JP5077804B2 - Fuel cell stack structure - Google Patents

Fuel cell stack structure Download PDF

Info

Publication number
JP5077804B2
JP5077804B2 JP2006229494A JP2006229494A JP5077804B2 JP 5077804 B2 JP5077804 B2 JP 5077804B2 JP 2006229494 A JP2006229494 A JP 2006229494A JP 2006229494 A JP2006229494 A JP 2006229494A JP 5077804 B2 JP5077804 B2 JP 5077804B2
Authority
JP
Japan
Prior art keywords
cell
stack structure
plates
fuel
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006229494A
Other languages
Japanese (ja)
Other versions
JP2008053109A (en
Inventor
和史 竹内
正治 秦野
靖志 中島
重夫 井深
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006229494A priority Critical patent/JP5077804B2/en
Publication of JP2008053109A publication Critical patent/JP2008053109A/en
Application granted granted Critical
Publication of JP5077804B2 publication Critical patent/JP5077804B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体電解質型燃料電池セルを積層して成る燃料電池スタック構造体に関するものである。     The present invention relates to a fuel cell stack structure in which solid oxide fuel cells are stacked.

従来、上記したような燃料電池スタック構造体としては、例えば、同種の電極同士が対向するようにして平板型単セルを積層し、同種電極間に形成された空間をガス流路とした燃料電池スタック構造体があり、ガス流路に集電体を配置することで、すべての単セルを電気的に並列接続したものや、互いに絶縁関係にある単セル同士を外部導線によって電気的に接続したものがある。   Conventionally, as the fuel cell stack structure as described above, for example, a fuel cell in which flat single cells are stacked so that the same type of electrodes face each other, and a space formed between the same type of electrodes is used as a gas flow path There is a stack structure, and by arranging the current collector in the gas flow path, all the single cells are electrically connected in parallel, or the single cells that are insulated from each other are electrically connected by an external conductor. There is something.

また、上記した燃料電池スタック構造体のほかに、外部側の面の全てを空気極とすると共に内部側の面の全てを燃料極とした中空ディスク型セルを積層し、積層部分の各々において異種電極同士が電気的に接触するようにした燃料電池スタック構造体がある。
特願平7−214216号 特開2002−50390号 特開2002−8681号
In addition to the fuel cell stack structure described above, hollow disk-type cells having all of the outer surfaces as air electrodes and all of the inner surfaces as fuel electrodes are stacked, and different types of layers are used in each of the stacked portions. There is a fuel cell stack structure in which electrodes are in electrical contact.
Japanese Patent Application No. 7-214216 JP 2002-50390 A JP 2002-8681 A

ところが、上記した燃料電池スタック構造体において、同種電極間に形成されたガス流路に集電体を配置した構成の燃料電池スタック構造体では、平板型単セルが全て並列で接続されることから、高電圧を得ることができず、一方、同種電極間に形成された空間をガス流路として、互いに絶縁関係にある単セル同士を外部導線によって電気的に接続した構成の燃料電池スタック構造体では、直列接続及び並列接続のいずれかを任意に選択することができるものの、外部導線で電気的接続を実施する都合上、導線の線径を大きくして大電流に対応するように成すと、積層間隔を狭めて高密度にパッキングした場合において、導線を単セルに接触させることが困難になるという問題があった。   However, in the fuel cell stack structure described above, in the fuel cell stack structure in which the current collector is arranged in the gas flow path formed between the same type of electrodes, all the flat single cells are connected in parallel. On the other hand, a fuel cell stack structure having a configuration in which a single cell that is insulatively connected to each other is electrically connected to each other by an external conductor using a space formed between the same type of electrodes as a gas flow path Then, although either serial connection or parallel connection can be arbitrarily selected, for the convenience of carrying out electrical connection with an external conductor, when the conductor wire diameter is increased to correspond to a large current, In the case where packing is performed at a high density by narrowing the stacking interval, there is a problem that it is difficult to bring the conductor into contact with the single cell.

また、中空ディスク型セルを積層して、各セル間の接続部分に電極を配置する燃料電池スタック構造体において、電極を薄膜状にした場合には電気抵抗が大きくなってしまい(直列接続の場合には特に電気抵抗が大きくなってしまい)、これを回避するべく電極を厚くすると、全体の小型化が実現困難となってしまうという問題を有しており、この問題を解決することが従来の課題となっていた。   In addition, in a fuel cell stack structure in which hollow disk-type cells are stacked and electrodes are arranged at the connection portions between the cells, if the electrodes are made into a thin film, the electrical resistance increases (in the case of series connection). In particular, the electrical resistance increases, and if the electrodes are thickened to avoid this, it is difficult to realize the overall miniaturization. It was an issue.

本発明は、上記した従来の課題に着目してなされたもので、単セルの直列接続及び並列接続を選択可能であり、すなわち、高電圧仕様及び大電流仕様のいずれの仕様にも対応可能であり、小型で且つ高出力な燃料電池スタック構造体を提供することを目的としている。   The present invention has been made paying attention to the above-described conventional problems, and can be selected from series connection and parallel connection of single cells, that is, both high voltage specifications and large current specifications can be supported. It is an object to provide a fuel cell stack structure that is small and has high output.

本発明は、リング状の単セルの内周縁部及び外周縁部に支持体をそれぞれ接合して形成したセル板を複数積層して成り、互いに重なり合うセル板の間をガス流路として形成した燃料電池スタック構造体であって、単セルの同種の電極同士を対向させて複数のセル板を配置すると共に、セル板の内周側支持体及び外周側支持体を互いに電気的に分離し、セル板の外周側支持体を一方の電極の接続端子とし、内周側支持体を他方の電極の接続端子とした構成としたことを特徴としており、この燃料電池スタック構造体の構成を前述した従来の課題を解決するための手段としている。 The present invention is a fuel cell stack formed by laminating a plurality of cell plates formed by joining supports to the inner peripheral edge and outer peripheral edge of a ring-shaped single cell, and forming a gas flow path between the overlapping cell plates. It is a structure, and a plurality of cell plates are arranged so that the same type of electrodes of a single cell are opposed to each other, and the inner peripheral support and the outer peripheral support of the cell plate are electrically separated from each other. The outer peripheral side support is used as a connection terminal for one electrode, and the inner peripheral side support is used as a connection terminal for the other electrode . The configuration of this fuel cell stack structure is the conventional problem described above. As a means to solve the problem.

本発明の燃料電池スタック構造体では、互いに重なり合うセル板において、単セルの同種の電極同士を対向させたことでセパレータが不要となり、加えて、セル板間の内外に配置する集電体及び接続端子で電気的な接続を行うことで電気抵抗の増大が抑制されることとなり、その結果、高出力でありながら小型化が図られることとなる。   In the fuel cell stack structure of the present invention, in the overlapping cell plates, the same kind of electrodes of the single cells are made to face each other, so that a separator becomes unnecessary, and in addition, current collectors and connections arranged inside and outside between the cell plates By making electrical connection at the terminals, an increase in electrical resistance is suppressed, and as a result, miniaturization is achieved while maintaining high output.

また、互いに重なり合うセル板間の内外に配置する集電体及び接続端子の接触部分を選択することで、直列接続及び並列接続のいずれにも容易に対応し得ることとなり、高電圧タイプの燃料電池スタック構造体及び大電流タイプの燃料電池スタック構造の設計がいずれも容易なものとなる。   In addition, by selecting the contact portions of the current collectors and connection terminals arranged inside and outside between the overlapping cell plates, it is possible to easily cope with both series connection and parallel connection, and a high voltage type fuel cell Both the stack structure and the high-current type fuel cell stack structure can be easily designed.

本発明の燃料電池スタック構造体によれば、上記した構成としているので、高電圧仕様及び大電流仕様のいずれの仕様にも対応することができると共に、小型化及び高出力化を実現することが可能であるという非常に優れた効果がもたらされる。   According to the fuel cell stack structure of the present invention, since it has the above-described configuration, it can be compatible with both high voltage specifications and large current specifications, and can achieve downsizing and high output. It has a very good effect of being possible.

本発明の燃料電池スタック構造体において、リング状の単セルとは、平板セルの中央部分に貫通孔が形成されて成るものであって、円形状のものに限定されるものではなく、多角形状のものも含む。   In the fuel cell stack structure of the present invention, the ring-shaped single cell is formed by forming a through-hole in the central portion of the flat plate cell, and is not limited to a circular shape, but a polygonal shape. Also included.

また、本発明の燃料電池スタック構造体において、リング状の単セルの内周縁部及び外周縁部にそれぞれ接合する支持体、すなわち、互いに電気的に分離して単セルに対する接続端子とした支持体には、金属や、合金や、導電性酸化物などの電子伝導性を有する材料が用いられる。   Further, in the fuel cell stack structure of the present invention, a support that is joined to each of the inner peripheral edge and the outer peripheral edge of the ring-shaped single cell, that is, a support that is electrically separated from each other and serves as a connection terminal for the single cell. A material having electronic conductivity such as a metal, an alloy or a conductive oxide is used.

ここで、単セルと支持体との間のシール性が確保できなければ、ガス(燃料ガス及び酸化ガス)のクロスリークが生じて発電性能が低下してしまう。したがって、ガスセパレータ機能を有する単セルの電解質と支持体とをガスシール性を有する接合手段(ガスシール性やいずれか一方の電極との絶縁性を満足する手段、例えば、セラミックス接着剤やガラスシール材)により接合する必要がある。この際、電解質と支持体の端部とを接合することが好適であるが、ガスシール性が得られる接合構造であれば、これに限定されるものではない。   Here, if the sealing property between the single cell and the support cannot be ensured, a cross leak of gas (fuel gas and oxidizing gas) occurs and power generation performance deteriorates. Therefore, a means for joining the electrolyte of the single cell having a gas separator function and the support to each other with a gas sealability (means satisfying the gas sealability or the insulation with one of the electrodes, for example, a ceramic adhesive or a glass seal) Material). At this time, it is preferable to join the electrolyte and the end of the support, but the joining structure is not limited to this as long as the joining structure can provide gas sealing properties.

さらに、本発明の燃料電池スタック構造体において、支持体は単セルの電極に当接した集電体と接触することで、電気的な接続端子として機能する。積層したセル板における各単セル同士は、接続端子としての支持体及び集電体を適宜接触させることで電気的に接続する。つまり、単セルの電極に当接した集電体と接続端子としての支持体との接触部分を選択するだけで、導線などの取り回しを必要とすることなく、直列接続及び並列接続のいずれかを適宜選択して実施することができる。   Furthermore, in the fuel cell stack structure according to the present invention, the support functions as an electrical connection terminal by contacting the current collector in contact with the electrode of the single cell. The single cells in the stacked cell plates are electrically connected by appropriately contacting a support as a connection terminal and a current collector. In other words, it is only necessary to select the contact portion between the current collector that is in contact with the electrode of the single cell and the support body as the connection terminal, and it is possible to perform either serial connection or parallel connection without the need for routing of the conducting wire or the like. It can be implemented by appropriately selecting.

この際、隣接するセル板の各単セル間に配置する集電体は、適宜絶縁構造を有する。これは、直列に接続する場合において、対向する同種電極を絶縁状態としなければならないためであり、上記絶縁構造とは、集電体の単セルと当接しない側の面に絶縁性材料の被膜やシートなどの絶縁層を配置した構造である。   Under the present circumstances, the electrical power collector arrange | positioned between each single cell of an adjacent cell board has an insulating structure suitably. This is because the same type of electrodes facing each other must be insulated when connected in series. The insulating structure is a film of an insulating material on the surface of the current collector that does not contact the single cell. And an insulating layer such as a sheet.

さらにまた、本発明の燃料電池スタック構造体において、セル板の支持体の少なくとも一部を支持してセル板間のガス流路を維持するホルダを具備し、このホルダにセル板間のガス流路にガスを供給するガス供給孔を設けた構成を採用することができ、セル板を支持するホルダを積層部分としてスタック構造体を形成する。   Furthermore, the fuel cell stack structure of the present invention includes a holder that supports at least a part of the cell plate support and maintains a gas flow path between the cell plates. A structure in which a gas supply hole for supplying gas to the passage can be employed, and a stack structure is formed using a holder that supports the cell plate as a laminated portion.

セル板を支持するホルダは、リング状の単セルの内周側及び/又は外周側の支持体の部分に配置することができ、このホルダに形成するガス供給孔は、積層方向に貫通するガス流路と、このガス流路と連通して各単セルに対してガスを分配供給する水平方向のガス流路とから成る。   The holder for supporting the cell plate can be disposed on the inner peripheral side and / or the outer peripheral side of the ring-shaped single cell, and the gas supply hole formed in the holder has gas penetrating in the stacking direction. It consists of a flow path and a horizontal gas flow path that communicates with and supplies gas to each single cell.

上記ホルダは、一つの部材から成る構成としたり、二つ以上の部材から成る構成としたりすることができるほか、電子伝導性材料から成るものとしたり、絶縁性材料から成るものとしたりすることができる。ホルダを電子伝導性材料から成るものとした場合には、支持体とともに接続端子として機能させることが可能であり、一方、ホルダを絶縁性材料から成るものとした場合には、各セル板を絶縁状態で積層することも可能であり、スタック仕様により適宜選択することができる。   The holder can be composed of one member, or composed of two or more members, and can be composed of an electron conductive material or an insulating material. it can. When the holder is made of an electron conductive material, it can function as a connection terminal together with the support. On the other hand, when the holder is made of an insulating material, each cell plate is insulated. It is also possible to laminate in a state, and it can be appropriately selected depending on the stack specification.

さらにまた、本発明の燃料電池スタック構造体において、ホルダは、単セルの内周側に位置して内周側支持体の少なくとも一部を支持している構成とすることができ、この際、互いに重なり合うセル板の各外周側支持体同士を接合し、単セルの内周側に位置するホルダにセル板間のガス流路からのガス排出を行うガス排出孔を設けた構成とすることが望ましい。   Furthermore, in the fuel cell stack structure of the present invention, the holder can be configured to be located on the inner peripheral side of the single cell and support at least a part of the inner peripheral support, The structure is such that each outer peripheral support of the overlapping cell plates is joined, and a gas discharge hole for discharging gas from the gas flow path between the cell plates is provided in a holder located on the inner peripheral side of the single cell. desirable.

このように、互いに重なり合うセル板の各外周側支持体同士を接合して、二枚のセル板間の閉じられた空間をガス流路とした場合には、単セルの内周側に位置するホルダのガス供給孔からガスが各単セルに対して供給された後に、ホルダのガス排出孔から排出されることとなる。   Thus, when each outer peripheral side support body of the cell plate which mutually overlaps is joined, and the closed space between two cell plates is made into a gas flow path, it is located in the inner peripheral side of a single cell. After the gas is supplied from the gas supply hole of the holder to each single cell, the gas is discharged from the gas discharge hole of the holder.

上記したセル板間のガス流路を維持するホルダを具備した燃料電池スタック構造体において、互いに重なり合うセル板の単セル同士が対向するように配置しているので、一方側のみをセル板とし且つ他方側を例えばセパレータ板とした場合と比べて、熱膨張及び収縮が両側で均一化されることとなり、したがって、耐熱衝撃性に優れたものとなる。   In the fuel cell stack structure having the holder for maintaining the gas flow path between the cell plates described above, since the single cells of the overlapping cell plates are arranged to face each other, only one side is used as a cell plate and Compared to the case where the other side is, for example, a separator plate, thermal expansion and contraction are made uniform on both sides, and therefore, the thermal shock resistance is excellent.

さらにまた、本発明の燃料電池スタック構造体において、セル板の外周側支持体を一方の電極の接続端子とし、内周側支持体を他方の電極の接続端子とした構成とすることができる。   Furthermore, in the fuel cell stack structure of the present invention, the outer peripheral support of the cell plate can be used as a connection terminal for one electrode, and the inner peripheral support can be used as a connection terminal for the other electrode.

この場合、互いに重なり合う二枚のセル板で挟まれたガス流路の空間に面した同種の電極は、この空間に配置される集電体によって接続され、この集電体が外周側支持体又は内周側支持体と接触することで、電気的に並列に接続される。   In this case, the same type of electrode facing the space of the gas flow path sandwiched between two overlapping cell plates is connected by a current collector disposed in this space, and this current collector is connected to the outer peripheral side support or By contacting the inner peripheral support, they are electrically connected in parallel.

一方、互いに重なり合う二枚のセル板の外側に面した同種の電極は、各々に当接した集電体が外周側支持体又は内周側支持体と接触することで、電気的に接続される。ここで、外側の電極と電気的に接続された二つの支持体同士が接触していない場合には、上記したホルダ又は集電体を介して電気的に接続すると、外側に配置された電極が電気的に並列に接続され、これにより、対向する一組の単セル同士が電気的に並列に接続される。   On the other hand, the same type of electrodes facing the outside of the two overlapping cell plates are electrically connected when the current collectors in contact with each other come into contact with the outer support or the inner support. . Here, when the two supports electrically connected to the outer electrode are not in contact with each other, when the electrodes are electrically connected via the holder or the current collector, the electrode disposed on the outer side is Electrically connected in parallel, whereby a pair of opposing single cells are electrically connected in parallel.

さらにまた、本発明の燃料電池スタック構造体において、互いに重なり合うセル板において、対向する支持体同士を互いに電気的に分離した構成とすることができ、このように、対向する支持体同士を互いに異なる電極の接続端子とすれば、これらの支持体部分を積層するだけで電気的な直列接続を行い得ることとなり、この場合には、この積層箇所に絶縁性の接合を用いる必要がなくなる。   Furthermore, in the fuel cell stack structure of the present invention, in the overlapping cell plates, the opposing supports can be electrically separated from each other, and thus the opposing supports are different from each other. If the connection terminal of the electrode is used, it is possible to perform electrical series connection only by laminating these support portions, and in this case, it is not necessary to use an insulating junction at the laminated portion.

例えば、ガス供給孔を有するホルダで支持体を支持してこのホルダの部分で積層する場合には、積層箇所に絶縁性及びガスシール性を有する接合を行う必要があるが、すなわち、限定された手法で且つ技術的なハードルが高い接合を行う必要があるが、上記したように、対向する支持体同士を互いに異なる電極の接続端子として、これらの支持体部分を積層する構造を採用することで、このような問題を回避し得ることとなる。   For example, in the case where the support is supported by a holder having a gas supply hole and laminated at the holder portion, it is necessary to perform bonding having insulating properties and gas sealability at the laminated portion, that is, limited. Although it is necessary to perform bonding with a technique and high technical hurdles, as described above, by adopting a structure in which these supporting body portions are laminated with opposing supporting bodies as connection terminals of different electrodes. Such a problem can be avoided.

上記したように、セル板の外周側支持体及び内周側支持体を互いに異なる電極の接続端子としたり、互いに重なり合うセル板の対向する支持体同士を互いに電気的に分離したりすることで、出力密度が高いセパレータレス構造が得られ、電気抵抗の増大の抑制が図られると共に、直列接続及び並列接続の選択が可能となる。   As described above, the outer peripheral side support body and the inner peripheral side support body of the cell plate are used as connection terminals for different electrodes, or the opposing support bodies of the overlapping cell plates are electrically separated from each other, A separatorless structure with a high output density is obtained, an increase in electrical resistance is suppressed, and selection between series connection and parallel connection is possible.

さらにまた、本発明の燃料電池スタック構造体において、単セルの同種の電極同士を対向させて互いに重なり合う一組のセル板をセルユニットとし、隣接するセルユニット同士を電気的に直列接続した構成とすることが可能であり、この構成を採用することにより、小型で且つ高出力な高電圧タイプの燃料電池スタック構造体を得ることができる。   Furthermore, in the fuel cell stack structure of the present invention, a set of cell plates that overlap each other with the same type of electrodes of a single cell facing each other is used as a cell unit, and adjacent cell units are electrically connected in series. By adopting this configuration, it is possible to obtain a high voltage type fuel cell stack structure that is small and has high output.

この際、セル板の外周側支持体を一方の電極の接続端子とし、内周側支持体を他方の電極の接続端子とすると、直列接続する場合には対向する接続端子が電気的に逆符合となることが好ましく、並列接続する場合には対向する接続端子が電気的に同符号となることが望ましく、このような構造とすれば、接続端子間に集電体を配置するだけで、電気的な直列接続及び並列接続を容易に選択して実施し得ることとなる。   At this time, if the outer peripheral support of the cell plate is used as a connection terminal for one electrode and the inner support is used as a connection terminal for the other electrode, the opposing connection terminals are electrically reverse-signed when connected in series. In the case of parallel connection, it is desirable that the opposite connection terminals have the same electrical sign. With such a structure, it is only necessary to arrange a current collector between the connection terminals. Therefore, it is possible to easily select and implement general series connection and parallel connection.

そして、互いに重なり合うセル板において、対向する支持体同士を互いに電気的に分離した場合には、支持体を介して各単セルを電気的に直列に接続し得ることとなる。   And in the cell board which mutually overlaps, when the support bodies which oppose are mutually isolate | separated mutually, each single cell can be electrically connected in series via a support body.

さらにまた、本発明の燃料電池スタック構造体において、単セルの同種の電極同士を対向させて互いに重なり合う一組のセル板をセルユニットとし、隣接するセルユニット同士を電気的に並列接続すると共に、これらの電気的に並列接続した複数のセルユニットを電気的に直列接続した構成とすることが可能であり、この構成を採用することにより、小型で且つ高出力であるのに加えて、容易に電力調整可能な燃料電池スタック構造体を得ることができる。   Furthermore, in the fuel cell stack structure of the present invention, a set of cell plates facing each other of the same type of electrodes of a single cell is used as a cell unit, and adjacent cell units are electrically connected in parallel, It is possible to have a configuration in which a plurality of these electrically connected parallel cell units are electrically connected in series. By adopting this configuration, in addition to being small and having high output, it is easy to A fuel cell stack structure capable of adjusting power can be obtained.

この際、並列接続されるセルユニットの数を必ずしも統一する必要はなく、電流量がバランスされていればよい。すなわち、並列接続されるセルユニットの数が極端に少ない部分があると、発電電流量がその部分での発電電流の限界値に限定されてしまい、発電性能が低下する可能性があるが、このような状況を回避できさえすれば、並列接続するセルユニットの数は統一しなくてもよい。   At this time, it is not always necessary to unify the number of cell units connected in parallel, as long as the amount of current is balanced. In other words, if there is a part where the number of cell units connected in parallel is extremely small, the amount of generated current is limited to the limit value of the generated current in that part, which may reduce the power generation performance. As long as such a situation can be avoided, the number of cell units connected in parallel need not be unified.

以下、本発明を実施例により更に詳細に説明するが、各構成部品の寸法や材質などの仕様は、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, specifications, such as a dimension and a material of each component, are not limited to a following example.

図1及び図2は、本発明の燃料電池スタック構造体の一実施例を示しており、図1に示すように、この燃料電池スタック構造体は、リング状(枠状)を成す燃料極支持型の単セル10の内周縁部及び外周縁部に支持体2,3をそれぞれ接合して形成したセル板1を複数積層して成っていて、互いに重なり合う二枚のセル板1,1で一組のセルユニットUを構成している。このセルユニットUにおける二枚のセル板1,1の間を燃料ガス流路4として形成していると共に、互いに重なり合うセルユニットU,Uの間を空気ガス流路5として形成しており、ガス流路4,5には、集電体7がそれぞれ配置してある。   1 and 2 show an embodiment of a fuel cell stack structure according to the present invention. As shown in FIG. 1, the fuel cell stack structure has a fuel electrode support that forms a ring shape (frame shape). A plurality of cell plates 1 formed by joining supports 2 and 3 to the inner peripheral edge and outer peripheral edge of a single cell 10 of a mold are laminated, and two cell plates 1, 1 overlapping each other A set of cell units U is formed. Between the two cell plates 1 and 1 in the cell unit U is formed as a fuel gas flow path 4, and between the overlapping cell units U and U is formed as an air gas flow path 5, Current collectors 7 are respectively disposed in the flow paths 4 and 5.

この場合、セルユニットUにおける二枚のセル板1,1は、各々の単セル10の燃料極11,11同士が対向するようにして配置してあり、互いに電気的に分離させたセル板1の内周側支持体2及び外周側支持体3をいずれも単セル10に対する接続端子としている。   In this case, the two cell plates 1 and 1 in the cell unit U are arranged so that the fuel electrodes 11 and 11 of each unit cell 10 face each other, and the cell plates 1 are electrically separated from each other. Both the inner periphery side support body 2 and the outer periphery side support body 3 serve as connection terminals for the single cell 10.

また、この実施例において、セル板1の外周部分には、外周側支持体3を支持してガス流路4,5を維持するホルダ6が設けてあり、このホルダ6には、燃料ガス流路4と連通する燃料ガス供給・排出孔6aが形成してあると共に、空気ガス流路5と連通する空気ガス供給・排出孔6bが形成してある。   Further, in this embodiment, a holder 6 for supporting the outer peripheral support 3 and maintaining the gas flow paths 4 and 5 is provided on the outer peripheral portion of the cell plate 1. A fuel gas supply / discharge hole 6 a communicating with the passage 4 is formed, and an air gas supply / discharge hole 6 b communicating with the air gas flow path 5 is formed.

この実施例において、15cm×15cmの燃料極支持型セル(燃料極11:Ni−YSZ、電解質12:YSZ、空気極側中間層SDC、空気極13:SSC)の中心部分5cm×5cmに貫通孔を形成して、リング形状の単セル10を得た。   In this example, a 15 cm × 15 cm fuel electrode supporting cell (fuel electrode 11: Ni—YSZ, electrolyte 12: YSZ, air electrode side intermediate layer SDC, air electrode 13: SSC) has a through hole in the central portion 5 cm × 5 cm. As a result, a ring-shaped single cell 10 was obtained.

また、内周側支持体2として、6cm×6cmで且つ厚さが100μmのSUS430を用い、これをリング形状の単セル10における電解質12の内周縁部にガラスシール材によって接合し、一方、外周側支持体3として、20cm×20cmで且つで厚さが100μmのSUS430を用い、これをリング形状の単セル10における電解質12の外周縁部にガラスシール材によって接合して、一枚のセル板1を形成した。   Further, as the inner support 2, SUS430 having a size of 6 cm × 6 cm and a thickness of 100 μm is used, and this is joined to the inner peripheral edge of the electrolyte 12 in the ring-shaped single cell 10 by a glass sealing material. As the side support 3, SUS430 having a size of 20 cm × 20 cm and a thickness of 100 μm is used, and this is joined to the outer peripheral edge of the electrolyte 12 in the ring-shaped single cell 10 by a glass sealing material, and a single cell plate 1 was formed.

そして、このセル板1の外周部分に、燃料ガス供給・排出孔6a及び空気ガス供給・排出孔6bを有するSUS430製のホルダ6を溶接により接合固定し、単セル10の燃料極11,11同士が対向するようにして二枚のセル板1,1及びホルダ6を積層して一組のセルユニットUとした。この際、ホルダ6の積層面間が電気的に絶縁状態となるように、積層面の全面にセラミックス接着剤を塗布して接合した。   Then, a holder 6 made of SUS430 having a fuel gas supply / discharge hole 6a and an air gas supply / discharge hole 6b is joined and fixed to the outer peripheral portion of the cell plate 1 by welding so that the fuel electrodes 11, 11 of the single cell 10 are connected to each other. The two cell plates 1 and 1 and the holder 6 are laminated so that the two face each other. At this time, a ceramic adhesive was applied and bonded to the entire surface of the laminated surface so that the laminated surfaces of the holder 6 were electrically insulated.

燃料ガス流路4内に配置した集電体7には、インコネル600製のものを用い、燃料ガス流路4の図示下側面の燃料極11に当接する集電体7をセル板1の外周側支持体3に接触させ、燃料ガス流路4の図示上側面の燃料極11に当接する集電体7を上下のセル板1,1の各内周側支持体2,2に接触させた。この際、上下の燃料極11,11に当接する集電体7,7の各接触面を絶縁性材料8で被覆して電気的に絶縁した。   The current collector 7 disposed in the fuel gas flow path 4 is made of Inconel 600, and the current collector 7 in contact with the fuel electrode 11 on the lower side of the fuel gas flow path 4 is connected to the outer periphery of the cell plate 1. The current collector 7 that is in contact with the side support 3 and is in contact with the fuel electrode 11 on the upper side surface of the fuel gas passage 4 is brought into contact with the inner peripheral side support 2 and 2 of the upper and lower cell plates 1 and 1. . At this time, the contact surfaces of the current collectors 7, 7 contacting the upper and lower fuel electrodes 11, 11 were covered with the insulating material 8 to be electrically insulated.

一方、セルユニットUの外部に配置した集電体7にも、インコネル600製のものを用い、セルユニットUにおける図示下側の空気極13に当接する集電体7を下側のセル板1の内周側支持体2に接触させ、セルユニットUにおける図示上側の空気極13に当接する集電体7を上側のセル板1の外周側支持体3に接触させた。この場合も、空気極13に当接する集電体7と、隣接するセルユニットUの空気極13に当接する集電体7との各接触面を絶縁性材料8で被覆して電気的に絶縁した。   On the other hand, the current collector 7 arranged outside the cell unit U is also made of Inconel 600, and the current collector 7 in contact with the lower air electrode 13 in the cell unit U is shown in the lower cell plate 1. The current collector 7 in contact with the upper air electrode 13 in the cell unit U was brought into contact with the outer peripheral side support 3 of the upper cell plate 1. Also in this case, the respective contact surfaces of the current collector 7 in contact with the air electrode 13 and the current collector 7 in contact with the air electrode 13 of the adjacent cell unit U are covered with the insulating material 8 to be electrically insulated. did.

つまり、上記した実施例において、図2にも示すように、下側の外周側支持体3及び下側のホルダ6を下側の燃料極11の接続端子とし、下側の空気極13と上側の燃料極11とを内周側支持体2及び集電体7によって電気的に接続し、上側の外周側支持体3及び上側のホルダ6を上側の空気極13の接続端子としたセルユニットUを得た、すなわち、電気的直列接続構造を有するセルユニットUを得た。   That is, in the above-described embodiment, as shown in FIG. 2, the lower outer support 3 and the lower holder 6 are used as connection terminals for the lower fuel electrode 11, and the lower air electrode 13 and the upper side are connected. The cell unit U is electrically connected to the fuel electrode 11 by the inner peripheral support 2 and the current collector 7, and the upper outer support 3 and the upper holder 6 are the connection terminals of the upper air electrode 13. That is, a cell unit U having an electrical series connection structure was obtained.

こうして得たセルユニットUをホルダ6を介して積層することで、複数のセル板1を全て電気的に直列接続した燃料電池スタック構造体が得られる。この際、各セルユニットU間の電気的な接続を実施するために、ホルダ6の積層面の外周部分にのみセラミックス接着剤を塗布して接合するようにした。   By stacking the cell units U thus obtained via the holder 6, a fuel cell stack structure in which all the plurality of cell plates 1 are electrically connected in series is obtained. At this time, in order to perform electrical connection between the cell units U, a ceramic adhesive was applied and bonded only to the outer peripheral portion of the laminated surface of the holder 6.

図3〜図8は、本発明の燃料電池スタック構造体の他の実施例を示しており、この燃料電池スタック構造体は、図4及び図5に示すように、円形リング状を成す燃料極支持型の単セル30の内周縁部及び外周縁部に支持体22,23をそれぞれ接合して形成したセル板21を複数積層して成っていて、図6に示すように、各々の単セル30の燃料極31,31同士を対向させて配置した二枚のセル板21,21の各内周側支持体22,22でホルダ26を挟持しつつ、各外周側支持体23,23の外周縁部同士を接合することで一組のセルユニットUを構成している。   3 to 8 show other embodiments of the fuel cell stack structure according to the present invention. This fuel cell stack structure has a fuel electrode having a circular ring shape as shown in FIGS. A plurality of cell plates 21 formed by joining support bodies 22 and 23 to the inner peripheral edge and the outer peripheral edge of the support type single cell 30 are laminated, and each single cell is formed as shown in FIG. While holding the holder 26 between the inner peripheral supports 22 and 22 of the two cell plates 21 and 21 arranged with the 30 fuel electrodes 31 and 31 facing each other, the outer periphery of the outer supports 23 and 23 A set of cell units U is formed by joining the peripheral edges.

この場合、セルユニットUにおける二枚のセル板21,21間の袋綴じされた空間を燃料ガス流路24として形成しており、ホルダ26には、図7にも示すように、ガス供給孔を構成する積層方向のガス供給流路26aと、このガス供給流路26aと連通して燃料ガス流路24に燃料ガスを分配供給する同じくガス供給孔を構成する水平方向のガス分配流路26bと、燃料ガス排出流路26cが形成してある。   In this case, a bag-bound space between the two cell plates 21 and 21 in the cell unit U is formed as the fuel gas flow path 24, and the holder 26 has a gas supply hole as shown in FIG. A gas supply channel 26a in the stacking direction constituting the gas supply channel, and a horizontal gas distribution channel 26b that communicates with the gas supply channel 26a and distributes and supplies the fuel gas to the fuel gas channel 24. A fuel gas discharge channel 26c is formed.

そして、図3に示すように、互いに重なり合うセルユニットU,Uの間を空気ガス流路25として形成していて、二枚のセル板21,21間の燃料ガス流路24及び空気ガス流路25には、集電体27がそれぞれ配置してあり、この実施例においても、互いに電気的に分離させたセル板21の内周側支持体22及び外周側支持体23をいずれも単セル30に対する接続端子としている。   As shown in FIG. 3, the air gas flow path 25 is formed between the cell units U and U that overlap each other, and the fuel gas flow path 24 and the air gas flow path between the two cell plates 21 and 21 are formed. 25, current collectors 27 are arranged respectively. Also in this embodiment, each of the inner peripheral support 22 and the outer peripheral support 23 of the cell plate 21 electrically separated from each other is a single cell 30. As a connection terminal.

この実施例において、外径15mmφ−内径7mmφの燃料極支持型セル(燃料極31:Ni−SDC、電解質32:SDC、空気極33:SSC)をリング形状を成す単セル30として用いた。   In this example, a fuel electrode supporting cell (fuel electrode 31: Ni-SDC, electrolyte 32: SDC, air electrode 33: SSC) having an outer diameter of 15 mmφ and an inner diameter of 7 mmφ was used as a single cell 30 having a ring shape.

また、内周側支持体22として、外径8mmφで且つ厚さが100μmのSUS430を用い、これをリング形状の単セル30における電解質32の内周縁部にガラスシール材によって接合し、一方、外周側支持体23として、外径20mmφ−内径14mmφで且つ厚さが100μmのSUS430を用い、これをリング形状の単セル30における電解質32の外周縁部にガラスシール材によって接合して、一枚のセル板21を形成した。   Further, as the inner support 22, SUS430 having an outer diameter of 8 mmφ and a thickness of 100 μm is used, and this is joined to the inner peripheral edge of the electrolyte 32 in the ring-shaped single cell 30 by a glass sealant. As the side support 23, SUS430 having an outer diameter of 20 mmφ-an inner diameter of 14 mmφ and a thickness of 100 μm was used, and this was joined to the outer peripheral edge of the electrolyte 32 in the ring-shaped single cell 30 with a glass sealing material. A cell plate 21 was formed.

そして、単セル30の燃料極31,31同士が対向するようにして二枚のセル板21,21を配置し、ガス供給流路26a,ガス分配流路26b及び燃料ガス排出流路26cを有するSUS430製のホルダ26を各々の内周側支持体22,22で挟持しつつ、二枚のセル板21,21の各外周側支持体23,23の外周縁部同士を接合して一組のセルユニットUとした。   The two cell plates 21 and 21 are arranged so that the fuel electrodes 31 and 31 of the single cell 30 face each other, and have a gas supply channel 26a, a gas distribution channel 26b, and a fuel gas discharge channel 26c. While holding the holder 26 made of SUS430 between the inner peripheral supports 22, 22, the outer peripheral portions of the outer peripheral supports 23, 23 of the two cell plates 21, 21 are joined together to form a set. A cell unit U was obtained.

ここで、セルユニットUの内外に配置した集電体27には、インコネル600製のものを用い、セル板21の内周側支持体22及び外周側支持体23に対する集電体27の接続仕様を違えて二種類のセルユニットUを製作した。   Here, the current collector 27 disposed inside and outside the cell unit U is made of Inconel 600, and the connection specifications of the current collector 27 to the inner support 22 and the outer support 23 of the cell plate 21 are as follows. Different types of cell units U were manufactured.

一方のセルユニットU(図3最上段に位置するセルユニットUu)では、二枚のセル板21,21間の燃料ガス流路24に位置する集電体27を介して単セル30の燃料極31,31同士を電気的に接続させると共に、この集電体27を二枚のセル板21,21の各内周側支持体22,22に接触させた。また、空気ガス流路25に位置する集電体27及びこれと接触する外周側支持体23を介して単セル30の空気極33,33同士を電気的に接続させた。   In one cell unit U (the cell unit Uu located at the uppermost stage in FIG. 3), the fuel electrode of the single cell 30 via the current collector 27 located in the fuel gas flow path 24 between the two cell plates 21 and 21. 31 and 31 were electrically connected to each other, and the current collector 27 was brought into contact with the inner peripheral side supports 22 and 22 of the two cell plates 21 and 21. In addition, the air electrodes 33 and 33 of the single cell 30 were electrically connected to each other through the current collector 27 located in the air gas flow path 25 and the outer peripheral side support 23 in contact therewith.

他方のセルユニットU(セルユニットUuの図3下側に隣接するセルユニットUl)では、二枚のセル板21,21間の燃料ガス流路24に位置する集電体27を介して単セル30の燃料極31,31同士を電気的に接続させると共に、この集電体27を二枚のセル板21,21の各外周側支持体23,23に接触させた。また、空気ガス流路25に位置する集電体27及びこれと接触する内周側支持体22を介して単セル30の空気極33,33同士を電気的に接続させた。   In the other cell unit U (cell unit Ul adjacent to the lower side of FIG. 3 of the cell unit Uu), a single cell is connected via a current collector 27 located in the fuel gas flow path 24 between the two cell plates 21 and 21. The 30 fuel electrodes 31 and 31 were electrically connected to each other, and the current collector 27 was brought into contact with the outer peripheral side supports 23 and 23 of the two cell plates 21 and 21. Further, the air electrodes 33 and 33 of the single cell 30 were electrically connected to each other through the current collector 27 located in the air gas flow path 25 and the inner peripheral side support 22 in contact therewith.

こうして得たセルユニットUu及びセルユニットUlを集電体27を介して積層することで、セルユニットUu及びセルユニットUlを電気的に直列接続した一組のスタックユニットSUが得られる。この際、互いに重なり合うセルユニットUuの内周側支持体22とセルユニットUlの内周側支持体22とをシール性及び絶縁性を有するセラミックス接着剤により接合すると共に、セルユニットUuの空気極33に当接する集電体27と、セルユニットUlの空気極33に当接する集電体27との各接触面を絶縁性材料28で被覆して電気的に絶縁した。   By stacking the cell units Uu and cell units Ul thus obtained via the current collector 27, a set of stack units SU in which the cell units Uu and the cell units Ul are electrically connected in series can be obtained. At this time, the inner peripheral side support 22 of the cell unit Uu and the inner peripheral side support 22 of the cell unit Ul that are overlapped with each other are joined together by a ceramic adhesive having sealing properties and insulating properties, and the air electrode 33 of the cell unit Uu. The contact surfaces of the current collector 27 in contact with the current collector 27 and the current collector 27 in contact with the air electrode 33 of the cell unit Ul are covered with an insulating material 28 to be electrically insulated.

つまり、上記した一組のスタックユニットSUにおいて、図8にも示すように、セルユニットUuの内周側支持体22及びホルダ26がセルユニットUuの燃料極31の接続端子となり、セルユニットUlの内周側支持体22及びホルダ26がセルユニットUlの空気極33の接続端子となる。   That is, in the set of stack units SU described above, as shown in FIG. 8, the inner support 22 and the holder 26 of the cell unit Uu serve as connection terminals for the fuel electrode 31 of the cell unit Uu, and The inner support 22 and the holder 26 serve as connection terminals for the air electrode 33 of the cell unit Ul.

こうして得たスタックユニットSUを各内周側支持体22の部分で積層することで、複数のスタックユニットSUを全て電気的に直列接続した燃料電池スタック構造体が得られる。この際、各スタックユニットSU間の電気的な接続を実施するために、内周側支持体22の積層面の外周部分にのみセラミックス接着剤を塗布して接合するようにした。   By stacking the stack units SU obtained in this manner at the portions of the respective inner peripheral support bodies 22, a fuel cell stack structure in which a plurality of stack units SU are all electrically connected in series is obtained. At this time, in order to perform electrical connection between the stack units SU, a ceramic adhesive was applied and bonded only to the outer peripheral portion of the laminated surface of the inner peripheral support 22.

図9及び図10は、本発明の燃料電池スタック構造体のさらに他の実施例を示しており、図9に示すように、この実施例における燃料電池スタック構造体が図3に示す先の実施例における燃料電池スタック構造体と相違するところは、上下に二分割したSUS430製のホルダ片46a,46a同士を絶縁状態で接触させて成るホルダ46を用いて、セル板21の内周側支持体22及び外周側支持体23に対する集電体27の接続仕様を違えた点にあり、他の構成は先の実施例における燃料電池スタック構造体と同じである。   9 and 10 show still another embodiment of the fuel cell stack structure of the present invention. As shown in FIG. 9, the fuel cell stack structure in this embodiment is the previous embodiment shown in FIG. The difference from the fuel cell stack structure in the example is that the inner periphery side support body of the cell plate 21 is used by using a holder 46 made of SUS430 holder pieces 46a and 46a that are divided into two parts in an up-and-down manner and in contact with each other. 22 and the outer peripheral side support 23 are different in the connection specifications of the current collector 27, and other configurations are the same as the fuel cell stack structure in the previous embodiment.

この実施例において、単セル30の燃料極31,31同士が対向するようにして二枚のセル板21,21を配置し、上記ホルダ46を各々の内周側支持体22,22で挟持しつつ、二枚のセル板21,21の各外周側支持体23,23の外周縁部同士を接合して一組のセルユニットUとした。   In this embodiment, two cell plates 21, 21 are arranged so that the fuel electrodes 31, 31 of the single cell 30 face each other, and the holder 46 is sandwiched between the inner peripheral supports 22, 22. On the other hand, the outer peripheral edge portions of the outer peripheral side supports 23, 23 of the two cell plates 21, 21 were joined to form a set of cell units U.

この場合、二枚のセル板21,21間の燃料ガス流路24に位置する集電体27を介して単セル30の燃料極31,31同士を電気的に接続させていると共に、この集電体27を二枚のセル板21,21の各内周側支持体22,22のうちの図示下側の内周側支持体22に接触させ、一方、単セル30の空気極33,33と接触する集電体27を外周側支持体23,23及び二枚のセル板21,21の各内周側支持体22,22のうちの図示上側の内周側支持体22に接触させており、互いに隣接して各々空気極33に当接する集電体27,27の各接触面を絶縁性材料28で被覆して電気的に絶縁した。   In this case, the fuel electrodes 31, 31 of the single cell 30 are electrically connected to each other via the current collector 27 located in the fuel gas flow path 24 between the two cell plates 21, 21, and this collector The electric body 27 is brought into contact with the lower inner peripheral support 22 of the inner peripheral supports 22, 22 of the two cell plates 21, 21, while the air electrodes 33, 33 of the single cell 30. Current collector 27 in contact with the outer peripheral support 23, 23 and the inner peripheral support 22 on the upper side of the inner peripheral support 22, 22 of the two cell plates 21, 21. The contact surfaces of the current collectors 27 and 27 that are adjacent to each other and contact the air electrode 33 are covered with an insulating material 28 to be electrically insulated.

つまり、上記した一組のセルユニットUにおいて、図10にも示すように、下側の内周側支持体22及びホルダ46の下側のホルダ片46aが燃料極31の接続端子となり、上下の外周側支持体23,23が空気極33の接続端子となる。   That is, in the set of cell units U described above, as shown in FIG. 10, the lower inner support 22 and the lower holder piece 46 a of the holder 46 serve as connection terminals for the fuel electrode 31, and The outer peripheral supports 23 and 23 serve as connection terminals for the air electrode 33.

こうして得たセルユニットUを各内周側支持体22の部分で積層することで、複数のセルユニットUを全て電気的に直列接続した燃料電池スタック構造体が得られる。この際、各セルユニットU間の電気的な接続を実施するために、内周側支持体22の積層面の外周部分にのみセラミックス接着剤を塗布して接合するようにした。   By stacking the cell units U thus obtained at the portions of the respective inner peripheral support bodies 22, a fuel cell stack structure in which a plurality of cell units U are all electrically connected in series is obtained. At this time, in order to perform electrical connection between the cell units U, the ceramic adhesive was applied and bonded only to the outer peripheral portion of the laminated surface of the inner peripheral support 22.

図11及び図12は、本発明の燃料電池スタック構造体のさらに他の実施例を示しており、図11に示すように、この実施例における燃料電池スタック構造体は、図3に示す先の実施例における燃料電池スタック構造体のセルユニットUu及びセルユニットUlを複数個組み合わせて成っている。   11 and 12 show still another embodiment of the fuel cell stack structure of the present invention. As shown in FIG. 11, the fuel cell stack structure in this embodiment is the same as that shown in FIG. A plurality of cell units Uu and cell units Ul of the fuel cell stack structure in the embodiment are combined.

すなわち、この燃料電池スタック構造体は、二組のセルユニットUuを互いに積層して成る一方のスタックユニットSU1と、二組のセルユニットUlを互いに積層して成る他方のスタックユニットSU2とを互いに積層して形成した分割スタックユニットSUAを二組備えており、これらの分割スタックユニットSUA,SUA同士を互いに積層した構成を成している。   That is, in this fuel cell stack structure, one stack unit SU1 formed by stacking two sets of cell units Uu and another stack unit SU2 formed by stacking two sets of cell units Ul are stacked on each other. Two divided stack units SUA are formed, and the divided stack units SUA and SUA are stacked together.

この場合、一方のスタックユニットSU1では、二組のセルユニットUuの各外周側支持体23,23に集電体27を接触させることで空気極33,33同士を電気的に接続させていると共に、セルユニットUu内の集電体27を内周側支持体22,22に接触させることで燃料極31,31同士を電気的に接続させている、すなわち、二組のセルユニットUu同士を電気的に並列に接続させている。   In this case, in one stack unit SU1, the air electrodes 33 and 33 are electrically connected to each other by bringing the current collector 27 into contact with the outer peripheral support bodies 23 and 23 of the two cell units Uu. The fuel electrodes 31 and 31 are electrically connected to each other by bringing the current collector 27 in the cell unit Uu into contact with the inner support 22 and 22, that is, the two cell units Uu are electrically connected to each other. Are connected in parallel.

また、他方のスタックユニットSU2では、二組のセルユニットUlの各内周側支持体22,22に集電体27を接触させることで空気極33,33同士を電気的に接続させていると共に、セルユニットUl内の集電体27を外周側支持体23,23に接触させることで燃料極31,31同士を電気的に接続させている、すなわち、二組のセルユニットUl同士を電気的に並列に接続させている。   In the other stack unit SU2, the air electrodes 33 and 33 are electrically connected to each other by bringing the current collector 27 into contact with the inner peripheral supports 22 and 22 of the two sets of cell units Ul. The fuel electrodes 31 are electrically connected to each other by bringing the current collector 27 in the cell unit Ul into contact with the outer peripheral supports 23, that is, the two cell units Ul are electrically connected to each other. Connected in parallel.

こうして得た一方のスタックユニットSU1及び他方のスタックユニットSU2を双方の外周側支持体23,23に接触する集電体27を介して積層することで、スタックユニットSU1及びスタックユニットSU2を電気的に直列接続した一組の分割スタックユニットSUAが得られる。この際、互いに重なり合う一方のスタックユニットSU1の内周側支持体22と他方のスタックユニットSU2の内周側支持体22とをシール性及び絶縁性を有するセラミックス接着剤により接合すると共に、一方のスタックユニットSU1の空気極33に当接する集電体27と、他方のスタックユニットSU2の空気極33に当接する集電体27との各接触面を絶縁性材料28で被覆して電気的に絶縁した。   The stack unit SU1 and the stack unit SU2 are electrically stacked by stacking the stack unit SU1 and the other stack unit SU2 obtained in this way via current collectors 27 that are in contact with the outer peripheral supports 23, 23. A set of divided stack units SUA connected in series is obtained. At this time, the inner periphery side support 22 of one stack unit SU1 and the inner periphery side support 22 of the other stack unit SU2 that are overlapped with each other are joined together by a ceramic adhesive having sealing properties and insulation properties, and one stack The contact surfaces of the current collector 27 that contacts the air electrode 33 of the unit SU1 and the current collector 27 that contacts the air electrode 33 of the other stack unit SU2 are covered with an insulating material 28 to be electrically insulated. .

つまり、上記した一組の分割スタックユニットSUAにおいて、図12にも示すように、一方のスタックユニットSU1の内周側支持体22及びホルダ26が燃料極31の接続端子となり、他方のスタックユニットSU2の内周側支持体22及びホルダ26が空気極33の接続端子となる。   That is, in the set of divided stack units SUA, as shown in FIG. 12, the inner peripheral support 22 and the holder 26 of one stack unit SU1 serve as connection terminals for the fuel electrode 31, and the other stack unit SU2 The inner peripheral support 22 and the holder 26 serve as connection terminals for the air electrode 33.

こうして得た二組の分割スタックユニットSUAを各内周側支持体22の部分で積層することで、二組の分割スタックユニットSUAを電気的に直列接続した燃料電池スタック構造体が得られる。この際、各分割スタックユニットSUA間の電気的な接続を実施するために、内周側支持体22の積層面の外周部分にのみセラミックス接着剤を塗布して接合するようにした。   By stacking the two sets of divided stack units SUA obtained in this manner at the inner peripheral support 22, a fuel cell stack structure in which the two sets of divided stack units SUA are electrically connected in series is obtained. At this time, in order to electrically connect each of the divided stack units SUA, a ceramic adhesive was applied and joined only to the outer peripheral portion of the laminated surface of the inner peripheral support 22.

本発明の一実施例による燃料電池スタック構造体の断面説明図である。(実施例1)1 is a cross-sectional explanatory view of a fuel cell stack structure according to an embodiment of the present invention. Example 1 図1における燃料電池スタック構造体の回路説明図である。(実施例1)FIG. 2 is a circuit explanatory diagram of the fuel cell stack structure in FIG. 1. Example 1 本発明の他の実施例による燃料電池スタック構造体の断面説明図である。(実施例2)FIG. 4 is a cross-sectional explanatory view of a fuel cell stack structure according to another embodiment of the present invention. (Example 2) 図3における燃料電池スタック構造体のセル板の全体斜視説明図である。(実施例2)FIG. 4 is an overall perspective explanatory view of a cell plate of the fuel cell stack structure in FIG. 3. (Example 2) 図3における燃料電池スタック構造体のセルユニットの分解斜視説明図である。(実施例2)FIG. 4 is an exploded perspective view of a cell unit of the fuel cell stack structure in FIG. 3. (Example 2) 図3における燃料電池スタック構造体のセルユニットの断面説明図である。(実施例2)FIG. 4 is a cross-sectional explanatory view of a cell unit of the fuel cell stack structure in FIG. 3. (Example 2) 図3における燃料電池スタック構造体のホルダの平面説明図(a),a−b線断面説明図(b)及びc−d線断面説明図(c)である。(実施例2)It is plane explanatory drawing (a), ab line sectional explanatory drawing (b), and cd line sectional explanatory drawing (c) of the holder of the fuel cell stack structure in FIG. (Example 2) 図3における燃料電池スタック構造体の回路説明図である。(実施例2)FIG. 4 is a circuit explanatory diagram of the fuel cell stack structure in FIG. 3. (Example 2) 本発明のさらに他の実施例による燃料電池スタック構造体の断面説明図である。(実施例3)FIG. 6 is a cross-sectional explanatory view of a fuel cell stack structure according to still another embodiment of the present invention. (Example 3) 図9における燃料電池スタック構造体の回路説明図である。(実施例3)FIG. 10 is a circuit explanatory diagram of the fuel cell stack structure in FIG. 9. (Example 3) 本発明のさらに他の実施例による燃料電池スタック構造体の断面説明図である。(実施例4)FIG. 6 is a cross-sectional explanatory view of a fuel cell stack structure according to still another embodiment of the present invention. Example 4 図11における燃料電池スタック構造体の回路説明図である。(実施例4)FIG. 12 is a circuit explanatory diagram of the fuel cell stack structure in FIG. 11. Example 4

符号の説明Explanation of symbols

1,21 セル板
2,22 内周側支持体
3,23 外周側支持体
4,24 燃料ガス流路単セル
5,25 空気ガス流路
6,26,46 ホルダ
6a,6b ガス供給・排出孔
10,30 単セル
11,31 燃料極
12,32 電解質
13,33 空気極
26a ガス供給流路(ガス供給孔)
26b ガス分配流路(ガス供給孔)
26c 燃料ガス排出流路(ガス排出孔)
1,21 cell plate
2,22 Inner peripheral support 3,23 Outer support 4,24 Fuel gas flow path single cell 5,25 Air gas flow path 6,26,46 Holder 6a, 6b Gas supply / discharge hole 10,30 Single cell 11, 31 Fuel electrode 12, 32 Electrolyte 13, 33 Air electrode 26a Gas supply channel (gas supply hole)
26b Gas distribution channel (gas supply hole)
26c Fuel gas discharge channel (gas discharge hole)

Claims (7)

リング状の単セルの内周縁部及び外周縁部に支持体をそれぞれ接合して形成したセル板を複数積層して成り、互いに重なり合うセル板の間をガス流路として形成した燃料電池スタック構造体であって、
単セルの同種の電極同士を対向させて複数のセル板を配置すると共に、セル板の内周側支持体及び外周側支持体を互いに電気的に分離し、セル板の外周側支持体を一方の電極の接続端子とし、内周側支持体を他方の電極の接続端子としたことを特徴とする燃料電池スタック構造体。
A fuel cell stack structure in which a plurality of cell plates formed by bonding supports to the inner peripheral edge and outer peripheral edge of a ring-shaped single cell are stacked, and a gas flow path is formed between the overlapping cell plates. And
The electrodes of the unit cells allogeneic to face with arranging a plurality of cells plates, the inner peripheral side support member and the outer support of the cell plate electrically separated from each other, one of the outer circumferential side support of the cell plate A fuel cell stack structure characterized in that the electrode is a connection terminal of the electrode and the inner peripheral support is a connection terminal of the other electrode .
リング状の単セルの内周縁部及び外周縁部に支持体をそれぞれ接合して形成したセル板を複数積層して成り、互いに重なり合うセル板の間をガス流路として形成した燃料電池スタック構造体であって、
単セルの同種の電極同士を対向させて複数のセル板を配置すると共に、セル板の内周側支持体及び外周側支持体を互いに電気的に分離し
互いに重なり合うセル板において、対向する支持体同士を互いに電気的に分離したことを特徴とする燃料電池スタック構造体。
A fuel cell stack structure in which a plurality of cell plates formed by bonding supports to the inner peripheral edge and outer peripheral edge of a ring-shaped single cell are stacked, and a gas flow path is formed between the overlapping cell plates. And
While arranging a plurality of cell plates with the same type of electrodes of a single cell facing each other, the inner peripheral side support and the outer peripheral side support of the cell plate are electrically separated from each other ,
A fuel cell stack structure characterized in that, in mutually overlapping cell plates, opposing supports are electrically separated from each other .
セル板の支持体の少なくとも一部を支持してセル板間のガス流路を維持するホルダを具備し、このホルダにセル板間のガス流路にガスを供給するガス供給孔を設けた請求項1又は2に記載の燃料電池スタック構造体。 Claims provided with a holder that supports at least a part of the cell plate support and maintains the gas flow path between the cell plates, and the holder is provided with a gas supply hole for supplying gas to the gas flow path between the cell plates Item 3. The fuel cell stack structure according to Item 1 or 2. ホルダは、単セルの内周側に位置して内周側支持体の少なくとも一部を支持している請求項3に記載の燃料電池スタック構造体。 The fuel cell stack structure according to claim 3, wherein the holder is located on an inner peripheral side of the single cell and supports at least a part of the inner peripheral support. 互いに重なり合うセル板の各外周側支持体同士を接合し、単セルの内周側に位置するホルダにセル板間のガス流路からのガス排出を行うガス排出孔を設けた請求項4に記載の燃料電池スタック構造体。 The gas discharge hole which joins each outer peripheral side support body of the cell plate which mutually overlaps, and discharges the gas from the gas flow path between cell plates was provided in the holder located in the inner peripheral side of a single cell. Fuel cell stack structure. 単セルの同種の電極同士を対向させて互いに重なり合う一組のセル板をセルユニットとし、隣接するセルユニット同士を電気的に直列接続した請求項1〜5のいずれか1項に記載の燃料電池スタック構造体。 The fuel cell according to any one of claims 1 to 5, wherein a set of cell plates that overlap each other with the same type of electrodes of a single cell facing each other is used as a cell unit, and adjacent cell units are electrically connected in series. Stack structure. 単セルの同種の電極同士を対向させて互いに重なり合う一組のセル板をセルユニットとし、隣接するセルユニット同士を電気的に並列接続すると共に、これらの電気的に並列接続した複数のセルユニットを電気的に直列接続した請求項1〜5のいずれか1項に記載の燃料電池スタック構造体。 A set of cell plates that are the same type of electrodes of a single cell facing each other is used as a cell unit, and adjacent cell units are electrically connected in parallel, and a plurality of these cell units connected in parallel are electrically connected. The fuel cell stack structure according to any one of claims 1 to 5, which is electrically connected in series.
JP2006229494A 2006-08-25 2006-08-25 Fuel cell stack structure Expired - Fee Related JP5077804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006229494A JP5077804B2 (en) 2006-08-25 2006-08-25 Fuel cell stack structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006229494A JP5077804B2 (en) 2006-08-25 2006-08-25 Fuel cell stack structure

Publications (2)

Publication Number Publication Date
JP2008053109A JP2008053109A (en) 2008-03-06
JP5077804B2 true JP5077804B2 (en) 2012-11-21

Family

ID=39236945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006229494A Expired - Fee Related JP5077804B2 (en) 2006-08-25 2006-08-25 Fuel cell stack structure

Country Status (1)

Country Link
JP (1) JP5077804B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2182650B1 (en) * 1972-04-27 1974-07-26 Citroen Sa
JPH01279576A (en) * 1988-04-30 1989-11-09 Tonen Corp Plane plate type solid electrolyte fuel cell
JP2005353421A (en) * 2004-06-10 2005-12-22 Nissan Motor Co Ltd Fuel cell

Also Published As

Publication number Publication date
JP2008053109A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
KR101903863B1 (en) Fuel cell and method for manufacturing same
JP5158556B2 (en) Fuel cell stack and fuel cell including the same
JP5023429B2 (en) Flat plate fuel cell
JP5330532B2 (en) Solid oxide fuel cell
JP4200088B2 (en) Fuel cell and fuel cell stack
WO2013132978A1 (en) Assembled battery
JP2009224173A (en) Battery
JP2012230875A (en) Solid oxide fuel cell and manufacturing method of the same
JP6131426B2 (en) Fuel cell seal structure
JP2006236989A (en) Unit battery cell for fuel battery
JP2020113434A (en) All-solid-state battery and manufacturing method of all-solid-state battery
JP5591743B2 (en) Solid oxide fuel cell
JP2007217209A (en) Oxygen enrichment device
JP5077804B2 (en) Fuel cell stack structure
JP3209731U (en) Laminated battery
JP5151194B2 (en) Fuel cell stack structure
JP6415371B2 (en) Solid oxide fuel cell
JP7082954B2 (en) Electrochemical reaction cell stack
JP5209547B2 (en) Gas seal member and connection method of solid oxide fuel cell
JP2008103593A (en) Multilayered plane type electricity storage device and manufacturing method therefor
JP6185448B2 (en) Terminal plate and fuel cell for fuel cell
JP5228526B2 (en) battery
JPS63274062A (en) Solid electrolyte type fuel cell
JP6902511B2 (en) Electrochemical reaction cell stack
JP2009224237A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5077804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120819

LAPS Cancellation because of no payment of annual fees