JP5078228B2 - Fuel cell water recovery mechanism - Google Patents

Fuel cell water recovery mechanism Download PDF

Info

Publication number
JP5078228B2
JP5078228B2 JP2005009393A JP2005009393A JP5078228B2 JP 5078228 B2 JP5078228 B2 JP 5078228B2 JP 2005009393 A JP2005009393 A JP 2005009393A JP 2005009393 A JP2005009393 A JP 2005009393A JP 5078228 B2 JP5078228 B2 JP 5078228B2
Authority
JP
Japan
Prior art keywords
fuel cell
recovery mechanism
water recovery
anode electrode
tubular body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005009393A
Other languages
Japanese (ja)
Other versions
JP2006196412A (en
Inventor
徹 尾崎
文晴 岩崎
一貴 譲原
恒昭 玉地
孝史 皿田
考応 柳瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2005009393A priority Critical patent/JP5078228B2/en
Publication of JP2006196412A publication Critical patent/JP2006196412A/en
Application granted granted Critical
Publication of JP5078228B2 publication Critical patent/JP5078228B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、固体高分子型燃料電池(以下燃料電池と記載)に係り、さらに詳しくは、外部から電力供給を受けることなく、かつ燃料電池がいかなる姿勢であっても、アノード極に滞留した水を回収する水回収機構に関する。   The present invention relates to a polymer electrolyte fuel cell (hereinafter referred to as a fuel cell), and more specifically, water staying in an anode electrode without receiving external power supply and in any posture. The present invention relates to a water recovery mechanism for recovering water.

なお、以下で特に断りのない限り、本明細書では供給された燃料を用いて発電する発電部のことを燃料電池と表記し、上記発電部と燃料を貯蔵、供給する燃料部を合わせて燃料電池システムと表記する。   Unless otherwise specified below, in this specification, a power generation unit that generates power using the supplied fuel is referred to as a fuel cell, and the power generation unit and the fuel unit that stores and supplies the fuel are combined. Indicated as a battery system.

燃料電池システムであって、特に燃料電池のアノード極へ水素リッチガスを導入して膜電極接合体(以下MEAと記載)で発電する燃料電池システムにおいて、水素リッチガスに含まれる水蒸気の凝縮やカソード極で生成された水の逆拡散により、アノード極のガス流路に滞留した水あるいは水溶液(以下アノード極滞留水と記載)がガス流路を閉塞することで、出力の低下あるいは発電停止が起こる、という問題があった。これに対して、従来は燃料電池全体を傾けてアノード極滞留水を排出していた(例えば特許文献1参照。)。また、ガス流路中に圧縮した空気を導入してアノード極滞留水を除去する水透過膜式除湿器を備えた機構が考案されている(例えば特許文献2参照。)。
特開2004−207106号公報 特開2004−71348号公報
In particular, in a fuel cell system in which hydrogen-rich gas is introduced into the anode electrode of a fuel cell and power is generated by a membrane electrode assembly (hereinafter referred to as MEA), the condensation of water vapor contained in the hydrogen-rich gas or the cathode electrode According to the reverse diffusion of the generated water, the water or aqueous solution (hereinafter referred to as anode electrode stagnant water) retained in the gas flow path of the anode block the gas flow path, resulting in a decrease in output or power generation stoppage. There was a problem. In contrast, conventionally, the anode electrode stagnant water has been discharged by tilting the entire fuel cell (see, for example, Patent Document 1). Further, a mechanism having a water permeable membrane type dehumidifier that introduces compressed air into the gas flow path to remove the anode electrode stagnant water has been devised (for example, see Patent Document 2).
JP 2004-207106 A JP 2004-71348 A

ところが前記特許文献1の機構では、燃料電池システムの運転中に燃料電池を一定の姿勢に保つ必要があり、特に運転中常に姿勢の変わる小型携帯用の燃料電池システムには不適である。また前記特許文献2の機構では、姿勢の変化によるアノード極滞留水の排出機能の減退は無いが、補器として空気圧縮機能を具備した水透過膜式除湿器を必要とするため、燃料電池システム全体の体積及び重量が大型となり、特に小型携帯用の燃料電池システムには不適である。また電力を供給して駆動する前記補機を搭載することにより燃料電池システム全体の体積エネルギ密度の点からも不利である。   However, the mechanism of Patent Document 1 needs to keep the fuel cell in a certain posture during operation of the fuel cell system, and is not particularly suitable for a small portable fuel cell system whose posture always changes during operation. Further, in the mechanism of Patent Document 2, there is no decrease in the function of discharging anode stagnant water due to the change in posture, but a water permeable membrane type dehumidifier having an air compression function is required as an auxiliary device. The overall volume and weight are large, which is particularly unsuitable for small portable fuel cell systems. Moreover, it is disadvantageous from the viewpoint of the volume energy density of the whole fuel cell system by mounting the auxiliary machine that is driven by supplying electric power.

そこで本発明は前記課題を鑑みてなされたものであり、本願発明1の燃料電池の水回収機構の特徴は、プロトン導電性を有する樹脂からなる電解質と前記電解質の両面に配置される触媒層とからなる膜電極接合体と、それぞれガス拡散層と集電体層からなるアノード極及びカソード極とから構成される発電部と、前記発電部に接続され、前記発電部に導入する水素リッチガスを発生する水素発生部と、前記アノード極に備えられ、前記アノード極内で生成され滞留する滞留水が排出される排出口と、前記排出口から前記アノード極の内部に導入される管体と、前記アノード極内の前記管体の末端部が鉛直方向下向きで前記滞留水に常時接することができるように保持する姿勢吸収構造を有することを要旨とする。 Therefore, the present invention has been made in view of the above problems, and the features of the water recovery mechanism of the fuel cell of the present invention 1 are characterized in that an electrolyte composed of a resin having proton conductivity and a catalyst layer disposed on both surfaces of the electrolyte are provided. Generating a hydrogen-rich gas connected to the power generation unit and introduced into the power generation unit, and a power generation unit composed of an anode electrode and a cathode electrode each consisting of a gas diffusion layer and a current collector layer A hydrogen generation unit that is provided in the anode electrode, a discharge port that discharges the accumulated water that is generated and stays in the anode electrode, a pipe body that is introduced into the anode electrode from the discharge port, and The gist of the invention is to have a posture absorbing structure that holds the end of the tubular body in the anode pole so as to be always in contact with the stagnant water in a vertically downward direction.

また、本願発明2の燃料電池の水回収機構の特徴は、本願発明1の特徴に記載の燃料電池の水回収機構であって、前記姿勢吸収構造は、前記管体の末端部が前記アノード極の内部を自在に動く可動構造を有し、前記可動構造は、前記排出口を中心として前記管体の末端部が前記アノード極の内部を回転自在に動く回転構造であることを要旨とする。 The fuel cell water recovery mechanism according to the second aspect of the present invention is characterized in that the fuel cell water recovery mechanism according to the first aspect of the present invention is characterized in that the end portion of the tubular body has the anode electrode. The movable structure has a movable structure that freely moves in the interior of the tube, and the movable structure is a rotating structure in which a distal end portion of the tubular body moves freely in the anode electrode around the discharge port.

また、本願発明3の燃料電池の水回収機構の特徴は、本願発明2の特徴に記載の燃料電池の水回収機構であって、前記回転構造は、前記排出口から前記アノード極に導入された屈曲部と回転軸部とを備える前記管体と、前記排出口に設置され、前記回転軸部を保持する回転軸保持部とを有することを要旨とする。Further, the feature of the water recovery mechanism of the fuel cell according to the third aspect of the present invention is the water recovery mechanism of the fuel cell according to the characteristic of the second aspect of the present invention, wherein the rotating structure is introduced into the anode electrode from the discharge port. The gist of the present invention is to include the tubular body including a bent portion and a rotating shaft portion, and a rotating shaft holding portion that is installed in the discharge port and holds the rotating shaft portion.

また、本願発明4の燃料電池の水回収機構の特徴は、本願発明3の特徴に記載の燃料電池の水回収機構であって、前記回転軸保持部が軸受であって、前記排出口と前記軸受の間にガスシール材を有することを要旨とする。A feature of the water recovery mechanism of the fuel cell according to the fourth aspect of the present invention is the water recovery mechanism of the fuel cell according to the characteristic of the third aspect of the present invention, wherein the rotating shaft holding portion is a bearing, and the discharge port and the The gist is to have a gas sealing material between the bearings.

また、本願発明5の燃料電池の水回収機構の特徴は、本願発明3の特徴に記載の燃料電池の水回収機構であって、前記管体は、前記屈曲部に錘を有することを要旨とする。The feature of the fuel cell water recovery mechanism of the present invention 5 is the fuel cell water recovery mechanism described in the feature of the present invention 3, wherein the tubular body has a weight at the bent portion. To do.

また、本願発明6の燃料電池の水回収機構の特徴は、本願発明3の特徴に記載の燃料電池の水回収機構であって、前記管体は、前記回転軸部の回転軸と同軸上に設置され、重心が前記回転軸から偏った位置にある回転錘を有することを要旨とする。The feature of the water recovery mechanism of the fuel cell according to the sixth aspect of the invention is the water recovery mechanism of the fuel cell according to the feature of the third aspect of the invention, in which the tubular body is coaxial with the rotation axis of the rotary shaft portion. The gist is to have a rotating weight that is installed and whose center of gravity is offset from the rotation axis.

また、本願発明7の燃料電池の水回収機構の特徴は、本願発明6の特徴に記載の燃料電池の水回収機構であって、前記回転錘は、扇形状であることを要旨とする。The feature of the water recovery mechanism of the fuel cell according to the seventh aspect of the present invention is the water recovery mechanism of the fuel cell according to the characteristic of the sixth aspect of the present invention, wherein the rotating weight has a fan shape.

また、本願発明8の燃料電池の水回収機構の特徴は、本願発明2の特徴に記載の燃料電Further, the feature of the water recovery mechanism of the fuel cell of the present invention 8 is that of the fuel cell described in the feature of the present invention 2. 池の水回収機構であって、前記回転構造は、前記排出口からアノード極に導入された屈A water recovery mechanism for a pond, wherein the rotating structure is bent to the anode electrode from the discharge port. 曲部が伸縮性を有し、錘を備える前記管体を備えることを要旨とする。The gist of the present invention is that the curved portion has elasticity and includes the tubular body including a weight.

また、本願発明9の燃料電池の水回収機構の特徴は、本願発明8の特徴に記載の燃料電池の水回収機構であって、前記屈曲部が伸縮自在の材質であることを要旨とする。The fuel cell water recovery mechanism according to the ninth aspect of the present invention is characterized by the fuel cell water recovery mechanism according to the eighth aspect of the present invention, in which the bent portion is made of an elastic material.

また、本願発明10の燃料電池の水回収機構の特徴は、本願発明8の特徴に記載の燃料電池の水回収機構であって、前記屈曲部がベローズ構造であることを要旨とする。 A feature of the fuel cell water recovery mechanism of the present invention 10 is the fuel cell water recovery mechanism described in the feature of the present invention 8, wherein the bent portion has a bellows structure .

また、本願発明11の燃料電池の水回収機構の特徴は、本願発明2から10の特徴のいずれかに記載の燃料電池の水回収機構であって、前記アノード極の内部の前記管体は被拘束体を有し、前記アノード極の内部は、前記被拘束体の動きの方向を拘束する拘束体を有することを要旨とする。A feature of the fuel cell water recovery mechanism of the present invention 11 is the fuel cell water recovery mechanism according to any of the features of the present invention 2 to 10, wherein the tube inside the anode electrode is covered. The gist of the invention is that it has a restraining body, and the inside of the anode electrode has a restraining body for restraining the direction of movement of the restrained body.

本発明に係る固体高分子型燃料電池システムによれば、アノード極における水の滞留を解消し、連続運転時間の向上および出力の向上が実現される。   According to the polymer electrolyte fuel cell system of the present invention, water retention in the anode electrode is eliminated, and continuous operation time and output are improved.

また水回収機構として、外部の電力投入を必要としない受動型水素発生機構から発生した水素のガス圧を用いることから、ポンプやブロアといった補器を必要とする従来の水回収機構に対して燃料電池全体の体積エネルギ密度の向上が実現される。   The water recovery mechanism uses the hydrogen gas pressure generated from a passive hydrogen generation mechanism that does not require external power input. Therefore, the fuel recovery mechanism is more fuel than conventional water recovery mechanisms that require auxiliary equipment such as pumps and blowers. Improvement of the volume energy density of the whole battery is realized.

またガス圧により水を押し出して回収する機構であり、さらに燃料電池システムがいかなる姿勢であっても水を回収する管体の末端が常に下向きに位置することが可能であり、アノード極の内部に滞留した水に常時接することのできる構成であるため、燃料電池の姿勢に関わらず水を回収することが可能で、上記効果を得ることができる。   In addition, it is a mechanism that pushes and collects water by gas pressure, and the end of the tube that collects water can always be positioned downward regardless of the posture of the fuel cell system. Since it is the structure which can always contact the water which stayed, water can be collect | recovered irrespective of the attitude | position of a fuel cell, and the said effect can be acquired.

以下、本発明に係る燃料電池システムの水回収機構の実施形態を、図面を参照して詳細に説明する。図面において同一の引用符号で表した構成要素は、各図面共通で同一の構成要素を示すものとする。   Hereinafter, an embodiment of a water recovery mechanism of a fuel cell system according to the present invention will be described in detail with reference to the drawings. Constituent elements represented by the same reference numerals in the drawings are common to the drawings and indicate the same constituent elements.

図1は、本発明に係る燃料電池の水回収機構の構成図を示したものであり、本発明の基本形例である。図1において固体高分子型燃料電池101は、発電セル102と後述するアノード極滞留水回収部103という2つの部分から構成されている。   FIG. 1 shows a configuration diagram of a water recovery mechanism for a fuel cell according to the present invention, which is a basic example of the present invention. In FIG. 1, the polymer electrolyte fuel cell 101 is composed of two parts: a power generation cell 102 and an anode electrode stagnant water recovery unit 103 described later.

まず図1に示した発電セル102について説明する。発電セル102は、カソード押さえ板104、カソード集電板105とMEA106と、アノード集電板107とアノード室108で構成される。   First, the power generation cell 102 shown in FIG. 1 will be described. The power generation cell 102 includes a cathode holding plate 104, a cathode current collector plate 105, an MEA 106, an anode current collector plate 107, and an anode chamber 108.

アノード室108には図示しない水素リッチガスの導入口が設置されており、燃料部と接続されている。   The anode chamber 108 is provided with a hydrogen rich gas inlet (not shown) and connected to the fuel section.

上述の燃料部では図示しない水素発生物質と図示しない水素発生促進物質を混合することで水素を発生する構成となっている。水素発生物質と水素発生促進物質の組み合わせとしては、好ましくは水素化ホウ素ナトリウムとリンゴ酸水溶液であるが、水素発生物質は加水分解型の金属水素化物であれば全て適用可能で、水素発生促進物質は有機酸および無機酸あるいはルテニウムなど、水素発生触媒であれば全て適用可能である。さらに水素発生物質が水素化ホウ素ナトリウム水溶液で水素発生促進物質がリンゴ酸粉末というように、水素発生物質と水素発生促進物質の組み合わせは、混合することによって水素を発生する物質であれば全て適用可能である。また水素発生部に用いられる反応としては、金属と塩基性あるいは酸性水溶液の組み合わせであっても良い。さらに水素発生部においては、アルコール、エーテル、ケトン類を改質して水素を得るメタノール改質型や、ガソリン、灯油、天然ガスといった炭化水素を改質して水素を得る炭化水素改質型など、水素を発生する構成であれば全て適用可能である。   The fuel section described above is configured to generate hydrogen by mixing a hydrogen generating substance (not shown) and a hydrogen generation promoting substance (not shown). The combination of the hydrogen generating substance and the hydrogen generation promoting substance is preferably sodium borohydride and malic acid aqueous solution, but any hydrogen generating substance can be applied as long as it is a hydrolyzed metal hydride. Is applicable to all hydrogen generating catalysts such as organic acids and inorganic acids or ruthenium. Furthermore, any combination of hydrogen generators and hydrogen generation accelerators can be used as long as they generate hydrogen by mixing, such as sodium borohydride aqueous solution and malic acid powder as hydrogen generation accelerator. It is. The reaction used for the hydrogen generating part may be a combination of a metal and a basic or acidic aqueous solution. Furthermore, in the hydrogen generator, a methanol reforming type that reforms alcohol, ether, and ketones to obtain hydrogen, and a hydrocarbon reforming type that reforms hydrocarbons such as gasoline, kerosene, and natural gas to obtain hydrogen. Any structure that generates hydrogen can be applied.

さらに図示しない燃料部における水素の発生は、燃料部とアノード室108の間の圧力や温度といった、状態の差異によって制御される構成であれば全て適用可能である。例えばアノード室108の内圧にしきい値を設け、しきい値以上の圧力であれば上述した水素発生物質と水素発生促進物質の混合が行われず、水素が発生しない動作制御として、逆にしきい値以下の圧力であれば上述した水素発生物質と水素発生促進物質を混合する動作制御とする。上記制御とすることで、発電中でアノード室108内に水素が十分存在する場合は水素の供給が停止し、後述するようにMEA106にてアノード室108内の水素が消費されるとアノード室108の内圧が減圧され、燃料部は水素を発生させる間欠駆動となる。好ましくは上記制御に外部動力を用いず、燃料部とアノード室108の差圧によってのみ動作が受動的に制御される構成である。   Further, the generation of hydrogen in the fuel part (not shown) can be applied to any structure that is controlled by the difference in state such as the pressure and temperature between the fuel part and the anode chamber 108. For example, a threshold value is provided for the internal pressure of the anode chamber 108, and if the pressure is equal to or higher than the threshold value, the above-described hydrogen generating substance and hydrogen generation promoting substance are not mixed, and as an operation control in which hydrogen is not generated, conversely below the threshold value. If the pressure is such that the hydrogen generation substance and the hydrogen generation promoting substance are mixed, the operation control is performed. With the above control, when sufficient hydrogen is present in the anode chamber 108 during power generation, the supply of hydrogen is stopped, and when the hydrogen in the anode chamber 108 is consumed by the MEA 106 as described later, the anode chamber 108 The internal pressure is reduced, and the fuel portion is intermittently driven to generate hydrogen. Preferably, the operation is passively controlled only by the differential pressure between the fuel portion and the anode chamber 108 without using external power for the control.

アノード室108に設置される図示しない導入口から導入された水素リッチガスはMEA106のアノード側触媒層で(式1)の反応により電子が取り出される。一方、プロトンはMEAを透過してカソード側触媒層へ移動する。   Hydrogen-rich gas introduced from an inlet (not shown) installed in the anode chamber 108 is extracted from the anode side catalyst layer of the MEA 106 by the reaction of (Formula 1). On the other hand, protons pass through the MEA and move to the cathode catalyst layer.

H2→2H++2e- (式1)上述したようにアノード側触媒層で分離した電子はアノード集電板107を用いて外部に取り出され、電力が得られる。MEAを透過してカソード側へ移動したプロトンは、カソード側触媒層上で(式2)の反応により水を生成する。(式2)で電子は、カソード集電板105から供給され、酸素は外部から供給される。 H 2 → 2H + + 2e (Formula 1) As described above, the electrons separated in the anode side catalyst layer are taken out to the outside using the anode current collector plate 107, and electric power is obtained. Protons that have passed through the MEA and moved to the cathode side generate water by the reaction of (Formula 2) on the cathode side catalyst layer. In (Formula 2), electrons are supplied from the cathode current collector plate 105, and oxygen is supplied from the outside.

2H++2e-+O2→2H2O (式2)
上述したMEA106とカソード集電板105、あるいはMEA106とアノード集電板107の間には図示しないカーボンペーパーなどのガス拡散層が設置されていても良い。
2H + + 2e + O 2 → 2H 2 O (Formula 2)
A gas diffusion layer such as carbon paper (not shown) may be provided between the MEA 106 and the cathode current collector plate 105 described above or between the MEA 106 and the anode current collector plate 107.

上述した発電セル102は図1に示すようにカソード押さえ板からアノード室108までを重ねて固定され、特にアノード室108からの水素リッチガス漏れを低減する必要がある。発電セル102の固定方法としては、好ましくは上記発電セル102の外周部をネジで締結することにより、その締付け力で固定するが、板バネのバネ力、磁石の磁力、接着剤の接着力等、アノード室からの水素リッチガスのリークが低減される方法であれば、全て適用可能である。また、アノード室108とアノード集電板107の間、あるいはアノード集電板107とMEA106の間等、特に水素リッチガスリークを防止する必要のある箇所については、図示しないガスケットを配置する構成としても良い。また上記ガスケットの材質としては、好ましくはシリコンゴムが採用されるが、ブチルゴム、ニトリルゴム等、ガスシール性に優れた材質であれば全て適用可能である。   As shown in FIG. 1, the power generation cell 102 described above is fixed by overlapping the cathode holding plate to the anode chamber 108, and in particular, it is necessary to reduce hydrogen-rich gas leakage from the anode chamber 108. As a method for fixing the power generation cell 102, the outer periphery of the power generation cell 102 is preferably fixed with a screw to fix the power generation cell 102. The spring force of the leaf spring, the magnetic force of the magnet, the adhesive force of the adhesive, etc. Any method that can reduce the leakage of hydrogen-rich gas from the anode chamber is applicable. Further, a gasket (not shown) may be arranged at a portion where it is necessary to prevent hydrogen-rich gas leakage, such as between the anode chamber 108 and the anode current collector plate 107 or between the anode current collector plate 107 and the MEA 106. . Silicone rubber is preferably used as the material for the gasket, but any material can be used as long as it has excellent gas sealing properties such as butyl rubber and nitrile rubber.

上述した発電セル102の構成は、以下の各図において共通である。   The configuration of the power generation cell 102 described above is common in the following drawings.

次に図1のアノード極滞留水回収部103について説明する。アノード極滞留水回収部103は、管体109と軸受111と軸受固定具110と回転錘112と回収容器113から構成される。   Next, the anode stagnant water recovery unit 103 in FIG. 1 will be described. The anode pole stagnant water recovery unit 103 includes a tube body 109, a bearing 111, a bearing fixture 110, a rotary weight 112, and a recovery container 113.

上記(式2)で説明したカソード側触媒層上で生成された水のうち、一部はMEA106の基材である固体高分子膜中を逆拡散してアノード室108で凝縮してアノード極滞留水となる。さらに図示しない導入口から導入される水素リッチガスが多湿ガスである場合は、水素リッチガスに含まれる水蒸気がアノード室108で凝縮してアノード極滞留水となる。   Part of the water produced on the cathode side catalyst layer described in (Formula 2) is back-diffused in the solid polymer film that is the base material of the MEA 106 and condensed in the anode chamber 108 to stay in the anode pole. It becomes water. Further, when the hydrogen-rich gas introduced from the inlet not shown is a humid gas, water vapor contained in the hydrogen-rich gas is condensed in the anode chamber 108 to become anode electrode stagnant water.

上述したように、アノード室108の内圧はしきい値を境に間欠的に陽圧、陰圧を繰り返す。通常時、アノード室108と回収容器113は管体109を介して接続されているので同じ内圧V0である。アノード室内106に水が凝縮して管体109の先端を塞ぐと回収容器113の内圧はV0に維持されるが、一方でアノード室108の内圧は水素が供給され陽圧V1となり、アノード室108と回収容器113の内圧に差圧が生じる(V1 > V0
。よってアノード室108内部のアノード極滞留水は、管体109を介して回収容器113へ移動する。
As described above, the internal pressure of the anode chamber 108 repeats positive pressure and negative pressure intermittently at the threshold value. Normally, an anode chamber 108 and the collection container 113 is the same pressure V 0 because it is connected via a tube 109. When water condenses in the anode chamber 106 and closes the tip of the tube body 109, the internal pressure of the recovery container 113 is maintained at V 0 , while the internal pressure of the anode chamber 108 is supplied with hydrogen to become a positive pressure V 1 , A differential pressure is generated in the internal pressure of the chamber 108 and the recovery container 113 (V 1 > V 0 ).
. Accordingly, the anode electrode staying water inside the anode chamber 108 moves to the recovery container 113 through the pipe body 109.

管体109は、アノード室108の内部で、鉛直下向きに屈曲しており、少量のアノード極滞留水でも回収できる構造となっている。一方管体109の回収容器側末端は上述したアノード室末端のように屈曲した構造とせず、回収容器の水位が管体109の回収容器側末端と同じ高さになるまでは水の逆流を防ぐ構造とする。また、管体109の材質は耐薬品性と耐久性に優れた材質であれば全て適用可能であるが、特に好ましくはステンレスを用いることを特徴とする。   The pipe body 109 is bent vertically downward inside the anode chamber 108 and has a structure capable of collecting even a small amount of anode pole accumulated water. On the other hand, the collection container side end of the tube body 109 is not bent like the above-mentioned anode chamber end, and the backflow of water is prevented until the water level of the collection container becomes the same height as the collection container side end of the tube body 109. Structure. Any material can be applied to the tube body 109 as long as it is excellent in chemical resistance and durability, but stainless steel is particularly preferable.

また管体109に開けられた穴は、筒状に開けられ、管体の任意の部位においても同じ大きさの開口形状である構造であっても良いし、先端に向かって、開口径に勾配がついている円錐形状の構造であってもよい。さらに、管体先端部の任意の部位を境に穴の径が細くなる、ニードル形状の構造であっても良い。   Further, the hole formed in the tube body 109 may be formed in a cylindrical shape, and may have a structure having an opening shape of the same size at any part of the tube body, or the opening diameter is inclined toward the tip. It may be a conical structure with. Furthermore, it may be a needle-shaped structure in which the diameter of the hole is narrowed at an arbitrary part of the tube tip.

また管体109の先端部の断面は、アノード室及び回収容器内壁と平行であっても良いし、斜めに切られても良い。   Further, the cross section of the distal end portion of the tube body 109 may be parallel to the anode chamber and the inner wall of the recovery container, or may be cut obliquely.

軸受111は管体109が通されており、軸受固定具110でアノード室108に固定された構造である。上記構造とすることで、管体109はアノード室108内部で回転自在であり、燃料電池101がいかなる姿勢であっても管体109のアノード室側末端が、その屈曲部の重量により常に鉛直下向きを向くことができ、アノード極滞留水を回収することができる。軸受111は管体109を低摩擦で回転自在とする軸受であれば全て適用可能であるが、好ましくは構造的に小型化に適する小径玉軸受であることを特徴とし、また外部へのガスリークを防止するためにラビリンスシール等が備えられたシールド形である構造が好ましい。また、アノード室108と軸受111あるいは軸受111と管体109の間における水素リッチガスの漏洩を防止するためにガスリーク材が設置された構成としても良い。   The bearing 111 has a structure in which a pipe body 109 is passed and is fixed to the anode chamber 108 by a bearing fixture 110. By adopting the above structure, the tube body 109 is rotatable inside the anode chamber 108, and the anode chamber side end of the tube body 109 is always vertically downward depending on the weight of the bent portion, regardless of the posture of the fuel cell 101. The anode electrode staying water can be recovered. The bearing 111 can be applied to any bearing that allows the tube body 109 to rotate freely with low friction, but is preferably a small-diameter ball bearing that is structurally suitable for downsizing and prevents gas leakage to the outside. In order to prevent this, a shield-type structure provided with a labyrinth seal or the like is preferable. Further, a gas leak material may be installed in order to prevent leakage of hydrogen rich gas between the anode chamber 108 and the bearing 111 or between the bearing 111 and the pipe body 109.

一方図1の回収容器113と管体109は固定されており、管体109の屈曲部と同期して、発電セル102に対して回転自在である。   On the other hand, the recovery container 113 and the tube body 109 in FIG. 1 are fixed, and are rotatable with respect to the power generation cell 102 in synchronization with the bent portion of the tube body 109.

回転錘112は管体109に固定されており、管体109の屈曲部の回転力を増進する回転力増進機構として作用する。回転錘112の形状は、管体109の回転軸に対して、偏った重心を持つ形状であれば全て適用可能であるが、より円滑な回転を発生させるためには、好ましくは図10に示すような扇形状であることを特徴とする。回転錘112と管体109の接続は、両者が固定され回転ずれが起こらない方法であれば全ての接続方法が適用可能であるが、好ましくははめあい、溶接などで接続される。   The rotary weight 112 is fixed to the tube body 109, and acts as a rotational force enhancement mechanism that enhances the rotational force of the bent portion of the tube body 109. Any shape can be applied to the rotating weight 112 as long as it has an eccentric center of gravity with respect to the rotation axis of the tube body 109. However, in order to generate a smoother rotation, it is preferable to use the shape shown in FIG. It is characterized by such a fan shape. Any connection method can be applied to the connection between the rotary weight 112 and the tube body 109 as long as they are fixed and no rotational deviation occurs. However, the connection is preferably performed by fitting, welding, or the like.

上記回収容器113に蓄積されたアノード極滞留水は、回収容器に設置された循環機構により燃料部へ循環されても良い。上記循環機構は、アノード極滞留水を回収容器113から排出し、燃料部へ移動させる構造であれば全て適用可能であるが、好ましくは回収容器113と燃料部の内圧の差圧によって、外部からの電力供給を必要とせずに受動的に動作する機構であることを特徴とする。   The anode pole accumulated water accumulated in the recovery container 113 may be circulated to the fuel part by a circulation mechanism installed in the recovery container. The above circulation mechanism can be applied to any structure that discharges anode stagnant water from the recovery container 113 and moves it to the fuel part. Preferably, the circulation mechanism is externally provided by a differential pressure between the internal pressure of the recovery container 113 and the fuel part. It is a mechanism that operates passively without the need for power supply.

図2に、本発明の燃料電池の水回収機構の第1の変形例を示す。図2において、図1に示した構成要素と、構成、機能、動作が同一の構成要素に関しては、同一の引用符号を示し、重複を避けるため詳細な説明は割愛する。   FIG. 2 shows a first modification of the water recovery mechanism of the fuel cell of the present invention. In FIG. 2, components having the same configuration, function, and operation as those shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted to avoid duplication.

図2に示した燃料電池101は、図1の燃料電池101と異なり、回収容器113が軸受202と、軸受202を固定する軸受固定具201を備えることを特徴とする。軸受202には管体109が通され、上記構造により、回収容器113は燃料電池101がいかなる姿勢であっても常に発電セル102に対して静止する。よって発電セル102と回収容器113を同一平面上に固定することができ、回収容器113から図示しない燃料部へ接続する循環機構の設置を容易とする。   The fuel cell 101 shown in FIG. 2 is characterized in that, unlike the fuel cell 101 of FIG. 1, the collection container 113 includes a bearing 202 and a bearing fixture 201 that fixes the bearing 202. The tube body 109 is passed through the bearing 202. With the above structure, the recovery container 113 is always stationary with respect to the power generation cell 102 regardless of the posture of the fuel cell 101. Therefore, the power generation cell 102 and the recovery container 113 can be fixed on the same plane, and the installation of a circulation mechanism that connects the recovery container 113 to a fuel unit (not shown) is facilitated.

図3に、本発明の燃料電池の水回収機構の第2の変形例を示す。図3において、図1、2に示した構成要素と、構成、機能、動作が同一の構成要素に関しては、同一の引用符号を示し、重複を避けるため詳細な説明は割愛する。   FIG. 3 shows a second modification of the water recovery mechanism of the fuel cell of the present invention. 3, components having the same configuration, function, and operation as those shown in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted to avoid duplication.

図3に示した燃料電池101は、図1、2の少なくともいずれかに記載されている燃料電池101と異なり、アノード室108内で屈曲部を持つ管体109ではなく、アノード室108内と回収容器113内のいずれについても屈曲部を持つ管体203を用いる。上記管体203の回収容器113側の屈曲部は、任意の方向に屈曲しても良いが、好ましくは、アノード室108側の屈曲方向と180度異なる向きに屈曲していることを特徴とする。上記構成により、アノード室108側の屈曲部が常に鉛直下向きに回転することから、回収容器113側の屈曲方向は常に鉛直上向きに配置されることとなり、回収容器113へ回収されたアノード極滞留水が再びアノード室108へ逆流することを防止する構造とすることができる。   The fuel cell 101 shown in FIG. 3 is different from the fuel cell 101 described in at least one of FIGS. 1 and 2, and is not collected in the anode chamber 108 but in the tube body 109 having a bent portion in the anode chamber 108. A tube 203 having a bent portion is used for any of the containers 113. The bent portion on the collection container 113 side of the tubular body 203 may be bent in an arbitrary direction, but is preferably bent in a direction different from the bent direction on the anode chamber 108 side by 180 degrees. . With the above configuration, since the bent portion on the anode chamber 108 side always rotates vertically downward, the bending direction on the collection vessel 113 side is always arranged vertically upward, and the anode pole stagnant water collected in the collection vessel 113 is Can be prevented from flowing back into the anode chamber 108 again.

図4に、本発明の燃料電池の水回収機構の第3の変形例を示す。図4において、図1乃至3に示した構成要素と、構成、機能、動作が同一の構成要素に関しては、同一の引用符号を示し、重複を避けるため詳細な説明は割愛する。   FIG. 4 shows a third modification of the fuel cell water recovery mechanism of the present invention. 4, components having the same configuration, function, and operation as those shown in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof is omitted to avoid duplication.

図4に示した燃料電池101は、図1乃至3の少なくともいずれかに記載されている燃料電池101と異なり、回転力増進機構として回転錘112の代替として管体109の末端に重量を持つ錘401を備えた構成である。上記構成とすることで、回転力増進機構を小型化することが可能で、燃料電池101全体の小型化とレイアウトを容易とする。   The fuel cell 101 shown in FIG. 4 is different from the fuel cell 101 described in at least one of FIGS. 1 to 3 in that a weight having a weight at the end of the tube body 109 as an alternative to the rotating weight 112 as a rotational force enhancement mechanism 401 is provided. With the above configuration, it is possible to reduce the size of the rotational force increasing mechanism, and to facilitate the size reduction and layout of the fuel cell 101 as a whole.

図5に、本発明の燃料電池の水回収機構の第4の変形例を示す。図5において、図1乃至4に示した構成要素と、構成、機能、動作が同一の構成要素に関しては、同一の引用符号を示し、重複を避けるため詳細な説明は割愛する。   FIG. 5 shows a fourth modification of the water recovery mechanism of the fuel cell of the present invention. 5, components having the same configuration, function, and operation as those shown in FIGS. 1 to 4 are indicated by the same reference numerals, and detailed description thereof is omitted to avoid duplication.

図1乃至4の少なくともいずれかに記載されている燃料電池101において1体の管体109がアノード室側末端の屈曲部分を持つのに対し、図5に示した燃料電池101は、2本の直線状管体501、502と管体固定具503を備えることを特徴とする。図1乃至4に示すように直線状の管体を屈曲させた管体109を用いると、特に燃料電池101全体が小型である場合、屈曲時に管体が潰れて例えば管体109と軸受111との間のガスシール性の低下が想定されるが、図5に示した構成とすることで、さらなるガスシール性の向上が期待できる。   In the fuel cell 101 described in at least one of FIGS. 1 to 4, one tube body 109 has a bent portion at the anode chamber side end, whereas the fuel cell 101 shown in FIG. It is characterized by including straight tubular bodies 501 and 502 and a tubular body fixture 503. As shown in FIGS. 1 to 4, when the tubular body 109 formed by bending a straight tubular body is used, particularly when the entire fuel cell 101 is small, the tubular body is crushed during bending, for example, the tubular body 109 and the bearing 111 Although the gas sealing performance is lowered during the period, further improvement in gas sealing performance can be expected with the configuration shown in FIG.

またこの部材を拡大した斜視図を図11に示す。図5における直線状管体501、502、管体固定具503が図11ではそれぞれ直線状管体1102、1103、管体固定具1104に相当し、全体は管体複合部材1101として示される。管体固定具1104の2面から穴が開いており、上記2つの穴は管体固定具1104の内部で貫通している。穴形状はいかなる形状でも適用可能であるが、特に加工の容易さを考慮すると円筒状の穴であることが望ましい。管体固定具1104への直線状管体1102、1103の接続は、接着、打ち込み等、内部を通過するアノード極滞留水の漏れがない方法であれば全て適用可能であるが、好ましくは溶接により接続されることを特徴とする。   An enlarged perspective view of this member is shown in FIG. In FIG. 11, the straight tube bodies 501 and 502 and the tube fixture 503 in FIG. 5 correspond to the straight tube bodies 1102 and 1103 and the tube fixture 1104, respectively, and the whole is shown as a tube composite member 1101. Holes are opened from two surfaces of the tube fixture 1104, and the two holes penetrate through the tube fixture 1104. Any shape can be applied as the hole shape, but a cylindrical hole is desirable particularly considering the ease of processing. The connection of the straight tubular bodies 1102 and 1103 to the tubular body fixture 1104 can be applied by any method that does not cause leakage of the anode electrode staying water passing through the inside, such as adhesion and driving, but preferably by welding. It is connected.

直線状管体502の回収容器113側末端は、図5に示すように直線形状であっても良いし、図3に示すように屈曲していても良いし、上記管体複合部材1101と同様の形状であっても良い。また直線状管体502と回収容器113との接続は、図2、3に示すように軸受を介して接続され、直線状管体502がアノード室108および回収容器113のいずれの内部でも回転自在な構造であっても良い。   The end of the straight tube 502 on the collection container 113 side may have a straight shape as shown in FIG. 5, bend as shown in FIG. 3, or be the same as the tube composite member 1101. The shape may also be Further, the straight tube 502 and the recovery container 113 are connected through a bearing as shown in FIGS. 2 and 3, and the straight tube 502 can be rotated in any of the anode chamber 108 and the recovery container 113. It may be a simple structure.

図6に、本発明の燃料電池の水回収機構の第5の変形例を示す。図6において、図1乃至5に示した構成要素と、構成、機能、動作が同一の構成要素に関しては、同一の引用符号を示し、重複を避けるため詳細な説明は割愛する。   FIG. 6 shows a fifth modification of the water recovery mechanism of the fuel cell of the present invention. In FIG. 6, components having the same configuration, function, and operation as those shown in FIGS. 1 to 5 are denoted by the same reference numerals, and detailed description thereof is omitted to avoid duplication.

図6に示す燃料電池101は、アノード室108の内壁に軌道604a、604bが構成されている。管体109のアノード室108側末端には車軸受け601a、601bが設置され、さらに車軸602、車輪603が図6に示すように備えられる。車輪603は、アノード室の内壁に設置された軌道604a、604bによってアノード室内壁に沿って回転自在な構成とする。上記構成とすることで、管体109にアノード室108内での回転補助機能を有することができる。   In the fuel cell 101 shown in FIG. 6, tracks 604 a and 604 b are formed on the inner wall of the anode chamber 108. Axle bearings 601a and 601b are installed at the anode chamber 108 side end of the tube body 109, and an axle 602 and wheels 603 are provided as shown in FIG. The wheel 603 is configured to be rotatable along the anode chamber wall by tracks 604a and 604b installed on the inner wall of the anode chamber. With the above configuration, the tube body 109 can have a function of assisting rotation in the anode chamber 108.

上述した軌道604a、604bは図6では軸受111や軸受固定具110が設置される面と直交する面上に設置されているが、上記軸受111や軸受固定具110が設置される面上に軌道604a、604bが配置されても良い。   In FIG. 6, the tracks 604a and 604b described above are installed on a surface orthogonal to the surface on which the bearing 111 and the bearing fixture 110 are installed, but the tracks on the surface on which the bearing 111 and the bearing fixture 110 are installed. 604a and 604b may be arranged.

また管体109の動きの方向を拘束する拘束体としては、図6に示したように軌道と車輪であっても良いし、またアノード室108の内壁外周方向に連続して配置される磁石と管体109末端に設置された磁石との引力あるいは斥力を利用しても良い。   Further, the restraining body for restraining the direction of movement of the tube body 109 may be a track and a wheel as shown in FIG. 6, or a magnet arranged continuously in the outer peripheral direction of the inner wall of the anode chamber 108. You may utilize the attractive force or repulsive force with the magnet installed in the pipe | tube 109 terminal.

図7に本発明の燃料電池の水回収機構の第6の変形例を示す。図7において、図1乃至6に示した構成要素と、構成、機能、動作が同一の構成要素に関しては、同一の引用符号を示し、重複を避けるため詳細な説明は割愛する。   FIG. 7 shows a sixth modification of the fuel cell water recovery mechanism of the present invention. 7, components having the same configuration, function, and operation as those shown in FIGS. 1 to 6 are indicated by the same reference numerals, and detailed description thereof is omitted to avoid duplication.

図7に示すように、回収容器702は軸受111及び軸受固定具110を内包する構造であり、アノード室108に隣接して配置される。シール材701a、701bの形状は、回収容器702に回収されるアノード極滞留水が軸受111、軸受固定具110から漏洩することを防ぎ、かつ管体109の回転を妨げない構造であれば全て適用可能であるが、例えば図7に示す形状であって良い。またシール材の材質は耐薬品性、耐久性に優れた材質であれば全て適用可能であるが、好ましくはゴム製であることを特徴とする。さらにシール材701a、701bの摩擦を低減する目的でオイルシールされる構成であっても良い。さらに軸受111、軸受固定具110は図7では回収容器702内部に設置されるが、アノード室108の内部に設置されても良い。   As shown in FIG. 7, the collection container 702 has a structure including a bearing 111 and a bearing fixture 110, and is disposed adjacent to the anode chamber 108. The shape of the sealing materials 701a and 701b can be applied to any structure as long as it prevents anode stagnant water collected in the collection container 702 from leaking from the bearing 111 and the bearing fixture 110 and does not hinder the rotation of the tube 109. For example, the shape shown in FIG. 7 may be used. Any material can be used as long as the material of the sealing material is excellent in chemical resistance and durability, but it is preferably made of rubber. Furthermore, an oil seal may be used for the purpose of reducing the friction of the sealing materials 701a and 701b. Furthermore, although the bearing 111 and the bearing fixture 110 are installed inside the collection container 702 in FIG. 7, they may be installed inside the anode chamber 108.

上記構成とすることで、アノード極滞留水回収部の体積を小さくすることが可能で、燃料電池101全体の体積削減も可能とする。   With the above configuration, the volume of the anode electrode stagnant water recovery unit can be reduced, and the volume of the entire fuel cell 101 can be reduced.

図8に本発明の燃料電池の水回収機構の第7の変形例を示す。図8において、図1乃至7に示した構成要素と、構成、機能、動作が同一の構成要素に関しては、同一の引用符号を示し、重複を避けるため詳細な説明は割愛する。   FIG. 8 shows a seventh modification of the fuel cell water recovery mechanism of the present invention. In FIG. 8, components having the same configuration, function, and operation as those shown in FIGS. 1 to 7 are denoted by the same reference numerals, and detailed description thereof is omitted to avoid duplication.

図8では、発電セル102のアノード集電板107とアノード室108を拡大して表示する。図8に示した変形例では、軸受111をアノード室108の構成部材801の内部に埋め込む構成とする。軸受111とアノード室108の構成部材801の固定は、接着であっても良いし、はめあいで固定されても良いし、ネジ止めされても良いし、溶接されても良いが、例えば図8では、はめあいで固定される構造とする。軸受111を介してアノード室108内の水素リッチガスあるいはアノード極滞留水が回収容器803との間で自由に交換されることを防止する目的で、シール材701a、701bで回収容器113側から封止されるが、例えば図8に示すシール材802a、802bのように、アノード室108側から封止されても良い。また図8に示すシール材802a、802bのような形状で封止されても良い。シール材の形状は、701a、701b、802a、802bに示した形状に限定されず、水素リッチガスあるいはアノード極滞留水の抵抗となる形状であれば全て適用可能である。   In FIG. 8, the anode current collector plate 107 and the anode chamber 108 of the power generation cell 102 are enlarged and displayed. In the modification shown in FIG. 8, the bearing 111 is embedded in the constituent member 801 of the anode chamber 108. The bearing 111 and the constituent member 801 of the anode chamber 108 may be fixed by adhesion, may be fixed by fitting, may be screwed, or may be welded. The structure is fixed by fitting. Sealed from the side of the recovery container 113 with the sealing materials 701a and 701b in order to prevent the hydrogen-rich gas or the anode pole accumulated water in the anode chamber 108 from being freely exchanged with the recovery container 803 via the bearing 111. However, it may be sealed from the anode chamber 108 side, for example, like the sealing materials 802a and 802b shown in FIG. Moreover, you may seal by shape like the sealing materials 802a and 802b shown in FIG. The shape of the sealing material is not limited to the shapes shown in 701a, 701b, 802a, and 802b, and any shape can be applied as long as it is a hydrogen rich gas or anode electrode stagnant water resistance.

図9に本発明の燃料電池の水回収機構の第8の変形例を示す。図9において、図1乃至8に示した構成要素と、構成、機能、動作が同一の構成要素に関しては、同一の引用符号を示し、重複を避けるため詳細な説明は割愛する。   FIG. 9 shows an eighth modification of the fuel cell water recovery mechanism of the present invention. 9, components having the same configuration, function, and operation as those shown in FIGS. 1 to 8 are denoted by the same reference numerals, and detailed description thereof is omitted to avoid duplication.

図9に示す燃料電池101は、図1乃至8に示した燃料電池と異なり、回転構造として軸受を使用せず、屈曲部901をベローズ構造とする。上記構造とすることで、部品点数の少ない回転構造を実現することができ、アノード極滞留水回収部103および燃料電池101の小型化に適した構造とすることができる。   Unlike the fuel cells shown in FIGS. 1 to 8, the fuel cell 101 shown in FIG. 9 does not use a bearing as a rotating structure, and has a bent portion 901 having a bellows structure. With the above structure, a rotating structure with a small number of parts can be realized, and a structure suitable for miniaturization of the anode electrode stagnant water recovery unit 103 and the fuel cell 101 can be achieved.

本発明の燃料電池の水回収機構の基本形例の構成を示す図である。It is a figure which shows the structure of the basic form example of the water collection | recovery mechanism of the fuel cell of this invention. 本発明の燃料電池の水回収機構の第1の変形例として回収容器の回転抑制機構を付加した構造を示す図である。It is a figure which shows the structure which added the rotation suppression mechanism of the collection container as the 1st modification of the water collection | recovery mechanism of the fuel cell of this invention. 本発明の燃料電池の水回収機構の第2の変形例として、回収容器内の水逆流抑制機構を付加した構造を示す図である。It is a figure which shows the structure which added the water backflow suppression mechanism in a collection container as the 2nd modification of the water collection | recovery mechanism of the fuel cell of this invention. 本発明の燃料電池の水回収機構の第3の変形例として、回転力増進機構としてアノード室内錘を付加した構造を示す図である。It is a figure which shows the structure which added the anode chamber weight as a 3rd modification of the water collection | recovery mechanism of the fuel cell of this invention as a rotational force increase mechanism. 本発明の燃料電池の水回収機構の第4の変形例として、管体の接続構造の変形例を付加した図である。It is the figure which added the modification of the connection structure of a tubular body as a 4th modification of the water collection | recovery mechanism of the fuel cell of this invention. 本発明の燃料電池の水回収機構の第5の変形例として、回転補助機構としての拘束体と被拘束体を付加した構造を示す図である。It is a figure which shows the structure which added the restraint body and to-be-constrained body as a rotation assistance mechanism as a 5th modification of the water collection | recovery mechanism of the fuel cell of this invention. 本発明の燃料電池の水回収機構の第6の変形例として、回収容器内部の構造の変形例を示す図である。It is a figure which shows the modification of the structure inside a collection container as a 6th modification of the water collection | recovery mechanism of the fuel cell of this invention. 本発明の燃料電池の水回収機構の第7の変形例として、アノード室内部の構造の変形例を示す図である。It is a figure which shows the modification of the structure of an anode chamber interior as a 7th modification of the water collection | recovery mechanism of the fuel cell of this invention. 本発明の燃料電池の水回収機構の第8の変形例として、管体の屈曲部の変形例を示す図である。It is a figure which shows the modification of the bending part of a tubular body as the 8th modification of the water collection | recovery mechanism of the fuel cell of this invention. 本発明の燃料電池の水回収機構の、回転錘の形状の一例を示す図である。It is a figure which shows an example of the shape of the rotary weight of the water collection | recovery mechanism of the fuel cell of this invention. 本発明の燃料電池の水回収機構の、管体複合部材構造の一例を示す図である。It is a figure which shows an example of the pipe | tube composite member structure of the water collection | recovery mechanism of the fuel cell of this invention.

101 燃料電池
102 発電セル
103 アノード極滞留水回収部
104 カソード押さえ板
105 カソード集電板
106 MEA
107 アノード集電板
108 アノード室
109 管体
110 軸受固定具
111 軸受
112 回転錘
113 回収容器
DESCRIPTION OF SYMBOLS 101 Fuel cell 102 Power generation cell 103 Anode pole stagnant water recovery part 104 Cathode holding plate 105 Cathode current collecting plate 106 MEA
107 Anode current collector plate 108 Anode chamber 109 Tubing body 110 Bearing fixture 111 Bearing 112 Rotating weight 113 Recovery container

Claims (11)

プロトン導電性を有する樹脂からなる電解質と前記電解質の両面に配置される触媒層とからなる膜電極接合体と、
それぞれガス拡散層と集電体層からなるアノード極及びカソード極とから構成される発電部と、
前記発電部に接続され、前記発電部に導入する水素リッチガスを発生する水素発生部と、
前記アノード極に備えられ、前記アノード極内で生成され滞留する滞留水が排出される排出口と、
前記排出口から前記アノード極の内部に導入される管体と、
前記アノード極内の前記管体の末端部が鉛直方向下向きで前記滞留水に常時接することができるように保持する姿勢吸収構造を有することを特徴とする燃料電池の水回収機構。
A membrane electrode assembly comprising an electrolyte comprising a resin having proton conductivity and a catalyst layer disposed on both sides of the electrolyte;
A power generation unit composed of an anode electrode and a cathode electrode each composed of a gas diffusion layer and a current collector layer;
A hydrogen generation unit that is connected to the power generation unit and generates a hydrogen-rich gas to be introduced into the power generation unit;
A discharge port provided in the anode electrode for discharging the accumulated water generated and retained in the anode electrode;
A tubular body introduced into the anode electrode from the discharge port;
A fuel cell water recovery mechanism having a posture absorption structure for holding the end of the tubular body in the anode electrode so as to be always in contact with the accumulated water in a vertically downward direction.
前記姿勢吸収構造は、前記管体の末端部が前記アノード極の内部を自在に動く可動構造を有し、
前記可動構造は、前記排出口を中心として前記管体の末端部が前記アノード極の内部を回転自在に動く回転構造であることを特徴とする請求項1に記載の燃料電池の水回収機構。
The posture absorbing structure has a movable structure in which a distal end portion of the tubular body freely moves inside the anode electrode,
2. The water recovery mechanism for a fuel cell according to claim 1, wherein the movable structure is a rotating structure in which a distal end portion of the tubular body is rotatable about the discharge port in the anode electrode.
前記回転構造は、
前記排出口から前記アノード極に導入された屈曲部と回転軸部とを備える前記管体と、
前記排出口に設置され、前記回転軸部を保持する回転軸保持部とを有することを特徴とする請求項2に記載の燃料電池の水回収機構。
The rotating structure is
The tubular body including a bent portion and a rotating shaft portion introduced into the anode electrode from the discharge port;
The water recovery mechanism for a fuel cell according to claim 2, further comprising: a rotating shaft holding portion that is installed at the discharge port and holds the rotating shaft portion.
前記回転軸保持部が軸受であって、前記排出口と前記軸受の間にガスシール材を有することを特徴とする請求項3に記載の燃料電池の水回収機構。   The water recovery mechanism for a fuel cell according to claim 3, wherein the rotating shaft holding portion is a bearing, and has a gas seal material between the discharge port and the bearing. 前記管体は、前記屈曲部に錘を有することを特徴とする請求項3に記載の燃料電池の水回収機構。   The water recovery mechanism for a fuel cell according to claim 3, wherein the tubular body has a weight at the bent portion. 前記管体は、前記回転軸部の回転軸と同軸上に設置され、重心が前記回転軸から偏った位置にある回転錘を有することを特徴とする請求項3に記載の燃料電池の水回収機構。   4. The water recovery of a fuel cell according to claim 3, wherein the tubular body has a rotating weight that is installed coaxially with a rotating shaft of the rotating shaft portion and whose center of gravity is located at a position deviated from the rotating shaft. mechanism. 前記回転錘は、扇形状であることを特徴とする請求項6に記載の燃料電池の水回収機構。   The fuel cell water recovery mechanism according to claim 6, wherein the rotary weight has a fan shape. 前記回転構造は、前記排出口からアノード極に導入された屈曲部が伸縮性を有し、錘を備える前記管体を備えることを特徴とする請求項2に記載の燃料電池の水回収機構。   3. The fuel cell water recovery mechanism according to claim 2, wherein the rotating structure includes the tubular body including a weight having a bendable portion introduced into the anode electrode from the discharge port and having a weight. 前記屈曲部が伸縮自在の材質であることを特徴とする請求項8に記載の燃料電池の水回収機構。   The water recovery mechanism for a fuel cell according to claim 8, wherein the bent portion is made of an elastic material. 前記屈曲部がベローズ構造であることを特徴とする請求項8に記載の燃料電池の水回収機構。   9. The fuel cell water recovery mechanism according to claim 8, wherein the bent portion has a bellows structure. 前記アノード極の内部の前記管体は被拘束体を有し、
前記アノード極の内部は、前記被拘束体の動きの方向を拘束する拘束体を有することを特徴とする請求項2乃至10のいずれか一項に記載の燃料電池の水回収機構。
The tube inside the anode electrode has a restrained body,
The fuel cell water recovery mechanism according to any one of claims 2 to 10, wherein the anode electrode includes a restraining body that restrains a direction of movement of the restrained body.
JP2005009393A 2005-01-17 2005-01-17 Fuel cell water recovery mechanism Expired - Fee Related JP5078228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005009393A JP5078228B2 (en) 2005-01-17 2005-01-17 Fuel cell water recovery mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005009393A JP5078228B2 (en) 2005-01-17 2005-01-17 Fuel cell water recovery mechanism

Publications (2)

Publication Number Publication Date
JP2006196412A JP2006196412A (en) 2006-07-27
JP5078228B2 true JP5078228B2 (en) 2012-11-21

Family

ID=36802302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005009393A Expired - Fee Related JP5078228B2 (en) 2005-01-17 2005-01-17 Fuel cell water recovery mechanism

Country Status (1)

Country Link
JP (1) JP5078228B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007139281A1 (en) * 2006-05-29 2007-12-06 Lg Chem, Ltd. Fluid tank for fuel cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168468A (en) * 2001-11-30 2003-06-13 Toshiba International Fuel Cells Corp Solid polymer type fuel cell
JP2004207106A (en) * 2002-12-26 2004-07-22 Sanyo Electric Co Ltd Solid polymer fuel cell stack
JP4673586B2 (en) * 2004-08-05 2011-04-20 富士通株式会社 Fuel cell cartridge, fuel cell system and electrical equipment, and method for recovering generated water in fuel cell system

Also Published As

Publication number Publication date
JP2006196412A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
KR100670348B1 (en) Liquid-gas separator for direct liquid feed fuel cell
US6924055B2 (en) Fuel delivery cartridge and anodic fuel receptor for a fuel cell
KR100645692B1 (en) Pump apparatus for fuel cell and Fuel cell system using same
BRPI0617156A2 (en) fuel supply and fuel cartridge connectable to a fuel cell, method for filling fuel source
JP2007324081A (en) Fuel cartridge
KR100707598B1 (en) Air supply apparatus for fuel cell and fuel cell using same
JP4824713B2 (en) Fluid recovery device and fuel cell system using the same
JP5078228B2 (en) Fuel cell water recovery mechanism
EP1492188B1 (en) Vehicle equipped with fuel cell system
JP4727199B2 (en) FUEL CELL SYSTEM, ELECTRONIC DEVICE USING THE SAME AND FUEL CELL OPERATING METHOD
JP5239045B2 (en) Fuel cell system
US20090258266A1 (en) Fuel cartridge and fuel cell generation system having the same
JP2008171705A (en) Fuel cell system
KR100864654B1 (en) Fuel tank structure of fuel cell
JP5317100B2 (en) Fuel cell
JP2006185896A (en) Fuel cell system and water collection device
JP4963871B2 (en) Gas-liquid separator
KR20210061885A (en) Water trap apparatus for fuel cell
JP2008151390A (en) Water vapor exchange membrane refresh system, humidifier, and fuel cell system
KR20050025496A (en) Fuel circulation control apparatus of fuel cell system
JP2008262845A (en) Fuel cell system
KR100533008B1 (en) Fuel cell system having water trap apparatus
JP5142176B2 (en) Polymer electrolyte fuel cell system
CN1612398A (en) Water supply device for fuel cell system
WO2014045510A1 (en) Direct oxidation fuel cell system and collection tank used therein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5078228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees