machining. There was a problem that it was possible.

本発明は上記したような問題点を解決するためになされたものであり、導電性付与材を含有させて放電加工を可能とし、静電気の蓄積が無い窒化珪素焼結体とその効率的な製造方法、およびその窒化珪素焼結体を用いて静電気による不具合などを改善した耐摩耗性部材を提供することを目的としている。   The present invention has been made in order to solve the above-described problems, and includes a conductivity imparting material to enable electric discharge machining, and a silicon nitride sintered body having no accumulation of static electricity and its efficient production. It is an object of the present invention to provide a wear-resistant member that has improved problems due to static electricity using the method and the silicon nitride sintered body.

また、電子機器用のベアリングボールなどに適用した際に、安定した高速回転を実現できる耐摩耗性を有し、摩耗による騒音を防止することができると共に、導電性付与材を所定量含有し導電性を有するために放電加工が可能であり、また必要以上の静電気の帯電を防止することができ、ハードディスクドライブ等の電子機器を回転駆動させるための軸受部材に適したベアリングボール等の耐摩耗性部材を提供することを目的としている。   In addition, when applied to bearing balls for electronic equipment, etc., it has wear resistance that can realize stable high-speed rotation, can prevent noise due to wear, and contains a predetermined amount of conductivity imparting material. Wear resistance such as bearing balls suitable for bearing members for rotating and driving electronic equipment such as hard disk drives, etc. The object is to provide a member.

上記目的を達成するために本発明に係る耐摩耗性部材用窒化珪素焼結体は、窒化けい素粉末に焼結助剤粉末と導電性付与材としてのカーボンナノチューブ、炭化珪素および窒化チタンとを混合し焼結した耐摩耗性部材用窒化珪素焼結体において、カーボンナノチューブを1〜5質量%と、炭化珪素を5〜20質量%と、窒化チタンを0.1〜5質量%とをそれぞれ含有し、電気抵抗値が10−2〜10Ω・cmの範囲であり、上記カーボンナノチューブと炭化珪素または窒化チタンとの接触による連続した電気伝導経路が形成されていることを特徴とする。 In order to achieve the above object, a silicon nitride sintered body for wear-resistant members according to the present invention comprises a silicon nitride powder, a sintering aid powder and carbon nanotubes, silicon carbide and titanium nitride as conductivity imparting materials. In the silicon nitride sintered body for wear-resistant members mixed and sintered, the carbon nanotube is 1 to 5% by mass, the silicon carbide is 5 to 20% by mass, and the titanium nitride is 0.1 to 5% by mass, respectively. contained, the range der of electrical resistance 10 -2 ~10 3 Ω · cm is, characterized in that the electrical conduction path continuous by contact with silicon carbide or titanium nitride and the carbon nanotube is formed .

また本発明に係る耐摩耗性部材用窒化珪素焼結体において、前記耐摩耗性部材用窒化珪素焼結体は金属炭珪化物を0.1〜5質量%含有することが好ましい。 In the silicon nitride sintered body for wear-resistant members according to the present invention, the silicon nitride sintered body for wear-resistant members preferably contains 0.1 to 5% by mass of metal carbon silicide.

さらに上記耐摩耗性部材用窒化珪素焼結体において、前記窒化珪素焼結体が希土類元素を酸化物換算で1〜10質量%と、アルミニウムを酸化物換算で2〜10質量%とを含有することが好ましい。 Furthermore Te the wear resistant member for a silicon nitride sintered body odor, before Symbol silicon nitride sintered body and 10 mass% in terms of oxide of the rare earth elements, and 2-10 wt% of aluminum in terms of oxide It is preferable to contain.

また、上記耐摩耗性部材用窒化珪素焼結体において、前記カーボンナノチューブがマルチウォール型カーボンナノチューブであることが好ましい。 Moreover, Te the wear resistant member for a silicon nitride sintered body odor, it is preferable prior Symbol carbon nanotubes are multi-wall carbon nanotube.

さらに上記耐摩耗性部材用窒化珪素焼結体において、前記金属炭珪化物が炭珪化モリブデンであることが好ましい。 Furthermore Te the wear resistant member for a silicon nitride sintered body odor, it is preferable prior Symbol metal carbonitride silicide is carbon molybdenum silicide.

本発明の耐摩耗性部材用窒化珪素焼結体の製造方法は、窒化けい素粉末に焼結助剤粉末と導電性付与材としてのカーボンナノチューブを1〜5質量%と、炭化珪素を5〜20質量%と、窒化チタンを0.1〜5質量%とを混合し、この混合物を所定形状に成形する成形工程と、前記成形工程により得られた成形体を昇温し1700〜1850℃の温度範囲で焼結して一次焼結体を調製する一次焼結工程と、得られた一次焼結体を1500〜1750℃の温度範囲で熱間静水圧プレス(HIP)処理する二次焼結工程とを具備し、上記一次焼結工程において、温度1500〜1650℃の昇温範囲における加熱時間が30分以上120分以下であり、得られた窒化けい素焼結体の電気抵抗値が10−2〜10Ω・cmの範囲であり、上記カーボンナノチューブと炭化珪素または窒化チタンとの接触による連続した電気伝導経路が形成されることを特徴とする。
In the method for producing a silicon nitride sintered body for wear-resistant members of the present invention, silicon nitride powder contains 1 to 5% by mass of carbon nanotubes as a sintering aid powder and a conductivity-imparting material, and 5 to 5% of silicon carbide. 20% by mass and 0.1-5% by mass of titanium nitride are mixed, the molding step of molding this mixture into a predetermined shape, and the molded body obtained by the molding step is heated to 1700-1850 ° C. A primary sintering step of preparing a primary sintered body by sintering in a temperature range, and a secondary sintering in which the obtained primary sintered body is subjected to a hot isostatic pressing (HIP) treatment in a temperature range of 1500 to 1750 ° C. In the primary sintering step, the heating time in the temperature rise range of 1500 to 1650 ° C. is 30 minutes or more and 120 minutes or less, and the obtained silicon nitride sintered body has an electric resistance value of 10 −. 2-10 range der of 3 Ω · cm is, the mosquitoes Wherein the continuous electrical conduction path by contact with carbon nanotube and the carbide or titanium nitride is formed.

さらに、上記耐摩耗性部材用窒化珪素焼結体の製造方法において、前記窒化珪素粉末に希土類元素を酸化物換算で1〜10質量%と、アルミニウムを酸化物換算で2〜10質量%とを混合することが好ましい。 Furthermore, the manufacturing method smell of the wear resistant member for a silicon nitride sintered body Te, before SL and 1 to 10 mass% in the silicon nitride powder a rare earth element in terms of oxide, 2-10 wt% aluminum in terms of oxide Are preferably mixed.

本発明の耐摩耗性部材用窒化珪素焼結体においては、カーボンナノチューブ、炭化珪素および窒化チタンをそれぞれ導電性付与材として配合することにより、窒化珪素焼結体に0.01〜10Ω・cmの範囲の電気抵抗値(導電性)を付与して構成される。 In the silicon nitride sintered body for wear-resistant members of the present invention, carbon nanotubes, silicon carbide and titanium nitride are blended as conductivity imparting materials, respectively, so that 0.01-10 3 Ω · An electric resistance value (conductivity) in the range of cm is given.

上記導電性付与材としてのカーボンナノチューブ、炭化珪素および窒化チタンをそれぞれ配合することにより静電気滞留防止および放電加工に好適な導電性が窒化珪素焼結体に付与される。特に、窒化珪素焼結体組織内に分散された炭化珪素および窒化チタンの導電性粒子との接触確率が高く導電性が優れたカーボンナノチューブが含有されているために、導電性粒子とカーボンナノチューブとの接触による連続した電気伝導経路が形成され易く、窒化珪素焼結体の導電性が高くなり、静電気による不具合が解消でき、また放電加工によって複雑形状の耐摩耗性部材を形成することが可能となる。   By blending carbon nanotubes, silicon carbide and titanium nitride as the conductivity imparting material, conductivity suitable for preventing electrostatic retention and electric discharge machining is imparted to the silicon nitride sintered body. In particular, since carbon nanotubes having high contact probability and excellent conductivity with conductive particles of silicon carbide and titanium nitride dispersed in the silicon nitride sintered body are contained, the conductive particles and the carbon nanotubes It is easy to form a continuous electrical conduction path due to the contact of the silicon nitride, the conductivity of the silicon nitride sintered body is increased, the problems due to static electricity can be solved, and it is possible to form a wear-resistant member with a complicated shape by electric discharge machining Become.

また本発明において、原料中に金属炭珪化物を配合し、金属炭珪化物粒子を結晶相として焼結体中に存在させることが好ましい。すなわち、金属炭珪化物(MxSiyCz)は炭化珪素や窒化チタンに比べて粒界の硬度が低くなる反面、靭性に優れた粒界を形成する材料であるため、このような金属炭珪化物粒子を粒界相などに存在させることによって、粒界相の強化を図ることができる。   Moreover, in this invention, it is preferable to mix | blend metal carbon silicide in a raw material, and to make metal carbon silicide particle | grains exist in a sintered compact as a crystal phase. That is, metal carbon silicide (MxSiyCz) has a lower grain boundary hardness than silicon carbide or titanium nitride, but is a material that forms a grain boundary excellent in toughness. By making it exist in the grain boundary phase, the grain boundary phase can be strengthened.

また、金属炭珪化物は炭化珪素や窒化チタンと同等の導電性を有している。従って、金属炭珪化物粒子を粒界相などに存在させることによって、窒化珪素焼結体の導電性を阻害することなく、導電性付与材としての炭化珪素や窒化チタンの配合に起因する摩耗、特に粒界相の選択的な摩耗を抑制することが可能となる。すなわち、良好な導電性と耐摩耗性とを併せ持つ低絶縁性(導電性)窒化珪素焼結体を提供することができる。   Moreover, the metal carbon silicide has the same conductivity as silicon carbide or titanium nitride. Therefore, by causing the metal carbon silicide particles to exist in the grain boundary phase or the like, without impairing the conductivity of the silicon nitride sintered body, wear resulting from the blending of silicon carbide or titanium nitride as a conductivity imparting material, In particular, selective wear of the grain boundary phase can be suppressed. That is, it is possible to provide a low insulating (conductive) silicon nitride sintered body having both good conductivity and wear resistance.

本発明の耐摩耗性部材は、上記した本発明の導電性窒化珪素焼結体で構成されたことを特徴としている。本発明の耐摩耗性部材は、特に電子機器用ベアリングボールまたは治具の構成材として好適である。電子機器用治具の具体例としては、ピンセット、電子機器製造ラインにおける位置合せ治具などが例示できる。上記のような電子機器用ベアリングボールによれば、電子機器に対して種々の悪影響を及ぼす静電気を良好に逃がした上で、安定した高速回転を実現することが可能となる。 Wear resistant member of the present invention is characterized in that it is constituted of a conductive silicon nitride sintered body of the present invention that describes above. Wear resistant member of the present invention is suitable as a material for the bearing balls or jig electronic devices especially. Specific examples of electronic equipment jigs include tweezers and alignment jigs in electronic equipment production lines. According to the above-described bearing ball for an electronic device, it is possible to realize stable high-speed rotation while properly discharging static electricity that has various adverse effects on the electronic device.

さらに本発明の耐摩耗性部材は、半導体製造装置用治具の構成材として好適である。具体的な半導体製造装置用治具としては、例えば真空チャック、ヒータブロック、ガイドレール、ウェハーカセットなどが例示できる。
Furthermore the wear resistant member of the present invention is suitable as a material for the semi-conductor manufacturing equipment jig. Specific examples of the jig for a semiconductor manufacturing apparatus include a vacuum chuck, a heater block, a guide rail, and a wafer cassette.

本発明に係る窒化珪素焼結体、その製造方法、およびそれを用いた耐摩耗性部材によれば、窒化珪素焼結体組織内に分散された炭化珪素および窒化チタンの導電性粒子との接触確率が高く導電性が優れたカーボンナノチューブが含有されているために、導電性粒子とカーボンナノチューブとの接触による連続した電気伝導経路が形成され易く、窒化珪素焼結体の導電性が高くなり、静電気による不具合が解消でき、また放電加工によって複雑形状の耐摩耗性部材を形成することが可能となる。   According to the silicon nitride sintered body, the manufacturing method thereof, and the wear-resistant member using the same according to the present invention, contact with silicon carbide and titanium nitride conductive particles dispersed in the silicon nitride sintered body structure Because carbon nanotubes with high probability and excellent conductivity are contained, a continuous electric conduction path is easily formed by contact between the conductive particles and the carbon nanotubes, and the conductivity of the silicon nitride sintered body is increased. Problems due to static electricity can be solved, and a complex wear-resistant member can be formed by electric discharge machining.

また、炭化珪素および窒化チタンの導電性粒子との接触確率が高く導電性が優れたカーボンナノチューブが含有されているために、導電性粒子よりも少量で十分な導電性を得ることができる。したがって、導電性粒子の含有量を従来より減少させることが可能となり、導電性粒子を多量に含有させた場合に生じる粒界強度の低下や粒界の選択的摩耗の発生が効果的に抑止できる。したがって、耐摩耗特性に優れ耐久性が高い耐摩耗性部材を提供することができる。   In addition, since carbon nanotubes having high contact probability with silicon carbide and titanium nitride conductive particles and having excellent conductivity are contained, sufficient conductivity can be obtained in a smaller amount than the conductive particles. Therefore, it becomes possible to reduce the content of the conductive particles as compared with the conventional case, and it is possible to effectively suppress the decrease in grain boundary strength and the occurrence of selective wear of the grain boundaries caused when a large amount of conductive particles are contained. . Therefore, it is possible to provide a wear resistant member having excellent wear resistance characteristics and high durability.

以下、本発明を実施するための形態について説明する。本発明の低絶縁性(導電性)窒化珪素焼結体は0.01〜10Ω・cmの範囲の電気抵抗値を有している。ここで、窒化珪素自体は本質的に絶縁性材料であり、一般的には電気抵抗値が10Ω・m以上である。そこで、本発明では窒化珪素焼結体に導電性付与材としてカーボンナノチューブ、炭化珪素および窒化チタンをそれぞれ含有させ、このような導電性付与材により窒化珪素焼結体に0.01〜10Ω・cmの範囲の電気抵抗値を付与している。 Hereinafter, modes for carrying out the present invention will be described. The low insulating (conductive) silicon nitride sintered body of the present invention has an electric resistance value in the range of 0.01 to 10 3 Ω · cm. Here, silicon nitride itself is essentially an insulating material, and generally has an electric resistance value of 10 8 Ω · m or more. Therefore, carbon nanotubes as the conductivity imparting agent to the silicon nitride sintered body in the present invention, respectively is contained silicon carbide and titanium nitride, 0.01 to 10 3 Omega silicon nitride sintered body by such conductivity imparting agent -An electrical resistance value in the range of cm is given.

窒化珪素焼結体の電気抵抗値が10Ω・cmを超えると、導電性窒化珪素焼結体としての特性を満足させることができず、例えばベアリングボールとしてHDDの回転駆動部などに適用した際に、高速回転により生じる静電気を回転軸やボール受け部などの金属材料から成る軸受部材に良好に伝導させて放散させることができない。すなわち、窒化珪素焼結体の電気抵抗値が10Ω・cmを超えると、静電気などの導通量を十分に確保することができない。また、焼結体の導電性が不十分になるために、焼結体を放電加工によって複雑形状に効率的に加工することが困難になり精密形状を有する耐摩耗性部品の量産性が低下する。 When the electrical resistance value of the silicon nitride sintered body exceeds 10 3 Ω · cm, the characteristics as the conductive silicon nitride sintered body cannot be satisfied, and for example, it is applied as a bearing ball to an HDD rotational drive unit or the like. At this time, static electricity generated by high-speed rotation cannot be conducted well to a bearing member made of a metal material such as a rotating shaft or a ball receiving portion and dissipated. That is, when the electrical resistance value of the silicon nitride sintered body exceeds 10 3 Ω · cm, a sufficient amount of conduction such as static electricity cannot be secured. In addition, since the conductivity of the sintered body becomes insufficient, it becomes difficult to efficiently process the sintered body into a complicated shape by electric discharge machining, and the mass productivity of wear-resistant parts having a precise shape is reduced. .

一方、窒化珪素焼結体の電気抵抗値を0.01Ω・cm(10−2Ω・cm)未満としても、静電気の放散などに関してそれ以上の効果が得られないだけでなく、そのような電気抵抗値を得るためには多量の導電性付与材を添加する必要が生じる。窒化珪素焼結体に多量の導電性付与材を配合すると、導電性付与材同士の凝集体などが多量に発生し、これにより窒化珪素焼結体の破壊靭性値や耐摩耗性などの機械的特性を損なうことになる。窒化珪素焼結体の電気抵抗値は0.1〜10Ω・cmの範囲であることがより好ましい。 On the other hand, even if the electric resistance value of the silicon nitride sintered body is less than 0.01 Ω · cm (10 −2 Ω · cm), not only the effect on the dissipation of static electricity is not obtained, but also In order to obtain a resistance value, it is necessary to add a large amount of conductivity imparting material. When a large amount of conductivity imparting material is added to the silicon nitride sintered body, a large amount of agglomerates of the conductivity imparting materials are generated. The characteristics will be impaired. The electric resistance value of the silicon nitride sintered body is more preferably in the range of 0.1 to 10 2 Ω · cm.

本発明の低絶縁性窒化珪素焼結体においては、上記した0.01〜10Ω・cmの範囲の電気抵抗値を得るために、窒化珪素焼結体中にカーボンナノチューブ(CNT)、炭化珪素(SiC)および窒化チタン(TiN)をそれぞれ導電性付与材として含有させている。窒化チタンは酸化チタンとして添加し、これを焼結過程で窒化してもよい。また、炭化珪素および金属炭珪化物についても焼結過程で、それぞれの化合物を形成するものを用いてもよい。 In the low-insulating silicon nitride sintered body of the present invention, carbon nanotubes (CNT), carbonized carbon dioxide are included in the silicon nitride sintered body in order to obtain the electric resistance value in the range of 0.01 to 10 3 Ω · cm. Silicon (SiC) and titanium nitride (TiN) are contained as conductivity imparting materials, respectively. Titanium nitride may be added as titanium oxide and nitrided during the sintering process. Also, silicon carbide and metal carbon silicide may be used in the sintering process to form respective compounds.

カーボンナノチューブ(CNT)は、導電性付与材の1種として機能し、特に焼結体組織中に分散した炭化珪素(SiC)および窒化チタン(TiN)等の導電性粒子を相互に接続したり、長尺のカーボンナノチューブ同士が複雑に絡み合ったりして連続した電気伝導経路を形成し窒化珪素焼結体に導電性を付与する成分である。   Carbon nanotubes (CNT) function as a kind of conductivity imparting material, and in particular connect conductive particles such as silicon carbide (SiC) and titanium nitride (TiN) dispersed in the sintered body structure, This is a component that imparts conductivity to the silicon nitride sintered body by forming a continuous electric conduction path in which long carbon nanotubes are intertwined in a complicated manner.

また、カーボンナノチューブは固体潤滑材としても機能し、このCNTを含有する窒化珪素焼結体を摺動部材に適用した場合には、カーボンナノチューブの潤滑作用によって相手材に対する攻撃性が大幅に緩和される結果、相手材の摩耗量を効果的に低減できる作用効果も得られる。   Carbon nanotubes also function as a solid lubricant, and when this silicon nitride sintered body containing CNTs is applied to a sliding member, the aggressiveness of the carbon nanotubes against the counterpart material is greatly reduced by the lubricating action of the carbon nanotubes. As a result, an effect of effectively reducing the wear amount of the counterpart material can be obtained.

ここで、上記カーボンナノチューブ(CNT)は、中空部分を有するグラファイト製の円筒体であり、通常の中実の炭素繊維よりも相当細い、極細の中空炭素繊維である。CNTは、一般に直径(短径)が0.8nmから300nmであり、長さ(長径)が5〜20μm程度である。CNTの種類としては、円筒壁が単層であるシングルウォール型CNTと、複数の円筒壁が同心状に入れ子式に多層に積層されたマルチウォール型CNTとに大別される。   Here, the carbon nanotube (CNT) is a graphite cylindrical body having a hollow portion, and is an ultrafine hollow carbon fiber that is considerably thinner than a normal solid carbon fiber. The CNT generally has a diameter (minor axis) of 0.8 nm to 300 nm and a length (major axis) of about 5 to 20 μm. The types of CNTs are roughly classified into single wall type CNTs having a single cylindrical wall and multi wall type CNTs in which a plurality of cylindrical walls are concentrically nested and stacked in multiple layers.

上記シングルウォール型CNTとマルチウォール型CNTとにおいて、導電性付与材としての機能については両者で差異は少ないが、その製造法や精製法の相違に起因する価格の点でマルチウォール型CNTが安価である観点および焼結操作時の高温度によって焼失しにくい観点から、本発明においてはマルチウォール型CNTが好適に使用される。特に短径が30〜100nmであり長径が5〜20μmであるマルチウォール型カーボンナノチューブを使用することが好ましい。窒化珪素焼結体中におけるカーボンナノチューブの存在は透過型電子顕微鏡(TEM)によって分析可能である。   The single wall type CNT and the multi wall type CNT have little difference in the function as a conductivity imparting material, but the multi wall type CNT is inexpensive in terms of the price due to the difference in the manufacturing method and the purification method. In view of the above and multi-walled CNTs are preferably used in the present invention from the viewpoint of being hard to be burned down by a high temperature during the sintering operation. In particular, it is preferable to use a multi-wall type carbon nanotube having a minor axis of 30 to 100 nm and a major axis of 5 to 20 μm. The presence of carbon nanotubes in the silicon nitride sintered body can be analyzed by a transmission electron microscope (TEM).

一方、炭化珪素や窒化チタンは10−5Ω・m(10−3Ω・cm)以下の電気抵抗値を有し、かつ化学的に安定であることから、焼結過程においても特性や形状を良好に保つことができる。従って、比較的少量の配合量で窒化珪素焼結体に低電気絶縁性(導電性)を良好に付与することが可能となる。さらに、耐熱性や摺動特性にも優れるという特徴を有する。なお、導電性付与材の存在は、EPMAやX線回折(XRD)により分析可能である。 On the other hand, silicon carbide and titanium nitride have an electric resistance value of 10 −5 Ω · m (10 −3 Ω · cm) or less and are chemically stable, so that they have characteristics and shapes even during the sintering process. Can keep good. Therefore, low electrical insulation (conductivity) can be satisfactorily imparted to the silicon nitride sintered body with a relatively small blending amount. Furthermore, it has the feature that it is excellent also in heat resistance and sliding characteristics. The presence of the conductivity imparting material can be analyzed by EPMA or X-ray diffraction (XRD).

上述した炭化珪素や窒化チタンからなる導電性付与材は平均粒径が3μm以下、さらには平均粒径1μm以下の粒子形状を有することが好ましい。さらに、導電性付与材は最大径が4μm以下であることが好ましく、より好ましい平均粒径は2μm以下である。このような形状を有する炭化珪素粒子や窒化チタン粒子を用いることによって、窒化珪素焼結体中に導電性付与材を良好に分散させることができる。これに対して、導電性付与材としてウイスカーや繊維を用いると、ウイスカーや繊維は窒化珪素焼結体の粒界に対して径が太く、ウイスカーや繊維の界面から亀裂が生じ易い。一方、CNTは粒界相に対して、十分小さいことから亀裂は生じ難い。   The conductivity imparting material made of silicon carbide or titanium nitride described above preferably has a particle shape with an average particle diameter of 3 μm or less, and more preferably with an average particle diameter of 1 μm or less. Further, the conductivity imparting material preferably has a maximum diameter of 4 μm or less, and a more preferable average particle diameter is 2 μm or less. By using silicon carbide particles or titanium nitride particles having such a shape, the conductivity imparting material can be favorably dispersed in the silicon nitride sintered body. On the other hand, when a whisker or fiber is used as the conductivity imparting material, the whisker or fiber has a large diameter with respect to the grain boundary of the silicon nitride sintered body, and cracks are easily generated from the interface between the whisker and the fiber. On the other hand, since CNT is sufficiently small with respect to the grain boundary phase, cracks are unlikely to occur.

導電性付与材の配合量は、目的とする窒化珪素焼結体の電気抵抗値に応じて適宜設定される。上記した0.01〜10Ω・cmの範囲の電気抵抗値を得る上で、カーボンナノチューブ、炭化珪素、窒化チタンの合計含有量は、窒化珪素焼結体に対して10〜30体積%の範囲とすることが好ましい。導電性付与材の含有量が30体積%を超えると、窒化珪素焼結体の硬度が必要以上に上昇し、耐摩耗性や破壊靭性値などの特性が低下すると共に、窒化珪素の粒成長の阻害要因が増大し、選択的摩耗などがより一層生じやすくなる。導電性付与材の含有量が10体積%未満であると、電気抵抗値を所定の値に制御することが困難になるため、あまり好ましくはない。導電性付与材の配合量は15〜25体積%の範囲とすることがより好ましい。 The blending amount of the conductivity imparting material is appropriately set according to the electric resistance value of the target silicon nitride sintered body. In obtaining the above-described electric resistance value in the range of 0.01 to 10 3 Ω · cm, the total content of carbon nanotubes, silicon carbide, and titanium nitride is 10 to 30% by volume with respect to the silicon nitride sintered body. It is preferable to be in the range. When the content of the conductivity imparting material exceeds 30% by volume, the hardness of the silicon nitride sintered body is increased more than necessary, and the properties such as wear resistance and fracture toughness value are lowered, and the silicon nitride grains grow. Inhibitory factors increase and selective wear and the like are more likely to occur. When the content of the conductivity imparting material is less than 10% by volume, it is difficult to control the electric resistance value to a predetermined value, which is not preferable. The blending amount of the conductivity imparting material is more preferably in the range of 15 to 25% by volume.

上記導電性付与材としてのカーボンナノチューブ(CNT)の具体的な含有量は、1〜5質量%の範囲である。カーボンナノチューブの含有量が1質量%未満である場合には、窒化珪素焼結体の導電性が不十分となる一方、含有量が5質量%を超えるように過剰に含有されると、窒化珪素の緻密化が阻害される。したがって、カーボンナノチューブの含有量は、1〜5質量%の範囲であるが、1.5〜4質量%の範囲がより好ましい。   The specific content of carbon nanotubes (CNT) as the conductivity imparting material is in the range of 1 to 5% by mass. When the content of the carbon nanotube is less than 1% by mass, the conductivity of the silicon nitride sintered body becomes insufficient. On the other hand, when the content is excessive so that the content exceeds 5% by mass, silicon nitride Densification is inhibited. Therefore, the carbon nanotube content is in the range of 1 to 5% by mass, but more preferably in the range of 1.5 to 4% by mass.

なお、導電性粒子として例えば粒径が0.3μm(300nm)の炭化珪素および窒化チタンのみを分散させた場合には、窒化珪素の粒界中に導電性粒子(電極)間に絶縁層(ガラス層)が形成され、焼結体の導電性を高めるためには、絶縁層距離を短くする必要があり、本発明で指向する導電性を達成するためには、導電性粒子を20〜40vol%程度と多量に添加する必要がある。この場合、前記のように多量の導電性粒子の存在により結晶の粒成長が阻害され窒化珪素本来の高強度の結晶組織が形成できない。   For example, when only conductive silicon particles having a particle size of 0.3 μm (300 nm) and titanium nitride are dispersed, an insulating layer (glass) is formed between the conductive particles (electrodes) in the grain boundaries of silicon nitride. In order to increase the conductivity of the sintered body, it is necessary to shorten the insulating layer distance. To achieve the conductivity directed in the present invention, the conductive particles are contained in an amount of 20 to 40 vol%. It is necessary to add a large amount. In this case, as described above, the growth of crystals is hindered by the presence of a large amount of conductive particles, and the original high-strength crystal structure of silicon nitride cannot be formed.

これに対して本発明のように、例えば、短径が30〜100nmであり長径が5〜20μmであるカーボンナノチューブを所定量含有させることにより、導電性粒子の含有量を相対的に低減することが可能になる。すなわち、1本のカーボンナノチューブは、3〜10個に相当する導電性粒子の導電性付与効果を有する上に、カーボンナノチューブ自体の導電性が高く、また導電性粒子との接触確率も高くなるために、導電性粒子よりも少量で十分な導電性を実現することができる。   On the other hand, as in the present invention, for example, by containing a predetermined amount of carbon nanotubes having a minor axis of 30 to 100 nm and a major axis of 5 to 20 μm, the content of conductive particles is relatively reduced. Is possible. That is, one carbon nanotube has the effect of imparting conductivity to 3 to 10 conductive particles, and the carbon nanotube itself has high conductivity and also has a high contact probability with the conductive particles. In addition, sufficient conductivity can be realized in a smaller amount than the conductive particles.

また、上記導電性付与材としての炭化珪素(SiC)の具体的な含有量は、0.1〜20質量%の範囲である一方、窒化チタン(TiN)の具体的な含有量は、0.1〜5質量%の範囲であることが好ましい。上記炭化珪素または窒化チタンの含有量が上記下限値未満の場合には、導電性を付与する効果が不十分である一方、その含有量が上記上限値を超えるように過大になると、焼結体結晶の粒成長が阻害されて窒化珪素焼結体本来の高い機械的強度が得られなくなる。これらの導電性付与材としてのSiC、TiNおよび前記金属炭珪化物の粒径は、特に制限されるものではないが、平均粒子径が3μm以下の微粒子を用いることが好ましい。   Further, the specific content of silicon carbide (SiC) as the conductivity imparting material is in the range of 0.1 to 20% by mass, while the specific content of titanium nitride (TiN) is 0.8. It is preferable that it is the range of 1-5 mass%. When the content of the silicon carbide or titanium nitride is less than the lower limit, the effect of imparting conductivity is insufficient, while when the content exceeds the upper limit, the sintered body Crystal grain growth is hindered and the original high mechanical strength of the silicon nitride sintered body cannot be obtained. The particle diameters of SiC, TiN and the metal carbon silicide as the conductivity imparting material are not particularly limited, but it is preferable to use fine particles having an average particle diameter of 3 μm or less.

ここで、窒化珪素焼結体の粒界相は、使用した焼結助剤の種類にもよるが、例えばSi−R(希土類元素)−O系化合物、Si−Al−R−O系化合物、Si−Al−O系化合物、Si−R−O−N系化合物、Si−Al−R−O−N系化合物、Si−Al−O−N系化合物などの酸化物や酸窒化物により形成される。このような粒界相(ガラス相)に高硬度の炭化珪素粒子や窒化チタン粒子が多量に存在すると粒界相の靭性やねばりなどが低下して、前述したように粒界相の選択的な摩耗などが生じやすくなる。   Here, although the grain boundary phase of the silicon nitride sintered body depends on the kind of the sintering aid used, for example, a Si—R (rare earth element) -O compound, a Si—Al—R—O compound, Formed with oxides or oxynitrides such as Si-Al-O compounds, Si-R-O-N compounds, Si-Al-R-O-N compounds, Si-Al-O-N compounds, etc. The When a large amount of high-hardness silicon carbide particles or titanium nitride particles are present in such a grain boundary phase (glass phase), the toughness or stickiness of the grain boundary phase decreases, and as described above, the selective selection of the grain boundary phase. Wear is likely to occur.

そこで、本発明に係る窒化珪素焼結体においては、導電性を発現するために極めて有効なカーボンナノチューブを少量添加することにより、炭化珪素粒子や窒化チタン粒子の含有量を相対的に低減すると共に、金属炭珪化物(MxSiyCz)の結晶相を窒化珪素焼結体中に存在させることが好ましい。ここで、Mは任意の遷移金属であり、x、yおよびzは任意の係数である。金属炭珪化物粒子などの結晶相は主として窒化珪素焼結体の粒界相に存在する。金属炭珪化物粒子(MxSiyCz粒子)は、炭化珪素粒子や窒化チタン粒子に比べて硬度が低いものの、その反面として靭性に優れることから、粒界相に靭性やねばりなどが付与される。言い換えると、粒界相が強化され、粒界相の選択的な摩耗を抑制することが可能となる。   Therefore, in the silicon nitride sintered body according to the present invention, the content of silicon carbide particles and titanium nitride particles is relatively reduced by adding a small amount of carbon nanotubes that are extremely effective for developing conductivity. It is preferable that a crystalline phase of metal carbon silicide (MxSiyCz) is present in the silicon nitride sintered body. Here, M is an arbitrary transition metal, and x, y, and z are arbitrary coefficients. Crystal phases such as metal carbon silicide particles exist mainly in the grain boundary phase of the silicon nitride sintered body. Although metal carbon silicide particles (MxSiyCz particles) have lower hardness than silicon carbide particles and titanium nitride particles, on the other hand, since they are excellent in toughness, toughness and stickiness are imparted to the grain boundary phase. In other words, the grain boundary phase is strengthened, and selective wear of the grain boundary phase can be suppressed.

また、金属炭珪化物(MxSiyCz)は炭化珪素や窒化チタンに比べると窒化珪素のような絶縁性材料ではなく、導電性を有している。従って、金属炭珪化物粒子を粒界相などに存在させることによって、窒化珪素焼結体の導電性を阻害することなく、導電性付与材としての炭化珪素や窒化チタンの配合に起因する摩耗、特に粒界相の選択的な摩耗を抑制することが可能となる。すなわち、窒化珪素焼結体に良好な導電性と耐摩耗性を付与することができる。なお、金属炭珪化物の結晶相の存在はX線回折により特定することができる。   Further, metal carbon silicide (MxSiyCz) is not an insulating material such as silicon nitride, but has conductivity as compared with silicon carbide or titanium nitride. Therefore, by causing the metal carbon silicide particles to exist in the grain boundary phase or the like, without impairing the conductivity of the silicon nitride sintered body, wear resulting from the blending of silicon carbide or titanium nitride as a conductivity imparting material, In particular, selective wear of the grain boundary phase can be suppressed. That is, good conductivity and wear resistance can be imparted to the silicon nitride sintered body. Note that the presence of the crystalline phase of the metal carbon silicide can be identified by X-ray diffraction.

上述した金属炭珪化物(MxSiyCz)としては、各種遷移金属元素の炭珪化物を使用することができるが、特にモリブデン(Mo)、タングステン(W)、ニオブ(Nb)およびタンタル(Ta)から選ばれる少なくとも1種の金属の炭珪化物を用いることが好ましい。上記の炭珪化物の内でも特に炭珪化モリブデンが好ましい。このような金属炭珪化物(M1xSiyCz:M1はMo、W、NbおよびTaから選ばれる少なくとも1種、x、y、zは任意の数)は、粒界相などの耐摩耗性をより一層良好に向上させることから、本発明において好ましく用いられるものである。なお、本発明で言う金属炭珪化物(MxSiyCz)とはあくまでも遷移金属の炭珪化物であり、炭化珪素(SiC)は含まれない。   As the metal carbon silicide (MxSiyCz) described above, carbon silicides of various transition metal elements can be used, and particularly selected from molybdenum (Mo), tungsten (W), niobium (Nb) and tantalum (Ta). It is preferable to use at least one metal carbosilicate. Of the above-mentioned carbon silicides, molybdenum carbon silicide is particularly preferable. Such a metal carbon silicide (M1xSiyCz: M1 is at least one selected from Mo, W, Nb and Ta, and x, y, and z are arbitrary numbers) has even better wear resistance such as grain boundary phase. Therefore, it is preferably used in the present invention. The metal carbon silicide (MxSiyCz) referred to in the present invention is a transition metal carbon silicide and does not include silicon carbide (SiC).

また、金属炭珪化物の含有量は、窒化珪素焼結体の全量に対して0.1〜5質量%の範囲とすることが好ましい。金属炭珪化物の含有量が0.1質量%未満と過度に少ない場合には、粒界相の靭性やねばりなどを高める効果が不十分となり、例えば粒界相の選択的な摩耗を十分に抑制することができない。一方、金属炭珪化物の含有量が5質量%を超えるように過剰になると、窒化珪素の緻密化焼結が逆に妨げられるおそれがある。このようなことから、金属炭珪化物の含有量は窒化珪素焼結体に対して0.1〜5質量%の範囲とすることが好ましく、さらに好ましくは2〜3質量%の範囲である。なお、焼結過程で金属炭珪化物を生成する場合には、金属炭化物などの化合物粉末を金属炭珪化物に換算して添加量を調整するものとする。   Moreover, it is preferable to make content of metal carbon silicide into the range of 0.1-5 mass% with respect to the whole quantity of a silicon nitride sintered compact. When the content of the metal carbon silicide is excessively low, less than 0.1% by mass, the effect of increasing the toughness and stickiness of the grain boundary phase is insufficient, and for example, the selective wear of the grain boundary phase is sufficient. It cannot be suppressed. On the other hand, when the content of the metal carbon silicide exceeds 5% by mass, densification and sintering of silicon nitride may be hindered. Therefore, the content of the metal carbon silicide is preferably in the range of 0.1 to 5% by mass, more preferably in the range of 2 to 3% by mass with respect to the silicon nitride sintered body. In addition, when producing | generating a metal carbon silicide during a sintering process, compound powders, such as a metal carbide, shall be converted into a metal carbon silicide, and an addition amount shall be adjusted.

本発明に係る窒化珪素焼結体は、導電性付与材としてのカーボンナノチューブ、炭化珪素および窒化チタンを配合する以外は一般的な窒化珪素焼結体と同様に、各種の金属化合物を焼結助剤として含むことができる。焼結助剤としては、例えば希土類元素(イットリウムを含むランタノイド元素)の酸化物、アルカリ土類元素の酸化物などが用いられる。希土類元素の酸化物としては、イットリウム(Y)、イッテルビウム(Yb)、エルビウム(Er)などの酸化物を使用することが好ましい。これらは粒界相の構成成分となるものである。また、アルカリ土類元素の酸化物としては、マグネシウムやカルシウムの酸化物を用いることが好ましい。なお、焼結助剤としての化合物には、焼結時に酸化物となる希土類元素やアルカリ土類元素の化合物(炭酸塩など)を用いてもよい。   The silicon nitride sintered body according to the present invention supports various metal compounds in the same manner as a general silicon nitride sintered body except that carbon nanotubes, silicon carbide, and titanium nitride are blended as conductivity imparting materials. It can be included as an agent. As the sintering aid, for example, an oxide of a rare earth element (lanthanoid element including yttrium), an oxide of an alkaline earth element, or the like is used. As the rare earth element oxide, an oxide such as yttrium (Y), ytterbium (Yb), or erbium (Er) is preferably used. These are constituents of the grain boundary phase. Further, it is preferable to use an oxide of magnesium or calcium as the oxide of the alkaline earth element. As the compound as the sintering aid, a rare earth element or alkaline earth element compound (such as carbonate) that becomes an oxide during sintering may be used.

また、上述した希土類元素やアルカリ土類元素の酸化物に加えて、窒化アルミニウムや酸化アルミニウムなどのアルミニウム化合物、さらにチタン、ジルコニウム、ハフニウムなどの酸化物や窒化物を、焼結助剤の一部として用いることも有効である。アルミニウム化合物は窒化珪素結晶粒間の結合力の強化に寄与する。これらの化合物は酸化物や窒化物として添加してもよいし、焼結時に酸化物や窒化物となる化合物を添加してもよい。   In addition to the oxides of rare earth elements and alkaline earth elements described above, aluminum compounds such as aluminum nitride and aluminum oxide, and oxides and nitrides such as titanium, zirconium, and hafnium are used as part of the sintering aid. It is also effective to use as The aluminum compound contributes to strengthening the bonding force between the silicon nitride crystal grains. These compounds may be added as oxides or nitrides, or compounds that become oxides or nitrides during sintering may be added.

上述したような焼結助剤は窒化珪素100質量部に対して5〜20質量部の範囲で含有させることが好ましい。焼結助剤量が5質量部未満であると、窒化珪素焼結体を十分に緻密化できないおそれがある。一方、焼結助剤量が20質量部を超えると、粒界相や焼結助剤成分の偏析の形成量が必要以上に増加し、これにより窒化珪素焼結体の耐摩耗性や強度の低下などを招くおそれがある。上述した焼結助剤のうち、希土類酸化物の含有量は焼結体に対して1〜10質量%の範囲とすることが好ましく、またアルカリ土類酸化物の含有量は0.5〜5質量%の範囲とすることが好ましい。さらに、これらに加えて窒化アルミニウムや酸化アルミニウムなどのアルミニウム元素は酸化物換算で2〜10質量%の範囲で含有させることが好ましい。   The sintering aid as described above is preferably contained in the range of 5 to 20 parts by mass with respect to 100 parts by mass of silicon nitride. If the amount of the sintering aid is less than 5 parts by mass, the silicon nitride sintered body may not be sufficiently densified. On the other hand, when the amount of the sintering aid exceeds 20 parts by mass, the amount of segregation of the grain boundary phase and the sintering aid component increases more than necessary, thereby improving the wear resistance and strength of the silicon nitride sintered body. There is a risk of lowering. Among the sintering aids described above, the rare earth oxide content is preferably in the range of 1 to 10% by mass with respect to the sintered body, and the alkaline earth oxide content is 0.5 to 5%. It is preferable to set it as the range of the mass%. Further, in addition to these, aluminum elements such as aluminum nitride and aluminum oxide are preferably contained in the range of 2 to 10% by mass in terms of oxides.

本発明に係る窒化珪素焼結体の製造方法は、特に限定されるものではないが、例えば以下に示すような方法により製造することが好ましい。まず、窒化珪素粉末、焼結助剤粉末、導電性付与材粉末、および必要に応じて金属炭珪化物粉末をそれぞれ所定量秤量し、これらを均一に混合して原料混合物を調製する。   Although the manufacturing method of the silicon nitride sintered compact concerning this invention is not specifically limited, For example, manufacturing by the method as shown below is preferable. First, a predetermined amount of each of silicon nitride powder, sintering aid powder, conductivity imparting material powder, and if necessary, metal carbon silicide powder is weighed and uniformly mixed to prepare a raw material mixture.

上記した各原料粉末には、長尺のカーボンナノチューブを除き、摺動特性を考慮して粒子状粉末を用いることが好ましい。各原料粉末の大きさは特に限定されるものではないが、窒化珪素粉末は平均粒径が0.2〜1μmの範囲が好ましく、焼結助剤粉末は平均粒径が2μm以下であることが好ましい。導電性付与材としてのカーボンナノチューブは、短径が30〜100nmであり長径が5〜20μmであるマルチウォール型カーボンナノチューブが好ましい。また、炭化珪素や窒化チタンの導電性付与材粉末の平均粒径は2μm以下であることが好ましい。導電性付与材粉末の平均粒径が2μmを超えると、焼結性の阻害が著しくなる。また、金属炭珪化物粉末を用いる場合、金属炭珪化物粉末の平均粒径は5μm以下、炭化珪素等を含めた導電性付与粉末全体として平均粒径3μm以下が好ましい。   For each of the raw material powders described above, it is preferable to use a particulate powder in consideration of sliding characteristics except for long carbon nanotubes. The size of each raw material powder is not particularly limited, but the silicon nitride powder preferably has an average particle size in the range of 0.2 to 1 μm, and the sintering aid powder has an average particle size of 2 μm or less. preferable. The carbon nanotube as the conductivity imparting material is preferably a multi-wall type carbon nanotube having a minor axis of 30 to 100 nm and a major axis of 5 to 20 μm. The average particle size of the conductivity imparting material powder of silicon carbide or titanium nitride is preferably 2 μm or less. When the average particle diameter of the conductivity imparting material powder exceeds 2 μm, the sinterability is significantly impaired. Moreover, when using metal carbon silicide powder, the average particle diameter of metal carbon silicide powder is 5 micrometers or less, and the average particle diameter of 3 micrometers or less as the whole electroconductivity imparting powder containing silicon carbide etc. is preferable.

また、各原料粉末を混合するにあたっては、まず窒化珪素粉末と焼結助剤粉末とを混合して第1の混合粉末を調製し、この第1の混合粉末に導電性付与材粉末を混合して第2の混合粉末を調製した後、第2の混合粉末に金属炭珪化物粉末を混合することが好ましい。このように、段階的に混合粉末を調製し、最終的に全原料を含む原料混合物を調製することによって、導電性付与材や金属炭珪化物を均一分散させることができる。各段階の混合はそれぞれ30分以上行い、各混合粉末を十分に均一化した後に、次の混合工程を実施することが好ましい。   Further, when mixing each raw material powder, first, a silicon nitride powder and a sintering aid powder are mixed to prepare a first mixed powder, and a conductivity imparting material powder is mixed with the first mixed powder. Then, after preparing the second mixed powder, it is preferable to mix the metal carbon silicide powder with the second mixed powder. Thus, by preparing a mixed powder stepwise and finally preparing a raw material mixture containing all raw materials, the conductivity imparting material and the metal carbon silicide can be uniformly dispersed. It is preferable to perform mixing at each stage for 30 minutes or more, and after the mixed powders are sufficiently homogenized, the next mixing step is performed.

上述した原料混合物は必要に応じて造粒した後、所望の形状に成形する。成形方法に関しては、通常の成形方法を適用することができ、例えば冷間静水圧プレス(CIP)を適用して成形体を作製することが好ましい。このようにして得た成形体を焼結することによって、本発明に係る窒化珪素焼結体が得られる。焼結方法に関しては、常圧焼結、加圧焼結、熱間静水圧プレス(HIP)などが適用可能であるが、特に常圧焼結や加圧焼結などによる一次焼結工程と、HIPによる二次焼結工程とを組合せた2段階焼結を適用することが好ましい。   The raw material mixture described above is granulated as necessary, and then formed into a desired shape. With respect to the molding method, a normal molding method can be applied. For example, it is preferable to produce a molded body by applying a cold isostatic press (CIP). By sintering the molded body thus obtained, the silicon nitride sintered body according to the present invention is obtained. Regarding the sintering method, normal pressure sintering, pressure sintering, hot isostatic pressing (HIP) and the like are applicable, and in particular, a primary sintering step by pressure sintering or pressure sintering, It is preferable to apply two-stage sintering combined with a secondary sintering process by HIP.

一次焼結工程は大気圧下もしくは雰囲気加圧下にて1700〜1850℃の範囲の温度で実施する。このような一次焼結工程の前処理として、まず焼結助剤による液相が生成し、かつ窒化珪素がα相からβ相に転移して結晶粒の再配列が起こる温度、すなわち1400〜1600℃の温度範囲における加熱時間が短いと導電性付与材が偏析する原因となる。特に焼結時に発生するSiO、CO,CO等のガスを放出する温度範囲であり、かつ液相を生成して緻密化焼結が開始される温度範囲である1500〜1650℃の温度範囲における加熱時間が長いと粒界中のSiOとカーボンナノチューブの炭素成分Cとが下記反応式にしたがって反応する結果、SiCが生成すると同時に炭素成分CがCOとなって蒸発する。 The primary sintering step is performed at a temperature in the range of 1700 to 1850 ° C. under atmospheric pressure or atmospheric pressure. As a pretreatment for such a primary sintering step, first, a temperature at which a liquid phase is generated by a sintering aid and silicon nitride is changed from an α phase to a β phase to cause rearrangement of crystal grains, that is, 1400 to 1600. When the heating time in the temperature range of ° C. is short, the conductivity imparting material is segregated. In particular, in a temperature range of 1500 to 1650 ° C., which is a temperature range in which gases such as SiO, CO, and CO 2 generated during sintering are released and a liquid phase is generated and densification sintering is started. When the heating time is long, SiO in the grain boundary reacts with the carbon component C of the carbon nanotube according to the following reaction formula. As a result, SiC is generated and at the same time, the carbon component C is evaporated as CO.

[化1]
反応式:SiO+C→SiC+CO↑
[Chemical 1]
Reaction formula: SiO + C → SiC + CO ↑

その結果、カーボンナノチューブが焼失するために、カーボンナノチューブによる窒化珪素への導電性付与が困難になる。したがって、上記一次焼結工程において、温度1500〜1650℃の昇温範囲における加熱時間が30分以上120分以下となるように管理することが重要である。   As a result, the carbon nanotubes burn out, and it becomes difficult to impart conductivity to silicon nitride by the carbon nanotubes. Therefore, in the primary sintering step, it is important to manage so that the heating time in the temperature rising range of 1500 to 1650 ° C. is 30 minutes or more and 120 minutes or less.

すなわち、上記昇温範囲における加熱時間が30分未満と短い場合には、ガス放出が不十分となって気孔(ポア)が残存し緻密化が困難となる上に、緻密化焼結開始時にSiC粒子やTiN粒子の分散および緻密化の進行が不均一になり、いずれにしても窒化珪素焼結体の機械的強度および耐摩耗性が低下してしまう。一方、上記昇温範囲における加熱時間が120分を超えるように長くなると、前記反応式にしたがってカーボンナノチューブが焼失するために、窒化珪素焼結体への導電性付与が困難になる。したがって、一次焼結工程で温度1500〜1650℃の昇温範囲における加熱時間は30分以上120分以下に規定される。   That is, when the heating time in the above temperature rising range is as short as less than 30 minutes, the outgassing becomes insufficient and pores remain, making it difficult to densify, and SiC at the start of densification sintering. The progress of dispersion and densification of particles and TiN particles becomes nonuniform, and in any case, the mechanical strength and wear resistance of the silicon nitride sintered body are lowered. On the other hand, if the heating time in the temperature increase range is longer than 120 minutes, the carbon nanotubes are burned out in accordance with the reaction formula, so that it is difficult to impart conductivity to the silicon nitride sintered body. Therefore, the heating time in the temperature rising range of 1500 to 1650 ° C. in the primary sintering step is defined as 30 minutes or more and 120 minutes or less.

このような前処理を経た後に、1700〜1850℃の範囲の温度で所定時間保持することにより一次焼結体を作製する。ここで、一次焼結温度が1700℃未満であると、その後にHIP処理を施しても十分に緻密質な窒化珪素焼結体を得ることができない。また、一次焼結温度を、1850℃を超えるように設定してもそれ以上の効果が得られないだけでなく、窒化珪素結晶粒や焼結助剤成分の偏析が粗大化して焼結体の機械的強度が低下してしまう。さらに、焼成炉などの消耗も激しくなる。   After passing through such pretreatment, a primary sintered body is produced by holding at a temperature in the range of 1700 to 1850 ° C. for a predetermined time. Here, if the primary sintering temperature is less than 1700 ° C., a sufficiently dense silicon nitride sintered body cannot be obtained even if a subsequent HIP treatment is performed. Moreover, even if the primary sintering temperature is set to exceed 1850 ° C., not only the effect is not obtained, but also segregation of silicon nitride crystal grains and sintering aid components becomes coarse and Mechanical strength is reduced. In addition, the consumption of the firing furnace and the like becomes severe.

次に、一次焼結工程により得た一次焼結体に対してHIP(熱間静水圧プレス)処理を施す二次焼結工程を実施し、窒化珪素焼結体の高密度化を図る。二次焼結工程としてのHIP処理の温度は1500〜1750℃の範囲とする。HIP処理温度が1500℃未満であると、窒化珪素焼結体(二次焼結体)を十分に高密度化できない。一方、HIP処理温度が1750℃を超えると、窒化珪素結晶粒の不要な粗大化などが起こり、窒化珪素焼結体の機械的強度が低下するおそれがある。HIP処理時の印加圧力は90〜170MPaの範囲とすることが好ましい。   Next, a secondary sintering step is performed in which a primary sintered body obtained by the primary sintering step is subjected to a HIP (hot isostatic pressing) process to increase the density of the silicon nitride sintered body. The temperature of the HIP process as the secondary sintering step is in the range of 1500 to 1750 ° C. If the HIP treatment temperature is less than 1500 ° C., the silicon nitride sintered body (secondary sintered body) cannot be sufficiently densified. On the other hand, when the HIP treatment temperature exceeds 1750 ° C., unnecessary coarsening of silicon nitride crystal grains occurs, and the mechanical strength of the silicon nitride sintered body may be lowered. The applied pressure during HIP treatment is preferably in the range of 90 to 170 MPa.

上述したような条件下で一次焼結工程および二次焼結工程を実施することによって、目的とする導電性窒化珪素焼結体が得られる。このような導電性窒化珪素焼結体は、通常の工作機械などに適用される耐摩耗性部材として使用することも可能であるが、特に電子機器用耐摩耗性部材として好適に用いられるものである。電子機器用耐摩耗性部材の具体例としては、各種電子機器の回転駆動部に用いられる転動体、例えばベアリングボールが挙げられる。転動体の形状は通常真球が一般的であるが、円柱状や棒状などであってもよい。本発明の耐摩耗性部材は、特に直径が3mm以下の小径のベアリングボールに対して有効である。   By carrying out the primary sintering step and the secondary sintering step under the conditions as described above, the intended conductive silicon nitride sintered body can be obtained. Such a conductive silicon nitride sintered body can be used as a wear-resistant member applied to a normal machine tool or the like, but is particularly preferably used as a wear-resistant member for electronic equipment. is there. Specific examples of the wear-resistant member for electronic devices include rolling elements, such as bearing balls, used in the rotation drive unit of various electronic devices. The shape of the rolling element is usually a true sphere, but it may be cylindrical or rod-like. The wear resistant member of the present invention is particularly effective for small-sized bearing balls having a diameter of 3 mm or less.

図4は本発明に係る導電性窒化珪素焼結体からなる電子機器用ベアリングボールを有するベアリングの一例を示す図である。図4に示すベアリング1は、本発明に係る導電性窒化珪素焼結体から成る複数のベアリングボール2と、これらベアリングボール2を支持する内輪3および外輪4とを有している。内輪3や外輪4はJIS−G−4805で規定されるSUJ2などの軸受鋼で形成することが好ましく、これにより信頼性のある高速回転を実現することが可能となる。なお、基本構成は通常のベアリングと同様である。   FIG. 4 is a view showing an example of a bearing having a bearing ball for electronic equipment made of a conductive silicon nitride sintered body according to the present invention. A bearing 1 shown in FIG. 4 has a plurality of bearing balls 2 made of a conductive silicon nitride sintered body according to the present invention, and an inner ring 3 and an outer ring 4 that support these bearing balls 2. The inner ring 3 and the outer ring 4 are preferably formed of bearing steel such as SUJ2 defined by JIS-G-4805, and this makes it possible to achieve reliable high-speed rotation. The basic configuration is the same as that of a normal bearing.

上述したようなベアリングが適用される電子機器としては、HDDなどの磁気記録装置、特にHDDピボット用軸受け、CD−ROMやDVDなどの光ディスク装置、ディスク型の各種ゲーム装置などが挙げられる。光ディスク装置は、光磁気記録装置、相変化型光記録装置、再生専用型光ディスク装置などの種々の装置を含むものである。さらに、これら以外にも複写機帯電防止用軸受け等の回転駆動部を有する電子機器であれば種々の装置に対して適用可能である。   Electronic devices to which the above-described bearings are applied include magnetic recording devices such as HDDs, in particular, bearings for HDD pivots, optical disk devices such as CD-ROMs and DVDs, and various disk-type game devices. The optical disk apparatus includes various apparatuses such as a magneto-optical recording apparatus, a phase change optical recording apparatus, and a reproduction-only optical disk apparatus. Further, in addition to these, any electronic device having a rotation drive unit such as a copier antistatic bearing can be applied to various devices.

本発明に係る窒化珪素焼結体からベアリングボールを作製し、通常の工作機械等に用いることも可能である。さらに、磁気記録装置、光ディスク装置、ディスク型ゲーム装置などにおいては、媒体駆動用スピンドルモータの回転駆動部に本発明に係る耐摩耗性部材がベアリングボールなどとして用いられる。これらの電子機器において、スピンドルモータは例えば4000rpm以上の回転速度、さらには7000rpm以上の回転速度で駆動される。導電性窒化珪素焼結体から成るベアリングボールは、安定した高速回転を実現した上で、高速回転により生じる静電気を良好に逃がすことができる。これによって、電子機器の静電気による不具合、さらにはベアリングボールの摩耗による騒音の発生などを解消することが可能となる。   It is also possible to produce a bearing ball from the silicon nitride sintered body according to the present invention and use it for an ordinary machine tool or the like. Further, in a magnetic recording device, an optical disc device, a disc-type game device, etc., the wear-resistant member according to the present invention is used as a bearing ball or the like in a rotational drive portion of a medium driving spindle motor. In these electronic devices, the spindle motor is driven at a rotational speed of, for example, 4000 rpm or higher, and further at a rotational speed of 7000 rpm or higher. A bearing ball made of a conductive silicon nitride sintered body can stably release static electricity generated by high-speed rotation while realizing stable high-speed rotation. As a result, it is possible to eliminate problems caused by static electricity of the electronic device, and further generation of noise due to wear of the bearing balls.

次に、本発明の具体的な実施例とその評価結果について述べる。   Next, specific examples of the present invention and evaluation results thereof will be described.

[実施例1〜25および比較例1〜8]
平均粒径が0.7μmの窒化珪素粉末に対し、焼結助剤として平均粒径が0.8μmの各種の希土類酸化物粉末と、平均粒径が0.5μmのアルミナ(Al)粉末と、平均粒径が0.5μmの酸化マグネシウム(MgO)粉末と、平均粒径が0.5μmの窒化アルミニウム(AlN)粉末とを焼結体中の割合が表1に示した値になるように添加配合した後に、窒化珪素製の容器とボールからなるボールミルで24時間混合した。
[Examples 1 to 25 and Comparative Examples 1 to 8]
For silicon nitride powder having an average particle size of 0.7 μm, various rare earth oxide powders having an average particle size of 0.8 μm as a sintering aid, and alumina (Al 2 O 3 ) having an average particle size of 0.5 μm Table 1 shows the ratio of powder, magnesium oxide (MgO) powder having an average particle size of 0.5 μm, and aluminum nitride (AlN) powder having an average particle size of 0.5 μm in the sintered body. After adding and blending in this manner, the mixture was mixed for 24 hours in a ball mill consisting of a silicon nitride container and balls.

このように調製した各混合粉末に、導電性付与材として短径が50nmであり長径が15μmであるマルチウォール型カーボンナノチューブ(CNT)と、平均粒径0.5μmの炭化珪素(SiC)粉末と、平均粒径0.8μmの窒化チタン(TiN)粉末と、平均粒径0.7μmの各種金属炭珪化物粉末とを焼結体中の割合が表1に示した値になるように添加配合した後に、窒化珪素製の容器とボールからなるボールミルで24時間混合した。これら各混合粉末を適当な容器に移して数時間乾燥させた後、PVA水溶液を加えて撹拌し、さらに目開きが500μmの篩で通篩することによって、それぞれ原料混合粉末を調製した。   To each of the mixed powders thus prepared, a multiwall-type carbon nanotube (CNT) having a short diameter of 50 nm and a long diameter of 15 μm as a conductivity-imparting material, and a silicon carbide (SiC) powder having an average particle diameter of 0.5 μm, In addition, titanium nitride (TiN) powder having an average particle diameter of 0.8 μm and various metal carbon silicide powders having an average particle diameter of 0.7 μm are added so that the ratio in the sintered body becomes the value shown in Table 1. After that, they were mixed for 24 hours in a ball mill consisting of a silicon nitride container and balls. Each of these mixed powders was transferred to a suitable container and dried for several hours, and then an aqueous PVA solution was added and stirred, and further passed through a sieve having an opening of 500 μm to prepare raw material mixed powders.

なお、カーボンナノチューブ粉末、炭化珪素粉末、窒化チタン粉末および金属炭珪化物粉末の添加量は、最終的な焼結体中の含有量が表1に示す値となるようにそれぞれ調整した。   The addition amount of the carbon nanotube powder, silicon carbide powder, titanium nitride powder and metal carbon silicide powder was adjusted so that the final content in the sintered body would be the value shown in Table 1.

次に、各原料混合粉末を98MPaの圧力で金型プレスした後、加圧力が300MPaの条件で静水圧成形(CIP)を行って、それぞれ成形体を作製した。得られた各成形体を脱脂した後、窒素雰囲気中にて表1に示す一次焼結温度で2時間焼結した。この一次焼結工程の昇温過程で1500〜1650℃の温度範囲における加熱時間を表1に示す時間に設定し、この加熱時間経過後に引き続いて一次焼結を行った。続いて、表1に示すHIP温度でHIP焼結(二次焼結)を実施した。HIP圧力はいずれも98MPaとした。さらに、各焼結体の表面をJIS−B−1501で定められたグレード5(Ra0.02μm)程度に研磨した。このようにして、それぞれ目的とする各実施例に係る平板状の窒化珪素焼結体を作製した。   Next, each raw material mixed powder was die-pressed at a pressure of 98 MPa, and then subjected to isostatic pressing (CIP) under a pressure of 300 MPa to produce a compact. Each obtained compact was degreased and then sintered in a nitrogen atmosphere at the primary sintering temperature shown in Table 1 for 2 hours. In the temperature raising process of the primary sintering step, the heating time in the temperature range of 1500 to 1650 ° C. was set to the time shown in Table 1, and the primary sintering was subsequently performed after the heating time passed. Subsequently, HIP sintering (secondary sintering) was performed at the HIP temperatures shown in Table 1. The HIP pressure was 98 MPa for all. Further, the surface of each sintered body was polished to grade 5 (Ra 0.02 μm) defined by JIS-B-1501. Thus, the flat silicon nitride sintered compact which concerns on each target Example was produced.

また、本発明との比較のために、導電性付与材としてのカーボンナノチューブを添加していない窒化珪素焼結体(比較例1〜4)を作成した。また、比較例5としてカーボンナノチューブを所定量含有するアルミナ(Al)焼結体を下記の手順で調製した。 Moreover, the silicon nitride sintered compact (Comparative Examples 1-4) which did not add the carbon nanotube as an electroconductivity imparting material was created for the comparison with this invention. Further, as Comparative Example 5, an alumina (Al 2 O 3 ) sintered body containing a predetermined amount of carbon nanotubes was prepared by the following procedure.

すなわち、原料粉末として、平均粒径が0.5μmのα相型アルミナ(Al)粉末と、アルミナ粉末の1体積%に相当する量のカーボンナノチューブと、分散媒とを配合し、アルミナ製の容器とボールから成るボールミルで24時間混合した。その後、得られたスラリーを容器に移し数時間乾燥させた。その後、PVA水溶液を加え、攪拌後、目開きが500μmの篩で通篩することにより混合原料粉末を調製した。次に、得られた混合原料粉末を98MPaの加圧力で金型プレス成形し、次いで300MPaの加圧力で静水圧成形(CIP)を実施することにより成形体を得た。次に、得られた成形体を脱脂した後に、非酸化性雰囲気(Arガス)中で、温度1700℃で8時間焼結後、さらに温度1600℃で熱間静水圧プレス(HIP)処理を実施することにより、比較例5に係る平板状のアルミナセラミックス焼結体を得た。 That is, as a raw material powder, an α-phase type alumina (Al 2 O 3 ) powder having an average particle size of 0.5 μm, an amount of carbon nanotubes corresponding to 1% by volume of the alumina powder, and a dispersion medium are blended, and alumina is obtained. It mixed for 24 hours with the ball mill which consists of a container and a ball | bowl made. Thereafter, the obtained slurry was transferred to a container and dried for several hours. Thereafter, an aqueous PVA solution was added, and after stirring, mixed raw material powder was prepared by passing through a sieve having an opening of 500 μm. Next, the obtained mixed raw material powder was subjected to die press molding at a pressure of 98 MPa, and then subjected to isostatic pressing (CIP) at a pressure of 300 MPa to obtain a molded body. Next, after degreasing the obtained molded body, it was sintered at a temperature of 1700 ° C. for 8 hours in a non-oxidizing atmosphere (Ar gas), and further subjected to a hot isostatic pressing (HIP) treatment at a temperature of 1600 ° C. By doing so, the flat alumina ceramic sintered body according to Comparative Example 5 was obtained.

さらに本発明との比較のために、一次焼結工程の前処理(1500〜1650℃)における加熱時間を180分と長く設定した窒化珪素焼結体(比較例6)、焼結助剤としてのAl粉末の添加量を好ましい範囲を超えるように過剰量(12質量%)添加した窒化珪素焼結体(比較例7)、導電性付与材としてのカーボンナノチューブの添加量を好ましい範囲未満となるように過少量とした窒化珪素焼結体(比較例8)を、それらの条件以外は実施例と同様にして作製した。 Furthermore, for comparison with the present invention, a silicon nitride sintered body (Comparative Example 6) in which the heating time in the pretreatment (1500 to 1650 ° C.) of the primary sintering step is set to 180 minutes, as a sintering aid, Silicon nitride sintered body (Comparative Example 7) added in an excess amount (12 mass%) so that the addition amount of Al 2 O 3 powder exceeds the preferred range, and the addition amount of carbon nanotubes as the conductivity imparting material is less than the preferred range A silicon nitride sintered body (Comparative Example 8), which was excessively small so as to be, was produced in the same manner as in the Examples except for those conditions.

Figure 0005088851
Figure 0005088851

上記のように調製した実施例1〜25および比較例1〜8に係る各窒化珪素焼結体またはアルミナ焼結体のビッカース硬度、破壊靭性値、電気抵抗値、曲げ強度を測定した。その結果を表2に示す。なお、各焼結体から試験片を切り出し、JIS R1603に規定する方法に従って曲げ強度を測定し、曲げ試験後の焼結体を鏡面研磨し、JIS R160Xに規定する方法に従って荷重20Kgにてビッカース硬度を測定すると共に、IF法に基づく新原の計算式により破壊靭性値(MPa・m1/2)を算出した。また電気抵抗値は、各焼結体の上下面をラップ加工して、上下面にそれぞれ電極を設置し、室温にてその間の抵抗(体積抵抗値)を絶縁抵抗計で測定した。 The Vickers hardness, fracture toughness value, electrical resistance value, and bending strength of each silicon nitride sintered body or alumina sintered body according to Examples 1 to 25 and Comparative Examples 1 to 8 prepared as described above were measured. The results are shown in Table 2. In addition, a test piece is cut out from each sintered body, the bending strength is measured according to the method specified in JIS R1603, the sintered body after the bending test is mirror-polished, and the Vickers hardness is applied at a load of 20 kg according to the method specified in JIS R160X. The fracture toughness value (MPa · m 1/2 ) was calculated by Nihara's calculation formula based on the IF method. The electrical resistance value was obtained by lapping the upper and lower surfaces of each sintered body, placing electrodes on the upper and lower surfaces, and measuring the resistance (volume resistance value) between them at room temperature with an insulation resistance meter.

また、実施例1〜25および比較例1〜8に係る各窒化珪素焼結体またはアルミナ焼結体を鏡面研磨し、平板状の転がり寿命試験片とした。転がり寿命試験はスラスト型軸受試験機を用い、SUJ2鋼製ボール(3/8インチ)を相手材として、各窒化珪素焼結体製(比較例5ではアルミナ焼結体製)の平板上を回転させることにより測定した。転がり寿命の測定条件は、1球あたりの最大接触応力を5.9GPa、回転数を1200rpmとし、タービン油の油浴潤滑下で最高400時間まで回転させ、窒化珪素焼結体製平板の表面が剥離するまでの時間で転がり寿命を評価した。なお、「打ち切り」とは400時間の経過後にも剥離が生じなかったものである。摩耗深さは400時間経過後の平板(試験片)及び相手材(ボール)表面の摩耗量である。上記転がり寿命、試験片及びボールの摩耗深さを測定し、下記表2に示す結果を得た。   Moreover, each silicon nitride sintered compact or alumina sintered compact which concerns on Examples 1-25 and Comparative Examples 1-8 was mirror-polished, and it was set as the flat rolling life test piece. The rolling life test was performed on a flat plate made of each silicon nitride sintered body (in the comparative example 5, made of alumina sintered body) using a thrust type bearing tester and using a SUJ2 steel ball (3/8 inch) as a counterpart. Was measured. The rolling contact life was measured under the following conditions: the maximum contact stress per ball was 5.9 GPa, the rotation speed was 1200 rpm, and rotation was performed for up to 400 hours under turbine oil lubrication. The rolling life was evaluated by the time until peeling. “Canceling” means that no peeling occurred after 400 hours. The wear depth is the amount of wear on the surface of the flat plate (test piece) and the mating material (ball) after 400 hours. The rolling life, test piece and ball wear depth were measured, and the results shown in Table 2 below were obtained.

Figure 0005088851
Figure 0005088851

上記表2に示す結果から明らかなように、導電性付与材としてカーボンナノチューブ、炭化珪素および窒化チタンをそれぞれ含有する各実施例に係る窒化珪素焼結体はいずれも適度な電気抵抗値を有するために静電気による不具合を解消することができるだけでなく、摩耗量が少なく転がり寿命や耐摩耗性に優れることが判明した。   As is clear from the results shown in Table 2 above, the silicon nitride sintered bodies according to the respective examples each containing carbon nanotubes, silicon carbide, and titanium nitride as the conductivity imparting material have appropriate electrical resistance values. In addition to eliminating problems due to static electricity, it has been found that the amount of wear is small and the rolling life and wear resistance are excellent.

図1は導電性付与材としてのカーボンナノチューブ(CNT)6とSiCやTiNの導電性粒子5とを含有する実施例1に係る窒化珪素焼結体の組織構造を模式的に示す断面図である。大部分の電気伝導経路がCNT6の相互の絡み合いで形成されると共に、一部のCNT6間の未接触部に導電性粒子5が介在して、更なる電気伝導経路が形成されている。   FIG. 1 is a cross-sectional view schematically showing the structure of a silicon nitride sintered body according to Example 1 containing carbon nanotubes (CNT) 6 as a conductivity imparting material and conductive particles 5 of SiC or TiN. . Most of the electric conduction paths are formed by entanglement of the CNTs 6, and further conductive conduction paths are formed by interposing the conductive particles 5 in the non-contact portions between some of the CNTs 6.

図2は導電性付与材としてのカーボンナノチューブ(CNT)6を少量(1質量%)含有する一方、導電性粒子5としてのSiCを多量(20質量%)に含有する実施例14に係る窒化珪素焼結体の組織構造を模式的に示す断面図である。大部分の電気伝導経路が連結した導電性粒子5で形成されると共に、一部の導電性粒子5間の未接触部にカーボンナノチューブ(CNT)6が介在して、更なる電気伝導経路が形成されている。図1および図2に示す焼結体では、いずれも電気伝導経路が十分に形成されているため、焼結体の導電性は良好であり、静電気の滞留による弊害は解消できる。   FIG. 2 shows silicon nitride according to Example 14 containing a small amount (1% by mass) of carbon nanotubes (CNT) 6 as a conductivity imparting material and a large amount (20% by mass) of SiC as conductive particles 5. It is sectional drawing which shows the structure | tissue structure of a sintered compact typically. Most of the electrical conduction paths are formed by the connected conductive particles 5, and carbon nanotubes (CNT) 6 are interposed in non-contact portions between some of the conductive particles 5 to form further electrical conduction paths. Has been. In both of the sintered bodies shown in FIGS. 1 and 2, since the electric conduction path is sufficiently formed, the sintered body has good electrical conductivity, and the adverse effects due to static electricity can be eliminated.

これに対して、導電性付与材としてのカーボンナノチューブを添加していない比較例1〜4に係る窒化珪素焼結体では、いずれも電気抵抗値が10Ω・cmを超えており、導電性が得られておらず、静電気の滞留による不具合の発生が予想される。この低電導性の問題は、比較例3,4のように多量(20質量%)のSiCを含有させても解消されていない。 On the other hand, in the silicon nitride sintered bodies according to Comparative Examples 1 to 4 in which the carbon nanotubes as the conductivity imparting material were not added, the electrical resistance value exceeded 10 5 Ω · cm, Is not obtained, and malfunctions due to static electricity accumulation are expected. This problem of low electrical conductivity is not solved even if a large amount (20% by mass) of SiC is contained as in Comparative Examples 3 and 4.

図3はカーボンナノチューブを含有していない従来の粒子分散型の窒化珪素焼結体であり、SiC粒子5を多量(20質量%)に含有させた比較例3に係る窒化珪素焼結体の組織構造を模式的に示す断面図である。この場合には、多量の導電性粒子5を含有させることにより、部分的に導電性粒子5が連結して一部に電気伝導経路が形成されてはいるが、焼結体組織全体には電気伝導経路は形成されないために、電気抵抗値が過大になっている。   FIG. 3 shows a conventional particle-dispersed silicon nitride sintered body containing no carbon nanotubes, and the structure of the silicon nitride sintered body according to Comparative Example 3 containing a large amount (20% by mass) of SiC particles 5. It is sectional drawing which shows a structure typically. In this case, by containing a large amount of the conductive particles 5, the conductive particles 5 are partially connected to form a part of the electric conduction path. Since the conduction path is not formed, the electric resistance value is excessive.

また、カーボンナノチューブ(CNT)を含有した各実施例に係る焼結体と、CNTを含有しない比較例2〜4の焼結体とについて転がり寿命試験を実施した際の相手材としてのボールの摩耗量を比較すると、各実施例に係る焼結体を使用した場合においてはボールの摩耗量が大幅に少ないことが判明した。これは、カーボンナノチューブ(CNT)が固体潤滑剤としても作用し相手材に対する攻撃性が大幅に緩和されるためであると考えられる。   Wear of a ball as a counterpart when a rolling life test was conducted on the sintered body according to each example containing carbon nanotubes (CNT) and the sintered bodies of comparative examples 2 to 4 not containing CNT When the amounts were compared, it was found that the wear amount of the balls was significantly reduced when the sintered bodies according to the respective examples were used. This is presumably because carbon nanotubes (CNT) also act as a solid lubricant, and the aggressiveness against the counterpart material is greatly reduced.

一方、カーボンナノチューブを所定量含有する比較例5に係るアルミナ(Al)焼結体では、CNTを含有させても電気抵抗値は高く、また破壊靭性値や曲げ強度等の構造強度が低く耐摩耗性部材としての特性は全く得られない。 On the other hand, the alumina (Al 2 O 3 ) sintered body according to Comparative Example 5 containing a predetermined amount of carbon nanotubes has a high electrical resistance value even when CNT is contained, and has structural strength such as fracture toughness value and bending strength. The characteristics as a low wear-resistant member cannot be obtained at all.

また、一次焼結工程の前処理(1500〜1650℃)における加熱時間を180分と長く設定した比較例6に係る窒化珪素焼結体では、カーボンナノチューブが部分的に焼失して断線状態になった割合が大きいために、電気抵抗値を低減できないことが判明した。   Further, in the silicon nitride sintered body according to Comparative Example 6 in which the heating time in the pretreatment (1500 to 1650 ° C.) of the primary sintering process is set to be as long as 180 minutes, the carbon nanotubes are partially burned down and become disconnected. It was found that the electrical resistance value could not be reduced due to the large proportion.

さらに、焼結助剤としてのAl粉末の添加量を好ましい範囲を超えるように過剰量(12質量%)添加した比較例7に係る窒化珪素焼結体においては、電気抵抗値が高く、転がり寿命は殆ど期待できない。 Furthermore, in the silicon nitride sintered body according to Comparative Example 7 in which an excessive amount (12% by mass) of the additive amount of Al 2 O 3 powder as a sintering aid exceeds the preferable range, the electric resistance value is high. The rolling life can hardly be expected.

また、導電性付与材としてのカーボンナノチューブの添加量を好ましい範囲未満となるように過少量(0.5質量%)とした比較例8に係る窒化珪素焼結体においては、電気抵抗値を所定レベル以下に低減できないことが判明した。   In addition, in the silicon nitride sintered body according to Comparative Example 8 in which the amount of carbon nanotubes added as the conductivity imparting material is excessively small (0.5% by mass) so as to be less than the preferable range, the electric resistance value is set to a predetermined value. It was found that the level could not be reduced below the level.

以上説明したように、本発明に係る窒化珪素焼結体によれば、導電性が高く電子機器用耐摩耗性部材などに適用した際に、必要以上に静電気が蓄積することを防止した上で、導電性粒子の配合に起因する摩耗などを抑制することが可能となる。また、本発明の製造方法によれば、そのような導電性窒化珪素焼結体を再現性よく製造することができる。さらに、本発明に係る導電性窒化珪素焼結体を適用した耐摩耗性部材によれば、例えば各種電子機器の静電気による不具合を解消した上で、回転駆動部において信頼性に優れた高速回転を実現することが可能となる。   As described above, according to the silicon nitride sintered body according to the present invention, when applied to a wear-resistant member for electronic equipment having high conductivity, it is possible to prevent accumulation of static electricity more than necessary. In addition, it is possible to suppress wear and the like due to the blending of the conductive particles. Moreover, according to the manufacturing method of the present invention, such a conductive silicon nitride sintered body can be manufactured with good reproducibility. Furthermore, according to the wear-resistant member to which the conductive silicon nitride sintered body according to the present invention is applied, for example, after solving the problems due to static electricity of various electronic devices, the rotation drive unit can perform high-speed rotation with excellent reliability. It can be realized.

本発明の実施例1に係る窒化珪素焼結体の組織構造を模式的に示す断面図。Sectional drawing which shows typically the structure | tissue structure of the silicon nitride sintered compact concerning Example 1 of this invention. 本発明の実施例14に係る窒化珪素焼結体の組織構造を模式的に示す断面図。Sectional drawing which shows typically the structure | tissue structure of the silicon nitride sintered compact concerning Example 14 of this invention. カーボンナノチューブを含有していない従来の窒化珪素焼結体であり、比較例3に係る窒化珪素焼結体の組織構造を模式的に示す断面図。Sectional drawing which is a conventional silicon nitride sintered compact which does not contain a carbon nanotube, and shows the structure | tissue structure of the silicon nitride sintered compact which concerns on the comparative example 3 typically. 本発明に係る窒化珪素焼結体から成る耐摩耗性部材としてのベアリングボールを用いたベアリングの一構成例を示す断面図。Sectional drawing which shows one structural example of the bearing using the bearing ball as an abrasion-resistant member which consists of a silicon nitride sintered compact concerning this invention.

符号の説明Explanation of symbols

1…ベアリング(軸受),2…ベアリングボール(耐摩耗性部材),3…内輪,4…外輪,5…導電性付与材(導電性粒子),6…カーボンナノチューブ(CNT)。   DESCRIPTION OF SYMBOLS 1 ... Bearing (bearing), 2 ... Bearing ball (wear-resistant member), 3 ... Inner ring, 4 ... Outer ring, 5 ... Conductivity imparting material (conductive particle), 6 ... Carbon nanotube (CNT).

Claims (10)

窒化けい素粉末に焼結助剤粉末と導電性付与材としてのカーボンナノチューブ、炭化珪素および窒化チタンとを混合し焼結した耐摩耗性部材用窒化珪素焼結体において、カーボンナノチューブを1〜5質量%と、炭化珪素を5〜20質量%と、窒化チタンを0.1〜5質量%とをそれぞれ含有し、電気抵抗値が10−2〜10Ω・cmの範囲であり、上記カーボンナノチューブと炭化珪素または窒化チタンとの接触による連続した電気伝導経路が形成されていることを特徴とする耐摩耗性部材用窒化珪素焼結体。 In a silicon nitride sintered body for wear-resistant members obtained by mixing and sintering silicon nitride powder with a sintering aid powder and carbon nanotubes, silicon carbide and titanium nitride as conductivity imparting materials, mass%, and 5 to 20 wt% silicon carbide, titanium nitride containing respectively a 0.1 to 5 wt%, Ri range der of electrical resistance 10 -2 ~10 3 Ω · cm, the A silicon nitride sintered body for a wear-resistant member, characterized in that a continuous electric conduction path is formed by contact between a carbon nanotube and silicon carbide or titanium nitride. 請求項1記載の耐摩耗性部材用窒化珪素焼結体において、前記耐摩耗性部材用窒化珪素焼結体は金属炭珪化物を0.1〜5質量%含有することを特徴とする耐摩耗性部材用窒化珪素焼結体。 2. The silicon nitride sintered body for wear-resistant members according to claim 1, wherein the silicon nitride sintered body for wear-resistant members contains 0.1 to 5 mass% of metal carbon silicide. Sintered silicon nitride sintered body. 請求項1または請求項2記載の耐摩耗性部材用窒化珪素焼結体において、前記窒化珪素焼結体がさらに希土類元素を酸化物換算で1〜10質量%と、アルミニウムを酸化物換算で2〜10質量%とを含有することを特徴とする耐摩耗性部材用窒化珪素焼結体。 3. The silicon nitride sintered body for wear-resistant members according to claim 1, wherein the silicon nitride sintered body further contains 1 to 10 mass% of rare earth elements in terms of oxide and 2 in terms of oxide of aluminum. A silicon nitride sintered body for a wear-resistant member, which contains 10% by mass to 10% by mass. 請求項1ないし請求項3のいずれか1項に記載の耐摩耗性部材用窒化珪素焼結体において、前記カーボンナノチューブがマルチウォール型カーボンナノチューブであることを特徴とする耐摩耗性部材用窒化珪素焼結体。 The silicon nitride sintered body for wear-resistant members according to any one of claims 1 to 3, wherein the carbon nanotubes are multiwall carbon nanotubes. Sintered body. 請求項2記載の耐摩耗性部材用窒化珪素焼結体において、前記金属炭珪化物が炭珪化モリブデンであることを特徴とする耐摩耗性部材用窒化珪素焼結体。 3. The silicon nitride sintered body for wear-resistant member according to claim 2, wherein the metal carbon silicide is molybdenum carbon silicide. 窒化けい素粉末に焼結助剤粉末と導電性付与材としてのカーボンナノチューブを1〜5質量%と、炭化珪素を5〜20質量%と、窒化チタンを0.1〜5質量%とを混合し、この混合物を所定形状に成形する成形工程と、前記成形工程により得られた成形体を昇温し1700〜1850℃の温度範囲で焼結して一次焼結体を調製する一次焼結工程と、得られた一次焼結体を1500〜1750℃の温度範囲で熱間静水圧プレス(HIP)処理する二次焼結工程とを具備し、上記一次焼結工程において、温度1500〜1650℃の昇温範囲における加熱時間が30分以上120分以下であり、得られた窒化けい素焼結体の電気抵抗値が10−2〜10Ω・cmの範囲であり、上記カーボンナノチューブと炭化珪素または窒化チタンとの接触による連続した電気伝導経路が形成されることを特徴とする耐摩耗性部材用窒化珪素焼結体の製造方法。 Mixing 1-5 mass% of carbon nanotubes as a sintering additive powder and conductivity imparting material, 5-20 mass% of silicon carbide, and 0.1-5 mass% of titanium nitride in silicon nitride powder. Then, a molding process for molding the mixture into a predetermined shape, and a primary sintering process for preparing a primary sintered body by heating the molded body obtained by the molding process and sintering it in a temperature range of 1700 to 1850 ° C. And a secondary sintering step of subjecting the obtained primary sintered body to a hot isostatic pressing (HIP) treatment in a temperature range of 1500 to 1750 ° C. In the primary sintering step, the temperature is 1500 to 1650 ° C. the heating time in the temperature elevation range is not more than 120 minutes 30 minutes or more, the range der in the electrical resistance of the resulting silicon nitride sintered body is 10 -2 ~10 3 Ω · cm is, with the carbon nanotubes carbonized Contact with silicon or titanium nitride Method for producing a wear resistant member for a silicon nitride sintered body, characterized in that continuous electrical conduction path is formed by. 請求項6記載の耐摩耗性部材用窒化珪素焼結体の製造方法において、前記窒化珪素粉末に焼結助剤粉末として希土類元素を酸化物換算で1〜10質量%と、アルミニウムを酸化物換算で2〜10質量%とを混合することを特徴とする耐摩耗性部材用窒化珪素焼結体の製造方法。 In the manufacturing method of the silicon nitride sintered compact for wear-resistant members of Claim 6, 1-10 mass% of rare earth elements are converted into oxide to the silicon nitride powder as a sintering aid powder, and aluminum is converted into oxide. And 2 to 10% by mass of the silicon nitride sintered body for wear-resistant members. 請求項1乃至5のいずれかに記載の耐摩耗性部材用窒化珪素焼結体を具備することを特徴とする耐摩耗性部材。 An abrasion resistant member comprising the silicon nitride sintered body for an abrasion resistant member according to any one of claims 1 to 5. 請求項8記載の耐摩耗性部材において、前記耐摩耗性部材が電子機器用ベアリングボールまたは冶具であることを特徴とする耐摩耗性部材。 The wear-resistant member according to claim 8, wherein the wear-resistant member is a bearing ball or a jig for electronic equipment. 請求項8記載の耐摩耗性部材において、前記耐摩耗性部材が半導体製造装置用治具であることを特徴とする耐摩耗性部材。 The wear-resistant member according to claim 8, wherein the wear-resistant member is a jig for a semiconductor manufacturing apparatus.
JP2006125123A 2006-04-28 2006-04-28 Silicon nitride sintered body for wear-resistant member, method for producing the same, and wear-resistant member using the same Active JP5088851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006125123A JP5088851B2 (en) 2006-04-28 2006-04-28 Silicon nitride sintered body for wear-resistant member, method for producing the same, and wear-resistant member using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006125123A JP5088851B2 (en) 2006-04-28 2006-04-28 Silicon nitride sintered body for wear-resistant member, method for producing the same, and wear-resistant member using the same

Publications (2)

Publication Number Publication Date
JP2007297231A JP2007297231A (en) 2007-11-15
JP5088851B2 true JP5088851B2 (en) 2012-12-05

Family

ID=38767065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006125123A Active JP5088851B2 (en) 2006-04-28 2006-04-28 Silicon nitride sintered body for wear-resistant member, method for producing the same, and wear-resistant member using the same

Country Status (1)

Country Link
JP (1) JP5088851B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7612006B2 (en) * 2004-10-01 2009-11-03 Yokohama Tlo Company, Ltd. Conductive silicon nitride materials and method for producing the same
EP2128465B1 (en) * 2008-05-14 2011-07-06 Siemens Aktiengesellschaft Roller bearing, roller body for roller bearing and device with roller body
PL2760807T3 (en) * 2011-09-30 2019-12-31 Saint-Gobain Ceramics & Plastics Inc. Composite silicon nitride body
JP6220527B2 (en) * 2013-02-26 2017-10-25 帝人ナカシマメディカル株式会社 Manufacturing method of ceramic composite material and ceramic composite material
US20230303454A1 (en) * 2020-09-03 2023-09-28 Ntn Corporation Silicon nitride sintered body, rolling element using the same, and bearing
JP7164658B2 (en) * 2020-09-03 2022-11-01 Ntn株式会社 Silicon nitride sintered body, rolling element using the same, and bearing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4874475B2 (en) * 2001-08-28 2012-02-15 株式会社東芝 Abrasion resistant member for electronic equipment, method for producing the same, and bearing for electronic equipment using the same
JP4130324B2 (en) * 2002-04-01 2008-08-06 株式会社東芝 Low-insulating silicon nitride sintered body, manufacturing method thereof, and wear-resistant member using the same
JP4449387B2 (en) * 2003-09-25 2010-04-14 富士ゼロックス株式会社 Manufacturing method of composite material
JP4565954B2 (en) * 2004-10-01 2010-10-20 よこはまティーエルオー株式会社 Conductive silicon nitride material and manufacturing method thereof

Also Published As

Publication number Publication date
JP2007297231A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
JP5088851B2 (en) Silicon nitride sintered body for wear-resistant member, method for producing the same, and wear-resistant member using the same
JP5752189B2 (en) Silicon nitride sintered body and sliding member using the same
JP5886337B2 (en) Wear-resistant member and wear-resistant device using the same
JP5100201B2 (en) Silicon nitride sintered body and sliding member using the same
JP2006225205A (en) Conductive zirconia sintered compact and method of manufacturing the same
JP3042402B2 (en) Silicon nitride ceramic sliding material and method for producing the same
JP4894770B2 (en) Silicon carbide / boron nitride composite sintered body, method for producing the same, and member using the sintered body
JP4874475B2 (en) Abrasion resistant member for electronic equipment, method for producing the same, and bearing for electronic equipment using the same
JPWO2008032427A1 (en) Sliding member and bearing using the same
JP2007084382A (en) Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, and cutting tool for quench-hardened steel comprising the same
JP4130324B2 (en) Low-insulating silicon nitride sintered body, manufacturing method thereof, and wear-resistant member using the same
JP5989602B2 (en) Silicon nitride sintered body, manufacturing method thereof, and rolling element for bearing
JP2004161605A (en) Wear-resistant member and its producing method
JP4820505B2 (en) Wear-resistant member for electronic equipment and bearing for electronic equipment using the same
JP5057751B2 (en) Cemented carbide and method for producing the same
JP4497787B2 (en) Rolling ball
JP4642971B2 (en) Silicon nitride ceramic sintered body and wear-resistant member using the same
JP3611535B2 (en) Wear-resistant member for electronic equipment and bearing and spindle motor using the same
JP4820506B2 (en) Wear-resistant member for electronic equipment and bearing for electronic equipment using the same
JP4950715B2 (en) Silicon nitride sintered body and sliding member using the same
JP5295983B2 (en) Method for producing wear-resistant member made of silicon nitride
JP2002293634A (en) Silicon carbide sintered compact and substrate for magnetic head slider using the same
JP2005272291A (en) Aluminum oxide titanium nitride-based sintered compact, substrate for magnetic head using the same, ultrasonic motor, dynamic pressure bearing, and method for manufacturing the same
JP2002029822A (en) Hollow ceramics sintered compact, sliding member using the same and ceramics bearing ball
JP2002137969A (en) Wear resistant member for electronic device, bearing and spindle motor using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111209

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5088851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250