JP5087854B2 - Cylinder inner surface pre-spraying substrate processing method and cylinder inner surface pre-spraying pre-spraying shape - Google Patents

Cylinder inner surface pre-spraying substrate processing method and cylinder inner surface pre-spraying pre-spraying shape Download PDF

Info

Publication number
JP5087854B2
JP5087854B2 JP2006102977A JP2006102977A JP5087854B2 JP 5087854 B2 JP5087854 B2 JP 5087854B2 JP 2006102977 A JP2006102977 A JP 2006102977A JP 2006102977 A JP2006102977 A JP 2006102977A JP 5087854 B2 JP5087854 B2 JP 5087854B2
Authority
JP
Japan
Prior art keywords
cylindrical inner
cylinder
spraying
concave
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006102977A
Other languages
Japanese (ja)
Other versions
JP2007277607A (en
Inventor
公男 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006102977A priority Critical patent/JP5087854B2/en
Publication of JP2007277607A publication Critical patent/JP2007277607A/en
Application granted granted Critical
Publication of JP5087854B2 publication Critical patent/JP5087854B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、円筒内面に対して溶射皮膜を形成する前に、前記円筒内面を粗面に形成する円筒内面の溶射前下地加工方法および円筒内面の溶射前下地処理形状を有する円筒に関する。 The present invention relates to a pre-spraying substrate processing method for a cylindrical inner surface that forms the cylindrical inner surface on a rough surface before forming a sprayed coating on the inner surface of the cylinder, and a cylinder having a pre-sprayed surface treatment shape for the cylindrical inner surface.

内燃機関の出力・燃費・排気性能向上あるいは小型・軽量化といった観点から、アルミシリンダブロックのシリンダボア部に適用しているシリンダライナを廃止することへの設計要求は極めて高く、その代替技術の一つとして、シリンダボア内面に溶射皮膜を形成する溶射技術の適用が進められている。   From the standpoint of improving the output, fuel consumption, exhaust performance of an internal combustion engine, and reducing the size and weight, the design requirements for eliminating the cylinder liner applied to the cylinder bore of the aluminum cylinder block are extremely high. Application of thermal spraying technology for forming a thermal spray coating on the inner surface of a cylinder bore is being promoted.

上記した溶射技術をシリンダボア部に適用する場合には、溶射用材料を噴出する溶射ガンをシリンダボア内に軸方向に移動させつつ回転させて行い、溶射皮膜形成後は、例えばホーニング加工によって皮膜表面を研削加工して仕上げを行う。   When applying the above-mentioned spraying technology to the cylinder bore part, the spraying gun for spraying the spraying material is rotated while moving in the axial direction in the cylinder bore. Finish by grinding.

そして、上記した溶射皮膜を形成する前には、例えば本出願人が提案している下記特許文献1に記載されているように、シリンダボア内面を粗面に形成する下地処理を実施することで、溶射皮膜の密着度を高めている。
特開2002−155350号公報(段落0002,0019)
And, before forming the above-mentioned sprayed coating, for example, as described in the following Patent Document 1 proposed by the present applicant, by performing a base treatment to form the cylinder bore inner surface into a rough surface, Increases the adhesion of the thermal spray coating.
JP 2002-155350 A (paragraphs 0002, 0019)

しかしながら、シリンダボア内面に対し、上記したような下地処理を行っているにも拘わらず、シリンダボア内面の軸方向端部においては、軸方向中央部に比較して溶射皮膜が剥離しやすいものとなっている。これは、溶射後のシリンダボア内面の軸方向端部に付着した溶融用材料が固化し凝縮する際に、この凝縮部位が軸方向中央部側に引っ張られるような応力が発生するからである。   However, in spite of the above-described surface treatment being performed on the inner surface of the cylinder bore, the thermal spray coating is more easily peeled off at the axial end portion of the inner surface of the cylinder bore than at the central portion in the axial direction. Yes. This is because when the melting material adhering to the axial end of the inner surface of the cylinder bore after thermal spraying is solidified and condensed, a stress is generated such that this condensing part is pulled toward the axial center.

そこで、本発明は、溶射後の円筒内面の軸方向端部に付着した溶融用材料が固化し凝縮する際に発生する応力を抑えることを目的としている。   Therefore, an object of the present invention is to suppress the stress generated when the melting material adhering to the axial end of the inner surface of the cylinder after spraying is solidified and condensed.

本発明は、円筒内面に対して溶射皮膜を形成する前に、前記円筒内面を、切削工具を用いてねじ状の凹凸部を形成して粗面に形成する円筒内面の溶射前下地加工方法において、前記切削工具により凹凸部を形成する際に、前記ねじ状の凹凸部における凸部の先端に破断部を形成し、前記凹凸部における凹部の底部の、円筒中心から半径方向の距離を、前記円筒内面の軸方向中央部と軸方向端部とで同等として、前記凹凸部における凸部の、前記凹部の底部から先端部までの高さを、前記円筒内面の軸方向中央部よりも軸方向端部で高くすることを最も主要な特徴とする。 The present invention relates to a pre-spraying pre-spraying method for a cylindrical inner surface, in which a cylindrical surface is formed into a rough surface by using a cutting tool to form a threaded uneven portion before forming a thermal spray coating on the cylindrical inner surface. When forming the concavo-convex portion with the cutting tool, a fracture portion is formed at the tip of the convex portion in the screw-shaped concavo-convex portion, and the radial distance from the center of the cylinder of the bottom of the concave portion in the concavo-convex portion is as comparable axial center portion and axial end portion of the cylindrical inner surface, the convex portion in the uneven portion, the height from the bottom of the recess to the distal end, the axial direction than the axial central portion of the cylindrical inner surface The main feature is to make it high at the edge.

本発明によれば、軸方向端部にて付着した溶融用材料が固化し凝縮する際に、この凝縮部位が軸方向中央部側に引っ張られるような応力が発生しても、凝縮部位が軸方向端部の凹凸部に引っ掛かることで応力に対抗し、この応力を抑えることができる。 According to the present invention, when the molten material adhering at axial end portion is condensed and solidified, also the condensed portion occurs and stress that is pulled axially central portion, the condensation sites shaft The stress is countered by being caught by the concavo-convex portion at the end of the direction , and this stress can be suppressed.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施形態に係わる自動車用エンジンにおける円筒部材としてのアルミシリンダブロック1の断面図であり、シリンダブロック1のシリンダボア3の円筒内面となるシリンダボア内面5に、後述する方法で溶射皮膜30(図6参照)を形成する。溶射皮膜30の形成後は、後述する方法により仕上げ加工(ここではホーニング加工)を行う。なお、図1は、溶射皮膜30の形成前で、シリンダボア内面5を下地処理として粗面9に形成した状態を示す。粗面9を形成することで、その後に形成する溶射皮膜30の密着度が高まる。符号11はクランクケースである。   FIG. 1 is a cross-sectional view of an aluminum cylinder block 1 as a cylindrical member in the automobile engine according to the first embodiment of the present invention. A cylinder bore inner surface 5 serving as a cylinder inner surface of the cylinder bore 3 of the cylinder block 1 will be described later. The sprayed coating 30 (see FIG. 6) is formed by the method. After the thermal spray coating 30 is formed, finishing (here honing) is performed by a method described later. FIG. 1 shows a state in which the cylinder bore inner surface 5 is formed on the rough surface 9 as a base treatment before the thermal spray coating 30 is formed. By forming the rough surface 9, the adhesion degree of the thermal spray coating 30 to be formed thereafter increases. Reference numeral 11 denotes a crankcase.

図2は、図1に示すシリンダブロック1のシリンダボア3周辺の拡大した断面図である。シリンダボア3のシリンダボア内面5は、前述したように粗面9に形成しているが、この粗面9は、シリンダボア3の軸方向端部であるクランクケース側端部13およびシリンダヘッド側端部15の面粗度を、軸方向中央部17の面粗度より粗くしている。   FIG. 2 is an enlarged cross-sectional view around the cylinder bore 3 of the cylinder block 1 shown in FIG. The cylinder bore inner surface 5 of the cylinder bore 3 is formed on the rough surface 9 as described above, and this rough surface 9 is the crankcase side end portion 13 and the cylinder head side end portion 15 which are axial ends of the cylinder bore 3. Is made rougher than the surface roughness of the central portion 17 in the axial direction.

上記した粗面9は、図3に示すように、縦型のマシニングセンタの主軸19に取り付けたボーリング加工用バー21の先端に、切削工具23を取り付け、主軸19を偏心回転さるコンタリング加工によって、図中上部から下部に向かう送り方向Aに向けて移動させながら、ねじ切り加工を行ってねじ状の凹凸部を形成する。   As shown in FIG. 3, the rough surface 9 is formed by a contouring process in which a cutting tool 23 is attached to the tip of a boring bar 21 attached to a main shaft 19 of a vertical machining center, and the main shaft 19 is eccentrically rotated. While moving in the feed direction A from the upper part to the lower part in the figure, threading is performed to form a screw-like uneven part.

上記したねじ状の凹凸部は、切削工具23によって直接切削されるねじ状の凹部25(13a,15a,17a)と、これら凹部25(13a,15a,17a)相互間に形成され、凹部25(13a,15a,17a)の切削時に発生する切削片によって、ねじ切り時の凸部(山部)26(13b,15b,17b)先端の一部(頂部)を破断して形成する破断部としての微細凹凸部27(13c,15c,17c)とを備えている。   The above-described screw-shaped uneven portion is formed between the thread-shaped recess 25 (13a, 15a, 17a) that is directly cut by the cutting tool 23 and the recess 25 (13a, 15a, 17a). 13a, 15a, 17a) As a fractured part formed by breaking a part (top) of the tip (ridge) 26 (13b, 15b, 17b) at the time of threading by a cutting piece generated at the time of cutting Concave and convex portions 27 (13c, 15c, 17c) are provided.

図4(a)は、切削工具23により上記した凹部25と微細凹凸部27とからなる粗面9を形成する様子を示している。図4(b)は、参考例として工具201により通常のねじ切り加工を行う様子を示す。   FIG. 4A shows a state in which the rough surface 9 composed of the concave portion 25 and the fine uneven portion 27 is formed by the cutting tool 23. FIG. 4B shows a state in which normal threading is performed with the tool 201 as a reference example.

図4(b)では、切削工具201が、回転しながら図中で下方に向けて移動し、この際切りくず203が矢印Bで示す方向に排出され、これにより谷部205と山部207とからなる通常のねじ切り加工がなされる。   In FIG. 4 (b), the cutting tool 201 moves downward in the figure while rotating, and at this time, the chips 203 are discharged in the direction indicated by the arrow B. A normal threading process consisting of

一方、図4(a)では、切削工具23により、図4(b)の谷部205に相当する凹部25を形成する際に排出される切りくずKにより、現在形成している凹25に隣接する凸部(山部)26の頂部26aを破断し、これにより微細凹凸部27を形成する。   On the other hand, in FIG. 4A, the cutting tool 23 is adjacent to the currently formed recess 25 by the chip K discharged when the recess 25 corresponding to the valley 205 in FIG. 4B is formed. The top part 26a of the convex part (mountain part) 26 to be broken is broken, and thereby the fine uneven part 27 is formed.

ここで、図4(a)の工具23は、工具送り方向後方側の面23aの水平面Lに対する角度α1を、図4(b)の同角度α2に比較して大きくして約30度とするとともに、工具送り方向前方側の面23bの水平面Lに対する角度β1を、図4(b)の同角度β2に比較して小さくして約10度としている。これにより、図4(a)では、凹25を形成する際に排出される切りくずKが、工具送り方向後方側に傾けた面23aによって凸部26側に押し付けられ、凹25に隣接する凸部26の頂部26aを破断し、微細凹凸部27を形成する。   Here, in the tool 23 in FIG. 4A, the angle α1 with respect to the horizontal plane L of the surface 23a on the rear side in the tool feed direction is set to about 30 degrees as compared with the same angle α2 in FIG. At the same time, the angle β1 with respect to the horizontal plane L of the surface 23b on the front side in the tool feed direction is set to about 10 degrees, which is smaller than the same angle β2 in FIG. Accordingly, in FIG. 4A, the chip K discharged when forming the recess 25 is pressed against the convex portion 26 by the surface 23 a inclined to the rear side in the tool feeding direction, and the convex adjacent to the recess 25. The top portion 26 a of the portion 26 is broken to form a fine uneven portion 27.

そして、本実施形態では、前述したように、シリンダボア3の軸方向端部であるクランクケース側端部13およびシリンダヘッド側端部15の面粗度を、軸方向中央部17の面粗度より粗くしているが、このような面粗度の相違を、前記図3に示した切削工具23の送り方向Aの送り速度を、クランクケース側端部13およびシリンダヘッド側端部15で、軸方向中央部17に比べて速くすることで達成している。   In the present embodiment, as described above, the surface roughness of the crankcase side end portion 13 and the cylinder head side end portion 15, which are axial ends of the cylinder bore 3, is determined from the surface roughness of the axial center portion 17. Although the surface roughness is rough, the difference in surface roughness is obtained by changing the feed speed in the feed direction A of the cutting tool 23 shown in FIG. 3 between the crankcase side end 13 and the cylinder head side end 15. This is achieved by making it faster than the direction center portion 17.

具体的には、加工時の回転数,工具送り速度について、軸方向中央部17では、それぞれ2000rpm,0.15mm/revとし、軸方向端部(クランクケース側端部13およびシリンダヘッド側端部15)では、それぞれ2000rpm,0.25mm/revとしている。   Specifically, the rotational speed and the tool feed speed at the time of machining are set to 2000 rpm and 0.15 mm / rev at the axial direction central portion 17, respectively, and axial end portions (the crankcase side end portion 13 and the cylinder head side end portion). In 15), they are 2000 rpm and 0.25 mm / rev, respectively.

クランクケース側端部13およびシリンダヘッド側端部15での切削工具23の送り速度を速くすることによって、これら軸方向端部における凹部13aおよび15aのそれぞれのピッチP1を、軸方向中央部17における凹部17aのピッチP2より大きくしている。   By increasing the feed speed of the cutting tool 23 at the crankcase side end portion 13 and the cylinder head side end portion 15, the pitches P <b> 1 of the recesses 13 a and 15 a at these axial end portions are set at the axial center portion 17. It is larger than the pitch P2 of the recesses 17a.

また、凹部1,15aのピッチPが大きくなるように切削工具23の送り速度を速くすることで、1周分のねじ切り加工に続く次周のねじ切り加工相互間での軸方向の切削工具23の重なり量が少なくなり、加工後の凹部25に隣接する凸部26の頂部26aを破断する量が少なくなる。その結果、図2に示すように、クランクケース側端部13およびシリンダヘッド側端部15のねじ状の凹凸部における凸部26(13b,15b)の高さH1が、軸方向中央部17における同凸部26(17b)の高さH2に比べて高くなる。 Further, by increasing the feed speed of the cutting tool 23 so that the pitch P 1 of the recesses 1 3 a and 15 a is increased, the cutting in the axial direction is performed between the threading processes of the next circumference following the threading process of one round. The overlapping amount of the tool 23 is reduced, and the amount of breaking the top portion 26a of the convex portion 26 adjacent to the concave portion 25 after processing is reduced. As a result, as shown in FIG. 2, the height H1 of the convex portions 26 (13b, 15b) in the thread-like uneven portions of the crankcase side end portion 13 and the cylinder head side end portion 15 is It becomes higher than the height H2 of the convex portion 26 (17b).

なお、上記した各高さH1およびH2の基準となる凹部25(13a,15a)および凹部25(17a)における最深部(底部)のシリンダボア中心からの距離(半径)は同等である。   It should be noted that the distance (radius) from the center of the cylinder bore of the deepest part (bottom part) in the recesses 25 (13a, 15a) and the recesses 25 (17a) serving as the reference for the respective heights H1 and H2 is the same.

このようにして、シリンダボア内面5に対し粗面9を形成した後は、図5に示すような溶射装置を用い、図6に示すように粗面9上に溶射皮膜30を形成する。この溶射皮膜30は、シリンダボア内面5に対してほぼ均一となるよう形成する。   After the rough surface 9 is formed on the cylinder bore inner surface 5 in this way, a thermal spray coating 30 is formed on the rough surface 9 as shown in FIG. The thermal spray coating 30 is formed to be substantially uniform with respect to the cylinder bore inner surface 5.

図5に示す溶射装置は、シリンダボア3内の中心に、ガス溶線式の溶射ガン31を挿入し、その溶射口31aから溶射用材料として溶融した鉄系金属材料を溶滴33として溶射してシリンダボア内面5に溶射皮膜30を形成する。   The thermal spraying apparatus shown in FIG. 5 inserts a gas spray type thermal spray gun 31 into the center of the cylinder bore 3 and sprays a molten iron-based metal material as a thermal spray material from the thermal spray port 31a as a thermal spray 33 to form a cylinder bore. A thermal spray coating 30 is formed on the inner surface 5.

溶射ガン31は、溶線送給機35から溶射用材料として鉄系金属材料の溶線37の送給を受けるとともに、アセチレンまたはプロパンあるいはエチレンなどの燃料を貯蔵した燃料ガスボンベ39および酸素を貯蔵した酸素ボンベ41から、配管43および45を介して燃料ガスおよび酸素の供給をそれぞれ受ける。   The thermal spray gun 31 is supplied with a molten metal 37 of an iron-based metal material as a thermal spray material from a thermal feeder 35, and also has a fuel gas cylinder 39 storing fuel such as acetylene, propane or ethylene, and an oxygen cylinder storing oxygen. The fuel gas and oxygen are supplied from the pipe 41 through the pipes 43 and 45, respectively.

上記した溶線37は、溶射ガン31に対し、中央部の上下に貫通する溶線送給孔47の上端から下方に向けて送給する。また、燃料および酸素は、溶線送給孔47の外側の円筒部49に、上下方向に貫通して形成してあるガス案内流路51に供給する。この供給した燃料および酸素の混合ガスは、ガス案内流路51の図5中で下端開口部51aから流出し、点火されることで燃焼炎53が形成される。   The above-mentioned molten wire 37 is fed to the thermal spray gun 31 downward from the upper end of the molten wire feed hole 47 penetrating vertically in the central portion. Further, the fuel and oxygen are supplied to the gas guide channel 51 formed in the cylindrical portion 49 outside the melt feed hole 47 so as to penetrate in the vertical direction. The supplied mixed gas of fuel and oxygen flows out from the lower end opening 51a in FIG. 5 of the gas guide channel 51 and is ignited to form a combustion flame 53.

前記円筒部49の外周側には、アトマイズエア流路55を設けてあり、さらにその外周側には、いずれも円筒形状の隔壁57と外壁59との間に形成したアクセラレータエア流路61を設けてある。   An atomizing air flow channel 55 is provided on the outer peripheral side of the cylindrical portion 49, and an accelerator air flow channel 61 formed between the cylindrical partition wall 57 and the outer wall 59 is provided on the outer peripheral side thereof. It is.

アトマイズエア流路55を流れるアトマイズエアは、燃焼炎53の熱を前方(図5中で下方)へ送って周辺部に対する冷却を行うとともに、溶融した溶線37を同前方へ送る。一方、アクセラレータエア流路61を流れるアクセラレータエアは、上記前方へ送られ溶融した溶線37を、この送り方向と交差するように前記シリンダボア内面5に向けて溶滴33として送り、シリンダボア内面5に溶射皮膜30を形成する。   The atomizing air flowing through the atomizing air flow channel 55 sends the heat of the combustion flame 53 forward (downward in FIG. 5) to cool the peripheral portion, and sends the molten wire 37 forward. On the other hand, the accelerator air flowing through the accelerator air flow path 61 sends the molten wire 37 sent forward and melted as the droplet 33 toward the cylinder bore inner surface 5 so as to intersect the feed direction, and sprayed onto the cylinder bore inner surface 5. A film 30 is formed.

アトマイズエア流路55には、アトマイズエア供給源67から、減圧弁69を備えたエア供給管71を通してアトマイズエアを供給する。一方、アクセラレータエア流路61には、アクセラレータエア供給源73から、減圧弁75およびマイクロミストフィルタ77をそれぞれ備えたエア供給管79を通してアクセラレータエアを供給する。   Atomized air is supplied to the atomized air flow channel 55 from an atomized air supply source 67 through an air supply pipe 71 provided with a pressure reducing valve 69. On the other hand, accelerator air is supplied from the accelerator air supply source 73 to the accelerator air flow channel 61 through an air supply pipe 79 provided with a pressure reducing valve 75 and a micro mist filter 77.

アトマイズエア流路55とアクセラレータエア流路61との間の隔壁57は、図5中で下部側の先端部に、外壁59に対しベアリング81を介して回転可能となる回転筒部83を備えている。この回転筒部83の上部外周に、アクセラレータエア流路61に位置する回転翼85を設けてある。回転翼85に、アクセラレータエア流路61を流れるアクセラレータエアが作用することで、回転筒部83が回転する。   The partition wall 57 between the atomizing air flow channel 55 and the accelerator air flow channel 61 is provided with a rotating cylinder portion 83 that can rotate with respect to the outer wall 59 via a bearing 81 at the lower end portion in FIG. Yes. A rotating blade 85 located in the accelerator air flow path 61 is provided on the outer periphery of the upper portion of the rotating cylinder portion 83. When the accelerator air flowing through the accelerator air flow path 61 acts on the rotary blade 85, the rotary cylinder portion 83 rotates.

回転筒部83の先端(下端)面83aには、回転筒部83と一体となって回転する先端部材87を固定してある。先端部材87の周縁の一部には、前記したアクセラレータエア流路61にベアリング81を通して連通する噴出流路89を備えた突出部91を設けてあり、噴出流路89の先端に、溶滴33を噴出させる前記した溶射口31aを設けている。   A tip member 87 that rotates integrally with the rotary cylinder 83 is fixed to the tip (lower end) surface 83 a of the rotary cylinder 83. A protrusion 91 having an ejection flow path 89 communicating with the accelerator air flow path 61 through the bearing 81 is provided at a part of the peripheral edge of the distal end member 87, and the droplet 33 is formed at the distal end of the ejection flow path 89. The above-described thermal spraying port 31a is provided for jetting.

溶射口31aを備える先端部材87が回転筒部83と一体となって回転しつつ溶射ガン31をシリンダボア3の軸方向に往復移動させることで、シリンダボア内面5のほぼ全域に溶射皮膜30を形成する。   The thermal spray coating 30 is formed on almost the entire area of the cylinder bore inner surface 5 by reciprocating the thermal spray gun 31 in the axial direction of the cylinder bore 3 while the tip member 87 having the thermal spray port 31a rotates integrally with the rotary cylinder portion 83. .

このようにして形成した溶射皮膜30は、その溶射前の下地処理として加工した粗面9が、シリンダボア5の軸方向端部すなわちクランクケース側端部13およびシリンダヘッド側端部15において、軸方向中央部17より面粗度を粗くしているので、軸方向端部にて付着した溶融用材料が固化し凝縮する際に、この凝縮部位が軸方向中央部17側に引っ張られるような応力が発生しても、凝縮部位が面粗度の粗い部位に引っ掛かることで応力に対抗し、この応力を抑えることができ、その結果軸方向端部での溶射皮膜30の剥離を防止することができる。   The sprayed coating 30 formed in this way has a rough surface 9 processed as a base treatment before spraying at the axial end of the cylinder bore 5, that is, the crankcase side end 13 and the cylinder head side end 15 in the axial direction. Since the surface roughness is made rougher than the central portion 17, when the melting material adhering to the axial end portion is solidified and condensed, there is a stress that pulls the condensed portion toward the axial central portion 17 side. Even if it occurs, the condensing part is caught by the part having a rough surface to counter the stress, and this stress can be suppressed. As a result, the thermal spray coating 30 can be prevented from peeling off at the axial end. .

また、シリンダボア内面5の粗面9は、切削工具23を用いてねじ状の凹凸部を形成するもので、このねじ状の凹凸部における凸部26の高さを、シリンダボア内面5の軸方向中央部17よりも軸方向端部(クランクケース側端部13およびシリンダヘッド側端部15)で高くしているので、軸方向端部における凹部25(13a,15a)の容積が軸方向中央部17の凹部25(17a)に比較して大きくなり、これに対応して凹部25(13a,15a)に入り込む溶射用材料の量も多くなって、上記した応力をより確実に抑えることができる。   The rough surface 9 of the cylinder bore inner surface 5 forms a screw-like uneven portion using the cutting tool 23, and the height of the convex portion 26 in the screw-like uneven portion is set to the center in the axial direction of the cylinder bore inner surface 5. Since the axial end portion (crankcase side end portion 13 and cylinder head side end portion 15) is higher than the portion 17, the volume of the recess 25 (13a, 15a) at the axial end portion is set to the axial central portion 17. Accordingly, the amount of the thermal spray material that enters the recesses 25 (13a, 15a) increases correspondingly, and the above-described stress can be more reliably suppressed.

さらに、上記したねじ状の凹凸部における凸部26の先端に微細凹凸部27を形成しているので、溶射被膜30の密着度が高まり、溶射被膜30の剥離を確実に防止することができる。   Furthermore, since the fine uneven part 27 is formed at the tip of the convex part 26 in the above-described screw-like uneven part, the adhesion degree of the thermal spray coating 30 is increased, and the thermal spray coating 30 can be reliably prevented from peeling off.

図6のように溶射皮膜30を形成した後は、図7に示すように、シリンダボア3におけるクランクケース側端部13およびシリンダヘッド側端部15付近の不要な部位(図示しないピストンが摺動しない部位)を研削加工して溶射皮膜30とともに除去する。この際、軸方向端部側ほど大径となるようなテーパ面93,95を形成して面取り加工を実施する。   After the thermal spray coating 30 is formed as shown in FIG. 6, as shown in FIG. 7, unnecessary portions of the cylinder bore 3 near the crankcase side end 13 and the cylinder head side end 15 (the piston (not shown) does not slide). The part) is ground and removed together with the thermal spray coating 30. At this time, chamfering is performed by forming tapered surfaces 93 and 95 having a larger diameter toward the end in the axial direction.

上記した面取り加工を実施する際には、クランクケース側端部13およびシリンダヘッド側端部15付近における溶射皮膜30の前記した応力を抑えているので、面取り加工時での溶射皮膜30の剥離も発生しにくく、このため面取り加工時での加工速度を従来よりも高めて加工時間を短縮でき、加工コスト低下に寄与することができる。   When carrying out the above chamfering process, the above-described stress of the thermal spray coating 30 in the vicinity of the crankcase side end portion 13 and the cylinder head side end portion 15 is suppressed, so that the thermal spray coating 30 is also peeled off during the chamfering processing. Therefore, it is possible to reduce the processing time by increasing the processing speed at the time of chamfering processing as compared with the conventional method, thereby contributing to a reduction in processing cost.

そして、最後に図8に示すように、溶射皮膜30の表面を仕上げ加工としてホーニング加工を行う。図8は、シリンダブロック1に対し、ホーニングツール105によりホーニング加工をしている状態を示す断面図である。ホーニングツール105におけるホーニングヘッド107の外周には、例えばダイヤモンドなどの砥粒で構成した砥石109が円周方向等間隔に4つ取り付けている。   Finally, as shown in FIG. 8, honing is performed with the surface of the thermal spray coating 30 as a finishing process. FIG. 8 is a cross-sectional view showing a state where the honing process is performed on the cylinder block 1 by the honing tool 105. On the outer periphery of the honing head 107 in the honing tool 105, four grindstones 109 made of abrasive grains such as diamond are attached at equal intervals in the circumferential direction.

ホーニングヘッド107内には、砥石109を直径方向外側に向けて拡張させる拡張手段を備えており、加工時には、この砥石109を拡張させてシリンダボア内面5に所定の圧力で押し付ける。   The honing head 107 is provided with expansion means for expanding the grindstone 109 outward in the diametrical direction. At the time of processing, the grindstone 109 is expanded and pressed against the cylinder bore inner surface 5 with a predetermined pressure.

そして、上記したホーニングツール105を回転させつつ軸方向に往復移動させることで、溶射皮膜30の表面を研削してホーニング加工を行う。これにより、シリンダボア内面5に対する加工が完了する。なお、ホーニング加工では、使用する砥石の粒度を変更することで、荒工程や仕上げ工程を順次実施する。   The honing tool 105 is rotated and reciprocated in the axial direction to grind the surface of the thermal spray coating 30 and perform honing. Thereby, the process with respect to the cylinder bore inner surface 5 is completed. In the honing process, the roughing process and the finishing process are sequentially performed by changing the grain size of the grindstone to be used.

図9は、本発明の第2の実施形態を示す、前記図2に相当するシリンダブロック1Aの断面図であり、粗面9を形成した後で、溶射皮膜30A(図10参照)の形成前の状態を示す。第2の実施形態では、シリンダボア3Aの軸方向端部であるクランクケース側端部13およびシリンダヘッド側端部15よりさらに軸方向外側の端部に、前記した凹部13a,15aより大きい溝97および99をそれぞれ形成している。その他については、前記した図2と同様の構造である。   FIG. 9 is a cross-sectional view of the cylinder block 1A corresponding to FIG. 2 showing a second embodiment of the present invention, and after forming the rough surface 9 and before forming the thermal spray coating 30A (see FIG. 10). Shows the state. In the second embodiment, a groove 97 larger than the recesses 13a and 15a described above is provided at the axially outer end of the crankcase side end 13 and the cylinder head side end 15 which are axial ends of the cylinder bore 3A. 99 are formed. The other structure is the same as that shown in FIG.

溝97,99は、シリンダボア内面5Aにおける軸方向幅が広く、底部には同軸方向に延びる平面形状の底面部97a,99aを備えており、少なくとも1周分形成する。なお、溝97,99の加工には、前記図3に示した切削工具23とは別の工具を用いて行い、その際の加工条件としては、回転数が2000rpm,工具送り速度が0.1mm/revである。   The grooves 97 and 99 have a wide axial width on the cylinder bore inner surface 5A, and are provided with flat bottom surface portions 97a and 99a extending in the coaxial direction at the bottom, and are formed at least for one round. The grooves 97 and 99 are processed using a tool different from the cutting tool 23 shown in FIG. 3, and the processing conditions at that time are a rotational speed of 2000 rpm and a tool feed speed of 0.1 mm. / Rev.

図10は、溶射皮膜30Aの形成後で、面取り加工前の状態を示す。面取り加工部分については二点鎖線で示している。第2の実施形態では、溶射皮膜30Aは、溶射用材料が溝97,99内に入り込むことで、この溝97,99が堰のような役目を果たし、溝97,99を形成した部位の溶射皮膜30に窪み30aが形成される。   FIG. 10 shows a state after forming the thermal spray coating 30A and before chamfering. The chamfered portion is indicated by a two-dot chain line. In the second embodiment, the thermal spray coating 30A is formed by spraying the thermal spray material into the grooves 97 and 99, so that the grooves 97 and 99 serve as weirs and spray the portions where the grooves 97 and 99 are formed. A depression 30 a is formed in the film 30.

この窪み30aが形成されることで、窪み30aを境として溶射皮膜30Aが、軸方向中央部17側の溶射皮膜30bと、軸方向端部側の溶射皮膜30c,30dとが互い分断されたような形となる。この結果、溶射後の溶射用材料の固化凝縮によって軸方向端部の溶射皮膜30c,30dが軸方向中央部17側へ引っ張られるように発生する応力が小さく抑えられ、溝97,99より軸方向中央部17側における溶射皮膜30bの剥離を抑えることができる。   By forming the depression 30a, the thermal spray coating 30A is separated from the thermal spray coating 30b on the axial central portion 17 side and the thermal spray coatings 30c and 30d on the axial end portion side with the depression 30a as a boundary. It becomes a shape. As a result, the stress generated so that the thermal spray coatings 30c and 30d at the axial end portions are pulled toward the axial central portion 17 side due to solidification condensation of the thermal spray material after thermal spraying is suppressed, and the axial direction from the grooves 97 and 99 is reduced. Separation of the thermal spray coating 30b on the center portion 17 side can be suppressed.

なお、上記した窪み30aは、さらに大きく窪んで最終的に溝97,99を境として、軸方向中央部17の溶射皮膜30bと軸方向端部の溶射皮膜30c,30dとを完全に分断する場合もあり、そのような場合には、溝97,99より軸方向中央部17側における溶射皮膜30bの剥離をより確実に抑えることができる。   In addition, the above-mentioned hollow 30a is further greatly depressed, and finally the thermal spray coating 30b at the axial center portion 17 and the thermal spray coating 30c, 30d at the axial end portion are completely divided by the grooves 97, 99 as a boundary. In such a case, peeling of the thermal spray coating 30b on the axial center portion 17 side from the grooves 97 and 99 can be more reliably suppressed.

このように、軸方向中央部17の溶射皮膜30bと軸方向端部の溶射皮膜30c,30dとを完全に分断するには、シリンダボア内面5における軸方向の幅が、面粗度が粗い部位の凹部13a,15aの同幅よりも広く、また溝97,99の底部に、シリンダボア内面5の軸方向に延びる底面部7a,99aを形成して、溝97,99への溶射用材料の流入量を多くするとよい。   Thus, in order to completely divide the thermal spray coating 30b at the axial center portion 17 and the thermal spray coatings 30c, 30d at the axial end portion, the axial width of the cylinder bore inner surface 5 is set at a portion having a rough surface roughness. The bottom portions 7a and 99a that are wider than the recesses 13a and 15a and extend in the axial direction of the cylinder bore inner surface 5 are formed at the bottoms of the grooves 97 and 99, so that the inflow amount of the thermal spray material into the grooves 97 and 99 It is good to increase.

溶射皮膜30Aの形成後は、前記図7に示したものと同様に、シリンダボア3におけるクランクケース側端部13およびシリンダヘッド側端部15付近の不要な部位(図示しないピストンが摺動しない部位)を研削加工して溶射皮膜30Aとともに除去する。この際、軸方向端部ほど大径となるようなテーパ面93A,95Aを形成して面取り加工を実施する。   After the formation of the thermal spray coating 30A, as in the case shown in FIG. 7, unnecessary portions near the crankcase side end 13 and the cylinder head side end 15 in the cylinder bore 3 (portions where a piston (not shown) does not slide). Is removed together with the sprayed coating 30A. At this time, chamfering is performed by forming tapered surfaces 93A and 95A having a larger diameter at the end in the axial direction.

上記した面取り加工を実施する際には、クランクケース側端部13およびシリンダヘッド側端部15付近における溶射皮膜30Aの前記した応力を抑えているので、面取り加工時での溶射皮膜30Aの剥離も発生しにくく、このため面取り加工時での加工速度を従来よりも高めて加工時間を短縮でき、加工コスト低下に寄与することができる。   When carrying out the above chamfering process, the above-described stress of the thermal spray coating 30A in the vicinity of the crankcase side end 13 and the cylinder head side end 15 is suppressed, so that the thermal spray coating 30A is also peeled off during the chamfering process. Therefore, it is possible to reduce the processing time by increasing the processing speed at the time of chamfering processing as compared with the conventional method, thereby contributing to a reduction in processing cost.

本発明の第1の実施形態に係わるシリンダブロックの断面図である。It is sectional drawing of the cylinder block concerning the 1st Embodiment of this invention. 図1に示すシリンダブロックのシリンダボア周辺の拡大した断面図である。FIG. 2 is an enlarged cross-sectional view around a cylinder bore of the cylinder block shown in FIG. 1. 図1のシリンダブロックに対する下地処理加工を行っている状態を示す断面図である。It is sectional drawing which shows the state which is performing the surface treatment process with respect to the cylinder block of FIG. (a)は図3の下地処理加工を工具および切りくずにより行っている状態を示す説明図、(b)は工具による通常のねじ切り加工を示す説明図である。(A) is explanatory drawing which shows the state which is performing the ground treatment of FIG. 3 with a tool and a chip, (b) is explanatory drawing which shows the normal thread cutting process by a tool. 図1のシリンダブロックのシリンダボア内面を粗面化した後に溶射皮膜を形成するための溶射装置の概略を示す全体構成図である。It is a whole block diagram which shows the outline of the thermal spraying apparatus for forming a thermal spray coating, after roughening the cylinder bore inner surface of the cylinder block of FIG. 図2の下地処理加工後に、溶射皮膜を形成した状態を示すシリンダブロックの断面図である。It is sectional drawing of the cylinder block which shows the state in which the sprayed coating was formed after the base-treatment process of FIG. 図6の溶射皮膜形成後に、シリンダボアの軸方向端部に対して面取り加工を行った状態を示すシリンダブロックの断面図である。It is sectional drawing of the cylinder block which shows the state which performed the chamfering process with respect to the axial direction edge part of a cylinder bore after spraying coating formation of FIG. 図7の面取り加工後に、ホーニング加工を行っている状態を示すシリンダブロックの断面図である。It is sectional drawing of the cylinder block which shows the state which is performing the honing process after the chamfering process of FIG. 本発明の第2の実施形態を示す、図2に相当するシリンダブロックの断面図である。It is sectional drawing of the cylinder block equivalent to FIG. 2 which shows the 2nd Embodiment of this invention. 図9の下地処理加工後に、溶射皮膜を形成した状態を示すシリンダブロックの断面図である。It is sectional drawing of the cylinder block which shows the state which formed the sprayed coating after the base-treatment process of FIG.

符号の説明Explanation of symbols

3,3A シリンダボア
5,5A シリンダボア内面(円筒内面)
9 粗面
13 シリンダボアのクランクケース側端部(軸方向端部)
15 シリンダボアのシリンダヘッド側端部(軸方向端部)
17 シリンダボアの軸方向中央部
26(13b,15b,17b) ねじ状の凹凸部の凸部
27(13c,15c,17c) 凸部先端の微細凹凸部(破断部)
30,3A 溶射皮膜
97,99 溝
97a,99a 溝の底面部
3,3A Cylinder bore 5,5A Cylinder bore inner surface (cylindrical inner surface)
9 Rough surface 13 Cylinder bore crankcase side end (axial end)
15 Cylinder bore end of cylinder bore (end in axial direction)
17 Cylinder bore axial center portion 26 (13b, 15b, 17b) Threaded uneven portion convex portion 27 (13c, 15c, 17c) Fine uneven portion at the tip of the convex portion (rupture portion)
30, 3A Thermal sprayed coating 97, 99 groove 97a, 99a groove bottom surface

Claims (10)

円筒内面に対して溶射皮膜を形成する前に、前記円筒内面を、切削工具を用いてねじ状の凹凸部を形成して粗面に形成する円筒内面の溶射前下地加工方法において、前記切削工具により凹凸部を形成する際に、前記ねじ状の凹凸部における凸部の先端に破断部を形成し、前記凹凸部における凹部の底部の、円筒中心から半径方向の距離を、前記円筒内面の軸方向中央部と軸方向端部とで同等として、前記凹凸部における凸部の、前記凹部の底部から先端部までの高さを、前記円筒内面の軸方向中央部よりも軸方向端部で高くすることを特徴とする円筒内面の溶射前下地加工方法。 Before forming a thermal spray coating on the cylindrical inner surface, the cylindrical tool is formed by forming a threaded uneven portion on the cylindrical inner surface using a cutting tool to form a rough surface. When forming the concavo-convex portion by the above , a rupture portion is formed at the tip of the convex portion in the screw-shaped concavo-convex portion, and the radial distance from the center of the cylinder of the bottom portion of the concave portion in the concavo-convex portion is defined as the axis of the inner surface of the cylinder. as comparable with direction central portion and the axial end portion of the convex portion in the uneven portion, the height from the bottom of the recess to the distal end, higher at the axial end portion than the central portion in the axial direction of the cylindrical inner surface A pre-spraying substrate processing method for a cylindrical inner surface, characterized in that: 前記凹凸部における凹部のピッチを、前記円筒内面の軸方向中央部よりも軸方向端部で大きくすることを特徴とする請求項1に記載の円筒内面の溶射前下地加工方法。2. The pre-spraying pre-spraying method for a cylindrical inner surface according to claim 1, wherein a pitch of the concave portions in the concave and convex portions is larger at an axial end than an axial central portion of the cylindrical inner surface. 前記円筒内面における軸方向端部よりさらに軸方向外側の端部に、前記軸方向端部の凹部よりも大きい溝を形成することを特徴とする請求項1または2に記載の円筒内面の溶射前下地加工方法。 The end of Risarani axially outer O axial end portion of the cylindrical inner surface, spraying the cylindrical inner surface according to claim 1 or 2, characterized in that to form the larger grooves than the recess of the axial end Pre-ground processing method. 前記凹部よりも大きい溝は、前記円筒内面における軸方向の幅が、前記軸方向端部の凹部よりも広いことを特徴とする請求項に記載の円筒内面の溶射前下地加工方法。 4. The pre-spraying pre-spraying method for a cylindrical inner surface according to claim 3 , wherein the groove larger than the concave portion has a width in the axial direction of the cylindrical inner surface wider than that of the concave portion at the axial end portion . 前記凹部よりも大きい溝の底部に、前記円筒内面の軸方向に延びる底面部を形成することを特徴とする請求項3または4に記載の円筒内面の溶射前下地加工方法。 5. The pre-spraying substrate surface processing method for a cylindrical inner surface according to claim 3 , wherein a bottom surface portion extending in the axial direction of the cylindrical inner surface is formed at a bottom portion of a groove larger than the concave portion. 円筒内面に対して溶射皮膜を形成する前に、溶射前下地加工として前記円筒内面を、切削工具を用いてねじ状の凹凸部を形成して粗面に形成する円筒内面の溶射前下地処理形状を有する円筒において、前記ねじ状の凹凸部における凸部の先端に、前記切削工具により凹凸部を形成する際に形成される破断部を有し、前記凹凸部における凹部の底部の、円筒中心から半径方向の距離を、前記円筒内面の軸方向中央部と軸方向端部とで同等として、前記凹凸部における凸部の、前記凹部の底部から先端部までの高さが、前記円筒内面の軸方向中央部よりも軸方向端部で高いことを特徴とする円筒内面の溶射前下地処理形状を有する円筒Before forming the thermal spray coating on the cylindrical inner surface, the cylindrical inner surface is formed as a rough surface by forming a screw-like uneven portion with a cutting tool to form the cylindrical inner surface as a pre-spraying base processing. In the cylinder having , at the tip of the convex portion in the screw-shaped concave and convex portion, there is a fracture portion formed when forming the concave and convex portion by the cutting tool , and from the center of the cylinder at the bottom of the concave portion in the concave and convex portion The radial distance is the same at the axial center and the axial end of the cylindrical inner surface, and the height of the convex portion of the concave and convex portion from the bottom to the tip of the concave portion is the axis of the cylindrical inner surface. A cylinder having a pre-spraying surface treatment shape on the inner surface of the cylinder, characterized by being higher at the axial end than at the center in the direction. 前記凹凸部における凹部のピッチが、前記円筒内面の軸方向中央部よりも軸方向端部で大きいことを特徴とする請求項6に記載の円筒内面の溶射前下地処理形状を有する円筒The cylinder having a pre-sprayed surface treatment shape on a cylindrical inner surface according to claim 6, wherein a pitch of the concave portions in the concave and convex portions is larger at an axial end than an axial central portion of the cylindrical inner surface. 前記円筒内面における軸方向端部よりさらに軸方向外側の端部に、前記軸方向端部の凹部よりも大きい溝が形成されていることを特徴とする請求項6または7に記載の円筒内面の溶射前下地処理形状を有する円筒8. The cylindrical inner surface according to claim 6, wherein a groove larger than a concave portion of the axial end portion is formed at an end portion on the axially outer side of the axial inner end portion of the cylindrical inner surface. A cylinder with a pre-sprayed surface treatment. 前記凹部よりも大きい溝は、前記円筒内面における軸方向の幅が、前記軸方向端部の凹部よりも広いことを特徴とする請求項8に記載の円筒内面の溶射前下地処理形状を有する円筒9. A cylinder having a pre-sprayed surface treatment shape on a cylindrical inner surface according to claim 8, wherein the groove larger than the concave portion has an axial width wider than that of the concave portion at the axial end portion of the cylindrical inner surface. . 前記凹部よりも大きい溝の底部に、前記円筒内面の軸方向に延びる底面部が形成されていることを特徴とする請求項8または9に記載の円筒内面の溶射前下地処理形状を有する円筒10. The cylinder having a pretreatment surface shape before spraying on the inner surface of the cylinder according to claim 8, wherein a bottom surface portion extending in the axial direction of the inner surface of the cylinder is formed at the bottom of the groove larger than the recess.
JP2006102977A 2006-04-04 2006-04-04 Cylinder inner surface pre-spraying substrate processing method and cylinder inner surface pre-spraying pre-spraying shape Active JP5087854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006102977A JP5087854B2 (en) 2006-04-04 2006-04-04 Cylinder inner surface pre-spraying substrate processing method and cylinder inner surface pre-spraying pre-spraying shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006102977A JP5087854B2 (en) 2006-04-04 2006-04-04 Cylinder inner surface pre-spraying substrate processing method and cylinder inner surface pre-spraying pre-spraying shape

Publications (2)

Publication Number Publication Date
JP2007277607A JP2007277607A (en) 2007-10-25
JP5087854B2 true JP5087854B2 (en) 2012-12-05

Family

ID=38679350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006102977A Active JP5087854B2 (en) 2006-04-04 2006-04-04 Cylinder inner surface pre-spraying substrate processing method and cylinder inner surface pre-spraying pre-spraying shape

Country Status (1)

Country Link
JP (1) JP5087854B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008019933A1 (en) 2008-04-21 2009-10-22 Ford Global Technologies, LLC, Dearborn Apparatus and method for preparing a metal surface for applying a thermally sprayed layer
JP5310104B2 (en) * 2009-03-03 2013-10-09 日産自動車株式会社 Rough surface processing tool and rough surface processing method
DE102009027200B3 (en) 2009-06-25 2011-04-07 Ford Global Technologies, LLC, Dearborn Method for roughening metal surfaces, use of the method and workpiece
DE102011086803A1 (en) 2011-11-22 2013-05-23 Ford Global Technologies, Llc Repair method of a cylinder surface by means of plasma spraying
DE102013200912B4 (en) 2012-02-02 2018-05-30 Ford Global Technologies, Llc crankcase
JP5962078B2 (en) * 2012-03-06 2016-08-03 日産自動車株式会社 Cylinder block and pre-spraying method
US8726874B2 (en) 2012-05-01 2014-05-20 Ford Global Technologies, Llc Cylinder bore with selective surface treatment and method of making the same
US9511467B2 (en) 2013-06-10 2016-12-06 Ford Global Technologies, Llc Cylindrical surface profile cutting tool and process
US20140364042A1 (en) * 2013-06-10 2014-12-11 Ford Global Technologies, Llc Cylindrical Surface Profile Cutting Tool and Process
US9079213B2 (en) 2012-06-29 2015-07-14 Ford Global Technologies, Llc Method of determining coating uniformity of a coated surface
US9382868B2 (en) 2014-04-14 2016-07-05 Ford Global Technologies, Llc Cylinder bore surface profile and process
US10220453B2 (en) 2015-10-30 2019-03-05 Ford Motor Company Milling tool with insert compensation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026656A (en) * 1983-07-25 1985-02-09 Mitsubishi Heavy Ind Ltd Thermal spraying method to inside surface
JP3780840B2 (en) * 2000-11-16 2006-05-31 日産自動車株式会社 Pre-spraying shape of the inner surface of a cylinder
JP4051996B2 (en) * 2002-05-02 2008-02-27 日産自動車株式会社 Thermal spraying method on cylinder inner surface and cylinder block production method
JP4379277B2 (en) * 2004-09-17 2009-12-09 日産自動車株式会社 Thermal spraying pretreatment shape and thermal spraying method
JP4507786B2 (en) * 2004-09-17 2010-07-21 日産自動車株式会社 Thermal spray pretreatment method

Also Published As

Publication number Publication date
JP2007277607A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP5087854B2 (en) Cylinder inner surface pre-spraying substrate processing method and cylinder inner surface pre-spraying pre-spraying shape
JP4645468B2 (en) Cylinder bore inner surface processing method and cylinder block
US7621250B2 (en) Cutting tools and roughened articles using surface roughening methods
US7607209B2 (en) Surface roughening methods using cutting tools
US7568273B2 (en) Surface roughening method
EP1832381B1 (en) Surface Processing
JP5765481B2 (en) Thermal spray coating surface finishing method and machining tool
JP4617806B2 (en) Thermal spray pretreatment method
JP4507786B2 (en) Thermal spray pretreatment method
JP2010228095A (en) Surface-roughening method
JP4507795B2 (en) Thermal spray pretreatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5087854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150