JP5087488B2 - Near-field optical waveguide bonding device - Google Patents

Near-field optical waveguide bonding device Download PDF

Info

Publication number
JP5087488B2
JP5087488B2 JP2008189085A JP2008189085A JP5087488B2 JP 5087488 B2 JP5087488 B2 JP 5087488B2 JP 2008189085 A JP2008189085 A JP 2008189085A JP 2008189085 A JP2008189085 A JP 2008189085A JP 5087488 B2 JP5087488 B2 JP 5087488B2
Authority
JP
Japan
Prior art keywords
optical waveguide
field
propagation
field optical
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008189085A
Other languages
Japanese (ja)
Other versions
JP2010026331A (en
Inventor
鳥 顕 司 都
村 玲 子 吉
際 正 和 山
山 美 保 丸
田 紘 山
田 康 之 堀
田 宰 多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008189085A priority Critical patent/JP5087488B2/en
Publication of JP2010026331A publication Critical patent/JP2010026331A/en
Application granted granted Critical
Publication of JP5087488B2 publication Critical patent/JP5087488B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、近接場光導波路と伝播光導波路とを接合する近接場光導波路接合装置に関する。   The present invention relates to a near-field optical waveguide joining apparatus for joining a near-field optical waveguide and a propagation optical waveguide.

半導体ロードマップITRSによるとLSIは2015年頃よりリーク電流や回路内の情報遅延などの問題により、進歩が衰えるといわれており、それに変わる情報制御システムの一つとして近接場システムが提唱されている。光システムは波長多重性、光速情報伝達性、高速論理演算性を有しているが、回折限界が存在するために集積化には向かないといわれている。しかし、近年、回折限界がない近接場光が提唱されてきたことで、この問題は解決される可能性がでてきた。 According to the semiconductor roadmap ITRS, it has been said that LSIs have been advancing from around 2015 due to problems such as leakage current and information delay in the circuit, and a near-field system has been proposed as one of information control systems that change to that. An optical system has wavelength multiplexing, light speed information transmission, and high-speed logic operation, but is said to be unsuitable for integration because of the diffraction limit. However, in recent years, the near field light having no diffraction limit has been proposed, and this problem may be solved.

サブミクロンの分解能を持つ光学顕微鏡−近接場光学顕微鏡では光ファイバーを加工したプローブで分解能を上げている。光ファイバーの出力端の開口径を小さくし、更に金属で開口部以外をコートしている。この場合、伝播光から近接場光への変換効率は例えば以下の表に示すようになる。
Optical microscopes with sub-micron resolution-Near-field optical microscopes increase the resolution with optical fiber processed probes. The opening diameter of the output end of the optical fiber is made smaller, and the portions other than the opening are coated with metal. In this case, the conversion efficiency from propagating light to near-field light is as shown in the following table, for example.

しかし、システム効率を考えた場合、開口径100nmで10−4では、実用上問題がある。近接場光システムの構築やSoC(System On Chip)内光配線では光源となるLD(Laser Diode)、LED(Light Emitting Diode)やあるいはシステム外部からファイバーや伝播光導波路との結合ではさらに高い結合効率が必要となる。 However, when considering the system efficiency, there is a practical problem with an aperture diameter of 100 nm and 10 −4 . Higher coupling efficiency in the construction of near-field light systems and LD (Laser Diode), LED (Light Emitting Diode) as the light source in SoC (System On Chip) optical wiring, or fiber or propagation optical waveguide from outside the system Is required.

また、一般に、近接場光は金属系−いわゆるプラズモンを用いる方が、相互作用が強いことが知られている。プラズモン導波には一次元金属細線、一次元サブミクロンドット(あるいは円柱)配列が知られている。一次元金属配線では金属表面で発生する表面プラズモンポラリトンが導波する。すなわち、表面でのみエネルギーが導波する。また一次元サブミクロン配列方式でも、表面で発生するプラズモンがエネルギーを導波するが、球間のスペースもエネルギー伝達空間となる。そして、特許文献1には、4nmの金ナノ粒子を分散した系においてもプラズモンが導波することが示されている。
特開2007−148289号公報
In general, it is known that the near-field light has a stronger interaction when using metal-so-called plasmons. One-dimensional metal fine wires and one-dimensional submicron dot (or cylinder) arrays are known for plasmon waveguide. In the one-dimensional metal wiring, surface plasmon polariton generated on the metal surface is guided. That is, energy is guided only on the surface. In the one-dimensional sub-micron array method, plasmons generated on the surface guide energy, but the space between the spheres is also an energy transmission space. Patent Document 1 shows that plasmons are guided in a system in which gold nanoparticles of 4 nm are dispersed.
JP 2007-148289 A

本発明は、上記事情を考慮してなされたものであって、伝播光と近接場光とのカップリング効率を可及的に高くすることのできる近接場光導波路接合装置を提供することを目的とする。   The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a near-field optical waveguide junction device capable of increasing the coupling efficiency between propagating light and near-field light as much as possible. And

本発明の第1の態様による近接場光導波路接合装置は、光が伝播する伝播光導波路と、誘電体中に金属ナノ粒子が分散された金属ナノ粒子分散膜の近接場光導波路とを接合し、前記近接場光導波路と同じ材料の金属ナノ粒子分散膜である接合部を有し、前記伝播光導波路の屈折率の実部と、前記接合部の有効屈折率の実部との差が、0以上0.5以下であることを特徴とする。   A near-field optical waveguide joining device according to a first aspect of the present invention joins a propagation optical waveguide through which light propagates and a near-field optical waveguide of a metal nanoparticle dispersed film in which metal nanoparticles are dispersed in a dielectric. A junction part that is a metal nanoparticle-dispersed film of the same material as the near-field optical waveguide, and the difference between the real part of the refractive index of the propagation optical waveguide and the real part of the effective refractive index of the joint part is It is 0 or more and 0.5 or less.

また、本発明の第2の態様による近接場光導波路接合装置は、光が伝播する伝播光導波路と、誘電体中に金属ナノ粒子が分散された金属ナノ粒子分散膜の近接場光導波路とを接合し、前記近接場光導波路と同じ材料の金属ナノ粒子分散膜である接合部を有し、前記接合部の有効屈折率の実部が、1.0以上1.2以下であることを特徴とする。   The near-field optical waveguide joining device according to the second aspect of the present invention includes a propagation optical waveguide through which light propagates and a near-field optical waveguide of a metal nanoparticle-dispersed film in which metal nanoparticles are dispersed in a dielectric. It has a junction part which is metal nanoparticle dispersion film of the same material as the near field optical waveguide, and the real part of the effective refractive index of the junction part is 1.0 or more and 1.2 or less And

本発明によれば、伝播光と近接場光とのカップリング効率を可及的に高くすることが可能な近接場光導波路接合装置を提供することができる。   According to the present invention, it is possible to provide a near-field optical waveguide bonding apparatus capable of increasing the coupling efficiency between propagating light and near-field light as much as possible.

本発明の実施形態を説明する前に、本発明に至った経緯および本発明の概要を説明する。   Before describing the embodiments of the present invention, the background to the present invention and the outline of the present invention will be described.

上述したように、一般に、近接場光は金属系−いわゆるプラズモンを用いる方が、相互作用が強いことが知られている。プラズモン導波には一次元金属細線、一次元サブミクロンドット(あるいは円柱)配列が知られている。一次元金属配線では金属表面で発生する表面プラズモンポラリトンが導波する。すなわち、表面でのみエネルギーが導波する。また一次元サブミクロン配列方式でも、表面で発生するプラズモンがエネルギーを導波するが、球間のスペースもエネルギー伝達空間となる。   As described above, it is generally known that the near-field light has a stronger interaction when using a metal-based so-called plasmon. One-dimensional metal fine wires and one-dimensional submicron dot (or cylinder) arrays are known for plasmon waveguide. In the one-dimensional metal wiring, surface plasmon polariton generated on the metal surface is guided. That is, energy is guided only on the surface. In the one-dimensional sub-micron array method, plasmons generated on the surface guide energy, but the space between the spheres is also an energy transmission space.

伝播光は回折限界があるが、一旦プラズモンに変化したエネルギーは回折限界を起こさない。そこで、本発明者達は、エネルギーをプラズモンへ移行した後に、導波路幅を小さくすることが有効であると考えた。そして、実現する際に特許文献1に記載のような分散系を用いることが重要であると考えた。すなわち、回折限界以上の幅の導波路において、伝播光からプラズモンに変換し、その後、プラズモン導波路のサイズを小さくし、プラズモン導波路、すなわち近接場導波路は特許文献1に記載のようなシステムを用いることが重要である。   Although propagating light has a diffraction limit, energy once changed to plasmon does not cause a diffraction limit. Therefore, the present inventors considered that it is effective to reduce the waveguide width after the energy is transferred to plasmon. And when it implement | achieved, it thought that it was important to use a dispersion system as described in patent document 1. FIG. That is, in a waveguide having a width equal to or greater than the diffraction limit, the propagation light is converted into plasmon, and then the size of the plasmon waveguide is reduced. The plasmon waveguide, that is, the near-field waveguide is a system as described in Patent Document 1. It is important to use

この際、伝播光導波路とプラズモン導波路との境界端面で反射が起こることが考えられる。このため、この反射率を小さくすることが重要である。金属の屈折率は可視、近赤外では一般に実部は1より小さく、虚部(消衰係数)が大きい。このような場合、エネルギーは物質内に入り込まず、反射される。金属では表面のみにエネルギーが移行するが、この時、エネルギー保存と波数保存(運動量保存)が成り立つことが条件である。しかし、一般的にはこの二つの保存則は伝播光とプラズモンの分散関係が異なることから成り立ちにくく、また、エネルギー伝播の断面積が大きく異なることから変換効率が著しく低い。   At this time, reflection may occur at the boundary end face between the propagation optical waveguide and the plasmon waveguide. For this reason, it is important to reduce this reflectance. The refractive index of a metal is generally less than 1 in the visible and near infrared, and the imaginary part (extinction coefficient) is large. In such cases, energy does not enter the material and is reflected. In metal, energy is transferred only to the surface. At this time, it is a condition that energy conservation and wave number conservation (momentum conservation) are established. However, in general, these two conservation laws are unlikely to be realized because the dispersion relation between propagating light and plasmon is different, and the conversion efficiency is extremely low because the cross-sectional areas of energy propagation are greatly different.

この問題の対応策の一つとして、誘電体中に金属ナノ粒子が分散された金属ナノ粒子分散系を用いれば良いことが分かった。これは、この金属ナノ粒子分散系は導波断面積を伝播光導波路のそれと同じようにすることが可能となるため、変換効率を上げることができる。また、もう一つの対応策として、金属ナノ粒子分散系において有効屈折率を定義し、この有効屈折率がある条件を満たせば良いことが分かった。この有効屈折率nは、以下のように、定義される。物質Aの体積をVa、複素屈折率をn、物質Bの体積をV、複素屈折率をnとすると、
と定義することができる。この有効屈折率nは、金属ナノ粒子分散系においては、金属の複素屈折率とマトリックスである誘電体の複素屈折率とを体積を重みにして加重平均をとることである。本発明者達は、伝播光導波路とプラズモン導波路が接する端面においてこの実部が一致する、あるいは実部、虚部双方とも一致することが反射を小さくできることを見出した。これは、誘電体導波路や異種誘電体界面の反射を考慮する時には一般的であるが、一方が金属である場合は有効ではない。例えば、金属の表面には反射防止膜を付けることができないからであり、これは、金属ナノ粒子分散系がプラズモンを導波する材料系にも関わらず、システム全体としては、一般の誘電体と同じような実部が1より大きく、虚部もそれほど大きくない複素屈折率を実現できることに依存している。
As one countermeasure against this problem, it has been found that a metal nanoparticle dispersion system in which metal nanoparticles are dispersed in a dielectric may be used. This makes it possible to increase the conversion efficiency because this metal nanoparticle dispersion system can make the waveguide cross-sectional area the same as that of the propagation optical waveguide. Further, as another countermeasure, it has been found that an effective refractive index is defined in a metal nanoparticle dispersion system and this effective refractive index satisfies a certain condition. This effective refractive index ne is defined as follows. The volume of material A Va, the complex refractive index n a, volume V b of the material B, and the complex refractive index and n b,
Can be defined as In the metal nanoparticle dispersion system, this effective refractive index ne is a weighted average of the complex refractive index of metal and the complex refractive index of a dielectric that is a matrix, weighted by volume. The present inventors have found that the reflection can be reduced by matching the real part or the real part and the imaginary part at the end face where the propagation optical waveguide and the plasmon waveguide are in contact. This is common when considering reflection at a dielectric waveguide or a heterogeneous dielectric interface, but is not effective when one is a metal. For example, an antireflection film cannot be attached to the surface of a metal. This is because the metal nanoparticle dispersion system is a material system in which plasmons are guided, but the overall system is a general dielectric material. It depends on being able to realize a complex refractive index in which a similar real part is larger than 1 and an imaginary part is not so large.

また、本発明者達は、以下に述べる実施形態において説明するように、金属ナノ粒子分散系の複素屈折率の実部が1以上でかつ1に近いほど伝播光導波路からプラズモン導波路へのエネルギー変換効率が大きくなることを実験上見出した。 In addition, as will be described in the embodiments described below, the present inventors have found that the energy from the propagation optical waveguide to the plasmon waveguide increases as the real part of the complex refractive index of the metal nanoparticle dispersion system is 1 or more and closer to 1. It was experimentally found that the conversion efficiency is increased.

さらに、近年盛んになっているサブ波長構造による反射防止にも本発明の一実施形態による近接場光導波路接合装置が有効であることを確認した。 Furthermore, it has been confirmed that the near-field optical waveguide bonding apparatus according to an embodiment of the present invention is effective for preventing reflection by a subwavelength structure that has become popular recently.

本発明の実施形態を以下に図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1実施形態)
本発明の第1実施形態による近接場光導波路接合装置を図1に示す。図1は、本実施形態による近接場光導波路接合装置の平面図である。本実施形態の近接場光導波路接合装置は、伝播光導波路20と、サイズ(直径)がナノメートルのオーダーの金属ナノ粒子(例えば、直径が10nmの銀粒子)が誘電体(例えばSiO)中に分散された金属ナノ粒子分散膜からなる近接場光導波路(プラズモン導波路)30とを接続する接合部10を有している。この接合部10は、プラズモン導波路30と同じ材料の金属ナノ粒子分散膜からなっており、伝播光導波路20との接続部分では伝播光導波路20と同じサイズ(直径(例えば、1μm)または断面積)を有しかつプラズモン導波路30との接続部分ではプラズモン導波路30と同じサイズ(直径(例えば100nm)または断面積)を有し、伝播光導波路20との接続部分からプラズモン導波路30との接続部分まで、サイズが滑らかに減少するように構成されている。
(First embodiment)
A near-field optical waveguide bonding apparatus according to a first embodiment of the present invention is shown in FIG. FIG. 1 is a plan view of the near-field optical waveguide bonding apparatus according to the present embodiment. In the near-field optical waveguide bonding apparatus of the present embodiment, the propagation optical waveguide 20 and metal nanoparticles having a size (diameter) on the order of nanometer (for example, silver particles having a diameter of 10 nm) are in a dielectric (for example, SiO 2 ). A joint 10 for connecting a near-field optical waveguide (plasmon waveguide) 30 made of a metal nanoparticle-dispersed film. The joint 10 is made of a metal nanoparticle-dispersed film made of the same material as that of the plasmon waveguide 30, and has the same size (diameter (eg, 1 μm) or cross-sectional area as that of the propagation optical waveguide 20 at the connection portion with the propagation optical waveguide 20. ) And has the same size (diameter (for example, 100 nm) or cross-sectional area) as the plasmon waveguide 30 at the connection portion with the plasmon waveguide 30, and is connected to the plasmon waveguide 30 from the connection portion with the propagation optical waveguide 20. The size is smoothly reduced to the connecting portion.

このように構成された本実施形態の接合装置において、金属ナノ粒子(銀ナノ粒子)を分散させている誘電体(マトリックス)の屈折率値を変えることによる接合部10の有効屈折率を変化させるとともに伝播光導波路20の屈折率の実部を変化させてカップリング効率(変換効率)の違いをシミュレーションで調べた。その結果を図2に示す。図2には、伝播光導波路20の屈折率の実部を1、1.2、1.5、1.053、1.183、1.283、1.383、1.5、1.183、1.283、1.118と変えたとき、接合部10の有効屈折率の実部を1、1、1、1.053、1.053、1.053、1.053、1.053、1.183、1.183、1.118とそれぞれ変化させ、そのときの差Δnと、シミュレーションにより求めたカップリング効率が示されている。これらのΔnを横軸に取り、カップリング効率を縦軸に取ったグラフを図3に示す。なお、図3に示すグラフは、接合部10の屈折率の実部の値が1、1.053、1.118、1.183をパラメータにとってプロットされている。また、図4には、接合部10の有効屈折率の実部を横軸に取り、縦軸にカップリング効率を取ったときのデータをプロットしたグラフを示す。なお、この場合、伝播光導波路20の屈折率の実部は、接合部10の有効屈折率の実部と同じ値となっている。   In the bonding apparatus of the present embodiment configured as described above, the effective refractive index of the bonding portion 10 is changed by changing the refractive index value of the dielectric (matrix) in which the metal nanoparticles (silver nanoparticles) are dispersed. At the same time, the real part of the refractive index of the propagation optical waveguide 20 was changed, and the difference in coupling efficiency (conversion efficiency) was examined by simulation. The result is shown in FIG. In FIG. 2, the real part of the refractive index of the propagation optical waveguide 20 is 1, 1.2, 1.5, 1.053, 1.183, 1.283, 1.383, 1.5, 1.183, When changed to 1.283 and 1.118, the real part of the effective refractive index of the joint 10 is 1, 1, 1, 1.053, 1.053, 1.053, 1.053, 1.053, 1 .183, 1.183, and 1.118, the difference Δn at that time, and the coupling efficiency obtained by simulation are shown. A graph in which Δn is taken on the horizontal axis and the coupling efficiency is taken on the vertical axis is shown in FIG. In the graph shown in FIG. 3, the values of the real part of the refractive index of the joint 10 are plotted with parameters of 1, 1.053, 1.118, and 1.183. FIG. 4 is a graph in which the real part of the effective refractive index of the joint 10 is plotted on the horizontal axis and the data when the coupling efficiency is taken on the vertical axis. In this case, the real part of the refractive index of the propagation optical waveguide 20 has the same value as the real part of the effective refractive index of the joint 10.

図2乃至図4からわかるように、接合部10の有効屈折率の実部が変化しても、伝播光導波路20の屈折率の実部と接合部10の有効屈折率の実部との差Δnが小さいほど変換効率(すなわち伝播光からプラズモンへの変換効率)が高い。また、差Δnが0.5以下であれば、変換効率は0.057以上となり、従来のようにファイバープローブを用いる場合よりも2桁大きい。   As can be seen from FIGS. 2 to 4, even if the real part of the effective refractive index of the joint 10 changes, the difference between the real part of the refractive index of the propagation optical waveguide 20 and the real part of the effective refractive index of the joint 10. The smaller Δn, the higher the conversion efficiency (that is, the conversion efficiency from propagating light to plasmon). Further, if the difference Δn is 0.5 or less, the conversion efficiency is 0.057 or more, which is two orders of magnitude larger than the case of using a fiber probe as in the conventional case.

また、接合部10の有効屈折率の実部と伝播光導波路20の屈折率の実部との差がない場合には図4からわかるように、接合部10の有効屈折率が1に近い方が変換効率は高い。このシミュレーションから、接合部10の有効屈折率の実部が、1.0以上1.2以下であれば、従来の場合よりも、より高い変換効率を得ることができることがわかる。   If there is no difference between the real part of the effective refractive index of the joint 10 and the real part of the refractive index of the propagation optical waveguide 20, the effective refractive index of the joint 10 is close to 1, as can be seen from FIG. However, the conversion efficiency is high. From this simulation, it can be seen that if the real part of the effective refractive index of the joint 10 is 1.0 or more and 1.2 or less, higher conversion efficiency can be obtained than in the conventional case.

以上説明したように、本実施形態によれば、伝播光からプラズモン(近接場光)への変換効率(カップリング効率)を可及的に高くすることができる。   As described above, according to the present embodiment, the conversion efficiency (coupling efficiency) from propagating light to plasmon (near-field light) can be made as high as possible.

(第2実施形態)
次に、本発明の第2実施形態による近接場光導波路接合装置を図5に示す。図5は、本実施形態による近接場光導波路接合装置の平面図である。本実施形態の近接場光導波路接合装置は、第1実施形態の近接場光導波路接合装置において、接合部10の金属ナノ粒子として直径が30nmの円柱状の銀ナノ粒子12を用いている。この接合部10の作製方法は、FIB(focused ion beam)を用いて、それぞれが直径30nmの銀ナノ粒子を円柱状に加工し、これらの銀ナノ粒子12の外側に、囲うようにTEOS(Tetra Ethyl Ortho Silicate)の加水分解で作製した有機SiO膜(図示せず)の塗布を行った。この有機SiO膜の膜厚は約500nmであった。また、伝播光導波路20の幅は1μm、プラズモン導波路30の幅は100nmとした。なお、プラズモン導波路30は、第1実施形態と同様に、接合部10と同じ材料から構成した。図5においては、円柱状の銀ナノ粒子12は、円柱の軸方向が紙面に垂直となるように配置されている。
(Second Embodiment)
Next, a near-field optical waveguide joining device according to a second embodiment of the present invention is shown in FIG. FIG. 5 is a plan view of the near-field optical waveguide bonding apparatus according to the present embodiment. The near-field optical waveguide bonding apparatus of the present embodiment uses cylindrical silver nanoparticles 12 having a diameter of 30 nm as the metal nanoparticles of the bonding portion 10 in the near-field optical waveguide bonding apparatus of the first embodiment. The joint 10 is manufactured by using a focused ion beam (FIB) to process silver nanoparticles each having a diameter of 30 nm into a cylindrical shape, and surrounding TEOS (Tetra) so as to surround the silver nanoparticles 12. An organic SiO 2 film (not shown) prepared by hydrolysis of (Ethyl Ortho Silicate) was applied. The thickness of this organic SiO 2 film was about 500 nm. The width of the propagation optical waveguide 20 is 1 μm, and the width of the plasmon waveguide 30 is 100 nm. In addition, the plasmon waveguide 30 was comprised from the same material as the junction part 10 similarly to 1st Embodiment. In FIG. 5, the cylindrical silver nanoparticles 12 are arranged so that the axial direction of the cylinder is perpendicular to the paper surface.

このようにして構成された接合部10を、近接場顕微鏡と微分干渉計を組み合わせた微分干渉近接場光学顕微鏡(以下、SNOM(Scanning Near-field Optical Microscope)とも云う)で観察し、接合部10の有効屈折率を測定した。TEOS塗布時に含有させるドーパントを変化させ、その内のいくつかを微分干渉SNOMで測定し、接合部10の有効屈折率が約1.05のものを選び、伝播光導波路20の屈折率の実部を変化させたものを接合させた。本実施形態においては、伝播光導波路20の屈折率の実部と、接合部10の有効屈折率の実部との差Δnを0.05、0.45、0.53とし、このときのカップリング効率(伝播光からプラズモンへの変換効率)を測定した。この測定に用いられた光の波長は1μmである。この測定の結果を図6に示す。なお、差Δn=0.05の場合は伝播光導波路20を用いずに、光を空気中から接合部に入射し、測定した。   The joint 10 thus configured is observed with a differential interference near-field optical microscope (hereinafter also referred to as a SNOM (Scanning Near-field Optical Microscope)) that combines a near-field microscope and a differential interferometer. The effective refractive index of was measured. The dopant contained at the time of TEOS application is changed, some of them are measured by differential interference SNOM, the one having an effective refractive index of the junction 10 of about 1.05 is selected, and the real part of the refractive index of the propagation optical waveguide 20 What was changed was joined. In this embodiment, the difference Δn between the real part of the refractive index of the propagation optical waveguide 20 and the real part of the effective refractive index of the joint 10 is set to 0.05, 0.45, and 0.53. Ring efficiency (conversion efficiency from propagating light to plasmon) was measured. The wavelength of light used for this measurement is 1 μm. The result of this measurement is shown in FIG. When the difference Δn = 0.05, the light was incident on the joint from the air without using the propagation optical waveguide 20 and measured.

図6からわかるように、差Δnが0.53以であれば、カップリング効率は6.0×10−2以上となり、従来の場合よりも、より高い変換効率を得ることができることがわかる。 As can be seen from FIG. 6, if 0.53 hereinafter difference [Delta] n, the coupling efficiency becomes 6.0 × 10 -2 or more, than the conventional case, it is understood that it is possible to obtain a higher conversion efficiency .

以上説明したように、本実施形態によれば、伝播光からプラズモン(近接場光)への変換効率(カップリング効率)を可及的に高くすることができる。   As described above, according to the present embodiment, the conversion efficiency (coupling efficiency) from propagating light to plasmon (near-field light) can be made as high as possible.

(変形例)
次に、本実施形態の変形例による近接場光導波路接合装置を図7に示す。本変形例の近接場光導波路接合装置は、伝播光導波路20は、先端に行くにつれて断面積が小さくなる形状、例えば平面形状において先端が尖った三角形の三角形部分20aを有しており、この三角形部分20aの尖った先端が接合部10に挿入されるように構成されている。すなわち、伝播光導波路20と接合部10との接合面は、三角形部分20aの先端の表面となり、三角形部分20aの尖りを鋭くすることによって、接合面の面積を広くすることができる。この接合部10は、第2実施形態で説明した、接合部10の製造方法と同様にして形成され、直径が30nmの円柱状の銀ナノ粒子が有機SiO膜中に分散された構成を有している。
(Modification)
Next, a near-field optical waveguide bonding apparatus according to a modification of the present embodiment is shown in FIG. In the near-field optical waveguide joining device according to this modification, the propagation optical waveguide 20 has a shape in which the cross-sectional area becomes smaller toward the tip, for example, a triangular portion 20a having a sharp tip in a planar shape. The pointed tip of the portion 20 a is configured to be inserted into the joint portion 10. That is, the joint surface between the propagation optical waveguide 20 and the joint portion 10 is the surface of the tip of the triangular portion 20a, and the area of the joint surface can be increased by sharpening the sharpness of the triangular portion 20a. The joint 10 is formed in the same manner as the method for manufacturing the joint 10 described in the second embodiment, and has a configuration in which cylindrical silver nanoparticles having a diameter of 30 nm are dispersed in the organic SiO 2 film. doing.

本変形例においても、第1実施形態と同様に、伝播光導波路20の屈折率の実部と、この伝播光導波路20に接する接合部10の有効屈折率の実部との差Δnが小さければ、可及的に高い変換効率を得ることができる。また、接合部10の有効屈折率の実部が1に近ければ近いほど高い変換効率を得ることができる。   Also in this modification, as in the first embodiment, if the difference Δn between the real part of the refractive index of the propagation optical waveguide 20 and the real part of the effective refractive index of the joint 10 in contact with the propagation optical waveguide 20 is small. As high a conversion efficiency as possible can be obtained. Further, the closer the real part of the effective refractive index of the joint 10 is to 1, the higher the conversion efficiency can be obtained.

(第3実施形態)
次に、本発明の第3実施形態による近接場光導波路接合装置を説明する。本実施形態の近接場光導波路接合装置は、第2実施形態の近接場光導波路接合装置と、銀ナノ粒子分散膜からなる接合部10およびプラズモン導波路30の製造方法が異なっている。本実施形態に係る接合部10およびプラズモン導波路30は、Snシードによる銀還元法で、銀ナノ粒子が有機SiO中に分散している銀ナノ粒子分散膜を作製した。作製した銀ナノ粒子分散膜をTEM(Transmission Electron Microscope)を用いて測定した結果、銀ナノ粒子の直径は平均10nmであった。微分干渉近接場光学顕微鏡で測定した結果、密度のばらつきがあり有効屈折率にも差があった。このため、有効屈折率の実部が1.183となるものを選択して、図5に示す第2実施形態のような構造を有する接合部10およびプラズモン導波路30をイオンミリングで作製した。この接合部10をファイバー型伝播光導波路20と接合させ、変換効率を測定した。この測定においては、伝播光導波路20の屈折率の実部と、接合部10の有効屈折率の実部との差Δnを0.05、0.45、0.53とし、このときのカップリング効率(伝播光からプラズモンへの変換効率)を測定した。この測定に用いられた光の波長は1μmである。この測定の結果を図8に示す。なお、差Δn=0.05の場合は伝播光導波路20を用いずに、光を空気中から接合部10に入射し、測定した。
(Third embodiment)
Next, a near-field optical waveguide joining device according to a third embodiment of the present invention will be described. The near-field optical waveguide bonding apparatus according to the present embodiment is different from the near-field optical waveguide bonding apparatus according to the second embodiment in the method for manufacturing the bonding portion 10 and the plasmon waveguide 30 made of a silver nanoparticle-dispersed film. For the junction 10 and the plasmon waveguide 30 according to the present embodiment, a silver nanoparticle-dispersed film in which silver nanoparticles are dispersed in organic SiO 2 is produced by a silver reduction method using Sn seeds. As a result of measuring the produced silver nanoparticle dispersion film using a TEM (Transmission Electron Microscope), the diameter of the silver nanoparticles was 10 nm on average. As a result of measurement with a differential interference near-field optical microscope, there was a variation in density and a difference in effective refractive index. For this reason, a member having an effective refractive index of 1.183 was selected, and the junction 10 and the plasmon waveguide 30 having the structure as in the second embodiment shown in FIG. 5 were produced by ion milling. The joint 10 was joined to the fiber type propagation optical waveguide 20 and the conversion efficiency was measured. In this measurement, the difference Δn between the real part of the refractive index of the propagation optical waveguide 20 and the real part of the effective refractive index of the joint 10 is set to 0.05, 0.45, and 0.53. Efficiency (conversion efficiency from propagating light to plasmon) was measured. The wavelength of light used for this measurement is 1 μm. The result of this measurement is shown in FIG. When the difference Δn = 0.05, the light was incident on the joint 10 from the air without using the propagation optical waveguide 20 and measured.

図8からわかるように、差Δnが0.53以であれば、カップリング効率は6.4×10−2以上となり、従来の場合よりも、より高い変換効率を得ることができることがわかる。 As can be seen from FIG. 8, if 0.53 hereinafter difference [Delta] n, the coupling efficiency becomes 6.4 × 10 -2 or more, than the conventional case, it is understood that it is possible to obtain a higher conversion efficiency .

以上説明したように、本実施形態によれば、伝播光からプラズモン(近接場光)への変換効率(カップリング効率)を可及的に高くすることができる。   As described above, according to the present embodiment, the conversion efficiency (coupling efficiency) from propagating light to plasmon (near-field light) can be made as high as possible.

(第4実施形態)
次に、本発明の第4実施形態による近接場光導波路接合装置を、図9を参照して説明する。図9は、本実施形態の近接場光導波路接合装置の部分的な平面図である。本実施形態の近接場光導波路接合装置は、図5に示す第2実施形態の近接場光導波路接合装置において、接合部10の、伝播光導波路20に近接している領域の金属ナノ粒子12を間引いた構成となっている(図9参照)。間引き方は、伝播光導波路20に近いほど多めに間引き、サブ波長構造を構成した。なお、本実施形態においても、伝播光導波路20の屈折率の実部と、接合部10の、伝播光導波路20に近接している領域の屈折率の実部との差Δnは、第1実施形態で説明したように、1.183以下となるようにした。
(Fourth embodiment)
Next, a near-field optical waveguide joining device according to a fourth embodiment of the present invention will be described with reference to FIG. FIG. 9 is a partial plan view of the near-field optical waveguide joining device of this embodiment. The near-field optical waveguide bonding apparatus of this embodiment is the same as the near-field optical waveguide bonding apparatus of the second embodiment shown in FIG. The configuration is thinned (see FIG. 9). As the thinning method, the closer to the propagation optical waveguide 20, the more thinning was performed and a sub-wavelength structure was configured. Also in this embodiment, the difference Δn between the real part of the refractive index of the propagation optical waveguide 20 and the real part of the refractive index in the region of the joint 10 adjacent to the propagation optical waveguide 20 is the first embodiment. As described in the embodiment, it was set to 1.183 or less.

サブ波長構造は、反射防止に有効であることは良く知られている(例えば、H. Toyota, K. Takahara. M. Okamoto, T. Yotsuya, and H. Kikuta, Jpn J. Appl. Phys. 40 L747 (2001)参照)。本実施形態においては、サブ波長構造を有しているので、伝播光導波路20と接合部10との接合面における伝播光の反射が抑制され、変換効率が第2実施形態に比べて、約3%増加した。   It is well known that the subwavelength structure is effective for antireflection (for example, H. Toyota, K. Takahara. M. Okamoto, T. Yotsuya, and H. Kikuta, Jpn J. Appl. Phys. 40). L747 (2001)). In this embodiment, since it has a sub-wavelength structure, reflection of propagating light at the joint surface between the propagation optical waveguide 20 and the joint 10 is suppressed, and the conversion efficiency is about 3 compared to the second embodiment. % Increase.

本実施形態も第2実施形態と同様に、伝播光からプラズモン(近接場光)への変換効率(カップリング効率)を可及的に高くすることができる。   Similarly to the second embodiment, this embodiment can also increase the conversion efficiency (coupling efficiency) from propagating light to plasmon (near-field light) as much as possible.

(第5実施形態)
次に、本発明の第5実施形態による近接場光導波路接合装置を図10(a)乃至図11を参照して説明する。図10(a)は、本実施形態の近接場光導波路接合装置に係る金属ナノ粒子分散膜に用いられる金属ナノ粒子13を示す模式図、図10(b)は、図10(a)に示す金属ナノ粒子13が配列された金属ナノ粒子分散膜を示す模式図である。
(Fifth embodiment)
Next, a near-field optical waveguide junction device according to a fifth embodiment of the present invention is described with reference to FIGS. FIG. 10A is a schematic diagram showing the metal nanoparticles 13 used in the metal nanoparticle dispersion film according to the near-field optical waveguide bonding device of the present embodiment, and FIG. 10B is shown in FIG. It is a schematic diagram which shows the metal nanoparticle dispersion film | membrane with which the metal nanoparticle 13 was arranged.

本実施形態の近接場光導波路接合装置は、第2実施形態の近接場光導波路接合装置と、金属ナノ粒子分散膜からなる接合部10およびプラズモン導波路30の製造方法が異なっている。本実施形態に係る接合部10およびプラズモン導波路30は、図10(a)に示すように、ドデカンチオールをリガンド(有機シェル)としたコアシェル型金ナノ粒子13をディップ方式で成膜した構成となっている。   The near-field optical waveguide bonding apparatus according to the present embodiment is different from the near-field optical waveguide bonding apparatus according to the second embodiment in the method for manufacturing the bonding portion 10 and the plasmon waveguide 30 made of the metal nanoparticle-dispersed film. As shown in FIG. 10A, the junction 10 and the plasmon waveguide 30 according to the present embodiment have a configuration in which core-shell gold nanoparticles 13 having dodecanethiol as a ligand (organic shell) are formed by a dip method. It has become.

作製した金ナノ粒子分散膜をTEM(Transmission Electron Microscope)を用いて測定した結果、金ナノ粒子の直径は約3nmであった。微分干渉近接場光学顕微鏡で測定した結果、密度のばらつきがあり有効屈折率にも差があった。このため、有効屈折率の実部が1.183となるものを選択して、図5に示す第2実施形態のような構造を有する接合部10およびプラズモン導波路30をイオンミリングで作製した。この接合部10をファイバー型伝播光導波路20と接合させ、変換効率を測定した。この測定においては、伝播光導波路20の屈折率の実部と、接合部10の有効屈折率の実部との差Δnを0.05、0.45、0.53とし、このときのカップリング効率(伝播光からプラズモンへの変換効率)を測定した。この測定に用いられた光の波長は1μmである。この測定の結果を図11に示す。なお、差Δn=0.05の場合は伝播光導波路20を用いずに、光を空気中から接合部10に入射し、測定した。   As a result of measuring the produced gold nanoparticle dispersed film using a TEM (Transmission Electron Microscope), the diameter of the gold nanoparticle was about 3 nm. As a result of measurement with a differential interference near-field optical microscope, there was a variation in density and a difference in effective refractive index. For this reason, a member having an effective refractive index of 1.183 was selected, and the junction 10 and the plasmon waveguide 30 having the structure as in the second embodiment shown in FIG. 5 were produced by ion milling. The joint 10 was joined to the fiber type propagation optical waveguide 20 and the conversion efficiency was measured. In this measurement, the difference Δn between the real part of the refractive index of the propagation optical waveguide 20 and the real part of the effective refractive index of the joint 10 is set to 0.05, 0.45, and 0.53. Efficiency (conversion efficiency from propagating light to plasmon) was measured. The wavelength of light used for this measurement is 1 μm. The result of this measurement is shown in FIG. When the difference Δn = 0.05, the light was incident on the joint 10 from the air without using the propagation optical waveguide 20 and measured.

図11からわかるように、差Δnが0.53以であれば、カップリング効率は0.05以上となり、従来の場合よりも、より高い変換効率を得ることができることがわかる。 As can be seen from Figure 11, if 0.53 hereinafter difference Δn is, the coupling efficiency becomes 0.05 or more, than the conventional case, it is found that it is possible to obtain a higher conversion efficiency.

以上説明したように、本実施形態によれば、伝播光からプラズモン(近接場光)への変換効率(カップリング効率)を可及的に高くすることができる。   As described above, according to the present embodiment, the conversion efficiency (coupling efficiency) from propagating light to plasmon (near-field light) can be made as high as possible.

なお、本実施形態においては、金ナノ粒子を用いたが、銀ナノ粒子またはAlナノ粒子を用いても良い。   In this embodiment, gold nanoparticles are used, but silver nanoparticles or Al nanoparticles may be used.

また、本実施形態において、第4実施形態に示したように、接合部10の、伝播光導波路20に近接している領域の金属ナノ粒子12を間引いた構成としてもよい。   Moreover, in this embodiment, as shown in 4th Embodiment, it is good also as a structure which thinned out the metal nanoparticle 12 of the area | region which adjoins the propagation optical waveguide 20 of the junction part 10. FIG.

(第6実施形態)
次に、本発明の第6実施形態による近接場光導波路接合装置を、図12を参照して説明する。
(Sixth embodiment)
Next, a near-field optical waveguide junction device according to a sixth embodiment of the present invention will be described with reference to FIG.

以下のような有限差分時間領域(FDTD)シミュレーション計算を行った。まず、図12に示すように、銀ナノ粒子分散膜の端面に5個の導波路A、B、C、D、Eを接続させた構造を有する試料を設計した。銀ナノ粒子分散膜のマトリックス(SiO)の屈折率は1.2とし、銀ナノ粒子の体積比率は20Vol%とした。波長1μmでの複素屈折率の体積加重平均(実部)は約1.0となる。一方、Maxwell-Garnettによる計算では有効屈折率の実部は約1.64である。接続した導波路A、B、C、D、Eの屈折率をそれぞれ1.0、1.2、1.4、1.6、1.8とし、その他の部分を白金とした。すなわち、導波路A、B、C、D、Eの屈折率は、1.0から0.2刻みで増加させた構成となっている。 The following finite difference time domain (FDTD) simulation calculation was performed. First, as shown in FIG. 12, a sample having a structure in which five waveguides A, B, C, D, and E were connected to the end face of the silver nanoparticle dispersion film was designed. The refractive index of the matrix (SiO 2 ) of the silver nanoparticle dispersion film was 1.2, and the volume ratio of the silver nanoparticles was 20 Vol%. The volume weighted average (real part) of the complex refractive index at a wavelength of 1 μm is about 1.0. On the other hand, in the calculation by Maxwell-Garnett, the real part of the effective refractive index is about 1.64. The refractive indexes of the connected waveguides A, B, C, D, and E were 1.0, 1.2, 1.4, 1.6, and 1.8, respectively, and the other portions were platinum. That is, the refractive indexes of the waveguides A, B, C, D, and E are increased from 1.0 to 0.2.

このように構成の試料に、波長1μmのパルスをそれぞれの導波路A、B、C、D、Eに同時に入射した。伝播光導波路では屈折率が大きい方が伝播速度は遅く、銀ナノ粒子分散膜との境界線へ達する時間が遅くなる。銀ナノ粒子分散膜はいずれも同じ特性なので、伝播速度は同一である。また、銀ナノ粒子分散膜は複素屈折率の虚部がゼロではないため、光の伝播と共に強度は吸収され、弱くなる。図12は光が導波後のある瞬間の光電磁場強度を示す図である。図12では光の強度が強いほど、濃度が濃く表されている。図12では導波路Aから入射した光の電磁場強度が早く銀ナノ粒子分散膜領域に達し、その分だけ長い距離を進行している。これに対して、導波路Bから導波路Eまでは銀ナノ粒子分散膜領域に達する時間が段々と遅くなっているため、銀ナノ粒子分散膜中を進行する距離は短くなっている。図12では導波路Aを通過した光パルスは進行距離が長いにも関わらず、導波路Eを通過した光パルスよりも強度が強い結果となった。すなわち、導波路A、導波路B、導波路C、導波路D、導波路Eの順序でカップリング効率が低下していることを示している。   A pulse having a wavelength of 1 μm was simultaneously incident on each of the waveguides A, B, C, D, and E on the sample thus configured. In the propagation optical waveguide, the larger the refractive index, the slower the propagation speed, and the time to reach the boundary line with the silver nanoparticle dispersed film is delayed. Since the silver nanoparticle-dispersed films have the same characteristics, the propagation speed is the same. In addition, since the imaginary part of the complex refractive index is not zero in the silver nanoparticle-dispersed film, the intensity is absorbed and becomes weak as the light propagates. FIG. 12 is a diagram showing the photoelectric magnetic field intensity at a certain moment after the light is guided. In FIG. 12, the higher the light intensity, the darker the density. In FIG. 12, the electromagnetic field intensity of the light incident from the waveguide A reaches the silver nanoparticle-dispersed film region quickly and travels a longer distance accordingly. On the other hand, from the waveguide B to the waveguide E, the time to reach the silver nanoparticle dispersion film region is gradually delayed, so the distance traveled in the silver nanoparticle dispersion film is short. In FIG. 12, the light pulse that passed through the waveguide A has a stronger intensity than the light pulse that passed through the waveguide E, although the traveling distance is long. That is, it is shown that the coupling efficiency decreases in the order of the waveguide A, the waveguide B, the waveguide C, the waveguide D, and the waveguide E.

Maxwell-Garnettによる銀ナノ粒子分散膜に関する有効屈折率の計算が正しければ、導波路の屈折率の実部と銀ナノ粒子分散膜の屈折率の実部(1.63)との差Δnが最も小さくなってカップリング効率が高くなる導波路は導波路Dとなるはずである。しかし、図12に示す測定結果は、導波路Aのカップリング効率が高いことを示している。したがって、図12の測定結果は、本発明の各実施形態で説明した有効屈折率を用いて解析した方が良いことを示している。   If Maxwell-Garnett's calculation of the effective refractive index for the silver nanoparticle-dispersed film is correct, the difference Δn between the real part of the refractive index of the waveguide and the real part of the refractive index of the silver nanoparticle-dispersed film (1.63) is the most. A waveguide that becomes small and has high coupling efficiency should be waveguide D. However, the measurement result shown in FIG. 12 shows that the coupling efficiency of the waveguide A is high. Therefore, the measurement results in FIG. 12 indicate that it is better to analyze using the effective refractive index described in each embodiment of the present invention.

以上説明したように、本実施形態によれば、伝播光からプラズモン(近接場光)への変換効率(カップリング効率)を可及的に高くすることができる。   As described above, according to the present embodiment, the conversion efficiency (coupling efficiency) from propagating light to plasmon (near-field light) can be made as high as possible.

以上述べたように、本発明の各実施形態によれば、伝播光と近接場光とのカップリング効率(変換効率)を可及的に高くすることが可能な近接場光導波路接合装置を提供することができる。   As described above, according to each embodiment of the present invention, there is provided a near-field optical waveguide junction device capable of increasing the coupling efficiency (conversion efficiency) between propagating light and near-field light as much as possible. can do.

なお、第1乃至第5および第7実施形態においては、金属ナノ粒子として銀ナノ粒子を用いたが、金ナノ粒子またはAlナノ粒子を用いても同様の効果を得ることができる。   In addition, in 1st thru | or 5th and 7th embodiment, although the silver nanoparticle was used as a metal nanoparticle, the same effect can be acquired even if it uses a gold nanoparticle or an Al nanoparticle.

第1実施形態の近接場光導波路接合装置を示す平面図。The top view which shows the near-field optical waveguide joining apparatus of 1st Embodiment. 第1実施形態による近接場光導波路接合装置のシミュレーション結果を示す図。The figure which shows the simulation result of the near-field optical waveguide joining apparatus by 1st Embodiment. 図2に示すシミュレーション結果をプロットした図。The figure which plotted the simulation result shown in FIG. 図2に示すシミュレーション結果をプロットした図。The figure which plotted the simulation result shown in FIG. 第2実施形態の近接場光導波路接合装置を示す平面図。The top view which shows the near-field optical waveguide joining apparatus of 2nd Embodiment. 第2実施形態の近接場光導波路接合装置の変換効率を示す図。The figure which shows the conversion efficiency of the near-field optical waveguide joining apparatus of 2nd Embodiment. 第2実施形態の変形例による近接場光導波路接合装置を示す平面図。The top view which shows the near-field optical waveguide joining apparatus by the modification of 2nd Embodiment. 第3実施形態の近接場光導波路接合装置の変換効率を示す図。The figure which shows the conversion efficiency of the near-field optical waveguide joining apparatus of 3rd Embodiment. 第4実施形態の近接場光導波路接合装置を示す平面図。The top view which shows the near-field optical waveguide joining apparatus of 4th Embodiment. 第5実施形態に係る金属ナノ粒子膜の構成を示す図。The figure which shows the structure of the metal nanoparticle film | membrane which concerns on 5th Embodiment. 第5実施形態の近接場光導波路接合装置の変換効率を示す図。The figure which shows the conversion efficiency of the near-field optical waveguide joining apparatus of 5th Embodiment. 第6実施形態の近接場光導波路接合装置を説明する図。The figure explaining the near-field optical waveguide joining apparatus of 6th Embodiment.

符号の説明Explanation of symbols

10 接合部
12 円柱状金属ナノ粒子
13 コアシェル型金属ナノ粒子
20 伝播光導波路
30 プラズモン導波路(近接場導波路)
DESCRIPTION OF SYMBOLS 10 Junction part 12 Cylindrical metal nanoparticle 13 Core-shell type metal nanoparticle 20 Propagation optical waveguide 30 Plasmon waveguide (near field waveguide)

Claims (7)

光が伝播する伝播光導波路と、
誘電体中に金属ナノ粒子が分散された近接場光導波路と、
前記伝播光導波路と前記近接場光導波路と接合し、前記伝播光導波路との接合面において前記伝播光導波路と同じ断面を有し伝播光から近接場光へ変換する部位と、前記近接場光が伝播すると共に前記近接場光へ変換する部位における断面から前記近接場光導波路に向けて断面積が小さくなる部位を有し、前記近接場導波路と同じ材料の接合部と、
備え、前記伝播光導波路の屈折率の実部と、前記接合部の有効屈折率の実部との差が、0以上0.5以下であることを特徴とする近接場光導波路接合装置。
A propagation optical waveguide through which light propagates;
A near-field optical waveguide in which metal nanoparticles are dispersed in a dielectric;
The propagation optical waveguide and the near-field optical waveguide are joined together, a portion having the same cross section as the propagation optical waveguide at the joint surface with the propagation optical waveguide, and the near-field light is converted from propagation light to near-field light. A portion having a cross-sectional area that decreases from a cross-section in a portion that propagates and converts to the near-field light toward the near-field optical waveguide, and a joint portion of the same material as the near-field optical waveguide;
The provided, and the real part of the refractive index of the propagating optical waveguide, the difference between the real part of the effective refractive index of the junction, the near-field optical waveguide junction and wherein the at 0 to 0.5.
光が伝播する伝播光導波路と、
誘電体中に金属ナノ粒子が分散された近接場光導波路と、
前記伝播光導波路と前記近接場光導波路とを接合し、前記伝播光導波路との接合面において前記伝播光導波路と同じ断面を有し伝播光から近接場光へ変換する部位と、前記近接場光から伝播すると共に前記近接場光へ変換する部位における断面から前記近接場光導波路に向けて断面積が小さくなる部位を有し、前記近接場光導波路と同じ材料の接合部と、
備え、前記接合部の有効屈折率の実部が、1.0以上1.2以下であることを特徴とする近接場光導波路接合装置。
A propagation optical waveguide through which light propagates;
A near-field optical waveguide in which metal nanoparticles are dispersed in a dielectric;
The near-field light that joins the propagation optical waveguide and the near-field optical waveguide , has the same cross section as the propagation optical waveguide at the joint surface with the propagation optical waveguide, and converts the propagation light into near-field light, and the near-field light A portion having a cross-sectional area that decreases from the cross-section in the portion that propagates from and converts to the near-field light toward the near-field optical waveguide, and a joint portion of the same material as the near-field optical waveguide;
The equipped, near-field optical waveguide junction and wherein the real part of the effective refractive index of the junction is 1.0 to 1.2.
前記接合部は、前記伝播光導波路から前記近接場光導波路に向かうにつれて、断面積が滑らかに減少するように構成されていることを特徴とする請求項1または2に記載の近接場光導波路接合装置。 3. The near-field optical waveguide junction according to claim 1 , wherein the junction is configured such that a cross-sectional area smoothly decreases from the propagation optical waveguide toward the near-field optical waveguide. apparatus. 前記接合部および前記近接場光導波路においては、前記金属ナノ粒子は円柱の形状を有し、前記誘電体はSiOであることを特徴とする請求項1乃至3のいずれかに記載の近接場光導波路接合装置。 4. The near field according to claim 1, wherein, in the junction and the near field optical waveguide, the metal nanoparticles have a cylindrical shape, and the dielectric is SiO 2. Optical waveguide bonding device. 前記接合部および前記近接場光導波路においては、前記金属ナノ粒子はコアシェル型金属ナノ粒子であることを特徴とする請求項1乃至3のいずれかに記載の近接場光導波路接合装置。   4. The near-field optical waveguide bonding apparatus according to claim 1, wherein the metal nanoparticles are core-shell type metal nanoparticles in the junction and the near-field optical waveguide. 5. 前記接合部は、前記伝播光導波路との接合面に近接した領域では、前記金属ナノ粒子の数が、他の領域に比べて少ないことを特徴とする請求項1乃至5のいずれかに記載の近接場光導波路接合装置。   The number of the metal nanoparticles in the region where the joint is close to the joint surface with the propagation optical waveguide is smaller than that in other regions. Near-field optical waveguide bonding device. 前記伝播光導波路の先端部は先端に行くにつれて断面積が小さくなる形状を有しており、この先端部が前記接合部に挿入された構成となっていることを特徴とする請求項1乃至6のいずれかに記載の近接場光導波路接合装置。   The tip portion of the propagation optical waveguide has a shape in which a cross-sectional area decreases toward the tip, and the tip portion is configured to be inserted into the joint portion. The near-field optical waveguide bonding apparatus according to any one of the above.
JP2008189085A 2008-07-22 2008-07-22 Near-field optical waveguide bonding device Active JP5087488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008189085A JP5087488B2 (en) 2008-07-22 2008-07-22 Near-field optical waveguide bonding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008189085A JP5087488B2 (en) 2008-07-22 2008-07-22 Near-field optical waveguide bonding device

Publications (2)

Publication Number Publication Date
JP2010026331A JP2010026331A (en) 2010-02-04
JP5087488B2 true JP5087488B2 (en) 2012-12-05

Family

ID=41732209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008189085A Active JP5087488B2 (en) 2008-07-22 2008-07-22 Near-field optical waveguide bonding device

Country Status (1)

Country Link
JP (1) JP5087488B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013038227A (en) * 2011-08-08 2013-02-21 Pioneer Electronic Corp Near-field optical device
KR101533233B1 (en) * 2014-04-25 2015-07-02 연세대학교 산학협력단 Optical waveguide device using plasmonic coupling between nano-aperture and nano-particle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656315B2 (en) * 1990-07-24 1994-07-27 株式会社イシダ Weight measuring device
JP3739328B2 (en) * 2002-03-13 2006-01-25 株式会社日立製作所 Photonic crystal element
JP2007286045A (en) * 2006-03-20 2007-11-01 Canon Inc Detection device, substrate for detection element, detection element, kit for detection element and detection method
JP2007328188A (en) * 2006-06-08 2007-12-20 Toshiba Corp Near-field interaction control element
JP4469871B2 (en) * 2007-03-28 2010-06-02 株式会社東芝 Optical waveguide

Also Published As

Publication number Publication date
JP2010026331A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
Steinberger et al. Dielectric stripes on gold as surface plasmon waveguides
Choi et al. Compressing surface plasmons for nano-scale optical focusing
US7899286B2 (en) Optical coupling device
US8353061B2 (en) Near-field scanning optical microscopy with nanoscale resolution from microscale probes
Bao et al. Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips
Tuniz et al. Interfacing optical fibers with plasmonic nanoconcentrators
Antosiewicz et al. Corrugated metal-coated tapered tip for scanning near-field optical microscope
US7149395B1 (en) Light-enhancing component and fabrication method thereof
JP5087488B2 (en) Near-field optical waveguide bonding device
Kong et al. Propagation properties of the SPP modes in nanoscale narrow metallic gap, channel, and hole geometries
Minn et al. New development of nanoscale spectroscopy using scanning probe microscope
US8201268B1 (en) Integrated high index contrast sub-wavelength optical transforming tip (HICSWOTT) for near-field scanning optical microscope
Volkov et al. Near-field characterization of low-loss photonic crystal waveguides
Heydarian et al. Dual-color plasmonic probes for improvement of scanning near-field optical microscopy
WO2022121585A1 (en) On-chip subwavelength binding waveguide and preparation method therefor
Bian et al. Silicon-slot-mediated guiding of plasmonic modes: The realization of subwavelength optical confinement with low propagation loss
Guo et al. Numerical study of a high-resolution far-field scanning optical microscope via a surface plasmon-modulated light source
US20150338627A1 (en) Apparatus and method for atomic force, near-field scanning optical microscopy
Sheng et al. Ultrasmall light-spot transmission in a silicon-core fiber with a bowtie slot structure
Benisty et al. Dark-field hyperlens exploiting a planar fan of tips
CN108445560B (en) Hybrid plasmon waveguide-based field local enhancement device
Zhu et al. Round-tower plasmonic optical microfiber tip for nanofocusing with a high field enhancement
Podoliak et al. Subwavelength line imaging using plasmonic waveguides
Brongersma et al. Nanoplasmonics: components, devices and circuits
Sadeghzadeh Maraghi et al. Efficient Coupling in Transverse Strip Metal-Insulator-Metal Structure on Silicon-on-Insulator Layer Stack

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

R151 Written notification of patent or utility model registration

Ref document number: 5087488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3