JP5087471B2 - Transparency evaluation method and apparatus - Google Patents

Transparency evaluation method and apparatus Download PDF

Info

Publication number
JP5087471B2
JP5087471B2 JP2008138884A JP2008138884A JP5087471B2 JP 5087471 B2 JP5087471 B2 JP 5087471B2 JP 2008138884 A JP2008138884 A JP 2008138884A JP 2008138884 A JP2008138884 A JP 2008138884A JP 5087471 B2 JP5087471 B2 JP 5087471B2
Authority
JP
Japan
Prior art keywords
light
transparency
irradiation
irradiation region
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008138884A
Other languages
Japanese (ja)
Other versions
JP2009287985A (en
Inventor
健一郎 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2008138884A priority Critical patent/JP5087471B2/en
Publication of JP2009287985A publication Critical patent/JP2009287985A/en
Application granted granted Critical
Publication of JP5087471B2 publication Critical patent/JP5087471B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、固体や液体の透明性を客観的に評価する方法、並びに該方法を実施するための装置に関する。   The present invention relates to a method for objectively evaluating the transparency of a solid or liquid, and an apparatus for carrying out the method.

透明性の評価方法及び装置並びにこれらの利用した技術に関し、これまで、出願人は種々の提案を行っている(例えば、下記特許文献1、2参照)。   The applicant has so far made various proposals regarding transparency evaluation methods and apparatuses, and the technologies used in these methods (see, for example, Patent Documents 1 and 2 below).

これらの技術は、測定対象の第1の照射領域と該第1の照射領域を含み且つ第1の照射領域よりも広い第2の照射領域とにそれぞれ光を照射し、両領域から戻ってくる射出光をそれぞれ受光し、両領域からの射出光量に基づいて、透明性の評価等を行っている。   These techniques irradiate light to a first irradiation region to be measured and a second irradiation region that includes the first irradiation region and is wider than the first irradiation region, and return from both regions. Each of the emitted lights is received, and the transparency is evaluated based on the quantity of emitted light from both areas.

特開2004−305558号公報JP 2004-305558 A 特開2006−102365号公報JP 2006-102365 A

ところで、これらの技術においては、測定領域の反射率が低い場合には、反射率が高い場合に比べて相対的に反射率が低く見積もられてしまい、得られる透明性の値が負の値となってしまい、透明性がない状態の値を0としたいという目的が達成できないという不都合があった。   By the way, in these techniques, when the reflectance of the measurement region is low, the reflectance is estimated to be relatively lower than when the reflectance is high, and the obtained transparency value is a negative value. As a result, there is a disadvantage that the purpose of setting the value of the state without transparency to 0 cannot be achieved.

従って、本発明は、測定領域の反射率にかかわらず、正しい透明性の評価を行える透明性の評価方法及び装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a transparency evaluation method and apparatus capable of performing correct transparency evaluation regardless of the reflectance of a measurement region.

本発明は、第1の照射領域と第1の照射領域を含む第2の照射領域とにそれぞれ光を照射して第1の照射領域及び第2の照射領域から戻って来る射出光をそれぞれ受光し、第1の照射領域及び第2の照射領域へのそれぞれの照射光量I1及びI2と、第1の照射領域及び第2の照射領域から受光したそれぞれの前記射出光の射出光量O1及びO2とを求め、各照射領域についての前記照射光量と前記射出光量との比O1/I1及びO2/I2をα1及びα2としたときに、α2を反射率R、(1−α1/α2)を透明性Tとするか、又はα1を反射率R、(1−α2/α1)を透明性Tとして透明性を評価する方法であって、明度の異なる複数の較正用グレーチャートに光を照射したときの、該光の波長ごとの反射率Rc(λ)及び透明性Tc(λ)を求め、透明性Tc(λ)を反射率Rc(λ)の対数に対して直線回帰させたときの切片C0及び傾きC1(λ)を予め求めておき、透明性評価の対象部における第1の照射領域及び第2の照射領域にそれぞれ光を照射して得られる前記反射率R及び前記透明性Tから、下記式(1)で補正される透明性T’に基づいて評価する透明性の評価方法を提供することにより、前記目的を達成したものである。
T’(λ)=(T(λ)−Tb(λ))/(1−Tb(λ))・・・(1)
ただし、Tb(λ)=C0(λ)+C1(λ)×log(R(λ))である。
The present invention irradiates the first irradiation region and the second irradiation region including the first irradiation region, respectively, and receives the emitted light returning from the first irradiation region and the second irradiation region, respectively. The irradiation light amounts I1 and I2 to the first irradiation region and the second irradiation region, and the emission light amounts O1 and O2 of the emitted light received from the first irradiation region and the second irradiation region, respectively. When the ratios O1 / I1 and O2 / I2 between the irradiation light quantity and the emission light quantity for each irradiation region are α1 and α2, α2 is the reflectance R, and (1−α1 / α2) is the transparency. It is a method for evaluating transparency by setting T or α1 as reflectance R, and (1-α2 / α1) as transparency T, and when a plurality of calibration gray charts having different brightness are irradiated with light , Reflectance Rc (λ) and transparency Tc (λ) for each wavelength of the light And the intercept C0 and the slope C1 (λ) when the transparency Tc (λ) is linearly regressed with respect to the logarithm of the reflectance Rc (λ) are obtained in advance. From the reflectance R and the transparency T obtained by irradiating light to the irradiation area and the second irradiation area, respectively, transparency based on the transparency T ′ corrected by the following formula (1) is evaluated. The object is achieved by providing an evaluation method.
T ′ (λ) = (T (λ) −Tb (λ)) / (1−Tb (λ)) (1)
However, Tb (λ) = C0 (λ) + C1 (λ) × log (R (λ)).

また、本発明は、前記の透明性の評価方法を実施するための装置であって、入射窓、照射窓及び受光窓を備えた積分球と、前記入射窓及び前記照射窓を介して照射領域に光を照射する光源と、前記受光窓を介して前記照射領域から戻って来る射出光を受光する受光器と、照射領域を変化させる絞りと、透明性を評価する評価処理部と、前記評価処理部の評価結果を出力する出力部とを備え、
第1の照射領域と第1の照射領域を含む第2の照射領域とに前記光源からそれぞれ光を照射して第1の照射領域及び第2の照射領域から戻って来る射出光を前記受光器でそれぞれ受光し、
前記評価処理部で、第1の照射領域及び第2の照射領域へのそれぞれの照射光量I1及びI2と、第1の照射領域及び第2の照射領域から受光したそれぞれの前記射出光の射出光量O1及びO2とを求め、
各照射領域についての前記照射光量と前記射出光量との比O1/I1及びO2/I2をα1及びα2としたときに、α2を反射率R、(1−α1/α2)を透明性Tとするか、又はα1を反射率R、(1−α2/α1)を透明性Tとして透明性を評価する装置であって、
前記評価処理部は、明度の異なる複数の較正用グレーチャートに前記光源から光を照射したときに求められる、該光の波長ごとの前記反射率Rc(λ)及び前記透明性Tc(λ)から、前記透明性Tc(λ)を前記反射率Rc(λ)の対数に対して直線回帰させたときの切片C0及び傾きC1(λ)を求め、透明性評価の対象部における前記第1の照射領域と前記第2の照射領域とにそれぞれ光を照射して得られる前記反射率R及び前記透明性Tから、下記式(1)で補正される透明性T’に基づいて評価する透明性の評価装置を提供するものである。
T’(λ)=(T(λ)−Tb(λ))/(1−Tb(λ))・・・(1)
ただし、Tb(λ)=C0(λ)+C1(λ)×log(R(λ))である。
Further, the present invention is an apparatus for carrying out the above-described transparency evaluation method, comprising an integrating sphere having an incident window, an irradiation window, and a light receiving window, and an irradiation region through the incident window and the irradiation window. A light source that irradiates light, a light receiver that receives emission light returning from the irradiation region through the light receiving window, a diaphragm that changes the irradiation region, an evaluation processing unit that evaluates transparency, and the evaluation An output unit for outputting the evaluation result of the processing unit,
Light emitted from the light source to the first irradiation region and the second irradiation region including the first irradiation region, respectively, and emitted light returning from the first irradiation region and the second irradiation region is received by the light receiver. Receive light respectively,
In the evaluation processing unit, the respective irradiation light amounts I1 and I2 to the first irradiation region and the second irradiation region, and the emission light amounts of the respective emitted lights received from the first irradiation region and the second irradiation region Find O1 and O2,
When the ratios O1 / I1 and O2 / I2 between the irradiation light quantity and the emission light quantity for each irradiation region are α1 and α2, α2 is the reflectance R, and (1−α1 / α2) is the transparency T. Or α1 is a reflectance R and (1-α2 / α1) is a transparency T, and the transparency is evaluated.
The evaluation processing unit obtains the reflectance Rc (λ) and the transparency Tc (λ) for each wavelength of light, which is obtained when light is emitted from the light source to a plurality of calibration gray charts having different brightness. Then, the intercept C0 and the slope C1 (λ) when the transparency Tc (λ) is linearly regressed with respect to the logarithm of the reflectance Rc (λ) are obtained, and the first irradiation in the target part of the transparency evaluation is obtained. Transparency to be evaluated based on the transparency T ′ corrected by the following formula (1) from the reflectance R and the transparency T obtained by irradiating the area and the second irradiation area with light respectively. An evaluation apparatus is provided.
T ′ (λ) = (T (λ) −Tb (λ)) / (1−Tb (λ)) (1)
However, Tb (λ) = C0 (λ) + C1 (λ) × log (R (λ)).

本発明によれば、液体や固体の透明性を評価するものであって、透明性を評価する領域の反射率の高低に関わらず、当該透明性を客観的により正しく評価することができる。   According to the present invention, the transparency of a liquid or a solid is evaluated, and the transparency can be objectively and accurately evaluated regardless of the reflectance of the region where the transparency is evaluated.

以下、本発明を、その好ましい実施形態に基づいて、図面を参照しながら説明する。   Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings.

先ず、本発明の透明性の評価装置(以下単に評価装置ともいう。)を、その好ましい実施形態に基づいて説明する。図1は、本実施形態の評価装置を模式的に示すものである。図1において、符号1は評価装置を示している。   First, the transparency evaluation apparatus of the present invention (hereinafter also simply referred to as an evaluation apparatus) will be described based on its preferred embodiment. FIG. 1 schematically shows an evaluation apparatus according to the present embodiment. In FIG. 1, the code | symbol 1 has shown the evaluation apparatus.

図1に示したように、評価装置1は、測定装置本体2と、該測定装置本体2に入出力インターフェース20を介してケーブル200で接続されたコンピュータシステム3とから構成されている。   As shown in FIG. 1, the evaluation apparatus 1 includes a measurement apparatus main body 2 and a computer system 3 connected to the measurement apparatus main body 2 via a cable 200 via an input / output interface 20.

測定装置本体2は、入射窓211、照射窓212及び受光窓213を備えた積分球21と、入射窓211及び照射窓212を介して照射領域に光を照射する光源22と、受光窓213を介して前記照射領域から戻って来る射出光を受光する受光器23と、照射領域を変化させる絞り24と、演算制御部25とを備えている。   The measuring apparatus main body 2 includes an integrating sphere 21 having an incident window 211, an irradiation window 212, and a light receiving window 213, a light source 22 that irradiates light to an irradiation region through the incident window 211 and the irradiation window 212, and a light receiving window 213. A light receiver 23 for receiving the emitted light returning from the irradiation region, a diaphragm 24 for changing the irradiation region, and an arithmetic control unit 25.

積分球21は、内壁にMgO等の白色拡散反射塗料が塗工されたものであり、前記入射窓211を介して入射された光が拡散反射され、その一部が前記照射窓212を介して測定対象部の照射領域に照射され、該照射領域から戻って来る射出光を受光窓213を介して受光器23で受光できるように設けられている。本実施形態の装置1では、これら入射窓211、照射窓212及び受光窓213は、JIS Z8722での表記(照射角/受光角)でいうd/8°(dは拡散光)なる光学系の射出・受光条件を満たすように配置されている。   The integrating sphere 21 has an inner wall coated with a white diffuse reflection paint such as MgO, and light incident through the incident window 211 is diffusely reflected, and a part of the light is incident through the irradiation window 212. The light emitted from the irradiation area of the measurement target portion and returned from the irradiation area can be received by the light receiver 23 via the light receiving window 213. In the apparatus 1 according to the present embodiment, the incident window 211, the irradiation window 212, and the light receiving window 213 are d / 8 ° (d is diffused light) as expressed in JIS Z8722 (irradiation angle / light reception angle). Arranged to satisfy the emission / light reception conditions.

光源22が放つ光の波長には特に制限はないが、測定を対象の外観に対応させる場合には、可視光領域(波長360〜740nm)を含む光を発光できるものであることが望ましく、さらに各波長のダイナミックレンジをそろえるためには白色光(可視光領域のすべての波長を概ね均等に含んだ光)を発光できるものが望ましい。光源22には、例えばキセノンランプが用いられる。また、特定の波長成分に着目する場合には、光源22と入射窓211との間に分光器を介在させ、その波長成分の光を入射できるようにすることができる。フォトクロミックな化粧品を塗布した肌を測定する等の場合は、光源に可視光に加え紫外線を含む光を発光できるものを用いてもよい。   The wavelength of the light emitted from the light source 22 is not particularly limited. However, when the measurement corresponds to the appearance of the object, it is desirable that the light including the visible light region (wavelength 360 to 740 nm) can be emitted. In order to make the dynamic range of each wavelength uniform, it is desirable to be able to emit white light (light including almost all wavelengths in the visible light region). For example, a xenon lamp is used as the light source 22. Further, when paying attention to a specific wavelength component, a spectroscope is interposed between the light source 22 and the incident window 211 so that light of the wavelength component can be incident. In the case of measuring skin coated with photochromic cosmetics, a light source that can emit light including ultraviolet light in addition to visible light may be used.

受光器23は、分光レンズと、分光器と、複数の受光素子が配列されたアレイセンサとを備えている。受光器23は、受光窓213を介して入射される前記射出光を前記分光レンズで分光して前記分光器に導入し、前記アレイセンサの波長成分毎の射出光量の値を演算制御部25に出力する。光源に発光ダイオードなどの単色光を点灯させたり、複数の単色光を順次点灯させたりする等して計測する場合には受光器に分光器を備えていなくてもよい。   The light receiver 23 includes a spectroscopic lens, a spectroscope, and an array sensor in which a plurality of light receiving elements are arranged. The light receiver 23 splits the emitted light incident through the light receiving window 213 with the spectroscopic lens and introduces the light into the spectroscope, and outputs the value of the emitted light amount for each wavelength component of the array sensor to the arithmetic control unit 25. Output. In the case where measurement is performed by turning on a monochromatic light such as a light emitting diode as a light source or sequentially turning on a plurality of monochromatic lights, the light receiver may not be provided with a spectroscope.

図2(a)及び(b)は、前記測定装置本体2における光学系の照射光及び射出光の照射・受光条件を模式的に示す図である。
絞り24は、開口部240の大きさを変えて照射領域を変化させる。第1及び第2の照射領域のうち少なくとも一方は、後述するように受光領域Qに含まれていることが望ましい。このようにすることで、後述するように照射領域と測定領域を同じくすることができる。受光領域Qの中で照射領域に含まれない部分は、そこからの反射を抑えるために絞り24は低反射率である黒色の材料にしておくことが好ましい。絞り24には、図3(a)に示すような、摘みを回転させて照射領域を変化させる、いわゆるアイリス絞り(カメラ等で採用されているレンズの絞り機構)や、図3(b)に示すような、プレートをスライドさせて照射領域を変化させるスライド絞りを用いることが好ましい。あるいは、絞り24は開口部240の大きさが異なる複数の絞り部材を着脱して交換するものであってもよい。
FIGS. 2A and 2B are diagrams schematically showing irradiation / light-receiving conditions of irradiation light and emission light of the optical system in the measurement apparatus main body 2.
The diaphragm 24 changes the irradiation region by changing the size of the opening 240. It is desirable that at least one of the first and second irradiation regions is included in the light receiving region Q as described later. By doing in this way, an irradiation area | region and a measurement area | region can be made the same so that it may mention later. It is preferable that the portion of the light receiving region Q that is not included in the irradiation region is made of a black material having a low reflectance in order to suppress reflection therefrom. The diaphragm 24 has a so-called iris diaphragm (a lens diaphragm mechanism employed in a camera or the like) that changes the irradiation area by rotating a knob as shown in FIG. It is preferable to use a slide diaphragm that slides the plate and changes the irradiation area as shown. Alternatively, the diaphragm 24 may be one that attaches and detaches a plurality of diaphragm members with different sizes of the opening 240.

図1に示す演算制御部25は、いわゆるマイクロコンピュータユニットで構成され、演算処理装置(CPU)と、主記憶装置と、トリガー装置と、これらの装置を結ぶバスとを備えている。前記主記憶装置には、プログラムが記憶されている。演算制御部25は、該プログラムが起動された状態で、前記トリガー装置からのトリガー信号を受信すると、前記アレイセンサから出力される各波長の射出光量を前記主記憶装置に取り込んで保持する。そして、後述するように、コンピュータシステム3の指令に応じて保持した射出光量を所定のフォーマットで本体31に送信するように機能する。   The arithmetic control unit 25 shown in FIG. 1 includes a so-called microcomputer unit, and includes an arithmetic processing unit (CPU), a main storage device, a trigger device, and a bus connecting these devices. A program is stored in the main storage device. When the arithmetic control unit 25 receives a trigger signal from the trigger device in a state where the program is activated, the arithmetic control unit 25 captures and holds the emission light amount of each wavelength output from the array sensor in the main storage device. Then, as will be described later, it functions to transmit the emitted light quantity held in accordance with a command from the computer system 3 to the main body 31 in a predetermined format.

コンピュータシステム3は、本体31と、入力装置32と、出力装置33とを備えている。入力装置32及び出力装置33は、本体31とインターフェース(図示せず)を介して接続されている。本実施形態では、後述するように、本体31が評価処理部として機能し、出力装置33が評価結果の出力部として機能する。   The computer system 3 includes a main body 31, an input device 32, and an output device 33. The input device 32 and the output device 33 are connected to the main body 31 via an interface (not shown). In the present embodiment, as will be described later, the main body 31 functions as an evaluation processing unit, and the output device 33 functions as an evaluation result output unit.

本体31は、演算処理装置(CPU)と、主記憶装置(RAM)と、補助(外部)記憶装置と、入力装置及び出力装置との接続用のインターフェースと、これらを結ぶバスとを備えている。前記主記憶装置又は前記補助記憶装置には測定装置本体2から前記射出光量を取り込んで評価するプログラムが記憶されており、このプログラムが起動した状態では、以下に説明するように、本体31は、透明性を評価する評価処理部として機能する。   The main body 31 includes an arithmetic processing unit (CPU), a main storage device (RAM), an auxiliary (external) storage device, an interface for connecting the input device and the output device, and a bus connecting them. . In the main storage device or the auxiliary storage device, a program for taking in and evaluating the amount of emitted light from the measuring device main body 2 is stored, and when this program is activated, the main body 31 It functions as an evaluation processing unit that evaluates transparency.

本実施形態においては、被検体の代わりに標準白色板を対象とし、該被検体と同様にして照射領域を変えて光源22から光を照射したときに、それぞれの照射領域から受光したそれぞれの射出光の受光量(射出光量)を、それぞれの照射領域への照射光量とみなして評価処理が行われる。この標準白色板を対象とした射出光量の測定はそれぞれの照射領域について複数回ずつ行うことが好ましいが、1回ずつでもよい。   In the present embodiment, when a standard white plate is used instead of the subject, and the irradiation region is changed and light is emitted from the light source 22 in the same manner as the subject, each emission received from each irradiation region. Evaluation processing is performed by regarding the amount of received light (the amount of emitted light) as the amount of light applied to each irradiation region. The measurement of the amount of emitted light for the standard white plate is preferably performed a plurality of times for each irradiation region, but may be performed once.

また、本実施形態においては、透明性を評価するに当たって、明度の異なるn枚のグレーチャート(無彩色のチャート)を対象とし、被検体と同様にして照射領域を変えて光源22から光を照射したときに、それぞれの照射領域から受光したそれぞれの射出光量に基づいて、測定対象となる被検体の反射率の違いによる影響を抑えるための較正処理が行われる。グレーチャートには、経時による反射特性の変化が小さく、不透明で、反射光量の角度依存性が完全拡散反射光とほぼ相似形となっており、各グレーチャート間でも該角度依存性が相似形となっていることが望ましい。このような条件を満たすものとして、例えば、マンセルカラーチェッカー(旧マクベスカラーチェッカー:x‐Rite社製)中のグレーチャート(#19〜#24)が使用される。本質的には、測定する波長領域に渡って反射率の異なる複数の基準が用意できれば良い。この条件を満たす範囲で彩度を有していても良い。   In the present embodiment, in evaluating transparency, n gray charts (achromatic charts) having different brightness are targeted, and light is emitted from the light source 22 by changing the irradiation area in the same manner as the subject. Then, based on the respective emitted light amounts received from the respective irradiation regions, calibration processing is performed to suppress the influence due to the difference in reflectance of the subject to be measured. Gray charts have little change in reflection characteristics over time, are opaque, and the angle dependence of the amount of reflected light is almost similar to that of perfectly diffuse reflected light, and the angle dependence is similar between gray charts. It is desirable that As a condition satisfying such a condition, for example, a gray chart (# 19 to # 24) in the Munsell color checker (former Macbeth color checker: manufactured by x-Rite) is used. Essentially, it is only necessary to prepare a plurality of standards having different reflectances over the wavelength region to be measured. You may have saturation in the range which satisfy | fills this condition.

本体31の備える演算処理装置は、前記測定装置本体2の制御演算部25から入出力インターフェース20を介して情報が送信されてくると、絞り24に応じて前記照射領域を変化させたときの波長成分(λ)毎の射出光量Oを、何れかの照射領域(A)及び測定回数(N:何回目か)に関連づけ、O(λ、A、N)として本体31の備える主記憶装置又は補助記憶装置に記憶させる。前記較正処理用の係数算出のための射出光量測定の場合には、前記演算処理装置は、射出光量Oを、さらにグレーチャートの番号i(明度)に関連づけ、O(λ、A、N、i)として前記主記憶装置又は補助記憶装置に記憶させる。そして、前記演算処理装置は、前記照射光量(標準白色板を対象とした前記射出光量)と、絞り24を変化させたそれぞれの前記照射領域の複数回ずつの測定における前記射出光量との比較を統計的に処理して行う。ここで、統計的処理の具体的態様としては、複数のデータの平均値のほか、重み付き平均値、中央値、最大・最小を除いたデータの平均値等を求めるものが挙げられる。   When the information is transmitted from the control calculation unit 25 of the measurement apparatus main body 2 via the input / output interface 20, the arithmetic processing apparatus included in the main body 31 has a wavelength when the irradiation area is changed according to the diaphragm 24. The amount of emitted light O for each component (λ) is related to one of the irradiation areas (A) and the number of times of measurement (N: how many times), and the main storage device or auxiliary provided in the main body 31 as O (λ, A, N) Store in a storage device. In the case of measuring the amount of emitted light for calculating the coefficient for the calibration process, the arithmetic processing unit further associates the amount of emitted light O with the gray chart number i (brightness), and O (λ, A, N, i ) In the main storage device or the auxiliary storage device. Then, the arithmetic processing unit compares the irradiation light amount (the emission light amount for the standard white plate) with the emission light amount in a plurality of measurements of each irradiation region where the diaphragm 24 is changed. Statistically processed. Here, as a specific aspect of the statistical processing, in addition to an average value of a plurality of data, a weighted average value, a median value, an average value of data excluding maximum / minimum, and the like can be cited.

なお、射出光量Oは、受光領域からの射出光量(O’)を、サンプルが無いときの射出光量(OB’)と白色板を測定したときの射出光量(OW’)とを用いて、O=(O’−OB’)/(OW’−OB’)のように補正して用いることが好ましい。このようにすることで、受光領域が照射領域よりも大きいときに、受光領域の中で照射領域に含まれない部分(絞りによって遮られる部分)からの反射光を正確に取り除くことができ、照射領域からの射出光のみを測定することができる。   The amount of emitted light O is determined by using the amount of emitted light (O ′) from the light receiving area as the amount of emitted light (OB ′) when there is no sample and the amount of emitted light (OW ′) when measuring a white plate. = (O′−OB ′) / (OW′−OB ′) is preferably used after correction. In this way, when the light receiving area is larger than the irradiation area, the reflected light from the part of the light receiving area that is not included in the irradiation area (the part blocked by the diaphragm) can be accurately removed, and the irradiation is performed. Only light emitted from the region can be measured.

前記較正処理用の係数算出のための演算処理は、以下のようにして行われる。
まず、前記演算処理装置は、明度の異なるn枚のグレーチャートの照射領域についてN回測定された、それぞれの射出光量O(λ、A1、1、i)〜O(λ、A1、N、i)の平均Oav(λ、A1、i)を求める。そして、このOav(λ、A1、i)と、前記標準白色板を対象として同条件で測定された射出光量Os1(λ)とを比較し、それらの比Oav(λ、A1、i)/Os1(λ)からα1av(λ、i)を求める。
The calculation process for calculating the coefficient for the calibration process is performed as follows.
First, the arithmetic processing unit measures each of the emitted light amounts O (λ, A1, 1, i) to O (λ, A1, N, i) measured N times for irradiation regions of n gray charts having different brightness. ) Average Oav (λ, A1, i). Then, this Oav (λ, A1, i) is compared with the amount of emitted light Os1 (λ) measured under the same conditions for the standard white plate, and the ratio Oav (λ, A1, i) / Os1 is compared. Α1av (λ, i) is obtained from (λ).

絞りを代えた照射領域についても同様に、それぞれ射出光量O(λ、A2、1、i)〜O(λ、A2、N、i)の平均Oav(λ、A2、i)を求め、このOav(λ、A2、i)と、標準白色板を対象として同条件で測定された射出光量Os2(λ)とを比較し、それらの比Oav(λ、A2、i)/Os2(λ)からα2av(λ、i)を求める。そして、α2avを反射率Rc(λ、i)及び差分比(1−(α1av/α2av))を透明性Tc(λ、i)として算出する。ここで、iは測定に使用したグレーチャートの番号である。   Similarly, the average Oav (λ, A2, i) of the amounts of emitted light O (λ, A2, 1, i) to O (λ, A2, N, i) is obtained for the irradiation area where the aperture is changed, and this Oav. (Λ, A2, i) is compared with the amount of emitted light Os2 (λ) measured under the same conditions for a standard white plate, and α2av is calculated from the ratio Oav (λ, A2, i) / Os2 (λ). Find (λ, i). Then, α2av is calculated as reflectance Rc (λ, i) and difference ratio (1− (α1av / α2av)) as transparency Tc (λ, i). Here, i is the number of the gray chart used for the measurement.

なお、反射率Rcには、α1av、α2avの何れも用いることができる。何れを用いるのが適当かについては、照射領域の大きさ及び照射領域と受光領域の大小関係に応じて決定する。確度良く測定するために選ばれた条件、例えば本実施形態のように、Oav(λ、A1、i)の測定において測定領域と照射領域が等しくなるように光学系を設定した場合、α2avを反射率Rcとし、(1−(α1av/α2av))を透明性Tcするのが好ましい。ただしOav(λ、A1、i)の測定において測定領域が照射領域より小さく、Oav(λ、A2、i)の測定において測定領域が照射領域と等しくなるように光学系を設定した場合は、α1avを反射率Rcとし、(1−(α2av/α1av))を透明性Tcすることが好ましくなることがあり得る。ここで前述した補正を行った場合、測定領域は、照射領域が受光領域よりも小さい場合は照射領域と等しくなり、照射領域が受光領域よりも大きい場合は受光領域と等しくなる。   Note that either α1av or α2av can be used as the reflectance Rc. Which is appropriate to use is determined according to the size of the irradiation region and the size relationship between the irradiation region and the light receiving region. When the optical system is set so that the measurement region and the irradiation region are equal in the measurement selected with high accuracy, for example, in the measurement of Oav (λ, A1, i) as in this embodiment, α2av is reflected. The ratio Rc is preferably (1- (α1av / α2av)) as the transparency Tc. However, when the optical system is set so that the measurement region is smaller than the irradiation region in the measurement of Oav (λ, A1, i) and the measurement region is equal to the irradiation region in the measurement of Oav (λ, A2, i), α1av It may be preferable to set the reflectance Rc and (1- (α2av / α1av)) to the transparency Tc. When the correction described above is performed, the measurement area is equal to the irradiation area when the irradiation area is smaller than the light receiving area, and is equal to the light receiving area when the irradiation area is larger than the light receiving area.

前記演算処理装置は、上述のようにして算出した透明性Tc(λ、i)及び反射率Rc(λ、i)に基づいて、透明性Tc(λ、i)を反射率Rc(λ、i)の対数に対して直線回帰させたときの、透明性Tcの軸の切片C0及び傾きC1(λ)を求め、これらを較正処理用の係数として前記主記憶装置又は補助記憶装置に記憶させる。   The arithmetic processing unit converts the transparency Tc (λ, i) to the reflectance Rc (λ, i) based on the transparency Tc (λ, i) and the reflectance Rc (λ, i) calculated as described above. ) To obtain the intercept C0 and the slope C1 (λ) of the axis of transparency Tc when the linear regression is performed with respect to the logarithm of (), and store them in the main memory or auxiliary memory as coefficients for calibration processing.

次に、評価の対象となる被検体の照射領域A1について、それぞれ射出光量O(λ、A1、1)〜O(λ、A1、N)の平均Oav(λ、A1)を求め、このOav(λ、A1)と、標準白色板を対象として被検体と同条件で測定された射出光量Os1(λ)とを比較し、それらの比Oav(λ、A1)/Os1(λ)からα1av(λ)を求める。照射領域A2についても同様に、それぞれ射出光量O(λ、A2、1)〜O(λ、A2、N)の平均Oav(λ、A2)を求めるとともに、このOav(λ、A2)と、標準白色板を対象として被検体と同条件で測定された射出光量Os2(λ)とを比較し、それらの比Oav(λ、A2)/Os2(λ)からα2av(λ)を求める。そして、これらα1avとα2avを用い、α2avを反射率R、及び差分比(1−(α1av/α2av))を透明性Tとする。   Next, an average Oav (λ, A1) of the emitted light amounts O (λ, A1, 1) to O (λ, A1, N) is obtained for the irradiation area A1 of the subject to be evaluated, and this Oav ( λ, A1) is compared with the amount of emitted light Os1 (λ) measured under the same conditions as the subject for a standard white plate, and α1av (λ) from the ratio Oav (λ, A1) / Os1 (λ) ) Similarly, for the irradiation area A2, the average Oav (λ, A2) of the emitted light amounts O (λ, A2, 1) to O (λ, A2, N) is obtained, and this Oav (λ, A2) and the standard are obtained. The amount of emitted light Os2 (λ) measured for the white plate under the same conditions as the subject is compared, and α2av (λ) is obtained from the ratio Oav (λ, A2) / Os2 (λ). Then, α1av and α2av are used, α2av is the reflectance R, and the difference ratio (1- (α1av / α2av)) is the transparency T.

前記演算処理装置は、さらに、前記係数C0及びC1、並びに上述のようにして求められた透明性評価の対象部における前記反射率R及び前記透明性Tから、下記式(1)で補正される透明性T’(λ)を再計算し、透明性を較正する。
T’(λ)=(T(λ)−Tb(λ))/(1−Tb(λ))・・・(1)
ただし、Tb(λ)=C0(λ)+C1(λ)×log(R(λ))である。ここで、logは常用対数を表す。
そして、その結果を前記主記憶装置又は補助記憶装置に記憶させるとともに、波長毎のスペクトログラム(分光特性のグラフ)として出力装置33に出力させる。
The arithmetic processing unit is further corrected by the following formula (1) from the coefficients C0 and C1 and the reflectance R and the transparency T in the target part of the transparency evaluation obtained as described above. Recalculate the transparency T ′ (λ) and calibrate the transparency.
T ′ (λ) = (T (λ) −Tb (λ)) / (1−Tb (λ)) (1)
However, Tb (λ) = C0 (λ) + C1 (λ) × log (R (λ)). Here, log represents a common logarithm.
Then, the result is stored in the main storage device or the auxiliary storage device, and is output to the output device 33 as a spectrogram (spectral characteristic graph) for each wavelength.

上述のように処理して得られた出力結果を通して、前記演算処理装置は、較正処理を行った透明性T’が1に近い程被検体が透明であり、0に近い程不透明であるとする評価を出力する。なお、これらの一連の統計的な処理及び出力処理は、市販されている表計算ソフトウェアのスプレッドシート上において対話的に処理して行うこともできる。   Based on the output result obtained by processing as described above, the arithmetic processing unit assumes that the subject is more transparent as the transparency T ′ subjected to the calibration process is closer to 1, and opaque as it is closer to 0. Output the evaluation. Note that the series of statistical processing and output processing can be performed interactively on a spreadsheet of commercially available spreadsheet software.

本実施形態の評価装置1によれば、絞り24で照射領域を二段階に変更させてそれぞれの照射領域について照射光量及び射出光量を求め、それらの比較を統計的処理によって行うだけで、後述するように被検体の性状変化の影響を除いた透明性の評価を簡単に精度よく行うことができる。また、その評価に際して、前述のような透明性の較正処理を行っているため、測定領域の反射率にかかわらず、正しい透明性の評価を行うことができる。   According to the evaluation apparatus 1 of the present embodiment, the irradiation region is changed in two stages by the diaphragm 24, the irradiation light amount and the emission light amount are obtained for each irradiation region, and the comparison is performed by statistical processing, which will be described later. Thus, it is possible to easily and accurately evaluate the transparency excluding the influence of the property change of the subject. Moreover, since the transparency calibration process as described above is performed in the evaluation, the correct transparency can be evaluated regardless of the reflectance of the measurement region.

次に、本発明の透明性の評価方法を、その好ましい実施形態として前記評価装置1を用いた実施形態に基づいて説明する。なお、以下に本発明の透明性の評価方法において説明される照射光量は、評価装置1を用いた実施形態においては、前述のように、被検体の代わりに標準白色板を対象として該被検体と同様にして照射領域を変えて前記光源から光を照射したときに、それぞれの照射領域から受光したそれぞれの射出光の受光量(射出光量)である。この標準白色板を対象とした射出光量の測定はそれぞれの照射領域について複数回ずつ行うことが好ましいが、1回ずつでもよい。   Next, the transparency evaluation method of the present invention will be described based on an embodiment using the evaluation apparatus 1 as a preferred embodiment. In the embodiment using the evaluation apparatus 1, the amount of irradiation light described below in the transparency evaluation method of the present invention is not limited to the subject, and the subject is a standard white plate as described above. In the same manner as described above, when the light is irradiated from the light source while changing the irradiation region, the amount of the received light (the amount of emitted light) received from each irradiation region. The measurement of the amount of emitted light for the standard white plate is preferably performed a plurality of times for each irradiation region, but may be performed once.

まず、上述のように較正処理用の係数算出のための射出光量の測定を行うため、図2(a)及び(b)に示したように、前記評価装置1を用い、照射領域を絞り24によって変更し、明度の異なるn枚のグレーチャートにおける第1の照射領域A1と、第1の照射領域A1を含む第2の照射領域A2とに、それぞれ光源22から光を照射し、第1の照射領域A1及び第2の照射領域A2から戻って来る射出光を受光器23で受光し、前記第1の照射領域A1及び前記第2の照射領域A2へのそれぞれの射出光量を測定する。そして、測定された射出光量を本体31に取り込んで、前述のように、較正処理用の係数C0及びC1を算出する。周囲からの光のまわり込みを防止するために、各グレーチャートは、開口部240の周縁部の全周にわたり該周縁部と密接させる。   First, in order to measure the amount of emitted light for calculating the coefficient for the calibration process as described above, as shown in FIGS. The first irradiation area A1 and the second irradiation area A2 including the first irradiation area A1 in n gray charts having different brightness are respectively irradiated with light from the light source 22, and The light emitted from the irradiation area A1 and the second irradiation area A2 is received by the light receiver 23, and the respective amounts of light emitted to the first irradiation area A1 and the second irradiation area A2 are measured. Then, the measured amount of emitted light is taken into the main body 31, and the coefficients C0 and C1 for calibration processing are calculated as described above. In order to prevent light from entering from the surroundings, each gray chart is in close contact with the peripheral edge of the peripheral edge of the opening 240.

次に、前記評価装置1を用い、較正処理用の係数算出のための射出光量測定と同様に照射領域を絞り24によって変更し、透明性評価の対象部における第1の照射領域A1と、第1の照射領域A1を含む第2の照射領域A2とに、それぞれ光源22から光を照射し、第1の照射領域A1及び第2の照射領域A2から戻って来る射出光を受光器23で受光し、標準白色板を対象として被検体と同条件で測定された射出光量と、第1の照射領域A1及び第2の照射領域A2から受光したそれぞれの射出光量O1、O2に基づいて、反射率R及び透明性Tを算出する。周囲からの光のまわり込みを防止するために、被検体は、開口部240の周縁部の全周にわたり該周縁部と密接させる。   Next, using the evaluation apparatus 1, the irradiation area is changed by the diaphragm 24 in the same manner as the measurement of the amount of emitted light for calculating the coefficient for the calibration process, and the first irradiation area A1 in the target part for transparency evaluation, The second irradiation area A2 including the first irradiation area A1 is irradiated with light from the light source 22, and the light emitted from the first irradiation area A1 and the second irradiation area A2 is received by the light receiver 23. The reflectance is based on the amount of emitted light measured on the standard white plate under the same conditions as the subject and the amounts of emitted light O1 and O2 received from the first irradiation area A1 and the second irradiation area A2. R and transparency T are calculated. In order to prevent light from entering from the surroundings, the subject is brought into close contact with the peripheral edge over the entire periphery of the peripheral edge of the opening 240.

その際、人の皮膚のように状態が刻々と変わるような被検体を測定する場合には、前記光の照射及び前記射出光の受光の操作(測定)を前記両照射領域について交互に複数回(本実施形態では5回)ずつ行い、本体31において、前記照射光量と前記射出光量との比較を、該複数回ずつの操作について統計的に処理して行う。両照射領域について交互に行う操作間隔(測定間隔)は、短い程好ましいが、被験者の心理的な緊張などに伴う皮膚の性状の変化が起こる前に一連の測定を完了するためには、15秒以下、特に10秒以下が好ましい。また、両照射領域についての操作回数(測定回数)は、多い程より精度が高くなるが、実用性、回数に対する効果の度合い、皮膚の性状の変化が起こる前に一連の測定を完了することを考慮すると、3〜10回程度が好ましい。   At that time, in the case of measuring a subject whose state changes every moment, such as human skin, the operation (measurement) of the irradiation of the light and the reception of the emitted light is alternately performed a plurality of times for the both irradiation regions. (In this embodiment, 5 times), and in the main body 31, the irradiation light amount and the emitted light amount are compared and statistically processed for the plurality of operations. The operation interval (measurement interval) performed alternately for both irradiation regions is preferably as short as possible. However, in order to complete a series of measurements before the change in the skin properties associated with the subject's psychological tension or the like, 15 seconds is required. Hereinafter, 10 seconds or less is particularly preferable. Also, the greater the number of operations (number of measurements) for both irradiation areas, the higher the accuracy, but the practicality, the degree of effect on the number of times, and the completion of a series of measurements before changes in skin properties occur. In consideration, about 3 to 10 times are preferable.

次に、本体31によって、前記複数回ずつの操作について、標準白色板を対象として被検体と同条件で測定された射出光量Os1と前記第1の照射領域から受光した前記射出光量の平均O1(=Oav(λ、A1))との比α1av(=O1/Os1)と、標準白色板を対象として被検体と同条件で測定された射出光量Os2と該第2の照射領域から受光した前記射出光量の平均O2(=Oav(λ、A2))との比α2av(=O2/Os2)とを求める。そして、前記比α2avを反射率R、差分比(1−(α1av/α2av))を透明性Tとして演算処理し、前記主記憶装置又は外部記憶装置に記憶させるとともに、前記出力装置33に出力させる。   Next, with respect to the plurality of operations by the main body 31, the emission light amount Os1 measured under the same conditions as the subject with respect to the standard white plate and the average light emission amount O1 received from the first irradiation region (O1) = Oav (λ, A1)) to the ratio α1av (= O1 / Os1), the amount of emitted light Os2 measured on the standard white plate under the same conditions as the subject, and the emission received from the second irradiation area A ratio α2av (= O2 / Os2) to the average O2 (= Oav (λ, A2)) of the light amount is obtained. Then, the ratio α2av is calculated as the reflectance R, and the difference ratio (1- (α1av / α2av)) is processed as transparency T, and is stored in the main storage device or the external storage device and is output to the output device 33. .

さらに、前記係数C0及びC1、並びに前記反射率R及び前記透明性Tから、前記式(1)で補正される透明性T’(λ)を再計算し、透明性Tを較正し、その結果を前記主記憶装置又は補助記憶装置に記憶させ、波長毎のスペクトログラム(分光特性のグラフ)として出力装置33に出力させ、透明性T’が1に近い程透明であると評価させる。   Further, the transparency T ′ (λ) corrected by the equation (1) is recalculated from the coefficients C0 and C1, the reflectance R, and the transparency T, and the transparency T is calibrated. Is stored in the main storage device or the auxiliary storage device, and is output to the output device 33 as a spectrogram (spectral characteristic graph) for each wavelength, and the transparency T ′ closer to 1 is evaluated as being transparent.

照射領域に含まれない領域からの反射を補正するためにサンプルのない(照射領域に入った光が戻ってこない)状態で受光量を測定しておき、射出光量O1、O2を求める際には、実測値から前記の測定値を差し引いて補正を行うことが好ましい。   In order to correct reflection from an area not included in the irradiation area, the amount of received light is measured in the absence of a sample (the light that has entered the irradiation area does not return), and the emitted light amounts O1 and O2 are obtained. The correction is preferably performed by subtracting the measurement value from the actual measurement value.

好ましい第1の照射領域、測定領域、及び第2の照射領域、測定領域の面積は、被検体の大きさ、形状、透明性などに依存するが、被検体として人の皮膚を選んだ場合、前記第1の照射領域と前記第2の照射領域との面積比(A1/A2)は、0.03〜0.4、特に0.07〜0.2が好ましい。該面積比を斯かる範囲とすることで、第1の照射領域の測定での受光量をある程度確保しつつ、第1の照射領域の測定と第2の照射領域の測定との受光量の差異を得ることができ、皮膚の透明性を客観的に精度よく評価することができる。   The area of the preferred first irradiation region, measurement region, and second irradiation region, measurement region depends on the size, shape, transparency, etc. of the subject, but when human skin is selected as the subject, The area ratio (A1 / A2) between the first irradiation region and the second irradiation region is preferably 0.03 to 0.4, particularly preferably 0.07 to 0.2. By setting the area ratio in such a range, the difference in the amount of received light between the measurement of the first irradiation region and the measurement of the second irradiation region while securing a certain amount of light reception in the measurement of the first irradiation region. The transparency of the skin can be objectively and accurately evaluated.

前記第1の照射領域は、被検体の大きさ、形状、透明性などに応じて適する面積は異なるが、人の皮膚を被検体とする場合には、1〜30mm2、特に4〜15mm2が好ましい。前記第2の照射領域の面積は、同じく人の皮膚を被検体とする場合には、30〜150mm2、特に40〜100mm2が好ましい。前記第1の測定領域の面積は、1〜30mm2、特に4〜15mm2が好ましい。前記第2の測定領域の面積は、1〜120mm2、特に4〜80mm2が好ましい。斯かる範囲とすることで、絞り24を皮膚に密着させることができ、また受光量に対する回り込みの光の量をより正確に検出することができるので、皮膚の透明性を客観的に精度よく評価することができる。
なお、各照射領域の形状は略円形が好ましいが、他にも楕円形、矩形、正方形、菱形等で設計することができる。円形の場合、前記第1の照射領域の直径は、1〜6mm、特に2〜4mmが好ましい。前記第2の照射領域の直径は、6〜14mm、特に7〜11mmが好ましい。
The first irradiation region, the object size, shape, area suitable in accordance with the transparency different, when the human skin and the subject is 1 to 30 mm 2, particularly 4 to 15 mm 2 Is preferred. Area of the second irradiation region, like in the case of human skin and the subject is 30 to 150 mm 2, in particular 40 to 100 mm 2 is preferred. Area of the first measurement area, 1 to 30 mm 2, particularly 4 to 15 mm 2 are preferred. Area of the second measurement region, 1~120mm 2, especially 4~80Mm 2 is preferred. By setting such a range, the diaphragm 24 can be brought into close contact with the skin, and the amount of wraparound light with respect to the amount of received light can be detected more accurately, so that the transparency of the skin can be objectively and accurately evaluated. can do.
In addition, although the shape of each irradiation area | region is preferable substantially circular shape, it can design with an ellipse, a rectangle, a square, a rhombus etc. in addition. In the case of a circle, the diameter of the first irradiation region is preferably 1 to 6 mm, particularly preferably 2 to 4 mm. The diameter of the second irradiation region is preferably 6 to 14 mm, particularly preferably 7 to 11 mm.

前記第2の照射領域は、前記第1の照射領域より大きいことが好ましく、さらに前記第1の照射領域を全て含んでいることが好ましいが、本発明の効果を損なわない範囲において、部分的に含んでいてもよい。また、前記第2の照射領域は、前記第1の照射領域と同心であることが好ましい。さらには、顔料を充分均質に分散させた後硬化させたシリコーン樹脂のように、測定対象が光学的に充分に均質であり、反射率及び透明性が部位によらず一定であり、部位によらず同じ測定値が得られる場合は、第1の照射領域と第2の照射領域が全く異なっていても構わない。   The second irradiation region is preferably larger than the first irradiation region, and preferably includes all of the first irradiation region. However, the second irradiation region is partially included in a range that does not impair the effects of the present invention. May be included. The second irradiation area is preferably concentric with the first irradiation area. Furthermore, the measurement object is optically sufficiently homogeneous, and the reflectance and transparency are constant regardless of the part, such as a silicone resin that is cured after the pigment is sufficiently homogeneously dispersed. When the same measurement value is obtained, the first irradiation region and the second irradiation region may be completely different.

前記第1の照射領域及び前記第2の照射領域に照射する前記光は、前述のように、測定を被検体の外観に対応させるためには、可視光領域(波長360〜740nm)を含むものであれば、特に制限はないが、ダイナミックレンジをそろえるためには白色光が望ましい。また、特定の波長に着目する場合には、その波長を含む光であればよい。また、フォトクロミックな化粧品を塗布した肌を測定する等の場合は、照射する光に紫外線を含ませてもよい。   As described above, the light applied to the first irradiation region and the second irradiation region includes a visible light region (wavelength 360 to 740 nm) in order to make the measurement correspond to the appearance of the subject. If there is no particular limitation, white light is desirable in order to achieve a dynamic range. Moreover, when paying attention to a specific wavelength, light including that wavelength may be used. Moreover, in the case of measuring the skin which applied the photochromic cosmetics etc., you may include ultraviolet rays in the light to irradiate.

前記第1の照射領域及び前記第2の照射領域から射出された前記光のうち受光する該光の波長は360〜740nmが好ましい。受光する該光の波長を斯かる範囲とすることで、人間が認識できる全ての波長がカバーされるので、透明性を客観的に評価することができる。小型化、低コストのためには、光源を発光ダイオードに、受光器をモノクロにすることもできる。   Of the light emitted from the first irradiation region and the second irradiation region, the wavelength of the received light is preferably 360 to 740 nm. By setting the wavelength of the received light within such a range, all wavelengths that can be recognized by human beings are covered, so that the transparency can be objectively evaluated. In order to reduce the size and cost, the light source can be a light emitting diode and the light receiver can be monochrome.

受光器のダイナミックレンジはより大きいほうが好ましい。また、照射光量は、標準白色板を測定したときに受光する光の強度が受光器のダイナミックレンジを越えない範囲で大きいことが好ましい。   It is preferable that the dynamic range of the light receiver is larger. Moreover, it is preferable that the irradiation light quantity is large in the range where the intensity of light received when measuring a standard white plate does not exceed the dynamic range of the light receiver.

本実施形態による透明性の評価方法は、照射光に対する回り込み(前述の微小な光の回り込み)のほとんどが検出されるため、得られる評価結果は、被検体の透明性をより正確に反映したものである。また、その評価に際して、前述のような透明性の較正処理を行っているため、測定領域の反射率にかかわらず、正しい透明性の評価を行うことができる。また、該評価方法では、被検体の反射率も測定することができ、従来法ではできなかった、表面反射も含めた測定誤差の少ない正確な評価を行えるほか、透明性に与える色の影響を取り除くことができ、精度の高い評価を行うことができる。   In the method for evaluating transparency according to the present embodiment, most of the wraparound to the irradiation light (the wraparound of the minute light described above) is detected, and thus the evaluation result obtained more accurately reflects the transparency of the subject. It is. Moreover, since the transparency calibration process as described above is performed in the evaluation, the correct transparency can be evaluated regardless of the reflectance of the measurement region. In addition, the evaluation method can also measure the reflectance of an object, and can perform an accurate evaluation with little measurement error including surface reflection, which has not been possible with the conventional method, and can also affect the influence of color on transparency. It can be removed and highly accurate evaluation can be performed.

本発明は、前記実施形態に何ら制限されない。
前記第1の照射領域及び前記第2の照射領域に照射する前記光の照射条件及び前記射出光の受光条件に特に制限はなく、前記実施形態のd/8°なる光学系の射出・受光条件の他、JIS Z 8722(2000)に準拠した照射・受光条件で照射し受光する条件であればよい。特に外部からの光を遮断した照射・受光条件で照射し受光することが好ましい。
The present invention is not limited to the embodiment.
There are no particular restrictions on the irradiation conditions of the light and the light receiving conditions of the emitted light that irradiate the first irradiation area and the second irradiation area, and the emission / light receiving conditions of the optical system of d / 8 ° according to the embodiment. In addition, the light receiving and receiving conditions conforming to JIS Z 8722 (2000) may be used. In particular, it is preferable to irradiate and receive light under irradiation / light reception conditions that block external light.

また、前記実施形態では、何れも被検体の代わりに標準白色板を対象として該被検体と同様にして照射領域を変えて前記光源から光を照射したときに、それぞれの照射領域から受光したそれぞれの射出光の受光量(射出光量)を照射光量としたが、被検体に照射された照射光量として直接測定した値を用いる場合には、本体の演算処理装置による照射光量と射出光量との比較に基づく評価を行うときの比較の統計的な処理は、例えば以下のようにして行われる。   Further, in the above embodiment, each of the light received from the respective irradiation regions when the irradiation region is changed and the light source is irradiated in the same manner as the subject for the standard white plate instead of the subject. The amount of emitted light received (the amount of emitted light) was used as the amount of irradiated light, but when using a value measured directly as the amount of irradiated light irradiated on the subject, compare the amount of emitted light with the amount of emitted light by the arithmetic processing unit of the main unit. The statistical processing of the comparison when performing the evaluation based on is performed as follows, for example.

即ち、照射領域A1の測定について、照射光量I(λ、A1、1)〜I(λ、A1、N)の平均Iav(λ、A1)及び射出光量O(λ、A1、1)〜O(λ、A1、N)の平均Oav(λ、A1)を求め、それらの比Oav(λ、A1)/Iav(λ、A1)からα1av(λ)を求める。Iav(λ)及びOav(λ)を求める際のNは同じであってもよいし、異なっていてもよい。照射領域A2の測定についても同様に、I(λ、A2、1)〜I(λ、A2、N)の平均Iav(λ、A2)及びO(λ、A2、1)〜O(λ、A2、N)の平均Oav(λ、A2)を求め、それらの比Oav(λ、A2)/Iav(λ、A2)からα2av(λ)を求める。この場合もIav(λ)及びOav(λ)を求める際のNは同じであってもよいし、異なっていてもよい。そして、これらα1avとα2avとを比或いは差分比として比較する。   That is, for the measurement of the irradiation area A1, the average Iav (λ, A1) of the irradiation light amounts I (λ, A1, 1) to I (λ, A1, N) and the emission light amounts O (λ, A1, 1) to O ( The average Oav (λ, A1) of λ, A1, N) is obtained, and α1av (λ) is obtained from the ratio Oav (λ, A1) / Iav (λ, A1). N in calculating Iav (λ) and Oav (λ) may be the same or different. Similarly, in the measurement of the irradiation area A2, the average Iav (λ, A2) and O (λ, A2, 1) to O (λ, A2) of I (λ, A2, 1) to I (λ, A2, N) are similarly applied. , N) is obtained, and α2av (λ) is obtained from the ratio Oav (λ, A2) / Iav (λ, A2). Also in this case, N in calculating Iav (λ) and Oav (λ) may be the same or different. Then, α1av and α2av are compared as a ratio or a difference ratio.

また、前記実施形態では、装置本体からの測定値を別体のコンピュータシステムで処理するようにしたが、装置本体に出力装置を付設するとともに装置本体の備えるマイクロコンピュータユニットに前記コンピュータシステムにおける評価処理を行わせることもできる。   In the embodiment, the measurement value from the apparatus main body is processed by a separate computer system. However, the output apparatus is attached to the apparatus main body, and the evaluation process in the computer system is provided in the microcomputer unit provided in the apparatus main body. Can also be performed.

本発明の透明性の評価方法及び装置は、測定対象に特に制限はない。固体、粉体、液体などの製造過程又は完成品に対して用いることで、プロセス管理、品質管理などを行うことができる。   In the transparency evaluation method and apparatus of the present invention, there are no particular limitations on the measurement target. Process management, quality control, etc. can be performed by using it for manufacturing processes or finished products such as solids, powders, and liquids.

本発明の透明性の評価方法及び装置は、人の皮膚に対しても用いることができ、その場合、素肌は勿論、各種基礎化粧料の使用後における肌、メイクアップ化粧料を施した肌、日焼け肌等の透明性評価にも適用することができる。さらに顔(唇を含む)は勿論、手足(爪を含む)や人体の各部位の肌の透明性を評価することができる。   The transparency evaluation method and apparatus of the present invention can also be used for human skin, in which case the skin after use of various basic cosmetics as well as bare skin, skin subjected to makeup cosmetics, It can also be applied to transparency evaluation of sunburn skin and the like. In addition to the face (including lips), the transparency of the skin of each part of the limbs (including nails) and the human body can be evaluated.

また、本発明の透明性の評価方法は、美容分野、特に、各種基礎化粧料、メイクアップ化粧料、洗顔料若しくは日焼け止め等の推奨、開発、効能の評価、タンニングの評価、化粧方法の推奨等に適用することができる。   In addition, the transparency evaluation method of the present invention is recommended in the beauty field, in particular, various basic cosmetics, makeup cosmetics, facial cleansers or sunscreens, etc., development, evaluation of efficacy, tanning evaluation, and cosmetic method recommendations. Etc. can be applied.

以下、本発明を実施例によりさらに具体的に説明する。なお、本発明は本実施例に何ら制限されない。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, this invention is not restrict | limited to a present Example at all.

〔実施例〕
<透明性の評価>
下記の装置本体を使用し、色較正用の標準白色板、下記のグレーチャート及びサンプルについて、下記のように絞りを変更して照射領域を変え、5回ずつ(N=5)射出光量を測定した。光源として、白色光を用いた。次いで、該装置本体に接続した市販のパーソナルコンピュータシステムにおいて、分光測色計CMシリーズ用色彩管理ソフトウェア「CM−S9w」を起動し、これら測定した射出光量を測定装置からCSV形式で該コンピュータシステムに取り込んだ。そして、市販のスプレッドシート(米国マイクロソフト社製「Excel」)上で、これらの射出光量について前記実施形態において説明したように統計的な処理を行った後、反射率R、透明性T及び較正処理用の係数を求めた。
〔Example〕
<Evaluation of transparency>
Using the following equipment body, change the irradiation area by changing the aperture as follows for the standard white plate for color calibration, the following gray chart and sample, and measure the amount of emitted light 5 times each (N = 5) did. White light was used as the light source. Next, in a commercially available personal computer system connected to the apparatus main body, the color management software “CM-S9w” for the spectral colorimeter CM series is started, and the measured emission light amount is transferred from the measuring apparatus to the computer system in the CSV format. I took it in. Then, after performing statistical processing on the commercially available spreadsheet (“Excel” manufactured by Microsoft Corporation in the United States) as described in the above embodiment for the amount of emitted light, reflectance R, transparency T, and calibration processing are performed. The coefficient for was obtained.

<測定条件>
装置本体:ミノルタ(株)製、分光測色計「CM−2600d」
照射・受光条件:d/8°(JIS Z8722)
第1の照射領域:L1(直径)=4.8mmの円形
第1の測定領域:M1(測定径:直径)=4.8mmの円形
第2の照射領域:第1の照射領域と略同心でL2(直径)=11mmの円形
第2の測定領域:第1の照射領域と略同心でM2(測定径:直径)=8mmの円形
測定:各領域について5回ずつの測定を、3度行った。
各測定の間隔:約10秒
グレーチャート:マンセルカラーチェッカー(X−Rite社製)中のグレーチャート(#19〜#24の計6枚)
<Measurement conditions>
Main unit: manufactured by Minolta Co., Ltd., spectral colorimeter “CM-2600d”
Irradiation / light reception conditions: d / 8 ° (JIS Z8722)
First irradiation region: circular shape with L1 (diameter) = 4.8 mm First measurement region: circular shape with M1 (measurement diameter: diameter) = 4.8 mm Second irradiation region: substantially concentric with the first irradiation region Circularity with L2 (diameter) = 11 mm Second measuring region: Circular shape with M2 (measuring diameter: diameter) = 8 mm substantially concentric with the first irradiation region Measurement: Five measurements were performed three times for each region. .
Interval of each measurement: about 10 seconds Gray chart: Gray chart in Munsell color checker (manufactured by X-Rite) (total of # 19 to # 24)

次に、較正検証用サンプルとして、X−Rite社製のグレーチャート以外のカラーチャート(有彩色のチャート:#18、#17、#16、#15、#14、#13、#2、#1))について上述のサンプルと同様の方法で反射率R、透明性Tを求めた後、グレーチャートを用いて上述のように求めた較正処理用の係数を用いて透明性T’を再計算した。その結果を図4に示した。   Next, as a calibration verification sample, a color chart other than the gray chart manufactured by X-Rite (chromatic color charts: # 18, # 17, # 16, # 15, # 14, # 13, # 2, # 1 After obtaining the reflectance R and transparency T in the same manner as in the above sample for)), the transparency T ′ was recalculated using the calibration processing coefficient obtained as described above using the gray chart. . The results are shown in FIG.

〔比較例〕
実施例1について、透明性の較正処理による再計算を行わなかった場合を比較例とした。その結果を図5に示した。
[Comparative Example]
About Example 1, the case where the recalculation by the calibration process of transparency was not performed was made into the comparative example. The results are shown in FIG.

図4、5に示したように、実施例では、比較例に比べて透明性が負の値となることが格段に改善されることがわかった。   As shown in FIGS. 4 and 5, it was found that in the example, the transparency is a negative value as compared with the comparative example.

本発明によれば、透明性を簡便に反射率の影響を抑えて客観的で精度よく評価することができる方法及び装置が提供される。   According to the present invention, there is provided a method and apparatus capable of objectively and accurately evaluating transparency by simply suppressing the influence of reflectance.

本発明の透明性の評価装置の一実施形態を模式的に示す図である。It is a figure which shows typically one Embodiment of the evaluation apparatus of transparency of this invention. 本発明の透明性の評価装置における照射光及び射出光の照射・受光条件を模式的に示す図であり、(a)は第1の照射領域での照射・受光条件を示す図、(b)は第2の照射領域での照射・受光条件を示す図である。It is a figure which shows typically irradiation / light-receiving conditions of the irradiation light and emission light in the transparency evaluation apparatus of this invention, (a) is a figure which shows the irradiation / light-receiving conditions in a 1st irradiation area | region, (b) These are figures which show the irradiation and light reception conditions in a 2nd irradiation area | region. 本発明の透明性の評価装置における絞りの機構を模式的に示す図であり、(a)はアイリス絞りを示す図、(b)はスライド式絞りを示す図である。It is a figure which shows typically the mechanism of the aperture_diaphragm | restriction in the transparency evaluation apparatus of this invention, (a) is a figure which shows an iris diaphragm, (b) is a figure which shows a slide type aperture_diaphragm | restriction. 実施例によるサンプルの透明性の算出結果を示す図である。It is a figure which shows the calculation result of the transparency of the sample by an Example. 比較例によるサンプルの透明性の算出結果示す図である。It is a figure which shows the calculation result of the transparency of the sample by a comparative example.

符号の説明Explanation of symbols

1 透明性の評価装置
2 測定装置本体
21 積分球
22 光源
23 受光器
24 絞り
3 コンピュータシステム
31 本体(評価処理部)
33 出力装置
DESCRIPTION OF SYMBOLS 1 Transparency evaluation apparatus 2 Measuring apparatus main body 21 Integrating sphere 22 Light source 23 Light receiver 24 Aperture 3 Computer system 31 Main body (evaluation processing section)
33 Output device

Claims (3)

第1の照射領域と第1の照射領域を含む第2の照射領域とにそれぞれ光を照射して第1の照射領域及び第2の照射領域から戻って来る射出光をそれぞれ受光し、
第1の照射領域及び第2の照射領域へのそれぞれの照射光量I1及びI2と、第1の照射領域及び第2の照射領域から受光したそれぞれの前記射出光の射出光量O1及びO2とを求め、
各照射領域についての前記照射光量と前記射出光量との比O1/I1及びO2/I2をα1及びα2としたときに、α2を反射率R、(1−α1/α2)を透明性Tとするか、又はα1を反射率R、(1−α2/α1)を透明性Tとして透明性を評価する方法であって、明度の異なる複数の較正用グレーチャートに光を照射したときの、該光の波長ごとの前記反射率Rc(λ)及び前記透明性Tc(λ)を求め、
透明性Tc(λ)を反射率Rc(λ)の対数に対して直線回帰させたときの切片C0及び傾きC1(λ)を予め求めておき、
透明性評価の対象部における前記第1の照射領域及び前記第2の照射領域にそれぞれ光を照射して得られる前記反射率R及び前記透明性Tから、下記式(1)で補正される透明性T’に基づいて評価する透明性の評価方法。
T’(λ)=(T(λ)−Tb(λ))/(1−Tb(λ))・・・(1)
ただし、Tb(λ)=C0(λ)+C1(λ)×log(R(λ))である。
Irradiating each of the first irradiation region and the second irradiation region including the first irradiation region with light, and receiving the emitted light returning from the first irradiation region and the second irradiation region, respectively;
The respective irradiation light amounts I1 and I2 to the first irradiation region and the second irradiation region, and the emission light amounts O1 and O2 of the respective emitted light received from the first irradiation region and the second irradiation region are obtained. ,
When the ratios O1 / I1 and O2 / I2 between the irradiation light quantity and the emission light quantity for each irradiation region are α1 and α2, α2 is the reflectance R, and (1−α1 / α2) is the transparency T. Or α1 is a reflectance R, and (1-α2 / α1) is a transparency T, and the transparency is evaluated. The light is emitted when a plurality of calibration gray charts having different brightness are irradiated with light. The reflectance Rc (λ) and the transparency Tc (λ) for each wavelength of
An intercept C0 and an inclination C1 (λ) when linearly regressing the transparency Tc (λ) with respect to the logarithm of the reflectance Rc (λ) are obtained in advance.
Transparency corrected by the following formula (1) from the reflectance R and the transparency T obtained by irradiating the first irradiation region and the second irradiation region, respectively, in the target portion for transparency evaluation. Transparency evaluation method evaluated based on property T ′.
T ′ (λ) = (T (λ) −Tb (λ)) / (1−Tb (λ)) (1)
However, Tb (λ) = C0 (λ) + C1 (λ) × log (R (λ)).
前記各照射光量として、実際の照射光量に代えて標準白色板を対象として光を照射したときの射出光量を用いる請求項1に記載の透明性の評価方法。   The transparency evaluation method according to claim 1, wherein as each of the irradiation light amounts, an emission light amount when light is irradiated on a standard white plate instead of the actual irradiation light amount is used. 入射窓、照射窓及び受光窓を備えた積分球と、前記入射窓及び前記照射窓を介して照射領域に光を照射する光源と、前記受光窓を介して前記照射領域から戻って来る射出光を受光する受光器と、照射領域を変化させる絞りと、透明性を評価する評価処理部と、前記評価処理部の評価結果を出力する出力部とを備え、
第1の照射領域と第1の照射領域を含む第2の照射領域とに前記光源からそれぞれ光を照射して第1の照射領域及び第2の照射領域から戻って来る射出光を前記受光器でそれぞれ受光し、
前記評価処理部で、第1の照射領域及び第2の照射領域へのそれぞれの照射光量I1及びI2と、第1の照射領域及び第2の照射領域から受光したそれぞれの前記射出光の射出光量O1及びO2とを求め、
各照射領域についての前記照射光量と前記射出光量との比O1/I1及びO2/I2をα1及びα2としたときに、α2を反射率R、(1−α1/α2)を透明性Tとするか、又はα1を反射率R、(1−α2/α1)を透明性Tとして透明性を評価する装置であって、
前記評価処理部は、明度の異なる複数の較正用グレーチャートに前記光源から光を照射したときに求められる、該光の波長ごとの前記反射率Rc(λ)及び前記透明性Tc(λ)から、前記透明性Tc(λ)を前記反射率Rc(λ)の対数に対して直線回帰させたときの切片C0及び傾きC1(λ)を求め、透明性評価の対象部における前記第1の照射領域と前記第2の照射領域とにそれぞれ光を照射して得られる前記反射率R及び前記透明性Tから、下記式(1)で補正される透明性T’に基づいて評価する透明性の評価装置。
T’(λ)=(T(λ)−Tb(λ))/(1−Tb(λ))・・・(1)
ただし、Tb(λ)=C0(λ)+C1(λ)×log(R(λ))である。
An integrating sphere having an incident window, an irradiation window, and a light receiving window; a light source that irradiates light to the irradiation area through the incident window and the irradiation window; and an emitted light that returns from the irradiation area through the light receiving window. A light receiving device, a diaphragm that changes the irradiation area, an evaluation processing unit that evaluates transparency, and an output unit that outputs an evaluation result of the evaluation processing unit,
Light emitted from the light source to the first irradiation region and the second irradiation region including the first irradiation region, respectively, and emitted light returning from the first irradiation region and the second irradiation region is received by the light receiver. Receive light respectively,
In the evaluation processing unit, the respective irradiation light amounts I1 and I2 to the first irradiation region and the second irradiation region, and the emission light amounts of the respective emitted lights received from the first irradiation region and the second irradiation region Find O1 and O2,
When the ratios O1 / I1 and O2 / I2 between the irradiation light quantity and the emission light quantity for each irradiation region are α1 and α2, α2 is the reflectance R, and (1−α1 / α2) is the transparency T. Or α1 is a reflectance R and (1-α2 / α1) is a transparency T, and the transparency is evaluated.
The evaluation processing unit obtains the reflectance Rc (λ) and the transparency Tc (λ) for each wavelength of light, which is obtained when light is emitted from the light source to a plurality of calibration gray charts having different brightness. Then, the intercept C0 and the slope C1 (λ) when the transparency Tc (λ) is linearly regressed with respect to the logarithm of the reflectance Rc (λ) are obtained, and the first irradiation in the target portion for transparency evaluation is obtained. Transparency to be evaluated based on the transparency T ′ corrected by the following formula (1) from the reflectance R and the transparency T obtained by irradiating the area and the second irradiation area with light respectively. Evaluation device.
T ′ (λ) = (T (λ) −Tb (λ)) / (1−Tb (λ)) (1)
However, Tb (λ) = C0 (λ) + C1 (λ) × log (R (λ)).
JP2008138884A 2008-05-28 2008-05-28 Transparency evaluation method and apparatus Expired - Fee Related JP5087471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008138884A JP5087471B2 (en) 2008-05-28 2008-05-28 Transparency evaluation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008138884A JP5087471B2 (en) 2008-05-28 2008-05-28 Transparency evaluation method and apparatus

Publications (2)

Publication Number Publication Date
JP2009287985A JP2009287985A (en) 2009-12-10
JP5087471B2 true JP5087471B2 (en) 2012-12-05

Family

ID=41457353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008138884A Expired - Fee Related JP5087471B2 (en) 2008-05-28 2008-05-28 Transparency evaluation method and apparatus

Country Status (1)

Country Link
JP (1) JP5087471B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5970364B2 (en) * 2012-12-13 2016-08-17 花王株式会社 Evaluation method of translucency
JP6962053B2 (en) * 2017-08-02 2021-11-05 花王株式会社 How to calculate the blurring power of the skin

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425041A (en) * 1987-07-20 1989-01-27 Kao Corp Transparency measuring apparatus
JPS6423141A (en) * 1987-07-20 1989-01-25 Kao Corp Transparency measuring method
JP2002248080A (en) * 2001-02-26 2002-09-03 Moritex Corp Apparatus for measuring transparency of skin
JP4278419B2 (en) * 2003-04-09 2009-06-17 花王株式会社 Evaluation method of skin transparency
JP4459008B2 (en) * 2004-10-08 2010-04-28 花王株式会社 Evaluation method of skin transparency
JP4632982B2 (en) * 2006-03-22 2011-02-16 花王株式会社 Method and apparatus for estimating makeup application amount
JP4632994B2 (en) * 2006-04-07 2011-02-16 花王株式会社 Method for measuring optical characteristics of cosmetic coating film and method and apparatus for estimating reflectance of cosmetic skin

Also Published As

Publication number Publication date
JP2009287985A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP4632994B2 (en) Method for measuring optical characteristics of cosmetic coating film and method and apparatus for estimating reflectance of cosmetic skin
US9364071B2 (en) Systems and methods for measuring spectra of skin and other objects and materials and making predictions based thereon
US10905331B2 (en) Image capturing device and sensing protection device
CN108449962A (en) The method and relevant device of reflectivity for determining object
JP4709164B2 (en) A method for determining color perception in multilayer systems.
US10746650B2 (en) Reflection characteristic measuring device
JP5087471B2 (en) Transparency evaluation method and apparatus
JP4573752B2 (en) Method and apparatus for determining pigmentation depth
CN105358946B (en) Optical reference for the calibration of spectral measurement system
JP7099474B2 (en) Multi-angle colorimeter
JP4632982B2 (en) Method and apparatus for estimating makeup application amount
Gevaux et al. Evaluating edge loss in the reflectance measurement of translucent materials
JP4278419B2 (en) Evaluation method of skin transparency
WO2017181961A1 (en) Detection method and detection device for individual minimal erythema dose
JP4459008B2 (en) Evaluation method of skin transparency
JP2001242075A (en) Method and device for measuring light beam transmittance of applied matter
JP5491076B2 (en) Transparency evaluation method and apparatus
CN109997020B (en) System and method for measuring ultraviolet protection of cosmetic materials
JP4799628B2 (en) Skin transparency evaluation device
US11009451B2 (en) Multi-angle colorimeter
JP5970364B2 (en) Evaluation method of translucency
US20210140884A1 (en) Method For Measuring Spectral Radiation Characteristics Of Fluorescence Whitened Sample, And Device For Measuring Spectral Radiation Characteristics Of Fluorescence Whitened Sample
JPH1151859A (en) Method and equipment for measuring transmittance of uv-ray and method for evaluating uv-ray shielding performance based on transmittance of uv-ray
US20220196472A1 (en) Method and apparatus for determining or classifying the surface colour of at least partly translucent materials
Forment et al. Stray light performance of a combined monochromator–spectrograph UV irradiance measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

R151 Written notification of patent or utility model registration

Ref document number: 5087471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees