JP5081160B2 - Consistent method for improving the quality of heavy oil and in-line hydrofinishing method - Google Patents

Consistent method for improving the quality of heavy oil and in-line hydrofinishing method Download PDF

Info

Publication number
JP5081160B2
JP5081160B2 JP2008545695A JP2008545695A JP5081160B2 JP 5081160 B2 JP5081160 B2 JP 5081160B2 JP 2008545695 A JP2008545695 A JP 2008545695A JP 2008545695 A JP2008545695 A JP 2008545695A JP 5081160 B2 JP5081160 B2 JP 5081160B2
Authority
JP
Japan
Prior art keywords
stream
reactor
oil
slurry
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008545695A
Other languages
Japanese (ja)
Other versions
JP2009520063A (en
Inventor
ファルシード、ダルッシュ
レイノルズ、ブルース
Original Assignee
シェブロン ユー.エス.エー. インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/305,378 external-priority patent/US7431831B2/en
Priority claimed from US11/305,377 external-priority patent/US7431823B2/en
Application filed by シェブロン ユー.エス.エー. インコーポレイテッド filed Critical シェブロン ユー.エス.エー. インコーポレイテッド
Publication of JP2009520063A publication Critical patent/JP2009520063A/en
Application granted granted Critical
Publication of JP5081160B2 publication Critical patent/JP5081160B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/14Inorganic carriers the catalyst containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/24Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions with moving solid particles
    • C10G47/26Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions with moving solid particles suspended in the oil, e.g. slurries
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/10Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only cracking steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1074Vacuum distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/302Viscosity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects

Description

本出願は、同時係属出願第11/305377号(2005年12月16日出願)、第11/305378(2005年12月16日出願)、及び第11/303425号(2006年3月20日出願)の一部継続出願である。   This application is co-pending application Nos. 11/305377 (filed December 16, 2005), 11/305378 (filed December 16, 2005), and 11/303425 (filed March 20, 2006). ) Part continuation application.

本発明は、スラリー触媒組成物を使用する、重油の品質向上方法に関する。1つの実施形態では、品質向上の後に水素化仕上げが続く。   The present invention relates to a method for improving the quality of heavy oil using a slurry catalyst composition. In one embodiment, quality improvement is followed by hydrofinishing.

石油製品に対する大きくなる世界的需要により、重油の処理が今日大変注目されている。カナダ及びベネズエラは重油の産油国である。重油供給原料を有用な製品へ完全に転化する方法は特に注目される方法である。   Due to the growing global demand for petroleum products, the processing of heavy oil is drawing much attention today. Canada and Venezuela are heavy oil producing countries. The process of completely converting heavy oil feedstock into useful products is a method of particular interest.

参照として組み込まれる次の特許は、重油の品質を向上させるための方法における高活性なスラリー触媒組成物の調製及びこの使用に関する。   The following patent, incorporated by reference, relates to the preparation and use of a highly active slurry catalyst composition in a process for improving the quality of heavy oil.

米国特許出願第10/938202号は、重油の水素化転化(hydroconversion)に適した触媒組成物の調製に関する。この触媒組成物は、VIB族金属酸化物と水性アンモニアとを混合して水性混合物を形成する工程及び混合物を硫化してスラリーを形成する工程を含む一連の工程により調製される。次いで、スラリーはVIII族金属により増進される。その後の工程は、スラリーを炭化水素油と混合する工程並びに得られた混合物を水素ガス及び第一の油よりも低い粘度を有する第二炭化水素油と組み合わせる工程を含む。活性触媒組成物はこれによって形成される。   US patent application Ser. No. 10 / 9,382 is related to the preparation of a catalyst composition suitable for hydroconversion of heavy oil. This catalyst composition is prepared by a series of steps including mixing the Group VIB metal oxide and aqueous ammonia to form an aqueous mixture and sulfiding the mixture to form a slurry. The slurry is then enhanced with a Group VIII metal. Subsequent steps include mixing the slurry with hydrocarbon oil and combining the resulting mixture with hydrogen gas and a second hydrocarbon oil having a lower viscosity than the first oil. An active catalyst composition is thereby formed.

米国特許出願第10/938003号は、スラリー触媒組成物の調製に関する。このスラリー触媒組成物は、VIB族金属酸化物と水性アンモニアと混合して水性混合物を形成する工程及び混合物を硫化してスラリーを形成する工程を含む一連の工程で調製される。次いで、スラリーはVIII族金属で増進される。その後の工程は、スラリーと炭化水素油とを混合する工程、並びに得られた混合物を水素ガスと組み合わせて(水が液相を維持する条件下で)活性スラリー触媒を製造する工程を含む。   US patent application Ser. No. 10 / 936,003 relates to the preparation of a slurry catalyst composition. This slurry catalyst composition is prepared in a series of steps including mixing the Group VIB metal oxide and aqueous ammonia to form an aqueous mixture and sulfiding the mixture to form a slurry. The slurry is then enhanced with a Group VIII metal. Subsequent steps include mixing the slurry and hydrocarbon oil, and combining the resulting mixture with hydrogen gas to produce an active slurry catalyst (under conditions where water maintains a liquid phase).

米国特許出願第10/938438号は、重油の品質向上工程においてスラリー触媒組成物を使用する方法に関する。このスラリー触媒組成物は安定させることが不可能で、脱活性化となる可能性がある。このスラリーは、繰返し使用のために品質向上反応器へ再循環され、生成物は、触媒除去のための更なる分離手順を必要としない。   US patent application Ser. No. 10/934438 relates to a method of using a slurry catalyst composition in a heavy oil quality improvement process. This slurry catalyst composition cannot be stabilized and may become deactivated. This slurry is recycled to the quality-enhancing reactor for repeated use, and the product does not require further separation procedures for catalyst removal.

米国特許出願第10/938200号は、スラリー組成物を使用して重油を品質向上させるための方法に関する。このスラリー組成物は、VIB族金属酸化物を水性アンモニアと混合して水性混合物を形成する工程及び混合物を硫化してスラリーを形成する工程を含む一連の工程で調製される。次いで、スラリーはVIII族金属化合物で増進される。その後の工程は、スラリーと炭化水素油とを混合する工程、並びに得られた混合物を水素ガスと組み合わせて(水が液相を維持する条件下で)活性スラリー触媒を製造する工程を含む。   US patent application Ser. No. 10 / 938,200 relates to a method for upgrading heavy oil using a slurry composition. The slurry composition is prepared in a series of steps including mixing the Group VIB metal oxide with aqueous ammonia to form an aqueous mixture and sulfiding the mixture to form a slurry. The slurry is then enhanced with a Group VIII metal compound. Subsequent steps include mixing the slurry and hydrocarbon oil, and combining the resulting mixture with hydrogen gas to produce an active slurry catalyst (under conditions where water maintains a liquid phase).

米国特許出願第10/938269号は、スラリー組成物を使用して重油を品質向上させるための方法に関する。このスラリー組成物は、VIB族金属酸化物と水性アンモニアを混合して水性混合物を形成する工程及び混合物を硫化してスラリーを形成する工程を含む一連の工程で調製される。次いで、スラリーはVIII族金属で増進される。その後の工程は、スラリーと炭化水素油とを混合する工程、並びに得られた混合物を水素ガス及び第一の油よりも低い粘度を有する第二炭化水素油と組み合わせる工程を含む。活性触媒組成物はこれによって形成される。   US patent application Ser. No. 10/934269 relates to a method for upgrading heavy oil using a slurry composition. This slurry composition is prepared in a series of steps including mixing the Group VIB metal oxide and aqueous ammonia to form an aqueous mixture and sulfiding the mixture to form a slurry. The slurry is then enhanced with a Group VIII metal. Subsequent steps include mixing the slurry and hydrocarbon oil and combining the resulting mixture with hydrogen gas and a second hydrocarbon oil having a lower viscosity than the first oil. An active catalyst composition is thereby formed.

スラリーでの重油の水素化転化方法で、前記方法により最終生成物から硫黄又は窒素がほぼ完全に除去され、少なくとも2つの連続した上昇流反応器が、場合により各反応器の間に配置された分離器を伴って使用され、前記方法は以下の工程、すなわち、
(a)加熱した重油供給原料、活性スラリー触媒組成物及び水素含有ガスを組み合わせて混合物を形成する工程、
(b)工程(a)の前記混合物を、高温及び高圧を含む、スラリー水素化転化条件に維持されている前記上昇流反応器の第一反応器の底部へ通す工程、
(c)生成物、ガス、未転化物質及びスラリー触媒を含む蒸気混合物を前記第一反応器の頂部から除去して、それを第一分離器へ通す工程、
(d)前記第一分離器において、生成物及びガス塔頂留分を含む蒸気流を、リーンオイル接触器に向けて除去し、未転化物質及びスラリー触媒を含む液体底部物質を、高温及び高圧を含む、水素化転化条件に維持されている前記上昇流反応の第二反応器の底部へ通す工程、
(e)生成物、ガス、未転化物質及びスラリー触媒を含む蒸気混合物を前記第二反応器の頂部から除去して、それを第二分離器へ通す工程、
(f)前記第二分離器において、生成物及びガス塔頂留分を含む蒸気流を、リーンオイル接触器に向けて除去し、未転化物質及びスラリー触媒を含む液体底部物質を更なる処理工程へ通す工程、
(g)生成物とガスを含む前記蒸気流をリーンオイル接触器でリーンオイルと向流で接触する工程で、同伴した触媒及び未転化物質が底部物質として出て行くリーンオイルとの接触により除去され、生成物及びガスが塔頂へ通される工程、
(h)工程(g)の塔頂部物質を、硫黄及び窒素の除去のために水素化処理装置へ通す工程
を含む方法。
In the hydroconversion process of heavy oil in a slurry, sulfur or nitrogen was almost completely removed from the final product by the process, and at least two consecutive upflow reactors were optionally placed between each reactor. Used with a separator, said method comprising the following steps:
(A) combining a heated heavy oil feedstock, an active slurry catalyst composition and a hydrogen-containing gas to form a mixture;
(B) passing the mixture of step (a) through the bottom of the first reactor of the upflow reactor maintained at slurry hydroconversion conditions, including high temperature and pressure,
(C) removing the vapor mixture comprising product, gas, unconverted material and slurry catalyst from the top of the first reactor and passing it to the first separator;
(D) In the first separator, the vapor stream containing the product and gas column top fraction is removed towards a lean oil contactor and the liquid bottom material containing unconverted material and slurry catalyst is removed at high temperature and high pressure. Passing through the bottom of the second reactor of the upflow reaction maintained at hydroconversion conditions, comprising
(E) removing the vapor mixture comprising product, gas, unconverted material and slurry catalyst from the top of the second reactor and passing it to the second separator;
(F) In the second separator, the vapor stream containing the product and gas column top fraction is removed towards the lean oil contactor, and the liquid bottom material containing unconverted material and slurry catalyst is further processed. The process of passing through,
(G) In the step of contacting the vapor stream containing the product and gas with the lean oil contactor in countercurrent with the lean oil, the entrained catalyst and unconverted material are removed by contact with the lean oil leaving as the bottom material. The product and gas are passed to the top of the column,
(H) A method comprising the step of passing the top material of step (g) through a hydrotreater for removal of sulfur and nitrogen.

本発明のスラリー品質向上方法は、減圧残渣のほぼ98%をより軽質な生成物(1000°Fより下の沸点範囲にある)に転化する。これらの生成物の幾つかは、これらの高窒素、高硫黄及び高芳香族含有量、並びに低APIにより更なる処理工程を必要とする。本発明は、スラリー品質向上方法の下流の水素化仕上げを使用し、その結果、最終生成物からほぼ完全に硫黄及び窒素を除去する。   The slurry quality improvement process of the present invention converts approximately 98% of the vacuum residue to a lighter product (in the boiling range below 1000 ° F.). Some of these products require further processing steps due to their high nitrogen, high sulfur and high aromatic content, and low API. The present invention uses a hydrofinishing downstream of the slurry quality enhancement process, resulting in almost complete removal of sulfur and nitrogen from the final product.

本発明は、図1で表示されるような、触媒活性化スラリー水素化分解のための方法に関する。流れ1は、減圧残油等の重質供給原料を含む。この供給原料は、それが加熱される炉80に入り、流れ4に出て行く。流れ4は水素含有ガス(流れ2)及び活性スラリー組成物を含む流れ(流れ23)と一緒になって混合物を作る(流れ24)。流れ24は第一反応器10の底部に入る。生成物、ガス、スラリー、及び未転化物質を含む蒸気の流れ5は反応器の頂部を出る。流れ5は、好ましくはフラッシュドラムである高温高圧分離器40へ通る。生成物及びガスを含む蒸気流は流れ6として塔頂から除去される。流れ6は更なる処理工程のためにリーンオイル接触器へ通される。液体流7は、分離器40の底部を通って除去される。流れ7は、未転化油と一緒にスラリーを含む。   The present invention relates to a process for catalyst activated slurry hydrocracking, as represented in FIG. Stream 1 contains a heavy feed such as vacuum residue. This feed enters the furnace 80 where it is heated and exits to stream 4. Stream 4 combines with the stream containing hydrogen-containing gas (stream 2) and the active slurry composition (stream 23) to form a mixture (stream 24). Stream 24 enters the bottom of first reactor 10. A vapor stream 5 containing product, gas, slurry, and unconverted material exits the top of the reactor. Stream 5 passes to a high temperature and high pressure separator 40 which is preferably a flash drum. The vapor stream containing product and gas is removed from the top as stream 6. Stream 6 is passed to a lean oil contactor for further processing steps. Liquid stream 7 is removed through the bottom of separator 40. Stream 7 contains the slurry together with unconverted oil.

流れ7は水素を含むガス流(流れ15)と一緒になって流れ25を創り出す。流れ25は第二反応器20の底部に入る。生成物、ガス、スラリー及び未転化物質を含む蒸気流8は、塔頂から第二反応器を出て行き、好ましくはフラッシュドラムである分離器50へ通る。生成物及びガスは流れ9として塔頂を介して除去され、更なる処理工程のためにリーンオイル接触器へ通される。液体流11は、フラッシュドラムの底部を通って除去される。流れ11は、未転化油と一緒にスラリーを含む。   Stream 7 together with a gas stream containing hydrogen (stream 15) creates stream 25. Stream 25 enters the bottom of second reactor 20. Vapor stream 8 comprising product, gas, slurry and unconverted material exits the second reactor from the top of the column and passes to separator 50, which is preferably a flash drum. Product and gas are removed through the top as stream 9 and passed to a lean oil contactor for further processing steps. Liquid stream 11 is removed through the bottom of the flash drum. Stream 11 contains the slurry together with unconverted oil.

流れ11は水素を含むガス流(流れ16)と一緒になって流れ26を創り出す。流れ26は第三反応器30の底部に入る。第三反応器30を出る流れ12は、好ましくはフラッシュドラムである分離器60へ通る。生成物及びガスは流れ13として分離器60から塔頂から除去される。液体流17は、分離器60の底部を通って除去される。流れ17は、未転化油と一緒にスラリーを含む。この流れの一部は流れ18を通って抜かれてもよい。   Stream 11 together with a gas stream containing hydrogen (stream 16) creates stream 26. Stream 26 enters the bottom of third reactor 30. The stream 12 leaving the third reactor 30 passes to a separator 60 which is preferably a flash drum. Product and gas are removed from the top of the separator 60 as stream 13. Liquid stream 17 is removed through the bottom of separator 60. Stream 17 contains the slurry together with unconverted oil. A portion of this stream may be withdrawn through stream 18.

塔頂からの蒸気流6、9及び13は、リーンオイル接触器70へ通る流れ14を創り出す。減圧ガス油等のリーンオイルを含む流れ22は、リーンオイル接触器70の頂部に入り、(1)任意の可能な同伴触媒を除去するため及び(2)重質物質(少量の減圧残渣を含む高沸点範囲油)の減少のために下方へ流れる。   Vapor streams 6, 9 and 13 from the top of the tower create a stream 14 that passes to the lean oil contactor 70. A stream 22 containing lean oil, such as vacuum gas oil, enters the top of the lean oil contactor 70 and (1) removes any possible entrained catalyst and (2) heavy material (containing a small amount of vacuum residue Flows downward due to a decrease in high boiling range oil).

生成物及びガス(蒸気流21)は、塔頂からリーンオイル接触器70を出て行き、一方、液体流19は底部から出て行く。流れ19は、スラリー及び未転化油の混合物を含む。流れ19は、同様にスラリー及び未転化油の混合物を含む流れ17と一緒になる。新しいスラリーが流れ3に添加され、流れ23が創り出される。流れ23は第一反応器10への供給原料と一緒になる。   Product and gas (vapor stream 21) exit the lean oil contactor 70 from the top of the column, while the liquid stream 19 exits from the bottom. Stream 19 contains a mixture of slurry and unconverted oil. Stream 19 is combined with stream 17 which also contains a mixture of slurry and unconverted oil. Fresh slurry is added to stream 3 and stream 23 is created. Stream 23 is combined with the feed to the first reactor 10.

流れ21は、水素化仕上げ前に冷却するためにスチーム交換器(又は発生器)90に入る。スチーム交換器の目的は、必要に応じて水素化仕上げ反応器入口温度を制御することである。流れ21は、固定床反応器、好ましくは、活性水素化処理触媒の複数床を有する固定床反応器である水素化仕上げ器100の頂部床に入る。水素(流れ27)は、複数床が使用される場合は、床間クエンチとして挿入される。水素化仕上げした生成物は流れ28として除去される。   Stream 21 enters steam exchanger (or generator) 90 for cooling before hydrofinishing. The purpose of the steam exchanger is to control the hydrofinishing reactor inlet temperature as needed. Stream 21 enters the top bed of hydrofinisher 100, which is a fixed bed reactor, preferably a fixed bed reactor having multiple beds of active hydrotreating catalyst. Hydrogen (stream 27) is inserted as an inter-bed quench when multiple beds are used. The hydrofinished product is removed as stream 28.

水素化仕上げ器は、不純物を除去し、飽和により生成物を安定化することによりスラリー品質向上器からの生成物を高品質生成物へ更に精製する。99重量%を超える硫黄及び窒素の除去が達成されてもよい。反応器流出液は熱回収の手段により冷却されて任意の通常の水素化処理装置におけるような生成物回収区域へ送られる。   The hydrofinisher further refines the product from the slurry quality improver to a high quality product by removing impurities and stabilizing the product by saturation. Sulfur and nitrogen removal greater than 99% by weight may be achieved. The reactor effluent is cooled by means of heat recovery and sent to a product recovery zone such as in any conventional hydroprocessing unit.

炭化水素を水素化仕上げするための条件は当業者には良く知られている。一般的な条件は、400〜800°F、0.1〜3LHSV、及び200〜3000psigである。水素化仕上げ反応にとって有用な触媒は、好ましくは、ゼオラト又はアモルファス物質に担持されたニッケル、コバルト及びモリブデンの組合せである。   The conditions for hydrofinishing hydrocarbons are well known to those skilled in the art. Common conditions are 400-800 ° F., 0.1-3 LHSV, and 200-3000 psig. A useful catalyst for the hydrofinishing reaction is preferably a combination of nickel, cobalt and molybdenum supported on zeolato or amorphous material.

図面には表示されていない選択的実施形態としては、反応器の1つ又は複数が、外部分離器ではなく内部分離手段又は反応器に続くフラッシュドラムを含む一連の反応器が挙げられる。その他の実施形態では、一連の反応器の1つ又は複数間に中間段階分離は存在しない。   Optional embodiments not shown in the drawings include a series of reactors in which one or more of the reactors includes a flash drum following an internal separation means or reactor rather than an external separator. In other embodiments, there is no intermediate stage separation between one or more of the series of reactors.

本発明で使用される触媒スラリー組成物の調製方法は、参照として組み込まれる米国特許出願第10/938003号及び米国特許出願第10/938202号で示されている。触媒組成物は、熱水素化分解、水素化処理、水素化脱硫、水素化脱硝、及び水素化脱金属等の水素化品質向上方法にとって有用であるがこれらに限定されない。   Methods for preparing the catalyst slurry compositions used in the present invention are shown in US patent application Ser. No. 10 / 932,003 and US patent application Ser. No. 10 / 9,382, which are incorporated by reference. The catalyst composition is useful for hydrogenation quality improvement methods such as, but not limited to, thermal hydrocracking, hydrotreating, hydrodesulfurization, hydrodenitration, and hydrodemetallation.

本発明での使用に適した原料供給物は、米国特許出願第10/938269号に示されていて、常圧残油、減圧残油、溶剤脱アスファルト装置からのタール、常圧ガス油、減圧ガス油、脱アスファルト油、オレフィン、タールサンド又はビチューメン由来の油、石炭由来の油、重質原油、フィシャー−トロプシュ方法からの合成油、並びに回収油廃棄物及びポリマー由来の油を含む。適当な供給原料としては、又、常圧残油、減圧残油及び溶剤脱アスファルト装置からのタールが挙げられる。   A feedstock suitable for use in the present invention is shown in US patent application Ser. No. 10 / 937,269, which is a normal pressure residue, a vacuum residue, tar from a solvent deasphalting apparatus, a normal pressure gas oil, a vacuum. Gas oil, deasphalted oil, olefin, tar sand or bitumen derived oil, coal derived oil, heavy crude, synthetic oil from Fischer-Tropsch process, and recovered oil waste and polymer derived oil. Suitable feedstocks also include atmospheric residue, vacuum residue and tar from solvent deasphalting equipment.

本発明における反応器の好ましい型は、液体再循環反応器であるが、上昇流反応器のその他の型が使用されてもよい。液体再循環反応器は、更に、参照として組み込まれる米国特許出願第11/305359号において検討されている。   The preferred type of reactor in the present invention is a liquid recycle reactor, although other types of upflow reactors may be used. Liquid recycle reactors are further discussed in US patent application Ser. No. 11 / 305,359, which is incorporated by reference.

液体再循環反応器は、スラリー触媒と混合された重質炭化水素油及び水素に富むガスが高温及び高圧で、水素化転化のために供給される上昇流反応器である。   A liquid recycle reactor is an upflow reactor in which heavy hydrocarbon oil and hydrogen rich gas mixed with a slurry catalyst are fed at high temperature and pressure for hydroconversion.

水素化転化は、水素化分解及びヘテロ原子汚染物質(硫黄及び窒素等)の除去等の方法を含む。スラリー触媒使用では、触媒粒径は極端に小さい(1〜10ミクロン)。ポンプは、使用されてもよいが、再循環のために一般的には必要とされない。触媒の十分な運動はそれらなしで通常達成される。   Hydroconversion includes methods such as hydrocracking and removal of heteroatom contaminants (such as sulfur and nitrogen). When using a slurry catalyst, the catalyst particle size is extremely small (1-10 microns). A pump may be used but is generally not needed for recirculation. Sufficient movement of the catalyst is usually achieved without them.

図2は、触媒活性化スラリー水素化分解のための方法に関するその他の実施形態を例示する。流れ1は、減圧残油等の重質供給原料を含む。この供給原料は、それが加熱される炉80へ入り、流れ4に出て行く。流れ4は、水素含有ガス(流れ2)及び活性スラリー組成物を含む流れ(流れ23)と一緒になって混合物(流れ24)を作る。流れ24は、第一反応器10の底部に入る。スラリー、生成物及び水素、並びに未転化物質を含む蒸気流5は、反応器10の頂部を出て行く。流れ5は、好ましくはフラッシュドラムである分離器40へ通る。生成物及び水素は流れ6として塔頂から除去される。液体流7はフラッシュドラムの底部を通って除去される。流れ7は未転化油と一緒にスラリーを含む。   FIG. 2 illustrates another embodiment for a method for catalyst activated slurry hydrocracking. Stream 1 contains a heavy feed such as vacuum residue. This feed enters the furnace 80 where it is heated and exits to stream 4. Stream 4 is combined with a stream containing hydrogen-containing gas (stream 2) and the active slurry composition (stream 23) to form a mixture (stream 24). Stream 24 enters the bottom of first reactor 10. Vapor stream 5 containing slurry, product and hydrogen, and unconverted material exits the top of reactor 10. Stream 5 passes to separator 40, which is preferably a flash drum. Product and hydrogen are removed from the top as stream 6. Liquid stream 7 is removed through the bottom of the flash drum. Stream 7 contains the slurry together with unconverted oil.

流れ7は、水素を含むガス流(流れ15)と一緒になって流れ25を創り出す。流れ25は第二反応器20の底部に入る。生成物、水素、スラリー及び未転化物質を含む蒸気流8は、好ましくはフラッシュドラムである分離器50へ通る。生成物及び水素は、蒸気流で流れ9として塔頂から除去される。液体流11は、フラッシュドラムの底部を通って除去される。流れ11は未転化油と一緒にスラリーを含む。   Stream 7 together with a gas stream containing hydrogen (stream 15) creates stream 25. Stream 25 enters the bottom of second reactor 20. Vapor stream 8 containing product, hydrogen, slurry and unconverted material passes to separator 50, which is preferably a flash drum. Product and hydrogen are removed from the top of the column as stream 9 in a vapor stream. Liquid stream 11 is removed through the bottom of the flash drum. Stream 11 contains the slurry together with unconverted oil.

流れ11は、水素を含むガス流(流れ16)と一緒になって流れ26を創り出す。流れ26は第三反応器30の底部に入る。   Stream 11 together with a gas stream containing hydrogen (stream 16) creates stream 26. Stream 26 enters the bottom of third reactor 30.

生成物、水素、スラリー及び未転化物質を含む蒸気流12は、好ましくはフラッシュドラムである分離器60に向けて反応器30から塔頂を介して通る。生成物及び水素は、蒸気流13として塔頂から除去される。液体流17は、フラッシュドラムの底部を通って除去される。流れ17は未転化油と一緒にスラリーを含む。この流れの一部は流れ18を通って抜かれてもよい。   Vapor stream 12 comprising product, hydrogen, slurry and unconverted material passes from reactor 30 through the top of column to separator 60, which is preferably a flash drum. Product and hydrogen are removed from the top of the column as a vapor stream 13. Liquid stream 17 is removed through the bottom of the flash drum. Stream 17 contains the slurry together with unconverted oil. A portion of this stream may be withdrawn through stream 18.

塔頂からの流れ6、9及び13は流れ14を創り出し、これは高圧分離器70へ通る。減圧ガス油等のリーンオイルを含む流れ21は、高圧分離器70の頂部に入る。生成物及び水素は、蒸気流22として、塔頂からリーンオイル接触器70を出て行き、一方、液体流19は底部から出て行く。流れ19はスラリー及び未転化油の混合物を含む。流れ19は、同様にスラリー及び未転化油の混合物を含む流れ17と一緒になる。新たなスラリーが流れ3に添加され、流れ23が創られる。流れ23は、第一反応器10への供給原料と一緒になる。   Streams 6, 9 and 13 from the top of the column create stream 14 which passes to high pressure separator 70. A stream 21 containing lean oil, such as reduced pressure gas oil, enters the top of the high pressure separator 70. Product and hydrogen exit the lean oil contactor 70 from the top of the column as a vapor stream 22, while the liquid stream 19 exits from the bottom. Stream 19 contains a mixture of slurry and unconverted oil. Stream 19 is combined with stream 17 which also contains a mixture of slurry and unconverted oil. Fresh slurry is added to stream 3 and stream 23 is created. Stream 23 is combined with the feed to the first reactor 10.

本発明は、図3で表示されるように、上流インライン前処理を伴う、触媒活性化スラリー水素化分解のための方法に関する。流れ1は、減圧残油等の重質供給原料を含む。この供給原料は、それが加熱される炉80へ入り、流れ4に出て行く。流れ4は、水素含有ガス(流れ2)と一緒になって混合物(流れ101)を作る。流れ101は、前処理反応器100の頂部に入る。前処理装置は、固定床水素化処理装置又は脱アルファルト装置である。脱アルファルト装置では、溶剤は一般的に供給原料に対して向流で流れる。脱アスファルトは表示されていない。流れ102は前処理装置の底部を出て、好ましくはフラッシュドラムである高温高圧分離器110へ進む。生成物及び水素は、蒸気流、すなわち流れ103として、塔頂を介して除去される。流れ103は流れ22と一緒になる。未転化物質は、液体流104としてフラッシュドラム110の底部を出て行く。流れ104は流れ106と一緒になる。流れ106は、再循環スラリー触媒(流れ19)並びに補給スラリー触媒(流れ3)を含む。流れ104及び106は一緒になって流れ107を形成する。   The present invention relates to a method for catalyst activated slurry hydrocracking with upstream in-line pretreatment as represented in FIG. Stream 1 contains a heavy feed such as vacuum residue. This feed enters the furnace 80 where it is heated and exits to stream 4. Stream 4 is combined with a hydrogen-containing gas (stream 2) to form a mixture (stream 101). Stream 101 enters the top of pretreatment reactor 100. The pretreatment device is a fixed bed hydrotreating device or a de-alphalt device. In a de-alphalt device, the solvent generally flows countercurrent to the feedstock. Deasphalted is not displayed. Stream 102 exits the bottom of the pretreatment apparatus and proceeds to a high temperature high pressure separator 110, which is preferably a flash drum. Product and hydrogen are removed through the top as a vapor stream, stream 103. Stream 103 is combined with stream 22. Unconverted material exits the bottom of the flash drum 110 as a liquid stream 104. Stream 104 is combined with stream 106. Stream 106 includes a recirculating slurry catalyst (stream 19) as well as a make-up slurry catalyst (stream 3). Streams 104 and 106 together form stream 107.

流れ107は、好ましくは液体再循環反応器である上昇流反応器10の底部に入る。スラリー、生成物、水素及び未転化物質を含む流れ5の蒸気流は塔頂から反応器を出る。流れ5は、好ましくはフラッシュドラムである高温高圧分離器40へ通る。生成物及び水素は、流れ6として蒸気流で塔頂から除去される。液体流7は、フラッシュドラムの底部を通って除去される。流れ7は未転化油と一緒にスラリーを含む。   Stream 107 enters the bottom of upflow reactor 10, which is preferably a liquid recycle reactor. A stream 5 vapor stream containing slurry, product, hydrogen and unconverted material exits the reactor from the top. Stream 5 passes to a high temperature and high pressure separator 40 which is preferably a flash drum. Product and hydrogen are removed from the top of the column in a vapor stream as stream 6. The liquid stream 7 is removed through the bottom of the flash drum. Stream 7 contains the slurry together with unconverted oil.

流れ7は、水素を含むガス流(流れ15)と一緒になって流れ25を創り出す。流れ25は第二反応器20の底部に入る。スラリー、生成物、水素及び未転化物質を含む蒸気流である流れ8は、反応器20から、好ましくはフラッシュドラムである分離器50へ塔頂を介して通過する。生成物及び水素は、蒸気流9として塔頂を介して除去される。液体流11は、フラッシュドラムの底部を通って除去される。流れ11は未転化油と一緒にスラリーを含む。流れ11は、水素を含むガス流(流れ16)と一緒になって流れ26を創り出す。流れ26は第二反応器30の底部に入る。蒸気流12は、反応器30から、好ましくはフラッシュドラムである高温高圧分離器60へ塔頂を介して通過する。生成物及び水素は、蒸気流13として塔頂から除去される。流れ17は、フラッシュドラム60の底部を通って除去される。液体流17は未転化油と一緒にスラリーを含む。この流れの一部は流れ18を通って抜かれてもよい。   Stream 7 together with a gas stream containing hydrogen (stream 15) creates stream 25. Stream 25 enters the bottom of second reactor 20. Stream 8, which is a vapor stream comprising slurry, product, hydrogen and unconverted material, passes through the top of the reactor 20 to a separator 50, preferably a flash drum. Product and hydrogen are removed via the top as vapor stream 9. Liquid stream 11 is removed through the bottom of the flash drum. Stream 11 contains the slurry together with unconverted oil. Stream 11 together with a gas stream containing hydrogen (stream 16) creates stream 26. Stream 26 enters the bottom of second reactor 30. Vapor stream 12 passes from reactor 30 to a high temperature and high pressure separator 60, preferably a flash drum, via the top. Product and hydrogen are removed from the top of the column as a vapor stream 13. Stream 17 is removed through the bottom of flash drum 60. Liquid stream 17 contains the slurry together with unconverted oil. A portion of this stream may be withdrawn through stream 18.

塔頂からの蒸気流6、9及び13は流れ14を創り出し、これはリーンオイル接触器70へ通る。減圧ガス油等のリーンオイルを含む流れ22は、リーンオイル接触器70の頂部に入り、(1)任意の可能な同伴触媒を除去するため及び(2)重質物質(少量の減圧残渣を含む高沸点範囲)の減少のために下方へ流れる。生成物及び水素(流れ21)は、蒸気として塔頂からリーンオイル接触器70を出て行き、一方、液体流19は底部から出て行く。流れ21は、生成物流103と一緒になって、水素化仕上げへ送られる流れ22を形成する。   Vapor streams 6, 9 and 13 from the top of the column create stream 14 which passes to lean oil contactor 70. A stream 22 containing lean oil, such as vacuum gas oil, enters the top of the lean oil contactor 70 and (1) removes any possible entrained catalyst and (2) heavy material (containing a small amount of vacuum residue Flows downward due to a decrease in the high boiling range. Product and hydrogen (stream 21) exit the lean oil contactor 70 as vapor from the top of the column, while the liquid stream 19 exits from the bottom. Stream 21 together with product stream 103 forms stream 22 that is sent to hydrofinishing.

流れ19はスラリー及び未転化油の混合物を含む。流れ19は、同様にスラリー及び未転化油の混合物を含む流れ17と一緒になる。新しいスラリーが流れ3に添加され、流れ106が創り出される。流れ106は第一反応器10への供給原料(流れ104)と一緒になって、流れ107を創り出す。   Stream 19 contains a mixture of slurry and unconverted oil. Stream 19 is combined with stream 17 which also contains a mixture of slurry and unconverted oil. New slurry is added to stream 3 and stream 106 is created. Stream 106 is combined with the feed to first reactor 10 (stream 104) to create stream 107.

重質生成物画分は、任意の残留オレフィンを除去するために水素化仕上げされる。水素化仕上げ器は、スラリー品質向上器からの生成物を更に精製して、不純物を除去し、生成物を安定化することにより高品質生成物とする。99重量%を超える硫黄及び窒素除去が達成されてもよい。反応器流出液は熱回収の手段により冷却されて任意の通常の水素化処理装置におけるような生成物回収区域へ送られる。   The heavy product fraction is hydrofinished to remove any residual olefins. The hydrofinisher further refines the product from the slurry quality improver to remove impurities and stabilize the product to a high quality product. More than 99 wt% sulfur and nitrogen removal may be achieved. The reactor effluent is cooled by means of heat recovery and sent to a product recovery zone such as in any conventional hydroprocessing unit.

炭化水素を前処理するための条件は当業者には良く知られている。前処理は水素化処理又は脱アスファルトを含んでもよい。水素化処理は、供給原料の前処理のよく知られた形態であり、通常、1つ又は複数の床を有する固定床水素化処理反応器で生起する。水素化処理は、米国特許第6890423号に大筋で開示されていて、Gary and HandwerkによるPetroleum Refining(第2版:1984年)で検討されている。一般的な水素化処理条件は広範囲にわたって変動する。一般的には、全体のLHSVは約0.25〜2.0、好ましくは、約0.5〜1.0である。水素分圧は200psiaを超え、好ましくは約500psia〜約2000psiaの範囲である。水素再循環率は一般的に50SCF/Bblを超え、好ましくは、1000〜5000SCF/Bblである。温度は、約300°F〜約750°F、好ましくは、450°F〜600°Fの範囲である。水素化処理操作で有用な触媒は当該技術分野では良く知られている。適当な触媒としては、VIIIA族(国際純正応用化学連合(IUPAC)の1975年規則による)の貴金属、例えば、アルミナ又はケイ素質マトリックス上の白金又はパラジウム等、並びに未硫化VIIIA族及びVIB族、例えば、アルミナ又はケイ素質マトリックス上のニッケル−モリブデン又はニッケル−スズ等が挙げられる。非貴金属(ニッケル−モリブデン等)水素化金属は、通常、酸化物として、更に好ましくは又は可能なものとして、そのような化合物が、含まれる特定の金属から容易に形成される場合は硫化物として最終触媒組成物中に存在する。好ましい非貴金属触媒組成物は、相当する酸化物として決定される、約5重量%を超え、好ましくは約5〜約40重量%のモリブデン及び/又はタングステン、並びに少なくとも約0.5、一般的には約1〜約15重量%のニッケル及び/又はコバルトを含む。貴金属(白金等)触媒は、0.01%を超える金属、好ましくは0.1〜1.0%の金属を含んでもよい。貴金属の組合せ、例えば、白金とパラジウムの混合物等が使用されてもよい。   Conditions for pretreating hydrocarbons are well known to those skilled in the art. Pretreatment may include hydroprocessing or deasphalting. Hydroprocessing is a well-known form of feed pretreatment and typically occurs in fixed bed hydroprocessing reactors having one or more beds. Hydroprocessing is generally disclosed in US Pat. No. 6,890,423 and is discussed in Petroleum Refining (2nd edition: 1984) by Gary and Handwerk. General hydroprocessing conditions vary over a wide range. Generally, the overall LHSV is about 0.25 to 2.0, preferably about 0.5 to 1.0. The hydrogen partial pressure exceeds 200 psia, preferably in the range of about 500 psia to about 2000 psia. The hydrogen recycle rate is generally above 50 SCF / Bbl, preferably 1000 to 5000 SCF / Bbl. The temperature ranges from about 300F to about 750F, preferably from 450F to 600F. Catalysts useful in hydroprocessing operations are well known in the art. Suitable catalysts include noble metals of group VIIIA (according to the 1975 rules of the International Pure Applied Chemistry Association (IUPAC)), such as platinum or palladium on an alumina or silicon matrix, and unsulfurized groups VIIIA and VIB, such as And nickel-molybdenum or nickel-tin on an alumina or silicon matrix. Non-noble metals (such as nickel-molybdenum) hydrides are usually as oxides, more preferably or as possible, and as sulfides when such compounds are readily formed from the specific metals involved. Present in the final catalyst composition. Preferred non-noble metal catalyst compositions are greater than about 5 wt.%, Preferably about 5 to about 40 wt.% Molybdenum and / or tungsten, and at least about 0.5, generally determined as the corresponding oxide. Contains about 1 to about 15 weight percent nickel and / or cobalt. The noble metal (such as platinum) catalyst may contain more than 0.01% metal, preferably 0.1 to 1.0% metal. A combination of noble metals such as a mixture of platinum and palladium may be used.

前処理は、使用される供給原料がアスファルトを含む場合は、選択的に脱アスファルトを行ってもよい。脱アスファルトは、通常は溶剤としてプロパンの使用により遂行されるが、その他の溶剤として、低沸点パラフィン炭化水素、例えば、エタン、ブタン又はペンタンが挙げられてもよい。脱アスファルト技術は精製分野では良く知られているが、Petroleum Refiningのテキストで検討されている。脱アスファルトは、米国特許第6264826号及び第5993644号等の特許に大筋で開示されている。   The pretreatment may be selectively deasphalted when the feedstock used contains asphalt. Deasphalting is usually accomplished by using propane as the solvent, but other solvents may include low boiling paraffin hydrocarbons such as ethane, butane or pentane. Deasphalting techniques are well known in the field of purification, but are discussed in the text of Petroleum Refining. Deasphalting is generally disclosed in patents such as US Pat. Nos. 6,264,826 and 5,993,644.

表示されていない、スラリー反応器システムに対するその他の実施形態としては、反応器の1つ又は複数が、外部分離器ではなく内部分離手段又は反応器に続くフラッシュドラムを含む、一連の反応器が挙げられる。   Other embodiments for a slurry reactor system not shown include a series of reactors in which one or more of the reactors includes an internal separation means or a flash drum following the reactor rather than an external separator. It is done.

Figure 0005081160
Figure 0005081160

上記表から、スラリー水素化分解の生成物の水素化仕上げが、一連の生成物及び、ジェット燃料やディーゼル等の個々の生成物カットにおいて、硫黄及び窒素含有量の劇的な減少を与えることは明らかである。   From the above table, it can be seen that the hydrofinishing of the slurry hydrocracking product provides a dramatic reduction in sulfur and nitrogen content in a range of products and individual product cuts such as jet fuel and diesel. it is obvious.

3つの反応器と、その後に水素化仕上げ反応器を使用する本発明の方法スキームを表す図である。FIG. 2 represents the process scheme of the present invention using three reactors followed by a hydrofinishing reactor. 3つの反応器を使用する、本発明の方法スキームを表す図である。FIG. 3 represents the process scheme of the present invention using three reactors. 同じ方法ループ内で、触媒スラリーを使用する3つの反応器の上流の固定床前処理反応器を使用する、本発明の方法スキームを表す図である。FIG. 3 represents the process scheme of the present invention using a fixed bed pretreatment reactor upstream of three reactors using catalyst slurry in the same process loop.

Claims (21)

スラリーでの重油の水素化転化方法で、前記方法により最終生成物から硫黄又は窒素がほぼ完全に除去され、少なくとも2つの連続した上昇流反応器が、各反応器の間に配置された分離器を伴って使用され、前記方法は以下の工程、すなわち、
(a)加熱した重油供給原料、活性スラリー触媒組成物及び水素含有ガスを組み合わせて混合物を形成する工程、
(b)工程(a)の前記混合物を、高温及び高圧を含む、スラリー水素化転化条件に維持されている前記上昇流反応器の第一反応器の底部へ通す工程、
(c)生成物、ガス、未転化物質及びスラリー触媒を含む蒸気混合物を前記第一反応器の頂部から除去して、それを第一分離器へ通す工程、
(d)前記第一分離器において、生成物及びガス塔頂留分を含む蒸気流を、リーンオイル接触器に向けて除去し、未転化物質及びスラリー触媒を含む液体底部物質を、高温及び高圧を含む、水素化転化条件に維持されている前記上昇流反応器の第二反応器の底部へ通す工程、
(e)生成物、ガス、未転化物質及びスラリー触媒を含む蒸気混合物を前記第二反応器の頂部から除去して、それを第二分離器へ通す工程、
(f)前記第二分離器において、生成物及びガス塔頂留分を含む蒸気流を、リーンオイル接触器に向けて除去し、未転化物質及びスラリー触媒を含む液体底部物質を更なる処理工程へ通す工程、
(g)生成物とガスを含む前記蒸気流をリーンオイル接触器でリーンオイルと向流で接触する工程で、同伴した触媒及び未転化物質が底部物質として出て行くリーンオイルとの接触により除去され、生成物及びガスが塔頂へ通される工程、
(h)工程(g)の塔頂部物質を、硫黄及び窒素の除去のために水素化処理装置へ通す工程
を含む方法。
A process for hydroconversion of heavy oil in a slurry in which sulfur or nitrogen is almost completely removed from the final product by said process and at least two consecutive upflow reactors are arranged between each reactor. Wherein the method comprises the following steps:
(A) combining a heated heavy oil feedstock, an active slurry catalyst composition and a hydrogen-containing gas to form a mixture;
(B) passing the mixture of step (a) through the bottom of the first reactor of the upflow reactor maintained at slurry hydroconversion conditions, including high temperature and pressure,
(C) removing the vapor mixture comprising product, gas, unconverted material and slurry catalyst from the top of the first reactor and passing it to the first separator;
(D) In the first separator, the vapor stream containing the product and gas column top fraction is removed towards a lean oil contactor and the liquid bottom material containing unconverted material and slurry catalyst is removed at high temperature and high pressure. Passing through the bottom of the second reactor of the upflow reactor maintained at hydroconversion conditions,
(E) removing the vapor mixture comprising product, gas, unconverted material and slurry catalyst from the top of the second reactor and passing it to the second separator;
(F) In the second separator, the vapor stream containing the product and gas column top fraction is removed towards the lean oil contactor, and the liquid bottom material containing unconverted material and slurry catalyst is further processed. The process of passing through,
(G) In the step of contacting the vapor stream containing the product and gas with the lean oil contactor in countercurrent with the lean oil, the entrained catalyst and unconverted material are removed by contact with the lean oil leaving as the bottom material. The product and gas are passed to the top of the column,
(H) A method comprising the step of passing the top material of step (g) through a hydrotreater for removal of sulfur and nitrogen.
前記水素化処理装置が、水素化仕上げ条件で操作される、請求項1に記載の方法。  The method of claim 1, wherein the hydrotreating apparatus is operated at hydrofinishing conditions. 前記水素化処理装置が、少なくとも1つの触媒床を含む固定床反応器である、請求項1に記載の方法。  The process of claim 1, wherein the hydrotreater is a fixed bed reactor comprising at least one catalyst bed. クエンチガスが、床入口温度を制御するために床間に導入される、請求項2に記載の方法。  The method of claim 2, wherein a quench gas is introduced between the beds to control the bed inlet temperature. 前記水素化処理装置の少なくとも1つの触媒床が、水素化仕上げ触媒を含む、請求項3に記載の方法。  The method of claim 3, wherein the at least one catalyst bed of the hydrotreater comprises a hydrofinishing catalyst. 水素化仕上げ条件が、400〜800°Fの範囲の温度、0.1〜3LHSVの範囲の空間速度、及び200〜3000psigの範囲の圧力を更に含む、請求項2に記載の方法。  The method of claim 2, wherein the hydrofinishing conditions further comprise a temperature in the range of 400-800 ° F., a space velocity in the range of 0.1-3 LHSV, and a pressure in the range of 200-3000 psig. 水素化仕上げ触媒が、ゼオライト系又はアモルファス支持体上の、コバルト、ニッケル及びモリブデンからなる群から選択される組合せを含む、請求項5に記載の方法。  6. The method of claim 5, wherein the hydrofinishing catalyst comprises a combination selected from the group consisting of cobalt, nickel and molybdenum on a zeolitic or amorphous support. 前記水素化処理装置の入口温度が制御される、請求項1に記載の方法。  The method of claim 1, wherein an inlet temperature of the hydrotreater is controlled. スチーム交換器が、前記水素化処理装置の入口温度を制御するために使用される、請求項8に記載の方法。  The method of claim 8, wherein a steam exchanger is used to control the inlet temperature of the hydrotreater. 工程(f)の前記底部物質が工程(a)へ再循環され、工程(a)の前記混合物が、再循環された未転化物質及びスラリー触媒を更に含む、請求項1に記載の方法。  The method of claim 1, wherein the bottom material of step (f) is recycled to step (a), and the mixture of step (a) further comprises recycled unconverted material and slurry catalyst. 工程(f)の前記底部物質が、高温及び高圧を含む、水素化転化条件で維持されている第三反応器の底部へ通される、請求項1に記載の方法。  The process of claim 1, wherein the bottom material of step (f) is passed to the bottom of a third reactor maintained at hydroconversion conditions, including elevated temperature and pressure. 前記反応器の少なくとも1つが液体再循環反応器である、請求項1に記載の方法。  The process of claim 1, wherein at least one of the reactors is a liquid recycle reactor. 前記再循環反応器がポンプを使用する、請求項12に記載の方法。The method of claim 12 , wherein the recycle reactor uses a pump. 各反応器において使用される水素化処理条件が、1500〜3500psiaの範囲の全圧力及び700〜900°Fの温度を含む、請求項1に記載の方法。  The process of claim 1 wherein the hydroprocessing conditions used in each reactor comprise a total pressure in the range of 1500-3500 psia and a temperature of 700-900 ° F. 前記全圧力が、好ましくは、2000〜3000psiaの範囲にあり、温度が、好ましくは、775〜850°Fの範囲にある、請求項14に記載の方法。15. The method of claim 14 , wherein the total pressure is preferably in the range of 2000 to 3000 psia and the temperature is preferably in the range of 775 to 850 ° F. 各反応器間に配置された前記分離器がフラッシュドラムである、請求項1に記載の方法。  The process of claim 1, wherein the separator disposed between each reactor is a flash drum. 前記重油が、常圧残油、減圧残油、溶剤脱アスファルト装置からのタール、常圧ガス油、減圧ガス油、脱アスファルト油、オレフィン、タールサンド又はビチューメン由来の油、石炭由来の油、重質原油、フィシャー−トロプシュ法からの合成油、並びに回収された油廃棄物及びポリマー由来の油からなる群から選択される、請求項1に記載の水素化転化方法。  The heavy oil is atmospheric residue, reduced pressure residue, tar from solvent deasphalting equipment, normal pressure gas oil, reduced pressure gas oil, deasphalted oil, olefin, tar sand or bitumen derived oil, coal derived oil, heavy oil 2. The hydroconversion process of claim 1 selected from the group consisting of quality crude oil, synthetic oil from Fischer-Tropsch process, and recovered oil waste and polymer derived oil. 水素化分解、水素化処理、水素化脱硫、水素化脱硝、及び水素化脱金属からなる群から選択される、請求項1に記載の水素化転化方法。  The hydroconversion process according to claim 1, wherein the hydroconversion process is selected from the group consisting of hydrocracking, hydrotreating, hydrodesulfurization, hydrodenitration, and hydrodemetallation. 請求項1に記載の活性スラリー触媒組成物が、以下の工程、すなわち、
(a)VIB族金属酸化物と水性アンモニアを混合して、VIB族金属化合物水性混合物を形成する工程、
(b)初期反応帯で、工程(a)の水性混合物を、硫化水素をVIB族金属の1ポンド当たり8SCFを超える量まで含むガスで硫化してスラリーを形成する工程、
(c)前記スラリーをVIII族金属化合物で増進する工程、
(d)工程(c)のスラリーを、212°Fで少なくとも2cStの粘度を有する炭化水素油と混合して中間体混合物を形成する工程、
(e)第二反応帯において、前記中間体混合物中の水を液相で維持する条件下で、前記中間体混合物を水素ガスと組み合わせて、液体炭化水素と混合された活性触媒組成物を形成する工程、及び
(f)前記活性触媒組成物を回収する工程
により調製される、請求項1に記載の方法。
The active slurry catalyst composition of claim 1 comprises the following steps:
(A) mixing a Group VIB metal oxide and aqueous ammonia to form a Group VIB metal compound aqueous mixture;
(B) sulfiding the aqueous mixture of step (a) with a gas containing hydrogen sulfide to an amount greater than 8 SCF per pound of Group VIB metal in the initial reaction zone to form a slurry;
(C) promoting the slurry with a Group VIII metal compound;
(D) mixing the slurry of step (c) with a hydrocarbon oil having a viscosity of at least 2 cSt at 212 ° F. to form an intermediate mixture;
(E) In the second reaction zone, the intermediate mixture is combined with hydrogen gas to form an active catalyst composition mixed with a liquid hydrocarbon under the condition that the water in the intermediate mixture is maintained in a liquid phase. The method of claim 1, prepared by: (f) recovering the active catalyst composition.
重油供給原料の約98重量%が、より軽質な生成物へ転化される、請求項1に記載の方法。  The process of claim 1 wherein about 98 wt% of the heavy oil feedstock is converted to a lighter product. スラリーでの重油の水素化転化方法で、前記方法により最終生成物から硫黄又は窒素がほぼ完全に除去され、少なくとも2つの連続した上昇流反応器が、全反応器の内部に配置され分離器を伴って使用され、前記方法は以下の工程、すなわち、
(a)加熱した重油供給原料、活性スラリー触媒組成物及び水素含有ガスを組み合わせて混合物を形成する工程、
(b)工程(a)の混合物を、高温及び高圧を含む、水素化処理条件に維持されている前記上昇流反応器の第一反応器の底部へ通す工程、
(c)前記第一反応器において、生成物、ガス、未転化物質及びスラリー触媒を含む流れを、生成物及び水素及びその他のガスを含む蒸気流、並びに、未転化物質及びスラリー触媒を含む液体流、の2つの流れに内部で分離する工程、
(d)工程(c)の蒸気流塔頂留分を、リーンオイル接触器に向けて通し、未転化物質及びスラリー触媒を含む前記液体流を、底部流として前記第一反応器から通す工程、
(e)工程(d)の底部流と更なる供給原料油とを組み合わせて中間体混合物とする工程、
(f)工程(e)の中間体混合物を、高温及び高圧を含む水素化処理条件で維持されている、前記上昇流反応器の第二反応器の底部へ通す工程、
(g)前記第二反応器において、生成物、ガス、未転化物質及びスラリー触媒を含む流れを、生成物及び水素及びその他のガスを含む蒸気流、並びに未転化物質及びスラリー触媒を含む液体流、の2つの流れに内部で分離する工程、
(h)工程(g)の蒸気流塔頂留分を、リーンオイル接触器に向けて通し、工程(g)の液体流を、更なる処理工程へ底部流として前記第二反応器から通す工程、
(i)工程(h)のリーンオイル接触器の塔頂流出液を、硫黄及び窒素の除去のために水素化処理装置へ通す工程
を含む方法。
In the hydroconversion process of heavy oil in slurry, the process removes sulfur or nitrogen from the final product almost completely, and at least two continuous upflow reactors are placed inside the whole reactor and the separator Used in conjunction with, the method comprises the following steps:
(A) combining a heated heavy oil feedstock, an active slurry catalyst composition and a hydrogen-containing gas to form a mixture;
(B) passing the mixture of step (a) through the bottom of the first reactor of the upflow reactor maintained at hydroprocessing conditions, including high temperature and pressure,
(C) in said first reactor, a stream comprising product, gas, unconverted material and slurry catalyst, a vapor stream comprising product and hydrogen and other gases, and a liquid comprising unconverted material and slurry catalyst. A process of separating internally into two streams,
(D) passing the vapor stream tower top of step (c) towards a lean oil contactor and passing the liquid stream comprising unconverted material and slurry catalyst from the first reactor as a bottom stream;
(E) combining the bottom stream of step (d) with further feedstock oil to form an intermediate mixture;
(F) passing the intermediate mixture of step (e) through the bottom of the second reactor of the upflow reactor maintained under hydroprocessing conditions including high temperature and pressure;
(G) in said second reactor, a stream comprising product, gas, unconverted material and slurry catalyst, a stream comprising product and hydrogen and other gases, and a liquid stream comprising unconverted material and slurry catalyst. , A process of internally separating the two flows,
(H) passing the vapor stream top fraction of step (g) towards a lean oil contactor and passing the liquid stream of step (g) from the second reactor as a bottom stream to further processing steps. ,
(I) A method comprising the step of passing the top effluent of the lean oil contactor of step (h) through a hydrotreating device for removal of sulfur and nitrogen.
JP2008545695A 2005-12-16 2006-12-08 Consistent method for improving the quality of heavy oil and in-line hydrofinishing method Expired - Fee Related JP5081160B2 (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US11/305,377 2005-12-16
US11/305,378 US7431831B2 (en) 2005-12-16 2005-12-16 Integrated in-line pretreatment and heavy oil upgrading process
US11/305,378 2005-12-16
US11/305,377 US7431823B2 (en) 2005-12-16 2005-12-16 Process for upgrading heavy oil using a highly active slurry catalyst composition
US30342506A 2006-03-20 2006-03-20
US11/303,425 2006-03-20
US11/410,826 2006-04-24
US11/410,826 US7708877B2 (en) 2005-12-16 2006-04-24 Integrated heavy oil upgrading process and in-line hydrofinishing process
PCT/US2006/047007 WO2007078622A2 (en) 2005-12-16 2006-12-08 Integrated heavy oil upgrading process and in-line hydrofinishing process

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012165390A Division JP2012255158A (en) 2005-12-16 2012-07-26 Coherent heavy oil upgrading process and in-line hydrofinishing process

Publications (2)

Publication Number Publication Date
JP2009520063A JP2009520063A (en) 2009-05-21
JP5081160B2 true JP5081160B2 (en) 2012-11-21

Family

ID=38228714

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008545695A Expired - Fee Related JP5081160B2 (en) 2005-12-16 2006-12-08 Consistent method for improving the quality of heavy oil and in-line hydrofinishing method
JP2012165390A Pending JP2012255158A (en) 2005-12-16 2012-07-26 Coherent heavy oil upgrading process and in-line hydrofinishing process

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012165390A Pending JP2012255158A (en) 2005-12-16 2012-07-26 Coherent heavy oil upgrading process and in-line hydrofinishing process

Country Status (10)

Country Link
US (1) US7708877B2 (en)
EP (1) EP1960499A4 (en)
JP (2) JP5081160B2 (en)
KR (1) KR101409594B1 (en)
CN (1) CN101356252B (en)
BR (1) BRPI0619931A2 (en)
CA (1) CA2631855C (en)
EA (1) EA016773B1 (en)
NO (1) NO20083149L (en)
WO (1) WO2007078622A2 (en)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA06012528A (en) 2004-04-28 2007-08-02 Headwaters Heavy Oil Llc Ebullated bed hydroprocessing methods and systems and methods of upgrading an existing ebullated bed system.
US10941353B2 (en) 2004-04-28 2021-03-09 Hydrocarbon Technology & Innovation, Llc Methods and mixing systems for introducing catalyst precursor into heavy oil feedstock
US7931796B2 (en) * 2008-09-18 2011-04-26 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US8435400B2 (en) * 2005-12-16 2013-05-07 Chevron U.S.A. Systems and methods for producing a crude product
WO2009020473A1 (en) * 2007-08-09 2009-02-12 Fluor Technologies Corporation Configurations and methods for fuel gas treatment with total sulfur removal and olefin saturation
US8034232B2 (en) * 2007-10-31 2011-10-11 Headwaters Technology Innovation, Llc Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker
BRPI0820441A2 (en) * 2007-11-09 2015-05-26 Chemchamp Barbados Inc Solvent Recycler
US8142645B2 (en) * 2008-01-03 2012-03-27 Headwaters Technology Innovation, Llc Process for increasing the mono-aromatic content of polynuclear-aromatic-containing feedstocks
US7897036B2 (en) * 2008-09-18 2011-03-01 Chevron U.S.A. Inc. Systems and methods for producing a crude product
WO2010033480A2 (en) * 2008-09-18 2010-03-25 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US7897035B2 (en) * 2008-09-18 2011-03-01 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US9284494B2 (en) * 2008-11-15 2016-03-15 Uop Llc Solids management in slurry hydroprocessing
US20100122934A1 (en) * 2008-11-15 2010-05-20 Haizmann Robert S Integrated Solvent Deasphalting and Slurry Hydrocracking Process
US9062260B2 (en) 2008-12-10 2015-06-23 Chevron U.S.A. Inc. Removing unstable sulfur compounds from crude oil
US8110090B2 (en) * 2009-03-25 2012-02-07 Uop Llc Deasphalting of gas oil from slurry hydrocracking
EP2492006A4 (en) 2009-10-21 2018-05-23 China Petroleum & Chemical Corporation Fluidized-bed reactor and hydrotreating method thereof
US8815184B2 (en) 2010-08-16 2014-08-26 Chevron U.S.A. Inc. Process for separating and recovering metals
KR101917198B1 (en) * 2010-12-20 2019-01-24 셰브런 유.에스.에이.인크. Hydroprocessing catalysts and methods for making thereof
US9115324B2 (en) 2011-02-10 2015-08-25 Expander Energy Inc. Enhancement of Fischer-Tropsch process for hydrocarbon fuel formulation
US9156691B2 (en) 2011-04-20 2015-10-13 Expander Energy Inc. Process for co-producing commercially valuable products from byproducts of heavy oil and bitumen upgrading process
US9169443B2 (en) 2011-04-20 2015-10-27 Expander Energy Inc. Process for heavy oil and bitumen upgrading
US8889746B2 (en) 2011-09-08 2014-11-18 Expander Energy Inc. Enhancement of Fischer-Tropsch process for hydrocarbon fuel formulation in a GTL environment
BR112014005500B1 (en) 2011-09-08 2019-08-20 Expander Energy, Inc FISCHER-TROPSCH PROCESS IMPROVEMENT FOR HYDROCARBON FUEL FORMULATION IN A GTL ENVIRONMENT
US9315452B2 (en) 2011-09-08 2016-04-19 Expander Energy Inc. Process for co-producing commercially valuable products from byproducts of fischer-tropsch process for hydrocarbon fuel formulation in a GTL environment
US9790440B2 (en) * 2011-09-23 2017-10-17 Headwaters Technology Innovation Group, Inc. Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker
WO2013126362A2 (en) 2012-02-21 2013-08-29 4CRGroup LLC Two-zone, close-coupled, heavy oil hydroconversion process utilizing an ebullating bed first zone
CA2776369C (en) 2012-05-09 2014-01-21 Steve Kresnyak Enhancement of fischer-tropsch process for hydrocarbon fuel formulation in a gtl environment
US9644157B2 (en) 2012-07-30 2017-05-09 Headwaters Heavy Oil, Llc Methods and systems for upgrading heavy oil using catalytic hydrocracking and thermal coking
US20140238897A1 (en) * 2013-02-26 2014-08-28 Chevron U.S.A. Inc. Reconfiguration of recirculation stream in upgrading heavy oil
US8815185B1 (en) 2013-03-04 2014-08-26 Chevron U.S.A. Inc. Recovery of vanadium from petroleum coke slurry containing solubilized base metals
US9266730B2 (en) 2013-03-13 2016-02-23 Expander Energy Inc. Partial upgrading process for heavy oil and bitumen
US9127218B2 (en) * 2013-03-26 2015-09-08 Uop Llc Hydroprocessing and apparatus relating thereto
CA2818322C (en) 2013-05-24 2015-03-10 Expander Energy Inc. Refinery process for heavy oil and bitumen
CN105623730B (en) * 2014-10-29 2017-12-22 中国石油化工股份有限公司 A kind of apparatus and method of heavy-oil slurry hydrogenation
CN105623728A (en) * 2014-10-29 2016-06-01 中国石油化工股份有限公司 Two-stage heavy oil slurry-bed reactor hydrogenation equipment and application method
US9567536B2 (en) * 2014-11-03 2017-02-14 Uop Llc Integrated hydrotreating and slurry hydrocracking process
US11414608B2 (en) 2015-09-22 2022-08-16 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor used with opportunity feedstocks
US11414607B2 (en) 2015-09-22 2022-08-16 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor with increased production rate of converted products
US11421164B2 (en) 2016-06-08 2022-08-23 Hydrocarbon Technology & Innovation, Llc Dual catalyst system for ebullated bed upgrading to produce improved quality vacuum residue product
US11118119B2 (en) 2017-03-02 2021-09-14 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor with less fouling sediment
US11732203B2 (en) 2017-03-02 2023-08-22 Hydrocarbon Technology & Innovation, Llc Ebullated bed reactor upgraded to produce sediment that causes less equipment fouling
CN108795487B (en) * 2017-05-05 2020-03-17 中国石油化工股份有限公司 Residual oil hydrotreating method
US10253272B2 (en) * 2017-06-02 2019-04-09 Uop Llc Process for hydrotreating a residue stream
EP3638752A1 (en) 2017-06-15 2020-04-22 Saudi Arabian Oil Company Converting carbon-rich hydrocarbons to carbon-poor hydrocarbons
CN107267198A (en) * 2017-08-11 2017-10-20 南京康鑫成生物科技有限公司 A kind of method that waste lubricating oil liquid-phase hydrogenatin prepares lube base oil
WO2019046355A1 (en) 2017-08-29 2019-03-07 Saudi Arabian Oil Company Integrated residuum hydrocracking and hydrofinishing
RU2758360C2 (en) * 2018-07-02 2021-10-28 Андрей Владиславович Курочкин Installation for hydraulic processing of oil residues
CN109404873A (en) * 2018-09-19 2019-03-01 上海兖矿能源科技研发有限公司 A method of utilizing the hot by-product superheated steam of high-temperature Fischer-Tropsch synthesis reaction
CA3057131A1 (en) 2018-10-17 2020-04-17 Hydrocarbon Technology And Innovation, Llc Upgraded ebullated bed reactor with no recycle buildup of asphaltenes in vacuum bottoms
CN111097514B (en) * 2018-10-29 2022-03-08 中国石油化工股份有限公司 Method for restoring activity of low-activity hydrogenation modified pour point depressing catalyst
TW202117027A (en) 2019-07-08 2021-05-01 美商雪維隆美國有限公司 Metals recovery from spent catalyst
CN114929843A (en) * 2020-01-07 2022-08-19 凯洛格·布朗及鲁特有限公司 VCC slurry mid-stage reactor separation
EP4090718A4 (en) 2020-01-13 2024-02-28 Kellogg Brown & Root Llc Slurry phase reactor with internal vapor-liquid separator

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2909476A (en) * 1954-12-13 1959-10-20 Exxon Research Engineering Co Upgrading of crude petroleum oil
US3215617A (en) * 1962-06-13 1965-11-02 Cities Service Res & Dev Co Hydrogenation cracking process in two stages
US4151070A (en) * 1977-12-20 1979-04-24 Exxon Research & Engineering Co. Staged slurry hydroconversion process
US4591426A (en) * 1981-10-08 1986-05-27 Intevep, S.A. Process for hydroconversion and upgrading of heavy crudes of high metal and asphaltene content
US4457831A (en) * 1982-08-18 1984-07-03 Hri, Inc. Two-stage catalytic hydroconversion of hydrocarbon feedstocks using resid recycle
US4824821A (en) * 1983-08-29 1989-04-25 Chevron Research Company Dispersed group VIB metal sulfide catalyst promoted with Group VIII metal
US5484755A (en) * 1983-08-29 1996-01-16 Lopez; Jaime Process for preparing a dispersed Group VIB metal sulfide catalyst
US4684456A (en) 1985-12-20 1987-08-04 Lummus Crest Inc. Control of bed expansion in expanded bed reactor
US4765882A (en) * 1986-04-30 1988-08-23 Exxon Research And Engineering Company Hydroconversion process
EP0491932A4 (en) * 1990-07-05 1992-12-09 Chevron Research Company A high activity slurry catalyst process
US6270654B1 (en) * 1993-08-18 2001-08-07 Ifp North America, Inc. Catalytic hydrogenation process utilizing multi-stage ebullated bed reactors
US6190542B1 (en) * 1996-02-23 2001-02-20 Hydrocarbon Technologies, Inc. Catalytic multi-stage process for hydroconversion and refining hydrocarbon feeds
CZ297084B6 (en) 1996-07-16 2006-09-13 Chevron U. S. A. Inc. Process for producing lubricating oil base stock
US5985131A (en) 1996-08-23 1999-11-16 Exxon Research And Engineering Company Hydroprocessing in a countercurrent reaction vessel
ZA98586B (en) * 1997-02-20 1999-07-23 Sasol Tech Pty Ltd "Hydrogenation of hydrocarbons".
US6630066B2 (en) * 1999-01-08 2003-10-07 Chevron U.S.A. Inc. Hydrocracking and hydrotreating separate refinery streams
US6554994B1 (en) * 1999-04-13 2003-04-29 Chevron U.S.A. Inc. Upflow reactor system with layered catalyst bed for hydrotreating heavy feedstocks
JP3875001B2 (en) * 1999-07-21 2007-01-31 株式会社神戸製鋼所 Hydrocracking method of heavy petroleum oil
FR2803596B1 (en) * 2000-01-11 2003-01-17 Inst Francais Du Petrole PROCESS FOR THE CONVERSION OF OIL FRACTIONS COMPRISING A HYDROCONVERSION STEP, A SEPARATION STEP, A HYDRODESULFURATION STEP AND A CRACKING STEP
US6726832B1 (en) 2000-08-15 2004-04-27 Abb Lummus Global Inc. Multiple stage catalyst bed hydrocracking with interstage feeds
US6454932B1 (en) 2000-08-15 2002-09-24 Abb Lummus Global Inc. Multiple stage ebullating bed hydrocracking with interstage stripping and separating
CN1098337C (en) 2000-11-02 2003-01-08 中国石油天然气股份有限公司 Normal pressure suspension bed hydrogenation process adopting liquid multiple-metal catalyst
US6890423B2 (en) 2001-10-19 2005-05-10 Chevron U.S.A. Inc. Distillate fuel blends from Fischer Tropsch products with improved seal swell properties
US20050075527A1 (en) 2003-02-26 2005-04-07 Institut Francais Du Petrole Method and processing equipment for hydrocarbons and for separation of the phases produced by said processing
MXPA06012528A (en) * 2004-04-28 2007-08-02 Headwaters Heavy Oil Llc Ebullated bed hydroprocessing methods and systems and methods of upgrading an existing ebullated bed system.

Also Published As

Publication number Publication date
JP2012255158A (en) 2012-12-27
BRPI0619931A2 (en) 2011-10-25
EA016773B1 (en) 2012-07-30
EP1960499A4 (en) 2012-01-25
KR20080080618A (en) 2008-09-04
CA2631855A1 (en) 2007-07-12
NO20083149L (en) 2008-08-26
CA2631855C (en) 2015-02-24
WO2007078622A2 (en) 2007-07-12
US7708877B2 (en) 2010-05-04
EP1960499A2 (en) 2008-08-27
EA200870068A1 (en) 2009-12-30
JP2009520063A (en) 2009-05-21
KR101409594B1 (en) 2014-06-20
WO2007078622A3 (en) 2008-01-17
CN101356252A (en) 2009-01-28
CN101356252B (en) 2013-01-02
US20070138059A1 (en) 2007-06-21

Similar Documents

Publication Publication Date Title
JP5081160B2 (en) Consistent method for improving the quality of heavy oil and in-line hydrofinishing method
US7431831B2 (en) Integrated in-line pretreatment and heavy oil upgrading process
KR101343167B1 (en) Process for Upgrading Heavy Oil Using A Reactor With A Novel Reactor Separation System
CA2632823C (en) Process for upgrading heavy oil using a highly active slurry catalyst composition
US7507326B2 (en) Process for the upgrading of the products of Fischer-Tropsch processes
US20150027924A1 (en) Staged solvent assisted hydroprocessing and resid hydroconversion
GB2385861A (en) Removal of carbon oxides from Fischer-Tropsch products prior to hydroprocessing
JP2002088376A (en) Method and apparatus for hydrocracking
US20090065395A1 (en) Hydrotreating processes for fabricating petroleum distillates from light fischer-tropsch liquids
US8231776B2 (en) Hydrotreating processes for fabricating petroleum distillates from light fischer-tropsch liquids
CN114437777B (en) Method for producing lubricating oil base oil
CN114437804B (en) Hydrocracking method of high-nitrogen raw oil
CN114437799B (en) Hydrocracking method
JPH02153992A (en) Method for hydrocracking of hydrocarbon stock
CN116024005A (en) Residual oil processing method
CN114437774A (en) Hydrocracking method for producing high-quality diesel oil and lubricating oil base oil
CN100594233C (en) Method for producing white microcrystal wax by two-section hydrogenation
MX2008007551A (en) Process for upgrading heavy oil using a highly active slurry catalyst composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120528

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120604

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120628

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees