JP5077621B2 - Difluorobenzene derivative and liquid crystal composition using the same - Google Patents

Difluorobenzene derivative and liquid crystal composition using the same Download PDF

Info

Publication number
JP5077621B2
JP5077621B2 JP2006074151A JP2006074151A JP5077621B2 JP 5077621 B2 JP5077621 B2 JP 5077621B2 JP 2006074151 A JP2006074151 A JP 2006074151A JP 2006074151 A JP2006074151 A JP 2006074151A JP 5077621 B2 JP5077621 B2 JP 5077621B2
Authority
JP
Japan
Prior art keywords
group
liquid crystal
general formula
formula
crystal composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006074151A
Other languages
Japanese (ja)
Other versions
JP2007039642A (en
Inventor
正太郎 川上
隆 松本
哲生 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2006074151A priority Critical patent/JP5077621B2/en
Publication of JP2007039642A publication Critical patent/JP2007039642A/en
Application granted granted Critical
Publication of JP5077621B2 publication Critical patent/JP5077621B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本願発明は電気光学的液晶表示材料として有用な誘電率異方性Δεが負のネマチック液晶組成物、及びこれを用いた液晶表示素子に関する。   The present invention relates to a nematic liquid crystal composition having a negative dielectric anisotropy Δε useful as an electro-optical liquid crystal display material, and a liquid crystal display device using the same.

液晶表示素子は、時計、電卓をはじめとして、家庭用各種電気機器、測定機器、自動車用パネル、ワープロ、電子手帳、プリンター、コンピューター、テレビ等に用いられるようになっている。液晶表示方式としては、その代表的なものにTN(捩れネマチック)型、STN(超捩れネマチック)型、DS(動的光散乱)型、GH(ゲスト・ホスト)型、IPS(インプレーンスイッチング)型、OCB(光学補償複屈折)型、ECB(電圧制御複屈折)型、VA(垂直配向)型、CSH(カラースーパーホメオトロピック)型、あるいはFLC(強誘電性液晶)等を挙げることができる。また駆動方式としても従来のスタティック駆動からマルチプレックス駆動が一般的になり、単純マトリックス方式、最近ではTFT(薄膜トランジスタ)やTFD(薄膜ダイオード)等により駆動されるアクティブマトリックス(AM)方式が主流となっている。   The liquid crystal display element is used in various electric appliances for home use, measuring instruments, automobile panels, word processors, electronic notebooks, printers, computers, televisions, etc., including clocks and calculators. Typical liquid crystal display methods include TN (twisted nematic), STN (super twisted nematic), DS (dynamic light scattering), GH (guest / host), and IPS (in-plane switching). Type, OCB (optical compensation birefringence) type, ECB (voltage controlled birefringence) type, VA (vertical alignment) type, CSH (color super homeotropic) type, FLC (ferroelectric liquid crystal), etc. . As a driving method, multiplex driving is generally used instead of conventional static driving, and the active matrix (AM) method driven by a TFT (thin film transistor), TFD (thin film diode) or the like has become mainstream recently. ing.

これらの表示方式において、IPS型、ECB型、VA型、あるいはCSH型等は現在汎用のTN型やSTN型と異なり、誘電率異方性(Δε)が負の液晶材料を用いるという特徴を有する。これらの中で特にAM駆動によるVA型表示は、高速で広視野角の要求される表示素子、例えばテレビ等への応用において、現在最も期待されているものである。   In these display systems, the IPS type, ECB type, VA type, CSH type and the like have a feature that a liquid crystal material having a negative dielectric anisotropy (Δε) is used, unlike currently-used TN type and STN type. . Among these, VA type display by AM driving is currently most expected in application to a display element that requires a high speed and a wide viewing angle, such as a television.

VA型等の表示方式に用いられる液晶材料には、低電圧駆動、高速応答、広い動作温度範囲が要求される。すなわち、誘電率異方性が負で絶対値が大きく、低粘度であり、高いネマチック相−等方性液体相転移温度(Tni)が要求されている。また、屈折率異方性(Δn)とセルギャップ(d)との積であるΔn×dの設定から、液晶材料の屈折率異方性をセルギャップに合わせて適当な範囲に調節する必要がある。又、高速応答を実現するために表示素子のセルギャップを小さくすることも行われるが、前述のような制約から狭セルギャップ化には限界があった。セルギャップを変えることなく応答速度を向上させるためには粘性の低い液晶組成物を用いることが有効である。液晶表示素子をテレビ等へ応用する場合においては高速応答性が重視されるため、特に粘性の低い液晶組成物の開発が求められていた。
誘電率異方性が負の液晶材料として、以下のような2,3-ジフルオロフェニレン骨格を有する液晶化合物(特許文献1及び2参照)が開示されている。
A liquid crystal material used in a display method such as a VA type is required to have low voltage driving, high speed response, and a wide operating temperature range. That is, the dielectric anisotropy is negative, the absolute value is large, the viscosity is low, and a high nematic phase-isotropic liquid phase transition temperature (Tni) is required. Moreover, it is necessary to adjust the refractive index anisotropy of the liquid crystal material to an appropriate range according to the cell gap from the setting of Δn × d, which is the product of the refractive index anisotropy (Δn) and the cell gap (d). is there. In order to realize a high-speed response, the cell gap of the display element is reduced, but there is a limit to narrowing the cell gap due to the above-described restrictions. In order to improve the response speed without changing the cell gap, it is effective to use a liquid crystal composition having a low viscosity. In the case of applying a liquid crystal display element to a television or the like, since high-speed response is important, development of a liquid crystal composition having particularly low viscosity has been demanded.
As liquid crystal materials having a negative dielectric anisotropy, the following liquid crystal compounds having a 2,3-difluorophenylene skeleton (see Patent Documents 1 and 2) are disclosed.

Figure 0005077621
Figure 0005077621

(式中、R及びR’は炭素数1から10のアルキル基又はアルコキシ基を表す。)
更に、これらの引用文献には、本願発明を構成する液晶化合物の基本骨格である1-ヒドロキシ-2,3-ジフルオロ-4-置換ベンゼン骨格を有する化合物を含むものである。しかし、当該引用文献に記載される化合物は広範であり、両方の側鎖にアルケニル基を有する化合物に関する具体的な開示は無く、記載された化合物を用いた誘電率異方性が負の液晶組成物は、液晶テレビ等の高速応答が要求される液晶組成物においては十分に低い粘性を実現するに至っていない。
(In the formula, R and R ′ represent an alkyl group having 1 to 10 carbon atoms or an alkoxy group.)
Furthermore, these references include compounds having a 1-hydroxy-2,3-difluoro-4-substituted benzene skeleton, which is the basic skeleton of the liquid crystal compound constituting the present invention. However, the compounds described in the cited document are wide, and there is no specific disclosure regarding compounds having alkenyl groups in both side chains, and liquid crystal compositions having a negative dielectric anisotropy using the described compounds. The product has not yet achieved a sufficiently low viscosity in a liquid crystal composition that requires a high-speed response such as a liquid crystal television.

一方、本願発明を構成する液晶化合物の基本骨格である1-ヒドロキシ-2,3-ジフルオロ-4-置換ベンゼン骨格を有する化合物を用いた液晶組成物の開示もあるが(特許文献3、特許文献4及び特許文献5参照)、両方の側鎖にアルケニル基を有する化合物を用いた液晶組成物の具体的な記載は無く、当該化合物と他にどのような化合物を用いることで液晶組成物の粘性を低減できるかについての具体的な開示は無い。   On the other hand, there is also a disclosure of a liquid crystal composition using a compound having a 1-hydroxy-2,3-difluoro-4-substituted benzene skeleton, which is a basic skeleton of a liquid crystal compound constituting the present invention (Patent Document 3, Patent Document 3). 4 and Patent Document 5), there is no specific description of a liquid crystal composition using a compound having an alkenyl group in both side chains, and the viscosity of the liquid crystal composition can be determined by using the compound and any other compound. There is no specific disclosure about whether or not it can be reduced.

又、2,3-ジフルオロハイドロキノン骨格を有する液晶化合物についても既に開示されており(特許文献6及び7参照)、当該化合物を用いた液晶組成物の開示もある。しかし、当該化合物はハイドロキノン骨格を有することから、電圧保持率の点でアクティブマトリックス用には使用できないものと見られており(非特許文献1参照)当該化合物を用いて低粘性のVA用液晶組成物の開発は遅れていた。   In addition, a liquid crystal compound having a 2,3-difluorohydroquinone skeleton has already been disclosed (see Patent Documents 6 and 7), and a liquid crystal composition using the compound is also disclosed. However, since the compound has a hydroquinone skeleton, it is considered that it cannot be used for an active matrix in terms of voltage holding ratio (see Non-Patent Document 1). A low-viscosity liquid crystal composition for VA using the compound. The development of things was delayed.

誘電率異方性値が負であってその絶対値の大きい液晶化合物として、7,8-ジフルオロクロマン骨格を有する液晶化合物(特許文献8参照)が開示されている。しかしながら、この化合物やそれを用いた液晶組成物は誘電率異方性値は負であり、その絶対値は大きいものの、粘度が十分低いとは言えず、より低粘度である液晶化合物及び液晶組成物の開発が求められていた。   As a liquid crystal compound having a negative dielectric anisotropy value and a large absolute value, a liquid crystal compound having a 7,8-difluorochroman skeleton (see Patent Document 8) is disclosed. However, although this compound and a liquid crystal composition using the same have a negative dielectric anisotropy value and a large absolute value, it cannot be said that the viscosity is sufficiently low, and the liquid crystal compound and the liquid crystal composition have a lower viscosity. There was a need to develop things.

粘度の低い液晶化合物として側鎖にアルケニル基を有するものが有り、多くの化合物を含む一般的な開示は既にされている(特許文献9参照)。しかし、当該引用文献は誘電異方性値が正である液晶化合物及び液晶組成物の使用を念頭に置いており、誘電異方性値が負の液晶組成物として広い開示範囲のどの化合物を具体的に使用し、どの様な化合物を併用し又その効果がどの様なものであるかについての開示は無い。
従って、誘電率異方性が負の液晶組成物で粘度の低い液晶組成物の開発が望まれていた。
Some liquid crystal compounds having a low viscosity have an alkenyl group in the side chain, and general disclosure including many compounds has already been made (see Patent Document 9). However, the cited document is intended to use a liquid crystal compound and a liquid crystal composition having a positive dielectric anisotropy value, and as a liquid crystal composition having a negative dielectric anisotropy value, which compound in a wide disclosure range is specified. There is no disclosure of what compounds are used together and what effects are used in combination.
Accordingly, development of a liquid crystal composition having a negative dielectric anisotropy and a low viscosity has been desired.

特開昭60−199840号JP-A-60-199840 特開平2−4725号JP-A-2-4725 特開平8−104869号JP-A-8-104869 特開2000−96055号JP 2000-96055 A 欧州特許出願公開第0474062号明細書(14頁)European Patent Application No. 04744062 (page 14) 特表平2−503568号Special table 2-503568 独国特許出願公開第3906058号German Patent Application Publication No. 3,906,058 国際公開2005/000995号パンフレットInternational Publication No. 2005/000995 Pamphlet 特開平10−45639号公報JP 10-45639 A 沼田 宏,月刊ディスプレイ,Vol.4,No.3 pp.1−7,(1998)(5頁表4)Numata Hiroshi, Monthly Display, Vol. 4, no. 3 pp. 1-7, (1998) (table 4 on page 5)

本願発明が解決しようとする課題は、絶対値の大きな負の誘電率異方性を持ち、屈折率異方性を低減させるか又は上昇させることなく粘度の低い液晶組成物を提供することにある。更に、本願発明が解決しようとする課題は当該液晶組成物の構成部材である誘電率異方性が負で、粘度の低いジフルオロベンゼン誘導体を提供し、当該液晶組成物を用いたVA型等の液晶表示素子を提供することにある。   The problem to be solved by the present invention is to provide a liquid crystal composition having a negative absolute dielectric anisotropy having a large absolute value and a low viscosity without reducing or increasing the refractive index anisotropy. . Furthermore, the problem to be solved by the present invention is to provide a difluorobenzene derivative having a negative dielectric constant anisotropy and a low viscosity, which is a constituent member of the liquid crystal composition, such as a VA type using the liquid crystal composition. The object is to provide a liquid crystal display element.

本願発明は、上記課題を解決するために鋭意検討した結果、一般式(I)   As a result of intensive studies to solve the above-mentioned problems, the present invention has the general formula (I)

Figure 0005077621
(式中、R1は炭素数1から10のアルキル基又は炭素数2から10のアルケニル基を表し、これらの基中に存在する1個のCH2基又は隣接していない2個以上のCH2基はO及び/又はSに置換されてもよく、またこれらの基中に存在する1個又は2個以上の水素原子はF又はClに置換されてもよく、R2は炭素数1から10のアルキル基、炭素数1から10のアルコキシル基、炭素数2から10のアルケニル基又は炭素数3から10のアルケニルオキシ基を表し、
mは0、1又は2表す。)
で表される化合物を1種又は2種以上含有し、
第二成分として、一般式(II)
Figure 0005077621
(In the formula, R 1 represents an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms, and one CH 2 group present in these groups or two or more non-adjacent CHs. Two groups may be substituted with O and / or S, and one or more hydrogen atoms present in these groups may be substituted with F or Cl, and R 2 has 1 to Represents an alkyl group having 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkenyloxy group having 3 to 10 carbon atoms,
m represents 0, 1 or 2. )
Containing one or more compounds represented by:
As the second component, the general formula (II)

Figure 0005077621
Figure 0005077621

(式中、R3及びR4はそれぞれ独立的に一般式(I)におけるR2と同じ意味を表し、
B1及びB2はそれぞれ独立的に
(a) トランス-1,4-シクロへキシレン基(この基中に存在する1個のCH2基又は隣接していない2個のCH2基は酸素原子又は硫黄原子に置換されてもよい)
(b) 1,4-フェニレン基(この基中に存在する1個又は2個以上のCH基は窒素原子に置換されてもよい)
(c) 1,4-シクロヘキセニレン基、1,4-ビシクロ[2.2.2]オクチレン基、ピペリジン-1,4-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基及び1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基
からなる群より選ばれる基を表し、上記の基(a)、基(b)又は基(c)はCN又はハロゲンで置換されていてもよく、
Y1及びY2はそれぞれ独立的に
-CH2CH2-、-CH=CH-、-CH(CH3)CH2-、-CH2CH(CH3)-、-CH(CH3)CH(CH3)-、-CF2CF2-、-CF=CF-、-CH2O-、-OCH2-、-OCH(CH3)-、-CH(CH3)O-、-(CH2)4-、-(CH2)3O-、-O(CH2)3-、-C≡C-、-CF2O-、-OCF2-、-COO-、-OCO-、-COS-、-SCO-又は単結合を表し、
Y2及びB2が複数存在する場合は、それらは同一でもよく異なっていてもよく、
pは0、1又は2を表す。)
で表される化合物を1種又は2種以上含有する誘電率異方性が負のネマチック液晶組成物を提供し、併せて当該液晶組成物の構成部材である一般式(I-1)
(Wherein R 3 and R 4 each independently represent the same meaning as R 2 in formula (I),
B 1 and B 2 are each independently
(a) trans-1,4-cyclohexylene group (two CH 2 groups not one CH 2 group or adjacent present in this group may be substituted with an oxygen atom or a sulfur atom)
(b) 1,4-phenylene group (one or more CH groups present in this group may be substituted with a nitrogen atom)
(c) 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1,4-diyl group, naphthalene-2,6-diyl group, decahydronaphthalene-2,6 Represents a group selected from the group consisting of a -diyl group and a 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, and the group (a), the group (b) or the group (c) is CN or May be substituted with halogen,
Y 1 and Y 2 are independently
-CH 2 CH 2- , -CH = CH-, -CH (CH 3 ) CH 2- , -CH 2 CH (CH 3 )-, -CH (CH 3 ) CH (CH 3 )-, -CF 2 CF 2- , -CF = CF-, -CH 2 O-, -OCH 2- , -OCH (CH 3 )-, -CH (CH 3 ) O-,-(CH 2 ) 4 -,-(CH 2 ) 3 O -, - O (CH 2) 3 -, - C≡C -, - CF 2 O -, - OCF 2 -, - COO -, - OCO -, - COS -, - SCO- or a single bond ,
When there are a plurality of Y 2 and B 2 , they may be the same or different,
p represents 0, 1 or 2. )
A nematic liquid crystal composition having a negative dielectric anisotropy containing one or more compounds represented by general formula (I-1), which is a constituent member of the liquid crystal composition

Figure 0005077621
Figure 0005077621

(式中、Raは炭素原子数2から7の直鎖状アルケニル基を表し、Rbは炭素原子数1から7の直鎖状アルキル基又は炭素原子数2から7の直鎖状アルケニル基を表し、p1及びp2はそれぞれ独立的に1又は2を表し、p1及びp2の合計は3以下である。)で表されるジフルオロベンゼン誘導体を提供し、更に、当該液晶組成物を用いた液晶表示素子を提供する。 (In the formula, R a represents a linear alkenyl group having 2 to 7 carbon atoms, and R b represents a linear alkyl group having 1 to 7 carbon atoms or a linear alkenyl group having 2 to 7 carbon atoms. P1 and p2 each independently represents 1 or 2, and the sum of p1 and p2 is 3 or less), and a liquid crystal using the liquid crystal composition A display element is provided.

本願発明の液晶化合物の組み合わせによって、屈折率異方性をほぼ維持したまま、粘度の低い誘電率異方性が負の液晶組成物が得られた。この組成物を用いることにより、高温域まで高い電圧保持率を維持できる信頼性に優れた液晶表示素子が提供され、このディスプレイはVA方式やECB方式、IPS方式等の液晶ディスプレイとして非常に実用的であり、特にセルギャップを薄くすることなく高速応答化に有効である。
又、本願発明のジフルオロベンゼン誘導体は誘電率異方性値が負であると共に低粘度であることから、本願発明の液晶組成物の構成部材として有用である。
By the combination of the liquid crystal compounds of the present invention, a liquid crystal composition having a low viscosity and a negative dielectric anisotropy was obtained while the refractive index anisotropy was substantially maintained. By using this composition, a highly reliable liquid crystal display element capable of maintaining a high voltage holding ratio up to a high temperature range is provided, and this display is very practical as a liquid crystal display of VA mode, ECB mode, IPS mode, etc. In particular, it is effective for high-speed response without reducing the cell gap.
The difluorobenzene derivative of the present invention is useful as a component of the liquid crystal composition of the present invention because of its negative dielectric anisotropy and low viscosity.

本願発明における液晶組成物において、第一成分として一般式(I)で表される化合物を1種又は2種以上を含有するが、1種から20種が好ましく、1種から15種がより好ましく、1種から10種が更に好ましく、2種から8種が特に好ましい。
一般式(I)で表される化合物の含有率は、10から80質量%の範囲であることが好ましく、15から70質量%の範囲であることがより好ましい。これらの化合物は、絶対値の大きな負の誘電率異方性を有するが、含有量が多いと粘度を上昇させる傾向がある、又はスメクチック−ネマチック相転移温度を上昇させてしまうことがあるため、低い粘度を重視する場合、あるいは低いスメクチック−ネマチック相転移温度を重視する場合はこれらの含有率が少ないことが好ましく、絶対値の大きな負の誘電率異方性を重視する場合はこれらの含有率が多いことが好ましい。
In the liquid crystal composition of the present invention, the first component contains one or more compounds represented by the general formula (I), preferably 1 to 20 types, more preferably 1 to 15 types. 1 to 10 species are more preferred, and 2 to 8 species are particularly preferred.
The content of the compound represented by the general formula (I) is preferably in the range of 10 to 80% by mass, and more preferably in the range of 15 to 70% by mass. These compounds have a negative dielectric anisotropy with a large absolute value, but if the content is large, there is a tendency to increase the viscosity, or the smectic-nematic phase transition temperature may be increased. When importance is attached to low viscosity, or when importance is attached to low smectic-nematic phase transition temperature, these contents are preferably small. When importance is attached to negative dielectric anisotropy having a large absolute value, these contents are preferred. It is preferable that there are many.

一般式(I)において、R1及びR2は、炭素数1から10のアルキル基又は炭素数2から10のアルケニル基を表すが、R1又はR2の少なくともどちらか一方が炭素数2から10のアルケニル基を表すことが好ましく、アルケニル基として具体的には以下の構造が特に好ましい。 In the general formula (I), R 1 and R 2 represent an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms, and at least one of R 1 and R 2 is from 2 carbon atoms The alkenyl group preferably represents 10 alkenyl groups, and specifically the following structures are particularly preferable as the alkenyl group.

Figure 0005077621
(構造式は右端で環に連結しているものとする。)
又、mは0又は1を表すことが好ましい。
更に詳述すると、一般式(I)は、具体的な構造として以下の一般式(I-A)及び一般式(I-B)で表される化合物が好ましく、
Figure 0005077621
(The structural formula shall be connected to the ring at the right end.)
M preferably represents 0 or 1.
More specifically, the general formula (I) is preferably a compound represented by the following general formula (IA) or general formula (IB) as a specific structure,

Figure 0005077621
Figure 0005077621

(式中、R5、R6、R7及びR8は、一般式(I)におけるR2と同じ意味を表す。)
一般式(I-A-I)から(I-A-VIII)及び一般式(I-B-I)から(I-B-IV)からなる群で表される化合物がより好ましい。
(In the formula, R 5 , R 6 , R 7 and R 8 represent the same meaning as R 2 in the general formula (I).)
Compounds represented by the group consisting of general formulas (IAI) to (IA-VIII) and general formulas (IBI) to (IB-IV) are more preferable.

Figure 0005077621
Figure 0005077621

(式中、R5、R6及びR8は炭素数1から10のアルキル基又は炭素数2から10のアルケニル基を表す。)
第二成分として、一般式(II)で表される化合物を1種又は2種以上を含有するが、1種から12種が好ましく、1種から8種がより好ましく、2種から6種が更に好ましい。
(In the formula, R 5 , R 6 and R 8 represent an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms.)
As the second component, the compound represented by the general formula (II) contains one or two or more kinds, preferably 1 to 12 kinds, more preferably 1 to 8 kinds, more preferably 2 to 6 kinds. Further preferred.

一般式(II)の含有率は20から70質量%の範囲であることが好ましく、25から65質量%の範囲であることがより好ましい。これらの化合物は、誘電率異方性の絶対値を大きくする効果はほとんどないものの粘度を低くする効果があり、低い粘度を重視する場合はこれらの含有率が多いことが好ましく、誘電率異方性の絶対値を大きくすることを重視する場合はこれらの含有率が少ないことが好ましい。   The content of the general formula (II) is preferably in the range of 20 to 70% by mass, and more preferably in the range of 25 to 65% by mass. These compounds have little effect of increasing the absolute value of the dielectric anisotropy, but have the effect of lowering the viscosity. When importance is attached to increasing the absolute value of the property, it is preferable that these contents are small.

一般式(II)において、R3及びR4はそれぞれ独立的に、炭素数1から10のアルキル基、炭素数2から10のアルケニル基、炭素数1から10のアルコキシル基又は炭素数3から10のアルケニルオキシ基を表すことが好ましいが、R3は炭素数1から10のアルキル基又は炭素数2から10のアルケニル基を表し、R4は炭素数1から10のアルキル基、炭素数1から10のアルコキシル基又は炭素数2から10のアルケニル基を表すことがより好ましく、
具体的にはR3は-CH3、-CH2CH3、-(CH2)2CH3、-(CH2)3CH3、-(CH2)4CH3、-(CH2)5CH3、-(CH2)6CH3、-(CH2)7CH3、-CH=CH2、-CH=CHCH3(E体)、-(CH2)2CH=CH2、-(CH2)2CH=CHCH3(E体)、-(CH2)4CH=CH2、-(CH2)4CH=CHCH3(E体)又は-(CH2)6CH=CH2を表し、
R4は、-CH3、-CH2CH3、-(CH2)2CH3、-(CH2)3CH3、-(CH2)4CH3、-(CH2)5CH3、-(CH2)6CH3、-(CH2)7CH3、-OCH3、-OCH2CH3、-O(CH2)2CH3、-O(CH2)3CH3、-O(CH2)4CH3、-O(CH2)5CH3、-O(CH2)6CH3、-O(CH2)7CH3、-CH=CH2、-CH=CHCH3(E体)、-(CH2)2CH=CH2、-(CH2)2CH=CHCH3(E体)、-(CH2)4CH=CH2、-(CH2)4CH=CHCH3(E体)又は-(CH2)6CH=CH2を表すことが更に好ましい。
In general formula (II), R 3 and R 4 are each independently an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, or 3 to 10 carbon atoms. R 3 represents an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms, R 4 represents an alkyl group having 1 to 10 carbon atoms, and 1 to carbon atoms. More preferably, it represents 10 alkoxyl groups or alkenyl groups having 2 to 10 carbon atoms,
Specifically, R 3 is -CH 3 , -CH 2 CH 3 ,-(CH 2 ) 2 CH 3 ,-(CH 2 ) 3 CH 3 ,-(CH 2 ) 4 CH 3 ,-(CH 2 ) 5 CH 3 ,-(CH 2 ) 6 CH 3 ,-(CH 2 ) 7 CH 3 , -CH = CH 2 , -CH = CHCH 3 (E form),-(CH 2 ) 2 CH = CH 2 ,-( CH 2 ) 2 CH = CHCH 3 (E form),-(CH 2 ) 4 CH = CH 2 ,-(CH 2 ) 4 CH = CHCH 3 (E form) or-(CH 2 ) 6 CH = CH 2 Represent,
R 4 is, -CH 3, -CH 2 CH 3 , - (CH 2) 2 CH 3, - (CH 2) 3 CH 3, - (CH 2) 4 CH 3, - (CH 2) 5 CH 3, -(CH 2 ) 6 CH 3 ,-(CH 2 ) 7 CH 3 , -OCH 3 , -OCH 2 CH 3 , -O (CH 2 ) 2 CH 3 , -O (CH 2 ) 3 CH 3 , -O (CH 2 ) 4 CH 3 , -O (CH 2 ) 5 CH 3 , -O (CH 2 ) 6 CH 3 , -O (CH 2 ) 7 CH 3, -CH = CH 2 , -CH = CHCH 3 ( E-form),-(CH 2 ) 2 CH = CH 2 ,-(CH 2 ) 2 CH = CHCH 3 (E-form),-(CH 2 ) 4 CH = CH 2 ,-(CH 2 ) 4 CH = CHCH More preferably, it represents 3 (E form) or — (CH 2 ) 6 CH═CH 2 .

B1及びB2はそれぞれ独立的に、トランス-1,4-シクロヘキシレン基(この基中に存在する1個のCH2基又は隣接していない2個のCH2基が酸素原子に置換されているものを含む)、1,4-フェニレン基(この基中に存在する1個又は2個以上のCH基は窒素原子に置換されているものを含む)、1,4-シクロヘキセニレン基、1,4-ビシクロ[2.2.2]オクチレン基、ピペリジン-1,4-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基もしくはこれらの水素原子がフッ素原子で置換された置換基を表すことが好ましく、トランス-1,4-シクロヘキシレン基、1,4-フェニレン基、フッ素置換された1,4-フェニレン基又は1,4-ビシクロ[2.2.2]オクチレン基がより好ましい。 B 1 and B 2 are each independently a trans-1,4-cyclohexylene group (one CH 2 group present in this group or two non-adjacent CH 2 groups are substituted with oxygen atoms). 1,4-phenylene group (including one or more CH groups substituted by nitrogen atoms), 1,4-cyclohexenylene group 1,4-bicyclo [2.2.2] octylene group, piperidine-1,4-diyl group, naphthalene-2,6-diyl group, decahydronaphthalene-2,6-diyl group, or 1,2,3,4 -It preferably represents a tetrahydronaphthalene-2,6-diyl group or a substituent in which these hydrogen atoms are substituted with fluorine atoms, trans-1,4-cyclohexylene group, 1,4-phenylene group, fluorine-substituted A 1,4-phenylene group or a 1,4-bicyclo [2.2.2] octylene group is more preferable.

Y1及びY2はそれぞれ独立的に、-CH2CH2-、-CH=CH-(E体)、-CH(CH3)CH2-、-CH2CH(CH3)-、-CH(CH3)CH(CH3)-、-CF2CF2-、-CF=CF-(E体)、-CH2O-、-OCH2-、-OCH(CH3)-、-CH(CH3)O-、-(CH2)4-、-(CH2)3O-、-O(CH2)3-、-C≡C-、-CF2O-、-OCF2-、-COO-、-OCO-、-COS-、-SCO-又は単結合を表すことが好ましいが、-CH2CH2-、-CH=CH-(E体)、-CH(CH3)CH2-、-CH2CH(CH3)-、-CF2CF2-、-CF=CF-(E体)、-CH2O-、-OCH2-、-OCH(CH3)-、-CH(CH3)O-、-C≡C-、-CF2O-、-OCF2-又は単結合がより好ましく、-CH2CH2-、-CH=CH-(E体)又は単結合が更に好ましい。
更に詳述すると、一般式(II)は、具体的な構造として以下の一般式(II-A)から一般式(II-I)からなる群で表される化合物が好ましい。
Y 1 and Y 2 are each independently -CH 2 CH 2- , -CH = CH- (E form), -CH (CH 3 ) CH 2- , -CH 2 CH (CH 3 )-, -CH (CH 3 ) CH (CH 3 )-, -CF 2 CF 2- , -CF = CF- (E form), -CH 2 O-, -OCH 2- , -OCH (CH 3 )-, -CH ( CH 3 ) O-,-(CH 2 ) 4 -,-(CH 2 ) 3 O-, -O (CH 2 ) 3- , -C≡C-, -CF 2 O-, -OCF 2 -,- COO-, -OCO-, -COS-, -SCO- or a single bond is preferred, but -CH 2 CH 2- , -CH = CH- (E form), -CH (CH 3 ) CH 2- , -CH 2 CH (CH 3 )-, -CF 2 CF 2- , -CF = CF- (E form), -CH 2 O-, -OCH 2- , -OCH (CH 3 )-, -CH ( CH 3 ) O—, —C≡C—, —CF 2 O—, —OCF 2 — or a single bond is more preferable, and —CH 2 CH 2 —, —CH═CH— (E form) or a single bond is further preferable.
More specifically, the general formula (II) is preferably a compound represented by the group consisting of the following general formulas (II-A) to (II-I) as a specific structure.

Figure 0005077621
Figure 0005077621

(式中、R13、R15、R17、R19、R21、R27及びR29はそれぞれ独立的に、-CH3、-CH2CH3、-(CH2)2CH3、-(CH2)3CH3、-(CH2)4CH3、-(CH2)5CH3、-(CH2)6CH3、-(CH2)7CH3、-CH=CH2、-CH=CHCH3(E体)、-(CH2)2CH=CH2、-(CH2)2CH=CHCH3(E体)、-(CH2)4CH=CH2、-(CH2)4CH=CHCH3(E体)又は-(CH2)6CH=CH2を表し、
R23及びR25はそれぞれ独立的に、-CH3、-CH2CH3、-(CH2)2CH3、-(CH2)3CH3、-(CH2)4CH3、-(CH2)5CH3、-(CH2)6CH3、-(CH2)7CH3、-(CH2)2CH=CH2、-(CH2)2CH=CHCH3(E体)、-(CH2)4CH=CH2、-(CH2)4CH=CHCH3(E体)又は-(CH2)6CH=CH2を表し、
R14、R16及びR18はそれぞれ独立的に、-CH3、-CH2CH3、-(CH2)2CH3、-(CH2)3CH3、-(CH2)4CH3、-(CH2)5CH3、-(CH2)6CH3、-(CH2)7CH3、-OCH3、-OCH2CH3、-O(CH2)2CH3、-O(CH2)3CH3、-O(CH2)4CH3、-O(CH2)5CH3、-O(CH2)6CH3、-O(CH2)7CH3、-CH=CH2、-CH=CHCH3(E体)、-(CH2)2CH=CH2、-(CH2)2CH=CHCH3(E体)、-(CH2)4CH=CH2、-(CH2)4CH=CHCH3(E体)又は-(CH2)6CH=CH2を表し、
R20、R22、R24、R26、R28及びR30はそれぞれ独立的に、-CH3、-CH2CH3、-(CH2)2CH3、-(CH2)3CH3、-(CH2)4CH3、-(CH2)5CH3、-(CH2)6CH3、-(CH2)7CH3、-OCH3、-OCH2CH3、-O(CH2)2CH3、-O(CH2)3CH3、-O(CH2)4CH3、-O(CH2)5CH3、-O(CH2)6CH3、-O(CH2)7CH3、--(CH2)2CH=CH2、-(CH2)2CH=CHCH3(E体)、-(CH2)4CH=CH2、-(CH2)4CH=CHCH3(E体)又は-(CH2)6CH=CH2を表す。)
追加の成分として、一般式(III-A)から(III-J)からなる化合物群から選ばれる1種又は2種以上の化合物を含有することも好ましい。
(In the formula, R 13 , R 15 , R 17 , R 19 , R 21 , R 27 and R 29 are each independently -CH 3 , -CH 2 CH 3 ,-(CH 2 ) 2 CH 3 ,- (CH 2 ) 3 CH 3 ,-(CH 2 ) 4 CH 3 ,-(CH 2 ) 5 CH 3 ,-(CH 2 ) 6 CH 3 ,-(CH 2 ) 7 CH 3 , -CH = CH 2 , -CH = CHCH 3 (E),-(CH 2 ) 2 CH = CH 2 ,-(CH 2 ) 2 CH = CHCH 3 (E),-(CH 2 ) 4 CH = CH 2 ,-(CH 2) 4 CH = CHCH 3 ( E form) or represents - (CH 2) 6 CH = CH 2,
R 23 and R 25 are each independently -CH 3 , -CH 2 CH 3 ,-(CH 2 ) 2 CH 3 ,-(CH 2 ) 3 CH 3 ,-(CH 2 ) 4 CH 3 ,-( CH 2 ) 5 CH 3 ,-(CH 2 ) 6 CH 3 ,-(CH 2 ) 7 CH 3 ,-(CH 2 ) 2 CH = CH 2 ,-(CH 2 ) 2 CH = CHCH 3 (E) ,-(CH 2 ) 4 CH = CH 2 ,-(CH 2 ) 4 CH = CHCH 3 (E form) or-(CH 2 ) 6 CH = CH 2
R 14 , R 16 and R 18 are each independently -CH 3 , -CH 2 CH 3 ,-(CH 2 ) 2 CH 3 ,-(CH 2 ) 3 CH 3 ,-(CH 2 ) 4 CH 3 ,-(CH 2 ) 5 CH 3 ,-(CH 2 ) 6 CH 3 ,-(CH 2 ) 7 CH 3 , -OCH 3 , -OCH 2 CH 3 , -O (CH 2 ) 2 CH 3 , -O (CH 2 ) 3 CH 3 , -O (CH 2 ) 4 CH 3 , -O (CH 2 ) 5 CH 3 , -O (CH 2 ) 6 CH 3 , -O (CH 2 ) 7 CH 3, -CH = CH 2 , -CH = CHCH 3 (E form),-(CH 2 ) 2 CH = CH 2 ,-(CH 2 ) 2 CH = CHCH 3 (E form),-(CH 2 ) 4 CH = CH 2 ,-(CH 2 ) 4 CH = CHCH 3 (E form) or-(CH 2 ) 6 CH = CH 2
R 20 , R 22 , R 24 , R 26 , R 28 and R 30 are each independently -CH 3 , -CH 2 CH 3 ,-(CH 2 ) 2 CH 3 ,-(CH 2 ) 3 CH 3 ,-(CH 2 ) 4 CH 3 ,-(CH 2 ) 5 CH 3 ,-(CH 2 ) 6 CH 3 ,-(CH 2 ) 7 CH 3 , -OCH 3 , -OCH 2 CH 3 , -O ( CH 2 ) 2 CH 3 , -O (CH 2 ) 3 CH 3 , -O (CH 2 ) 4 CH 3 , -O (CH 2 ) 5 CH 3 , -O (CH 2 ) 6 CH 3 , -O ( CH 2 ) 7 CH 3, -(CH 2 ) 2 CH = CH 2 ,-(CH 2 ) 2 CH = CHCH 3 (E form),-(CH 2 ) 4 CH = CH 2 ,-(CH 2 ) 4 CH═CHCH 3 (E form) or — (CH 2 ) 6 CH═CH 2 is represented. )
As an additional component, it is also preferable to contain one or more compounds selected from the compound group consisting of general formulas (III-A) to (III-J).

Figure 0005077621
Figure 0005077621

(式中、R31及びR32はそれぞれ独立して炭素数1から10のアルキル基又は炭素数2から10のアルケニル基を表し、これらの基中に存在する1個のCH2基又は隣接していない2個以上のCH2基はO及び/又はSに置換されてもよく、またこれらの基中に存在する1個又は2個以上の水素原子はF又はClに置換されてもよい。)
本願発明のネマチック液晶組成物は、一般式(I)から選ばれる1種又は2種以上の化合物を10から80質量%含有し、一般式(II-A)から一般式(II-I)からなる群から選ばれる1種又は2種以上の化合物を20から70質量%含有することが好ましい。
一般式(I-A)及び一般式(I-B)からなる化合物群から選ばれる1種又は2種以上の化合物を10から80質量%含有し、一般式(II-A)から一般式(II-I)からなる群から選ばれる1種又は2種以上の化合物を20から70質量%含有することがより好ましい。
(Wherein R 31 and R 32 each independently represents an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms, and one CH 2 group present in these groups or adjacent thereto. Two or more CH 2 groups not present may be substituted with O and / or S, and one or more hydrogen atoms present in these groups may be substituted with F or Cl. )
The nematic liquid crystal composition of the present invention contains 10 to 80% by mass of one or more compounds selected from the general formula (I), from the general formula (II-A) to the general formula (II-I). It is preferable to contain 20 to 70% by mass of one or more compounds selected from the group consisting of:
10 to 80% by mass of one or more compounds selected from the group consisting of general formula (IA) and general formula (IB), and from general formula (II-A) to general formula (II-I) More preferably, it contains 20 to 70% by mass of one or more compounds selected from the group consisting of:

一般式(I-A-I)から一般式(I-A-VIII)及び一般式(I-B-I)から一般式(I-B-IV)からなる化合物群から選ばれる1種又は2種以上の化合物を10から80質量%含有し、一般式(II-A)から一般式(II-I)からなる群から選ばれる1種又は2種以上の化合物を20から70質量%含有することが更に好ましい。   10 to 80% by mass of one or more compounds selected from the group consisting of compounds of general formula (IAI) to general formula (IA-VIII) and general formula (IBI) to general formula (IB-IV) More preferably, it contains 20 to 70% by mass of one or more compounds selected from the group consisting of general formula (II-A) to general formula (II-I).

本願発明において、ネマチック相-等方性液体相転移温度(Tni)は70℃であることが好ましく、75℃以上であることがより好ましく、80℃以上であることが更に好ましい。なお、ネマチック層−等方性液体相転移温度(Tni)は可能な限り高いことが好ましいため、その上限値を特に限定する必要はないが、実用的な上限値として、例えば130℃を挙げることができる。
25℃における誘電率異方性(Δε)がは、-2.0以下であることが好ましく、-2.5以下であることがより好ましく、-3.0以下であることが更に好ましい。なお、誘電率異方性(Δε)の絶対値は可能な限り大きいことが好ましいため、その下限値を特に限定する必要はないが、実用的な下限値として、例えば-8.0を挙げることができる。
In the present invention, the nematic phase-isotropic liquid phase transition temperature (Tni) is preferably 70 ° C., more preferably 75 ° C. or higher, and further preferably 80 ° C. or higher. In addition, since it is preferable that the nematic layer-isotropic liquid phase transition temperature (Tni) is as high as possible, it is not necessary to specifically limit the upper limit, but a practical upper limit is, for example, 130 ° C. Can do.
The dielectric anisotropy (Δε) at 25 ° C. is preferably −2.0 or less, more preferably −2.5 or less, and further preferably −3.0 or less. Since the absolute value of dielectric anisotropy (Δε) is preferably as large as possible, it is not necessary to specifically limit the lower limit value, but a practical lower limit value may be −8.0, for example. .

25℃における屈折率異方性(Δn)は、薄いセルギャップに対応する場合は0.10以上であることがより好ましく、0.12以上であることが更に好ましい。厚いセルギャップに対応する場合は0.095以下であることがより好ましく、0.085以下であることが更に好ましい。なお、屈折率異方性(Δn)は、セルギャップ(d)と両者の積(Δn×d)で表されるリタデーションの各最適値に応じて調整されるものであるため、その範囲を特に限定する必要はないが、実用的な範囲として、例えば0.06以上0.16以下を挙げることができる。   The refractive index anisotropy (Δn) at 25 ° C. is more preferably 0.10 or more and even more preferably 0.12 or more when it corresponds to a thin cell gap. When it corresponds to a thick cell gap, it is more preferably 0.095 or less, and further preferably 0.085 or less. The refractive index anisotropy (Δn) is adjusted in accordance with each optimum value of the retardation expressed by the cell gap (d) and the product of both (Δn × d). Although it is not necessary to limit, as a practical range, 0.06 or more and 0.16 or less can be mentioned, for example.

粘度は30mPa・s以下であることが好ましく、25mPa・s以下であることがより好ましく、20mPa・s以下であることが更に好ましい。なお、粘度は可能な限り低いことが好ましいため、その下限値を特に限定する必要はないが、実用的な下限値として、例えば10mPa・sを挙げることができる。   The viscosity is preferably 30 mPa · s or less, more preferably 25 mPa · s or less, and further preferably 20 mPa · s or less. Since the viscosity is preferably as low as possible, it is not necessary to specifically limit the lower limit value, but a practical lower limit value is, for example, 10 mPa · s.

上記ネマチック液晶組成物は、液晶表示素子に有用であり、特にアクティブマトリクス駆動用液晶表示素子に有用であり、VAモード、IPSモード又はECBモード用液晶表示素子に用いることができる。
本願発明のネマチック液晶組成物は、上記の化合物以外に、通常のネマチック液晶、スメクチック液晶、コレステリック液晶などを含有してもよい。
The nematic liquid crystal composition is useful for a liquid crystal display element, particularly useful for an active matrix driving liquid crystal display element, and can be used for a VA mode, IPS mode or ECB mode liquid crystal display element.
The nematic liquid crystal composition of the present invention may contain a normal nematic liquid crystal, smectic liquid crystal, cholesteric liquid crystal and the like in addition to the above-mentioned compounds.

本願発明を構成する、一般式(I-1)で表される化合物において、
Raは炭素原子数2から7の直鎖状アルケニル基を表すが、-CH=CH2、-CH=CHCH3(E体)、-(CH2)2CH=CH2、-(CH2)2CH=CHCH3(E体)、-(CH2)4CH=CH2又は-(CH2)4CH=CHCH3(E体)が好ましく、
Rbは炭素原子数1から7の直鎖状アルキル基又は炭素原子数2から7の直鎖状アルケニル基を表すが、炭素原子数1から7の直鎖状アルキル基としてはエチル基、プロピル基、ブチル基又はペンチル基が好ましく、炭素原子数2から7のアルケニル基としては-CH=CH2、-CH=CHCH3(E体)、-(CH2)2CH=CH2、-(CH2)2CH=CHCH3(E体)、-(CH2)4CH=CH2又は-(CH2)4CH=CHCH3(E体)が好ましく、具体的には次の構造を表すことが好ましい。
In the compound represented by the general formula (I-1) constituting the present invention,
R a represents a linear alkenyl group having 2 to 7 carbon atoms, but —CH═CH 2 , —CH═CHCH 3 (E form), — (CH 2 ) 2 CH═CH 2 , — (CH 2 ) 2 CH = CHCH 3 (E form),-(CH 2 ) 4 CH = CH 2 or-(CH 2 ) 4 CH = CHCH 3 (E form) are preferred,
R b represents a linear alkyl group having 1 to 7 carbon atoms or a linear alkenyl group having 2 to 7 carbon atoms, and examples of the linear alkyl group having 1 to 7 carbon atoms include ethyl, propyl Group, butyl group or pentyl group is preferred, and the alkenyl group having 2 to 7 carbon atoms is -CH = CH 2 , -CH = CHCH 3 (E form),-(CH 2 ) 2 CH = CH 2 ,-( CH 2 ) 2 CH═CHCH 3 (E-form), — (CH 2 ) 4 CH═CH 2 or — (CH 2 ) 4 CH═CHCH 3 (E-form) are preferred, and specifically represents the following structure: It is preferable.

Figure 0005077621
Figure 0005077621

(式中、Raは、-CH=CH2、-CH=CHCH3(E体)、-(CH2)2CH=CH2、-(CH2)2CH=CHCH3(E体)、-(CH2)4CH=CH2又は-(CH2)4CH=CHCH3(E体)を表し、Rbは炭素原子数1から5の直鎖状アルキル基又は-CH=CH2、-CH=CHCH3(E体)、-(CH2)2CH=CH2、-(CH2)2CH=CHCH3(E体)、-(CH2)4CH=CH2又は-(CH2)4CH=CHCH3(E体)を表す。)
本願発明の化合物は、以下のように製造することができる。
(In the formula, R a represents —CH═CH 2 , —CH═CHCH 3 (E-form), — (CH 2 ) 2 CH═CH 2 , — (CH 2 ) 2 CH═CHCH 3 (E-form), -(CH 2 ) 4 CH = CH 2 or-(CH 2 ) 4 CH = CHCH 3 (E form), R b is a linear alkyl group having 1 to 5 carbon atoms or -CH = CH 2 , -CH = CHCH 3 (E form),-(CH 2 ) 2 CH = CH 2 ,-(CH 2 ) 2 CH = CHCH 3 (E form),-(CH 2 ) 4 CH = CH 2 or-(CH 2 ) 4 CH = CHCH 3 (E form))
The compound of the present invention can be produced as follows.

(製法1)
式(9)
(Production method 1)
Formula (9)

Figure 0005077621
で表されるジケトン化合物に対し、メトキシメチルトリフェニルホスホニウムクロリドより調製されるイリドを反応させて式(10)
Figure 0005077621
Is reacted with an ylide prepared from methoxymethyltriphenylphosphonium chloride to form a diketone compound represented by formula (10):

Figure 0005077621
で表される化合物を得る。得られた式(10)の化合物を酸触媒加水分解し、更に塩基性条件下でシス−トランス異性化することにより式(11)
Figure 0005077621
To obtain a compound represented by: The resulting compound of formula (10) is subjected to acid-catalyzed hydrolysis and further cis-trans isomerization under basic conditions to give a compound of formula (11)

Figure 0005077621
で表される化合物を得る。得られた式(11)の化合物に対し、メチルトリフェニルホスホニウムブロミドより調製されるイリドを反応させて式(12)
Figure 0005077621
To obtain a compound represented by: The resulting compound of formula (11) is reacted with an ylide prepared from methyltriphenylphosphonium bromide to give a compound of formula (12)

Figure 0005077621
で表される化合物を得る。得られた式(12)の化合物を水素化ほう素ナトリウム等の還元剤を用いて還元して式(13)
Figure 0005077621
To obtain a compound represented by: The resulting compound of formula (12) is reduced using a reducing agent such as sodium borohydride to obtain the formula (13)

Figure 0005077621
で表される化合物を得る。得られた式(13)の化合物を一般式(14)
Figure 0005077621
To obtain a compound represented by: The obtained compound of the formula (13) is represented by the general formula (14)

Figure 0005077621
(式中、X1は塩素、臭素、よう素、ベンゼンスルホニルオキシ基、p-トルエンスルホニルオキシ基、メタンスルホニルオキシ基又はトリフルオロメタンスルホニルオキシ基を表す。)で表される化合物へ変換し、2,3-ジフルオロフェノールから調製されるフェノラートと反応させることにより式(15)
Figure 0005077621
(Wherein X 1 represents chlorine, bromine, iodine, benzenesulfonyloxy group, p-toluenesulfonyloxy group, methanesulfonyloxy group or trifluoromethanesulfonyloxy group), (15) by reacting with phenolate prepared from 1,3-difluorophenol

Figure 0005077621
で表される化合物を得る。これを酸化することにより式(16)
Figure 0005077621
To obtain a compound represented by: By oxidizing this, the formula (16)

Figure 0005077621
で表される化合物を得る。これより調製されるフェノラートと一般式(17)
Figure 0005077621
To obtain a compound represented by: Phenolates prepared from this and general formula (17)

Figure 0005077621
(式中、Raは一般式(I-1)と同じ意味を表し、X2は一般式(14)におけるX1と同じ意味を表す。)で表される化合物を反応させることにより一般式(18)
Figure 0005077621
(Wherein R a represents the same meaning as in general formula (I-1), and X 2 represents the same meaning as X 1 in general formula (14)). (18)

Figure 0005077621
(式中、Raは一般式(I-1)と同じ意味を表す。)で表される化合物を得ることができる。
Figure 0005077621
(Wherein, Ra represents the same meaning as in general formula (I-1)) can be obtained.

(製法2)
式(19)
(Production method 2)
Formula (19)

Figure 0005077621
で表される化合物に対し、式(9)から式(11)への変換と同様の反応を行うことにより式(20)
Figure 0005077621
The compound represented by formula (20) is subjected to a reaction similar to the conversion from formula (9) to formula (11).

Figure 0005077621
で表される化合物を得る。得られた式(20)の化合物を水素化ほう素ナトリウム等の還元剤を用いて還元して式(21)
Figure 0005077621
To obtain a compound represented by: The resulting compound of formula (20) is reduced using a reducing agent such as sodium borohydride to obtain a compound of formula (21)

Figure 0005077621
で表される化合物を得る。得られた式(21)で表される化合物を一般式(22)
Figure 0005077621
To obtain a compound represented by: The resulting compound represented by the formula (21) is represented by the general formula (22)

Figure 0005077621
(式中、X2は一般式(14)におけるX1と同じ意味を表す。)で表される化合物へと変換し、酸性条件下で脱保護することにより一般式(23)
Figure 0005077621
(In the formula, X 2 represents the same meaning as X 1 in the general formula (14)), and is converted to a compound represented by the general formula (23) by deprotection under acidic conditions.

Figure 0005077621
(式中、X2は一般式(14)におけるX1と同じ意味を表す。)で表される化合物を得る。得られた一般式(23)で表される化合物に対し、式(9)から式(11)への変換と同様の反応を行うことにより式(24)
Figure 0005077621
(Wherein X 2 represents the same meaning as X 1 in formula (14)). The compound represented by the general formula (23) thus obtained is subjected to a reaction similar to the conversion from the formula (9) to the formula (11) to obtain the formula (24).

Figure 0005077621
(式中、X2は一般式(14)におけるX1と同じ意味を表す。)で表される化合物を得る。得られた一般式(24)で表される化合物とメチルトリフェニルホスフィンブロミドより調製されるイリドを反応させることにより一般式(25)
Figure 0005077621
(Wherein X 2 represents the same meaning as X 1 in formula (14)). By reacting the compound represented by the general formula (24) thus obtained with an ylide prepared from methyltriphenylphosphine bromide, the general formula (25)

Figure 0005077621
(式中、X2は一般式(14)におけるX1と同じ意味を表す。)で表される化合物を得る。得られた一般式(25)で表される化合物を一般式(26)
Figure 0005077621
(Wherein X 2 represents the same meaning as X 1 in formula (14)). The compound represented by the general formula (25) thus obtained is represented by the general formula (26).

Figure 0005077621
(式中、Raは一般式(I-1)と同じ意味を表す。)
で表されるフェノール化合物から調製されるフェノラートと反応させることにより一般式(18)で表される化合物を得ることができる。
(製法4)
式(27)
Figure 0005077621
(Wherein, R a represents the same meaning as the general formula (I-1).)
A compound represented by the general formula (18) can be obtained by reacting with a phenolate prepared from a phenol compound represented by the formula:
(Manufacturing method 4)
Formula (27)

Figure 0005077621
で表される化合物に対し、式(9)から式(12)への変換と同様の反応を行うことにより式(28)
Figure 0005077621
The compound represented by formula (28) is subjected to a reaction similar to the conversion from formula (9) to formula (12).

Figure 0005077621
で表される化合物を得る。得られた式(28)で表される化合物を水素化リチウムアルミニウム、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム等の還元剤により還元して式(29)
Figure 0005077621
To obtain a compound represented by: The resulting compound represented by the formula (28) is reduced with a reducing agent such as lithium aluminum hydride, sodium bis (2-methoxyethoxy) aluminum hydride, and the formula (29)

Figure 0005077621
で表される化合物を得る。得られた式(29)で表される化合物を一般式(30)
Figure 0005077621
To obtain a compound represented by: The resulting compound represented by the formula (29) is represented by the general formula (30)

Figure 0005077621
(式中、X3は一般式(14)におけるX1と同じ意味を表す。)で表される化合物へと変換し、
一般式(26)で表されるフェノール化合物から調製されるフェノラートと反応させることにより一般式(31)
Figure 0005077621
(Wherein X 3 represents the same meaning as X 1 in the general formula (14)),
By reacting with a phenolate prepared from a phenol compound represented by the general formula (26), the general formula (31)

Figure 0005077621
(式中、Raは一般式(I-1)と同じ意味を表す。)で表される化合物を得ることができる。
(製法3)
式(39)
Figure 0005077621
(Wherein, Ra represents the same meaning as in general formula (I-1)) can be obtained.
(Manufacturing method 3)
Formula (39)

Figure 0005077621
で表される化合物に対し、酸性・脱水条件下、エチレングリコールと反応させて式(40)
Figure 0005077621
The compound represented by formula (40) is reacted with ethylene glycol under acidic and dehydrating conditions.

Figure 0005077621
で表される化合物を得る。得られた式(40)で表される化合物を水素化リチウムアルミニウム、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム等の還元剤により還元して式(41)
Figure 0005077621
To obtain a compound represented by: The resulting compound represented by the formula (40) is reduced with a reducing agent such as lithium aluminum hydride, sodium bis (2-methoxyethoxy) aluminum hydride, and the formula (41).

Figure 0005077621
で表される化合物を得る。得られた式(41)で表される化合物を一般式(42)
Figure 0005077621
To obtain a compound represented by: The resulting compound represented by the formula (41) is represented by the general formula (42)

Figure 0005077621
(式中、X1は塩素、臭素、よう素、ベンゼンスルホニルオキシ基、p-トルエンスルホニルオキシ基、メタンスルホニルオキシ基又はトリフルオロメタンスルホニルオキシ基を表す。)で表される化合物へ変換し、2,3-ジフルオロフェノールから調製されるフェノラートと反応させることにより式(43)
Figure 0005077621
(Wherein X 1 represents chlorine, bromine, iodine, benzenesulfonyloxy group, p-toluenesulfonyloxy group, methanesulfonyloxy group or trifluoromethanesulfonyloxy group), By reacting with phenolate prepared from 1,3-difluorophenol

Figure 0005077621
で表される化合物を得る。得られた式(43)で表される化合物を、酸性条件下で脱保護することにより式(44)
Figure 0005077621
To obtain a compound represented by: The obtained compound represented by the formula (43) is deprotected under acidic conditions to obtain the formula (44).

Figure 0005077621
で表される化合物を得る。得られた式(44)で表される化合物に対し、メトキシメチルトリフェニルホスホニウムクロリドより調製されるイリドを反応させて式(45)
Figure 0005077621
To obtain a compound represented by: The resulting compound represented by the formula (44) is reacted with an ylide prepared from methoxymethyltriphenylphosphonium chloride to obtain a compound represented by the formula (45).

Figure 0005077621
で表される化合物を得る。得られた式(45)の化合物を酸性条件下で加水分解し、更に塩基性条件下でシス−トランス異性化することにより式(46)
Figure 0005077621
To obtain a compound represented by: The resulting compound of formula (45) is hydrolyzed under acidic conditions, and further cis-trans isomerized under basic conditions to give formula (46)

Figure 0005077621
で表される化合物を得る。得られた式(46)の化合物に対し、式(44)から式(46)への変換反応(ただしシス−トランス異性化は行わない)を2回行うことにより式(47)
Figure 0005077621
To obtain a compound represented by: The resulting compound of formula (46) is subjected to a conversion reaction from formula (44) to formula (46) (but without cis-trans isomerization) twice to give formula (47)

Figure 0005077621
で表される化合物を得る。得られた式(47)で表される化合物に対し、メチルトリフェニルホスホニウムブロミドより調製されるイリドを反応させて式(48)
Figure 0005077621
To obtain a compound represented by: The resulting compound represented by formula (47) is reacted with ylide prepared from methyltriphenylphosphonium bromide to formula (48)

Figure 0005077621
で表される化合物を得る。得られた式(48)で表される化合物を酸化して、式(49)
Figure 0005077621
To obtain a compound represented by: The obtained compound represented by the formula (48) is oxidized to obtain the formula (49).

Figure 0005077621
で表される化合物を得る。得られた式(49)で表される化合物から調製されるフェノラートと一般式(50)
Figure 0005077621
To obtain a compound represented by: Phenolate prepared from the compound represented by formula (49) and general formula (50)

Figure 0005077621
(式中、X1は一般式(42)におけるものと同じ意味を表し、p2及びRbはそれぞれ一般式(I-1)におけるものと同じ意味を表す。)で表される化合物を反応させることにより一般式(51)
Figure 0005077621
(Wherein X 1 represents the same meaning as in general formula (42), and p2 and R b represent the same meaning as in general formula (I-1), respectively). General formula (51)

Figure 0005077621
(式中、p2及びRbはそれぞれ一般式(I-1)におけるものと同じ意味を表す。)で表される化合物を得ることができる。
Figure 0005077621
(Wherein, p2 and Rb have the same meaning as in general formula (I-1), respectively).

(製法5)
式(46)で表される化合物に対し、エチルトリフェニルホスホニウムブロミドより調製されるイリドを反応させ、酸性条件下でE/Z異性化することにより式(52)
(Manufacturing method 5)
The compound represented by the formula (46) is reacted with an ylide prepared from ethyltriphenylphosphonium bromide and subjected to E / Z isomerization under acidic conditions to form the formula (52).

Figure 0005077621
で表される化合物を得る。得られた式(52)で表される化合物に対し、式(48)から一般式(51)への変換反応を行うことにより一般式(53)
Figure 0005077621
To obtain a compound represented by: The resulting compound represented by formula (52) is subjected to a conversion reaction from formula (48) to formula (51) to give a formula (53)

Figure 0005077621
(式中、p2及びRbはそれぞれ一般式(I-1)におけるものと同じ意味を表す。)で表される化合物を得ることができる。
Figure 0005077621
(Wherein, p2 and Rb have the same meaning as in general formula (I-1), respectively).

以下に実施例を挙げて本願発明を更に詳述するが、本願発明はこれらの実施例に限定されるものではない。化合物の構造は、核磁気共鳴スペクトル(NMR)、質量スペクトル(MS)等により確認した。また、以下の実施例及び比較例の組成物における「%」は『質量%』を意味する。
化合物記載に下記の略号を使用する。
THF :テトラヒドロフラン
DMF :N, N-ジメチルホルムアミド
Me :メチル基
Et :エチル基
Bu :ブチル基
Pen :ペンチル基
Pr :プロピル基
Ms :メタンスルホニル基
実施例中、測定した物性値は以下の通りである。
TNI :ネマチック―等方相転移温度(℃)
Δn :25℃における複屈折率
Δε :25℃における誘電率異方性
η :粘度(mPa・s) (20℃)
又、C、N及びIは、それぞれ結晶相、ネマチック相、等方相を表す。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. The structure of the compound was confirmed by nuclear magnetic resonance spectrum (NMR), mass spectrum (MS) and the like. Further, “%” in the compositions of the following Examples and Comparative Examples means “% by mass”.
The following abbreviations are used in compound descriptions.
THF: tetrahydrofuran
DMF: N, N-dimethylformamide
Me: methyl group
Et: ethyl group
Bu: Butyl group
Pen: pentyl group
Pr: Propyl group
Ms: Methanesulfonyl group In the examples, the measured physical property values are as follows.
T NI : Nematic-isotropic phase transition temperature (° C)
Δn: Birefringence at 25 ° C. Δε: Dielectric anisotropy at 25 ° C. η: Viscosity (mPa · s) (20 ° C.)
C, N, and I represent a crystal phase, a nematic phase, and an isotropic phase, respectively.

(実施例1) 2,3-ジフルオロ-1-(トランス-4-エチルシクロヘキシル)メトキシ-4-(トランス-4-(トランス-4-ビニルシクロヘキシル)シクロヘキシル)メトキシベンゼン(1a)の合成 Example 1 Synthesis of 2,3-difluoro-1- (trans-4-ethylcyclohexyl) methoxy-4- (trans-4- (trans-4-vinylcyclohexyl) cyclohexyl) methoxybenzene (1a)

Figure 0005077621
Figure 0005077621

(1-1) 4,4’-ビスメトキシメチリデンビシクロヘキシルの合成
メトキシメチルトリフェニルホスホニウムクロリド882.3 gをTHF 2600 mLに分散し、-10℃に冷却した。内温を保ちながらカリウム-t-ブトキシド313.2 gを加えた。内温を保ちながら1時間攪拌した後、ビシクロヘキシル-4,4’-ジオン200.0 gのTHF (800 mL)溶液を滴下して加えた。内温を保ちながら1時間攪拌した後、水を加えて反応を停止させた。溶媒を減圧留去した後、ヘキサンを加え激しく攪拌し、濾過した(2回)。濾液を合わせ、50%メタノール水溶液、飽和食塩水の順で洗浄し、無水の硫酸マグネシウムで乾燥した。溶媒を留去し、白色の固体231.8 gを得た。
(1-1) Synthesis of 4,4′-bismethoxymethylidenebicyclohexyl 882.3 g of methoxymethyltriphenylphosphonium chloride was dispersed in 2600 mL of THF and cooled to −10 ° C. While maintaining the internal temperature, 313.2 g of potassium-t-butoxide was added. After stirring for 1 hour while maintaining the internal temperature, a solution of bicyclohexyl-4,4′-dione 200.0 g in THF (800 mL) was added dropwise. After stirring for 1 hour while maintaining the internal temperature, water was added to stop the reaction. After the solvent was distilled off under reduced pressure, hexane was added and stirred vigorously, followed by filtration (twice). The filtrates were combined, washed with a 50% aqueous methanol solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solvent was distilled off to obtain 231.8 g of a white solid.

(1-2) トランス,トランス-ビシクロヘキシル-4,4’-ジカルバルデヒドの合成
(1-1)で得られた固体231.8 gのTHF (930 mL)溶液に10%塩酸700 mLを加え、1時間加熱還流した。反応液を放冷した後、有機層を分離し、水層からトルエンで抽出した(4回)。合わせた有機層を飽和食塩水で洗浄した後、無水の硫酸マグネシウムで乾燥した。溶媒を減圧留去し、赤茶色の液体204.5gを得た。これをメタノール800 mLに溶解し、- 10℃で激しく攪拌している中に、内温を保ったまま10%水酸化ナトリウム水溶液80 mLを滴下して加えた。内温を保ったまま2時間攪拌した。水を加え、析出した固体を吸引ろ過により濾取した。得られた固体を水、メタノールの順に洗浄、乾燥し、白色の固体189.4 gを得た。
(1-2) Synthesis of trans, trans-bicyclohexyl-4,4'-dicarbaldehyde
To a solution of 231.8 g of the solid obtained in (1-1) in THF (930 mL) was added 700 mL of 10% hydrochloric acid, and the mixture was heated to reflux for 1 hour. After allowing the reaction solution to cool, the organic layer was separated and extracted from the aqueous layer with toluene (4 times). The combined organic layers were washed with saturated brine, and then dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 204.5 g of a reddish brown liquid. This was dissolved in 800 mL of methanol, and 80 mL of 10% aqueous sodium hydroxide solution was added dropwise while maintaining the internal temperature while stirring vigorously at −10 ° C. The mixture was stirred for 2 hours while maintaining the internal temperature. Water was added, and the precipitated solid was collected by suction filtration. The obtained solid was washed with water and methanol in this order and dried to obtain 189.4 g of a white solid.

(1-3) 4’-ビニルビシクロヘキシル-4-カルバルデヒドの合成
メチルトリフェニルホスホニウムブロミド192.5 gをTHF 580 mLに分散し、-10℃で激しく攪拌している中に、内温を保ちながらカリウム-t-ブトキシド66.6 gを加えた。内温を保ちながら1時間攪拌した後、(1-2)で得られた固体120.0 gのTHF (1800 mL)溶液へ内温5 10℃で滴下して加えた。内温を保ったまま1時間攪拌した後、水を加えて反応を停止させた。反応溶液を5%塩化アンモニウム水溶液で洗浄した。有機層の溶媒を留去し、ヘキサン及びトルエンを加え、50%メタノール水で洗浄した。無水の硫酸マグネシウムで乾燥後、溶媒を減圧留去し、ほぼ無色の固体60.1 gを得た。
(1-3) Synthesis of 4'-vinylbicyclohexyl-4-carbaldehyde Methyltriphenylphosphonium bromide (192.5 g) was dispersed in THF (580 mL) and vigorously stirred at -10 ° C while maintaining the internal temperature. Potassium-t-butoxide 66.6 g was added. The mixture was stirred for 1 hour while maintaining the internal temperature, and added dropwise to a solution of 120.0 g of the solid obtained in (1-2) in THF (1800 mL) at an internal temperature of 5 ° C. After stirring for 1 hour while maintaining the internal temperature, water was added to stop the reaction. The reaction solution was washed with 5% aqueous ammonium chloride solution. The solvent of the organic layer was distilled off, hexane and toluene were added, and the mixture was washed with 50% aqueous methanol. After drying over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure to obtain 60.1 g of an almost colorless solid.

(1-4) トランス-4-(トランス-4-ビニルシクロヘキシル)シクロヘキシルメタノールの合成
水素化ホウ素ナトリウム1.65 gのエタノール(120 mL)溶液を-10℃で攪拌している中に、内温を保ちながら(1-3)で得られたほぼ無色の固体60.1 gのTHF(180 mL)溶液を滴下して加えた。室温まで昇温した後2時間攪拌し、水、酢酸エチル、塩化アンモニウム水溶液を加え、反応を停止させた。反応液に飽和食塩水を加え、有機層を分離し、水層から酢酸エチルで抽出した(2回)。合わせた有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、カラムクロマトグラフィーにより精製して白色の固体としてトランス-4-(トランス-4-ビニルシクロヘキシル)シクロヘキシルメタノール15.4 gを得た。
(1-4) Synthesis of trans-4- (trans-4-vinylcyclohexyl) cyclohexylmethanol While maintaining a solution of 1.65 g of sodium borohydride in ethanol (120 mL) at -10 ° C, the internal temperature was maintained. Then, a solution of 60.1 g of the almost colorless solid obtained in (1-3) in THF (180 mL) was added dropwise. After warming to room temperature, the mixture was stirred for 2 hours, and water, ethyl acetate, and an aqueous ammonium chloride solution were added to stop the reaction. Saturated brine was added to the reaction solution, the organic layer was separated, and the aqueous layer was extracted with ethyl acetate (twice). The combined organic layers were washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure and purified by column chromatography to obtain 15.4 g of trans-4- (trans-4-vinylcyclohexyl) cyclohexylmethanol as a white solid.

(1-5) メタンスルホン酸 トランス-4-(トランス-4-ビニルシクロヘキシル)シクロヘキシルメチルの合成
トランス-4-(トランス-4-ビニルシクロヘキシル)シクロヘキシルメタノール15.1 g、ピリジン8.2 mL及び4-ジメチルアミノピリジン0.41 gをジクロロメタン50 mLに溶解した。氷冷下、メタンスルホニルクロリド6.3 mLのジクロロメタン(6 mL)溶液を30分かけて滴下し、室温まで昇温後6時間攪拌し、終夜放置した。反応溶液を10%塩酸にあけて有機層を分取し、水層をジクロロメタンで抽出した。有機層を合わせて飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、残渣をカラムクロマトグラフィー(シリカゲル/トルエン)及び再結晶(ヘキサン/トルエン)3回で精製し、無色結晶としてメタンスルホン酸 トランス-4-(トランス-4-ビニルシクロヘキシル)シクロヘキシルメチル9.8 gを得た。
(1-5) Methanesulfonic acid Synthesis of trans-4- (trans-4-vinylcyclohexyl) cyclohexylmethyl Trans-4- (trans-4-vinylcyclohexyl) cyclohexylmethanol 15.1 g, pyridine 8.2 mL and 4-dimethylaminopyridine 0.41 g was dissolved in 50 mL of dichloromethane. Under ice-cooling, a solution of 6.3 mL of methanesulfonyl chloride in 6 mL of dichloromethane was added dropwise over 30 minutes, the temperature was raised to room temperature, stirred for 6 hours, and left overnight. The reaction solution was poured into 10% hydrochloric acid, the organic layer was separated, and the aqueous layer was extracted with dichloromethane. The organic layers were combined, washed with saturated brine, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by column chromatography (silica gel / toluene) and recrystallization (hexane / toluene) three times, and methanesulfonic acid trans-4- (trans-4-vinylcyclohexyl) cyclohexyl as colorless crystals. Methyl 9.8 g was obtained.

(1-6) 2,3-ジフルオロ-1-(トランス-4-(トランス-4-ビニルシクロヘキシル)シクロヘキシル)メトキシベンゼンの合成
メタンスルホン酸 トランス-4-(トランス-4-ビニルシクロヘキシル)シクロヘキシルメチルをDMFに溶解し、2,3-ジフルオロフェノール及びリン酸三カリウムを加えて80 100℃で2時間撹拌した。水及びトルエンを加えて有機層を分取し、水及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、残渣をカラムクロマトグラフィーで精製して2,3-ジフルオロ-1-(トランス-4-(トランス-4-ビニルシクロヘキシル)シクロヘキシル)メトキシベンゼンを得た。
(1-6) Synthesis of 2,3-difluoro-1- (trans-4- (trans-4-vinylcyclohexyl) cyclohexyl) methoxybenzene Methanesulfonic acid trans-4- (trans-4-vinylcyclohexyl) cyclohexylmethyl After dissolving in DMF, 2,3-difluorophenol and tripotassium phosphate were added and stirred at 80 ° C. for 2 hours. Water and toluene were added, the organic layer was separated, washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by column chromatography to obtain 2,3-difluoro-1- (trans-4- (trans-4-vinylcyclohexyl) cyclohexyl) methoxybenzene.

(1-7) 2,3-ジフルオロ-4-(トランス-4-(トランス-4-ビニルシクロヘキシル)シクロヘキシル)メトキシフェノ−ルの合成
2,3-ジフルオロ-1-(トランス-4-(トランス-4-ビニルシクロヘキシル)シクロヘキシル)メトキシベンゼン15.7 gをTHF 80 mLに溶解し、そこへsec-ブチルリチウム(1.01 Mヘキサン、シクロヘキサン溶液)51 mLを内温-45℃以下で滴下し、更に30分撹拌した。そこへほう酸トリメチル5.9 gを内温-40℃以下で滴下して更に30分撹拌し、0℃まで昇温した。その後水16 mLを加え、15%過酸化水素水16 mLを30分かけて滴下し、3時間撹拌した。水及びトルエンを加えて有機層を分取し、水層をトルエンで抽出した。有機層を合わせて飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、残渣をカラムクロマトグラフィー及び再結晶により精製し、2,3-ジフルオロ-4-(トランス-4-(トランス-4-ビニルシクロヘキシル)シクロヘキシル)メトキシフェノ−ルを得た。
(1-7) Synthesis of 2,3-difluoro-4- (trans-4- (trans-4-vinylcyclohexyl) cyclohexyl) methoxyphenol
2,3-Difluoro-1- (trans-4- (trans-4-vinylcyclohexyl) cyclohexyl) methoxybenzene 15.7 g was dissolved in THF 80 mL, and sec-butyllithium (1.01 M hexane, cyclohexane solution) 51 mL was added dropwise at an internal temperature of −45 ° C. or lower, and the mixture was further stirred for 30 minutes. Thereto, 5.9 g of trimethyl borate was added dropwise at an internal temperature of −40 ° C. or lower, and the mixture was further stirred for 30 minutes, and the temperature was raised to 0 ° C. Thereafter, 16 mL of water was added, and 16 mL of 15% aqueous hydrogen peroxide was added dropwise over 30 minutes, followed by stirring for 3 hours. Water and toluene were added, the organic layer was separated, and the aqueous layer was extracted with toluene. The organic layers were combined, washed with saturated brine, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by column chromatography and recrystallization to obtain 2,3-difluoro-4- (trans-4- (trans-4-vinylcyclohexyl) cyclohexyl) methoxyphenol.

(1-8) 2,3-ジフルオロ-1-(トランス-4-エチルシクロヘキシル)メトキシ-4-(トランス-4-(トランス-4-ビニルシクロヘキシル)シクロヘキシル)メトキシベンゼン(1a)の合成
2,3-ジフルオロ-4-(トランス-4-(トランス-4-ビニルシクロヘキシル)シクロヘキシル)メトキシフェノ−ル6.5 gをDMF 35 mLに溶解し、(トランス-4-エチルシクロヘキシル)メチルブロミド4.9 g及びリン酸三カリウム6.4 gを加えて80 100℃で2時間撹拌した。水及びトルエンを加えて有機層を分取し、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、残渣を再結晶及びカラムクロマトグラフィーで精製して無色結晶として2,3-ジフルオロ-1-(トランス-4-エチルシクロヘキシル)メトキシ-4-(トランス-4-(トランス-4-ビニルシクロヘキシル)シクロヘキシル)メトキシベンゼン(1 a) 3.8 gを得た。
(1-8) Synthesis of 2,3-difluoro-1- (trans-4-ethylcyclohexyl) methoxy-4- (trans-4- (trans-4-vinylcyclohexyl) cyclohexyl) methoxybenzene (1a)
6.5 g of 2,3-difluoro-4- (trans-4- (trans-4-vinylcyclohexyl) cyclohexyl) methoxyphenol was dissolved in 35 mL of DMF, and 4.9 g of (trans-4-ethylcyclohexyl) methyl bromide and 6.4 g of tripotassium phosphate was added and stirred at 80 ° C. for 2 hours. Water and toluene were added, the organic layer was separated, washed with saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by recrystallization and column chromatography to give 2,3-difluoro-1- (trans-4-ethylcyclohexyl) methoxy-4- (trans-4- (trans- 3.8 g of 4-vinylcyclohexyl) cyclohexyl) methoxybenzene (1 a) was obtained.

相転移温度 C 94.1 N 197.5 I
MS m/z : 474 (M+), 146 (100)
1H-NMR (400 MHz, CDCl3)
δ: 0.88 (t, J = 7.2 Hz, 3 H), 0.90 1.30 (m, 17 H), 1.65 2.00 (m, 15 H), 3.70 3.80 (m, 4 H), 4.80 5.00 (m, 2 H), 5.77 (ddd, J = 16.8 Hz, J = 10.4 Hz, J = 6.4 Hz, 1 H), 6.59 (d, J = 5.6 Hz, 2 H)
(実施例2) 2,3-ジフルオロ-1-(トランス-4-エチルシクロヘキシル)メトキシ-4-(トランス-4-ビニルシクロヘキシル)メトキシベンゼン(1b)の合成
Phase transition temperature C 94.1 N 197.5 I
MS m / z: 474 (M + ), 146 (100)
1 H-NMR (400 MHz, CDCl 3 )
δ: 0.88 (t, J = 7.2 Hz, 3 H), 0.90 1.30 (m, 17 H), 1.65 2.00 (m, 15 H), 3.70 3.80 (m, 4 H), 4.80 5.00 (m, 2 H) , 5.77 (ddd, J = 16.8 Hz, J = 10.4 Hz, J = 6.4 Hz, 1 H), 6.59 (d, J = 5.6 Hz, 2 H)
Example 2 Synthesis of 2,3-difluoro-1- (trans-4-ethylcyclohexyl) methoxy-4- (trans-4-vinylcyclohexyl) methoxybenzene (1b)

Figure 0005077621
Figure 0005077621

(2-1) 2,3-ジフルオロ-1-(トランス-4-エチルシクロヘキシル)メトキシベンゼンの合成
2,3-ジフルオロフェノ−ル30 gをDMF 300 mLに溶解し、(トランス-4-エチルシクロヘキシル)メチルブロミド56.8 g及びリン酸三カリウム73.4 gを加えて100 110℃で1時間撹拌した。水及びトルエンを加えて有機層を分取し、水層をトルエンで抽出した。有機層を合わせて飽和食塩水で洗浄後、カラムクロマトグラフィーに付し、溶媒を減圧留去した。残渣を再結晶により精製し、2,3-ジフルオロ-1-(トランス-4-エチルシクロヘキシル)メトキシベンゼン37 gを得た。
(2-1) Synthesis of 2,3-difluoro-1- (trans-4-ethylcyclohexyl) methoxybenzene
30 g of 2,3-difluorophenol was dissolved in 300 mL of DMF, 56.8 g of (trans-4-ethylcyclohexyl) methyl bromide and 73.4 g of tripotassium phosphate were added, and the mixture was stirred at 100 110 ° C. for 1 hour. Water and toluene were added, the organic layer was separated, and the aqueous layer was extracted with toluene. The organic layers were combined and washed with saturated brine, followed by column chromatography, and the solvent was distilled off under reduced pressure. The residue was purified by recrystallization to obtain 37 g of 2,3-difluoro-1- (trans-4-ethylcyclohexyl) methoxybenzene.

(2-2) 2,3-ジフルオロ-4-(トランス-4-エチルシクロヘキシル)メトキシフェノールの合成
2,3-ジフルオロ-1-(トランス-4-エチルシクロヘキシル)メトキシベンゼン37 gをTHF 222 mLに溶解し、そこへブチルリチウム(2.67 Mヘキサン溶液)59.9 mLを内温-40℃以下で滴下し、更に30分撹拌した。そこへほう酸トリメチル18.1 gを内温-40℃以下で滴下し、0℃まで昇温した。その後30%過酸化水素水24.7 mLを5分かけて滴下し、3時間撹拌した。水及びトルエンを加えて有機層を分取し、水層をトルエンで抽出した。有機層を合わせて水で洗浄し、溶媒を減圧留去した。得られた残渣をカラムクロマトグラフィーにより精製し、2,3-ジフルオロ-4-(トランス-4-エチルシクロヘキシル)メトキシフェノール20 gを得た。
(2-2) Synthesis of 2,3-difluoro-4- (trans-4-ethylcyclohexyl) methoxyphenol
37 g of 2,3-difluoro-1- (trans-4-ethylcyclohexyl) methoxybenzene was dissolved in 222 mL of THF, and 59.9 mL of butyllithium (2.67 M hexane solution) was added dropwise thereto at an internal temperature of -40 ° C or lower. The mixture was further stirred for 30 minutes. To this, 18.1 g of trimethyl borate was added dropwise at an internal temperature of -40 ° C or lower, and the temperature was raised to 0 ° C. Thereafter, 24.7 mL of 30% hydrogen peroxide solution was added dropwise over 5 minutes, followed by stirring for 3 hours. Water and toluene were added, the organic layer was separated, and the aqueous layer was extracted with toluene. The organic layers were combined and washed with water, and the solvent was distilled off under reduced pressure. The obtained residue was purified by column chromatography to obtain 20 g of 2,3-difluoro-4- (trans-4-ethylcyclohexyl) methoxyphenol.

(2-3) 4-メトキシメチリデンシクロヘキサンカルボン酸メチルの合成
メトキシメチルトリフェニルホスホニウムクロリドの263.4gをテトラヒドロフラン750mLに分散し、ここへカリウム-t-ブトキシドの86.2gを-9〜-4℃で5分掛けて加えた。更に-4〜-11℃で30分攪拌後、4-オキソシクロヘキサンカルボン酸メチルの100.0gをTHF300mLに溶解し、-10〜4℃で80分かけて滴下した。更に0〜4℃で60分攪拌した後、塩化アンモニウム7.0gと水20mLを加えた。反応混合物の溶媒を減圧下に留去した後、ヘキサン600mLを加え室温下に30分攪拌した。析出物を濾別後、析出物を再度ヘキサン600mLで懸濁洗浄し、ヘキサン濾液を併せて、メタノール-水(1:1)の混合液、水、飽和食塩水の順に洗浄した。無水硫酸ナトリウムで乾燥後、溶媒を減圧下に留去し、油状物として4-メトキシメチリデンシクロヘキサンカルボン酸メチルの103gを得た。
(2-3) Synthesis of methyl 4-methoxymethylidenecyclohexanecarboxylate 263.4 g of methoxymethyltriphenylphosphonium chloride was dispersed in 750 mL of tetrahydrofuran, and 86.2 g of potassium-t-butoxide was added thereto at −9 to −4 ° C. Added over 5 minutes. Further, after stirring at −4 to −11 ° C. for 30 minutes, 100.0 g of methyl 4-oxocyclohexanecarboxylate was dissolved in 300 mL of THF and added dropwise at −10 to 4 ° C. over 80 minutes. After further stirring for 60 minutes at 0 to 4 ° C., 7.0 g of ammonium chloride and 20 mL of water were added. After the solvent of the reaction mixture was distilled off under reduced pressure, 600 mL of hexane was added and stirred at room temperature for 30 minutes. After the precipitate was filtered off, the precipitate was suspended and washed again with 600 mL of hexane, and the hexane filtrate was combined and washed with a methanol-water (1: 1) mixture, water, and saturated brine in this order. After drying over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain 103 g of methyl 4-methoxymethylidenecyclohexanecarboxylate as an oil.

(2-4) 4-ホルミルシクロヘキサンカルボン酸メチルの合成
4-メトキシメチリデンシクロヘキサンカルボン酸メチルの103gをTHF350mLに溶解させ、ここへ10%塩酸の100mLを11〜13℃で10分かけて滴下した。更に室温で3時間攪拌した後、ヘキサン80mLを加えた。水層を酢酸エチルで抽出後、有機層を併せ、水、飽和食塩水の順に洗浄した。無水硫酸マグネシウムで乾燥後、濃縮し、油状物として4-ホルミルシクロヘキサンカルボン酸メチルの92.4gを得た。なお、ガスクロマトグラフィーで分析したところ、得られたこのものはシス体・トランス体の64:36の混合物であった。
(2-4) Synthesis of methyl 4-formylcyclohexanecarboxylate
103 g of methyl 4-methoxymethylidenecyclohexanecarboxylate was dissolved in 350 mL of THF, and 100 mL of 10% hydrochloric acid was added dropwise thereto at 11-13 ° C. over 10 minutes. After further stirring for 3 hours at room temperature, 80 mL of hexane was added. The aqueous layer was extracted with ethyl acetate, and the organic layers were combined and washed sequentially with water and saturated brine. After drying over anhydrous magnesium sulfate and concentrating, 92.4 g of methyl 4-formylcyclohexanecarboxylate was obtained as an oil. As a result of analysis by gas chromatography, the obtained product was a 64:36 mixture of cis and trans isomers.

(2-5) 4-ビニルシクロヘキサンカルボン酸メチルの合成
メチルトリフェニルホスホニウムブロミドの297.4gをTHF900mLに分散し、ここへカリウム-t-ブトキシドの95.6gを-8℃で3分掛けて加えた。更に30分攪拌後、4-ホルミルシクロヘキサンカルボン酸メチルの92.4 gをTHF270mLに溶解し、-6〜4℃で50分かけて滴下した。更に0〜4℃で30分攪拌した後、水15mLを加えた。反応混合物の溶媒を減圧下に留去した後、ヘキサン500mLを加え室温下に30分攪拌した。析出物を濾別後、析出物を再度ヘキサン500mLで懸濁洗浄し、ヘキサン濾液を併せて、メタノール-水(1:1)の混合液、水、飽和食塩水の順に洗浄した。無水硫酸ナトリウムで乾燥後、溶媒を減圧下に留去し、81.2gの油状物を得た。減圧蒸留により4-ビニルシクロヘキサンカルボン酸メチルの57.3gを得た。沸点122〜127℃/48hPa。なお、ガスクロマトグラフィーで分析したところ、得られたこのものはシス体・トランス体の26:74の混合物であった。
(2-5) Synthesis of methyl 4-vinylcyclohexanecarboxylate 297.4 g of methyltriphenylphosphonium bromide was dispersed in 900 mL of THF, and 95.6 g of potassium-t-butoxide was added thereto at -8 ° C over 3 minutes. After further stirring for 30 minutes, 92.4 g of methyl 4-formylcyclohexanecarboxylate was dissolved in 270 mL of THF and added dropwise at −6 to 4 ° C. over 50 minutes. After further stirring at 0-4 ° C. for 30 minutes, 15 mL of water was added. The solvent of the reaction mixture was distilled off under reduced pressure, 500 mL of hexane was added, and the mixture was stirred at room temperature for 30 minutes. After the precipitate was filtered off, the precipitate was suspended and washed again with 500 mL of hexane, and the hexane filtrate was combined and washed with a methanol-water (1: 1) mixture, water, and saturated brine in this order. After drying over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain 81.2 g of an oil. Distillation under reduced pressure gave 57.3 g of methyl 4-vinylcyclohexanecarboxylate. Boiling point 122-127 ° C / 48hPa. As a result of gas chromatography analysis, the obtained product was a 26:74 mixture of cis- and trans-isomers.

(2-6) トランス-4-ビニルシクロヘキサンカルボン酸の合成
4-ビニルシクロヘキサンカルボン酸メチルの55.3gをメタノール60mLに溶解し、15℃に冷却した後、ここへ20%水酸化ナトリウム水溶液の100gを加えた。更に室温で2時間攪拌の後、濃塩酸を加えて系を酸性にした。ヘキサンで抽出した後、有機層を飽和食塩水で洗浄した。無水硫酸ナトリウムで乾燥後、濃縮し、52.4gの反応混合物を得た。ヘキサンから再結晶させ、トランス-4-ビニルシクロヘキサンカルボン酸の23.0gを得た。
(2-6) Synthesis of trans-4-vinylcyclohexanecarboxylic acid
After dissolving 55.3 g of methyl 4-vinylcyclohexanecarboxylate in 60 mL of methanol and cooling to 15 ° C., 100 g of a 20% aqueous sodium hydroxide solution was added thereto. After further stirring at room temperature for 2 hours, concentrated hydrochloric acid was added to acidify the system. After extraction with hexane, the organic layer was washed with saturated brine. The extract was dried over anhydrous sodium sulfate and concentrated to obtain 52.4 g of a reaction mixture. Recrystallization from hexane gave 23.0 g of trans-4-vinylcyclohexanecarboxylic acid.

(2-7) トランス- 4-ビニルシクロヘキサンカルボン酸メチルの合成
トランス-4-ビニルシクロヘキサンカルボン酸の23.0gをメタノール120mLに溶解し、トリメチルシリルクロリド0.1gを加え6時間還流した後、室温まで冷却し減圧下に濃縮した。ヘキサン150mLを加え、メタノール層を分離した後、メタノール層をヘキサンで抽出し、有機層を併せ、飽和食塩水で洗浄した。無水硫酸ナトリウムで乾燥後、濃縮し、油状物質としてトランス-4-ビニルシクロヘキサンカルボン酸メチルの29.5gを得た。
(2-7) Synthesis of methyl trans-4-vinylcyclohexanecarboxylate Dissolve 23.0 g of trans-4-vinylcyclohexanecarboxylic acid in 120 mL of methanol, add 0.1 g of trimethylsilyl chloride, reflux for 6 hours, and cool to room temperature. Concentrated under reduced pressure. After adding 150 mL of hexane and separating the methanol layer, the methanol layer was extracted with hexane, and the organic layers were combined and washed with saturated brine. The extract was dried over anhydrous sodium sulfate and concentrated to obtain 29.5 g of methyl trans-4-vinylcyclohexanecarboxylate as an oily substance.

(2-8) (トランス-4-ビニルシクロヘキシル)メタノールの合成
リチウムアルミニウムヒドリド5.7gをTHF50mLに分散し、ここへトランス-4-ビニルシクロヘキサンカルボン酸メチルの29.5gをTHF75mLに溶解し、15〜16℃で40分かけて滴下した。更に10〜20℃で30分攪拌した後、水をゆっくりと加えた。10%塩酸を約70mL加え、ヘキサンで洗い流しながらスラッジ状の不溶物をデカンタにより取り除いた後、得られた有機層を10%塩酸、飽和重曹水、飽和食塩水の順に洗浄した。無水硫酸ナトリウムで乾燥後、濃縮し、(トランス-4-ビニルシクロヘキシル)メタノールの26gを得た。
(2-8) Synthesis of (trans-4-vinylcyclohexyl) methanol 5.7 g of lithium aluminum hydride was dispersed in 50 mL of THF, and 29.5 g of methyl trans-4-vinylcyclohexanecarboxylate was dissolved in 75 mL of THF, and 15-16 The solution was added dropwise at 40 ° C. over 40 minutes. Furthermore, after stirring at 10-20 degreeC for 30 minutes, water was added slowly. About 70 mL of 10% hydrochloric acid was added, and sludge-like insoluble matter was removed with a decanter while rinsing with hexane, and the obtained organic layer was washed with 10% hydrochloric acid, saturated aqueous sodium hydrogen carbonate, and saturated brine in this order. The extract was dried over anhydrous sodium sulfate and concentrated to obtain 26 g of (trans-4-vinylcyclohexyl) methanol.

(2-9) メタンスルホン酸(トランス-4-ビニルシクロヘキシル)メチルの合成
(トランス-4-ビニルシクロヘキシル)メタノールの26gをジクロロメタン100mLに溶解し、ピリジンの23.6gと4-ジメチルアミノピリジン0.9gを加えた。ここへ、メタンスルホニルクロリドの18.8gをジクロロメタン36mLに溶解し、14〜20℃で25分かけて滴下した。更に室温で7時間攪拌した後、一晩静置した。水40mLを加え、有機層を分離した後、有機層を10%塩酸、水、飽和重曹水、飽和塩化アンモニウム水溶液の順に洗浄した。無水硫酸マグネシウムで乾燥後、濃縮し、32.7gの固形物を得た。ヘキサンから再結晶させ、メタンスルホン酸(トランス-4-ビニルシクロヘキシル)メチルの30.8gを得た。
(2-9) Synthesis of methyl methanesulfonate (trans-4-vinylcyclohexyl)
26 g of (trans-4-vinylcyclohexyl) methanol was dissolved in 100 mL of dichloromethane, and 23.6 g of pyridine and 0.9 g of 4-dimethylaminopyridine were added. To this, 18.8 g of methanesulfonyl chloride was dissolved in 36 mL of dichloromethane and added dropwise at 14 to 20 ° C. over 25 minutes. The mixture was further stirred at room temperature for 7 hours and allowed to stand overnight. After adding 40 mL of water and separating the organic layer, the organic layer was washed sequentially with 10% hydrochloric acid, water, saturated aqueous sodium hydrogen carbonate, and saturated aqueous ammonium chloride. The extract was dried over anhydrous magnesium sulfate and concentrated to obtain 32.7 g of a solid. Recrystallization from hexane gave 30.8 g of methyl methanesulfonate (trans-4-vinylcyclohexyl).

(2-10) 2,3-ジフルオロ-1-(トランス-4-エチルシクロヘキシル)メトキシ-4-(トランス-4-ビニルシクロヘキシル)メトキシベンゼン(1b)の合成
2,3-ジフルオロ-4-(トランス-4-エチルシクロヘキシル)メトキシフェノール10 gのDMF (50 ml)溶液に、リン酸三カリウム12 g及びメタンスルホン酸(トランス-4-ビニルシクロヘキシル)メチル8.1 gを加え、80 100℃で2時間撹拌した。水及びトルエンを加えて有機層を分取し、水及び飽和食塩水で洗浄後、シリカゲルで乾燥した。溶媒を減圧留去し、残渣を再結晶及びカラムクロマトグラフィーで精製し、無色結晶として2,3-ジフルオロ-1-(トランス-4-エチルシクロヘキシル)メトキシ-4-(トランス-4-ビニルシクロヘキシル)メトキシベンゼン(1b)7.9 gを得た。
相転移温度 C 59.2 N 77.1 I
MS m/z : 392 (M+), 146 (100)
1H-NMR (400 MHz, CDCl3)
δ: 0.88 (t, J = 7.6 Hz, 3 H), 0.90 1.30 (m, 11 H), 1.65 2.00 (m, 11 H), 3.70 3.80 (m, 4 H), 4.85 5.05 (m, 2 H), 5.79 (ddd, J = 17.2 Hz, J = 10.4 Hz, J = 6.8 Hz, 1 H), 6.60 (d, J = 5.6 Hz, 2 H)
(実施例3) 2,3-ジフルオロ-1-((トランス-4-エチルシクロヘキシル)メトキシ)-4-((トランス-4-(3-ブテニル)シクロヘキシル)メトキシ)ベンゼン(1c)の合成
(2-10) Synthesis of 2,3-difluoro-1- (trans-4-ethylcyclohexyl) methoxy-4- (trans-4-vinylcyclohexyl) methoxybenzene (1b)
To a solution of 2,3-difluoro-4- (trans-4-ethylcyclohexyl) methoxyphenol 10 g in DMF (50 ml), tripotassium phosphate 12 g and methanesulfonic acid (trans-4-vinylcyclohexyl) methyl 8.1 g And stirred at 80 100 ° C. for 2 hours. Water and toluene were added, the organic layer was separated, washed with water and saturated brine, and dried over silica gel. The solvent was distilled off under reduced pressure, the residue was purified by recrystallization and column chromatography, and 2,3-difluoro-1- (trans-4-ethylcyclohexyl) methoxy-4- (trans-4-vinylcyclohexyl) was obtained as colorless crystals. 7.9 g of methoxybenzene (1b) was obtained.
Phase transition temperature C 59.2 N 77.1 I
MS m / z: 392 (M + ), 146 (100)
1 H-NMR (400 MHz, CDCl 3 )
δ: 0.88 (t, J = 7.6 Hz, 3 H), 0.90 1.30 (m, 11 H), 1.65 2.00 (m, 11 H), 3.70 3.80 (m, 4 H), 4.85 5.05 (m, 2 H) , 5.79 (ddd, J = 17.2 Hz, J = 10.4 Hz, J = 6.8 Hz, 1 H), 6.60 (d, J = 5.6 Hz, 2 H)
Example 3 Synthesis of 2,3-difluoro-1-((trans-4-ethylcyclohexyl) methoxy) -4-((trans-4- (3-butenyl) cyclohexyl) methoxy) benzene (1c)

Figure 0005077621
Figure 0005077621

(3-1) 4-(4’, 4’-エチレンジオキシ)シクロヘキサンカルボン酸メチルの合成
4-オキソシクロヘキサンカルボン酸メチル300 mLをトルエン900 mLに溶解し、エチレングリコール257 mLおよびp-トルエンスルホン酸水和物5 gを加え、生成する水を除去しながら4時間加熱還流した。室温まで冷却後、飽和炭酸水素ナトリウム水溶液100 mLを滴下し、水500 mLを加えて有機層を分取した。水層をトルエンで抽出して有機層を合わせ、水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。総量が約1.2 Lになるまで溶媒を減圧留去し、4-(4’, 4’-エチレンジオキシ)シクロヘキサンカルボン酸メチルのトルエン溶液を得た。
(3-1) Synthesis of methyl 4- (4 ', 4'-ethylenedioxy) cyclohexanecarboxylate
300 mL of methyl 4-oxocyclohexanecarboxylate was dissolved in 900 mL of toluene, 257 mL of ethylene glycol and 5 g of p-toluenesulfonic acid hydrate were added, and the mixture was heated to reflux for 4 hours while removing generated water. After cooling to room temperature, 100 mL of saturated aqueous sodium hydrogen carbonate solution was added dropwise, 500 mL of water was added, and the organic layer was separated. The aqueous layer was extracted with toluene, and the organic layers were combined, washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure until the total amount was about 1.2 L to obtain a toluene solution of methyl 4- (4 ′, 4′-ethylenedioxy) cyclohexanecarboxylate.

(3-2) (4-(4’, 4’-エチレンジオキシ)シクロヘキシル)メタノールの合成
(1-1)で得られたトルエン溶液に70%水素化ビス(2-メトキシエトキシ)アルミニウムナトリウムトルエン溶液832 gを滴下し、更に2時間攪拌した。反応溶液に酢酸エチル100 mLを滴下し、水500 mLを加えて有機層を分取した。水層をトルエンで抽出して有機層を合わせ、水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、残渣を減圧蒸留(179 184℃/2.5 kPa)して無色油状物質として(4-(4’, 4’-エチレンジオキシ)シクロヘキシル)メタノール153.9 gを得た。
(3-2) Synthesis of (4- (4 ', 4'-ethylenedioxy) cyclohexyl) methanol
To the toluene solution obtained in (1-1), 832 g of 70% bis (2-methoxyethoxy) aluminum sodium toluene solution was added dropwise, and the mixture was further stirred for 2 hours. To the reaction solution, 100 mL of ethyl acetate was added dropwise, 500 mL of water was added, and the organic layer was separated. The aqueous layer was extracted with toluene, and the organic layers were combined, washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the residue was distilled under reduced pressure (179 184 ° C./2.5 kPa) to obtain 153.9 g of (4- (4 ′, 4′-ethylenedioxy) cyclohexyl) methanol as a colorless oily substance.

(3-3) メタンスルホン酸 (4-(4’, 4’-エチレンジオキシ)シクロヘキシル)メチルの合成
(4-(4’, 4’-エチレンジオキシ)シクロヘキシル)メタノール153.9 gをジクロロメタン500 mLに溶解し、ピリジン108 mLおよび4-ジメチルアミノピリジン11 gを加えて氷冷した。メタンスルホニルクロリド83 mLを30分かけて滴下し、室温まで昇温後2時間攪拌した。反応溶液を水400 mLにあけて有機層を分取し、水層をジクロロメタンで抽出した。有機層を合わせて水、飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、残渣をカラムクロマトグラフィーで精製して淡黄色油状物質としてメタンスルホン酸 (4-(4’, 4’-エチレンジオキシ)シクロヘキシル)メチル230.6 gを得た。
(3-3) Synthesis of (4- (4 ', 4'-ethylenedioxy) cyclohexyl) methyl methanesulfonate
153.9 g of (4- (4 ′, 4′-ethylenedioxy) cyclohexyl) methanol was dissolved in 500 mL of dichloromethane, and 108 mL of pyridine and 11 g of 4-dimethylaminopyridine were added and cooled with ice. Methanesulfonyl chloride (83 mL) was added dropwise over 30 minutes, and the mixture was warmed to room temperature and stirred for 2 hours. The reaction solution was poured into 400 mL of water, the organic layer was separated, and the aqueous layer was extracted with dichloromethane. The organic layers were combined, washed with water, saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by column chromatography to obtain 230.6 g of methanesulfonic acid (4- (4 ′, 4′-ethylenedioxy) cyclohexyl) methyl as a pale yellow oily substance.

(3-4) 1-((4-(4’, 4’-エチレンジオキシ)シクロヘキシル)メトキシ)-2,3-ジフルオロベンゼンの合成
メタンスルホン酸 (4-(4’, 4’-エチレンジオキシ)シクロヘキシル)メチル15.9 gをDMF 150 mLに溶解し、リン酸三カリウム20.2 gおよび2,3-ジフルオロフェノール9.1 gを加えて80 100℃で2時間攪拌した。反応溶液を水にあけてトルエン抽出し、有機層を水および飽和食塩水で洗浄し、シリカゲルで乾燥した。総量が約100 mLになるまで溶媒を減圧留去し、1-(4-(4’, 4’-エチレンジオキシ)シクロヘキシル)メトキシ-2,3-ジフルオロベンゼンのトルエン溶液を得た。
(3-4) Synthesis of 1-((4- (4 ', 4'-ethylenedioxy) cyclohexyl) methoxy) -2,3-difluorobenzene Methanesulfonic acid (4- (4', 4'-ethylenedi 15.9 g of oxy) cyclohexyl) methyl was dissolved in 150 mL of DMF, 20.2 g of tripotassium phosphate and 9.1 g of 2,3-difluorophenol were added, and the mixture was stirred at 80 ° C. for 2 hours. The reaction solution was poured into water and extracted with toluene, and the organic layer was washed with water and saturated brine, and dried over silica gel. The solvent was distilled off under reduced pressure until the total amount reached about 100 mL to obtain a toluene solution of 1- (4- (4 ′, 4′-ethylenedioxy) cyclohexyl) methoxy-2,3-difluorobenzene.

(3-5) 1-((4-オキソシクロヘキシル)メトキシ)-2,3-ジフルオロベンゼンの合成
(1-4)で得られたトルエン溶液にギ酸80 mLを加え、室温で6時間撹拌した。水およびトルエンを加えて有機層を分取し、水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、1-((4-オキソシクロヘキシル)メトキシ)-2,3-ジフルオロベンゼン13.8 gを得た。
(3-5) Synthesis of 1-((4-oxocyclohexyl) methoxy) -2,3-difluorobenzene
80 mL of formic acid was added to the toluene solution obtained in (1-4), and the mixture was stirred at room temperature for 6 hours. Water and toluene were added, and the organic layer was separated, washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain 13.8 g of 1-((4-oxocyclohexyl) methoxy) -2,3-difluorobenzene.

(3-6) 1-((トランス-4-ホルミルシクロヘキシル)メトキシ)-2,3-ジフルオロベンゼンの合成
1-((4-オキソシクロヘキシル)メトキシ)-2,3-ジフルオロベンゼン13.8 gをTHF 50 mLに溶解しメトキシメチルトリフェニルホスホニウムクロリド23.6 gを加えた。そこへ、カリウム-t-ブトキシド7.7 gのTHF(20 mL)溶液を内温10 25℃で滴下し、30分撹拌した。水10 mLを加えて溶媒を減圧留去し、ヘキサン、50%メタノール水溶液を加えて有機層を分取した。これを50%メタノール水溶液および飽和食塩水で洗浄し、カラムクロマトグラフィーに付した。溶媒を減圧留去し、残渣をTHF 100 mLに溶解し、10%塩酸100 mLを加えて3時間加熱還流した。水および酢酸エチルを加えて有機層を分取し、飽和食塩水、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去した。残渣にメタノール30 mLおよび20%水酸化ナトリウム水溶液を加え、氷冷下2時間撹拌した。水および酢酸エチルを加えて有機層を分取し、飽和食塩水で3回洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去して1-((トランス-4-ホルミルシクロヘキシル)メトキシ)-2,3-ジフルオロベンゼン11.5 gを得た。
(3-6) Synthesis of 1-((trans-4-formylcyclohexyl) methoxy) -2,3-difluorobenzene
13.8 g of 1-((4-oxocyclohexyl) methoxy) -2,3-difluorobenzene was dissolved in 50 mL of THF, and 23.6 g of methoxymethyltriphenylphosphonium chloride was added. Thereto, a THF (20 mL) solution of 7.7 g of potassium-t-butoxide was added dropwise at an internal temperature of 10 25 ° C., and the mixture was stirred for 30 minutes. 10 mL of water was added and the solvent was distilled off under reduced pressure. Hexane and 50% aqueous methanol solution were added to separate the organic layer. This was washed with 50% aqueous methanol solution and saturated brine, and subjected to column chromatography. The solvent was distilled off under reduced pressure, the residue was dissolved in 100 mL of THF, 100 mL of 10% hydrochloric acid was added, and the mixture was heated to reflux for 3 hours. Water and ethyl acetate were added, and the organic layer was separated, washed successively with saturated brine, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. Methanol 30 mL and 20% aqueous sodium hydroxide solution were added to the residue, and the mixture was stirred for 2 hours under ice cooling. Water and ethyl acetate were added, and the organic layer was separated, washed 3 times with saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain 11.5 g of 1-((trans-4-formylcyclohexyl) methoxy) -2,3-difluorobenzene.

(3-7) 1-((トランス-4-(ホルミルメチル)シクロヘキシル)メトキシ)-2,3-ジフルオロベンゼンの合成
1-((トランス-4-ホルミルシクロヘキシル)メトキシ)-2,3-ジフルオロベンゼン11.5 gをTHF 50 mLに溶解しメトキシメチルトリフェニルホスホニウムクロリド18.6 gを加えた。そこへ、カリウム-t-ブトキシド6.1 gのTHF(20 mL)溶液を内温5 20℃で滴下し、30分撹拌した。水10 mLを加えて溶媒を減圧留去し、ヘキサン、50%メタノール水溶液を加えて有機層を分取した。これを50%メタノール水溶液および飽和食塩水で洗浄し、カラムクロマトグラフィーに付した。溶媒を減圧留去し、残渣をTHF 70 mLに溶解し、10%塩酸70 mLを加えて2時間加熱還流した。水および酢酸エチルを加えて有機層を分取し、飽和食塩水で3回洗浄し、無水硫酸ナトリウムで乾燥後した。溶媒を減圧留去して、1-((トランス-4-(ホルミルメチル)シクロヘキシル)メトキシ)-2,3-ジフルオロベンゼン8.2 gを得た。
(3-7) Synthesis of 1-((trans-4- (formylmethyl) cyclohexyl) methoxy) -2,3-difluorobenzene
11.5 g of 1-((trans-4-formylcyclohexyl) methoxy) -2,3-difluorobenzene was dissolved in 50 mL of THF, and 18.6 g of methoxymethyltriphenylphosphonium chloride was added. Thereto was added dropwise a solution of 6.1 g of potassium-t-butoxide in THF (20 mL) at an internal temperature of 520 ° C. and stirred for 30 minutes. 10 mL of water was added and the solvent was distilled off under reduced pressure. Hexane and 50% aqueous methanol solution were added to separate the organic layer. This was washed with 50% aqueous methanol solution and saturated brine, and subjected to column chromatography. The solvent was distilled off under reduced pressure, the residue was dissolved in 70 mL of THF, 70 mL of 10% hydrochloric acid was added, and the mixture was heated to reflux for 2 hours. Water and ethyl acetate were added, the organic layer was separated, washed 3 times with saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain 8.2 g of 1-((trans-4- (formylmethyl) cyclohexyl) methoxy) -2,3-difluorobenzene.

(3-8) 1-((トランス-4-(2-ホルミルエチル)シクロヘキシル)メトキシ)-2,3-ジフルオロベンゼンの合成
1-((トランス-4-(ホルミルメチル)シクロヘキシル)メトキシ)-2,3-ジフルオロベンゼン8.2 gをTHF 50 mLに溶解しメトキシメチルトリフェニルホスホニウムクロリド12.6 gを加えた。そこへ、カリウム-t-ブトキシド4.1 gのTHF(20 mL)溶液を内温5 20℃で滴下し、30分撹拌した。水10 mLを加えて溶媒を減圧留去し、ヘキサン、50%メタノール水溶液を加えて有機層を分取した。これを50%メタノール水溶液および飽和食塩水で洗浄し、シリカゲルで乾燥した。溶媒を減圧留去し、残渣をTHF 50 mLに溶解し、10%塩酸50 mLを加えて2時間加熱還流した。水および酢酸エチルを加えて有機層を分取し、飽和食塩水で3回洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去して、1-((トランス-4-(2-ホルミルエチル)シクロヘキシル)メトキシ)-2,3-ジフルオロベンゼン7.0 gを得た。
(3-8) Synthesis of 1-((trans-4- (2-formylethyl) cyclohexyl) methoxy) -2,3-difluorobenzene
8.2 g of 1-((trans-4- (formylmethyl) cyclohexyl) methoxy) -2,3-difluorobenzene was dissolved in 50 mL of THF, and 12.6 g of methoxymethyltriphenylphosphonium chloride was added. Thereto was added dropwise a solution of 4.1 g of potassium-t-butoxide in THF (20 mL) at an internal temperature of 520 ° C. and stirred for 30 minutes. 10 mL of water was added and the solvent was distilled off under reduced pressure. Hexane and 50% aqueous methanol solution were added to separate the organic layer. This was washed with 50% aqueous methanol solution and saturated brine, and dried over silica gel. The solvent was distilled off under reduced pressure, the residue was dissolved in 50 mL of THF, 50 mL of 10% hydrochloric acid was added, and the mixture was heated to reflux for 2 hours. Water and ethyl acetate were added, the organic layer was separated, washed 3 times with saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain 7.0 g of 1-((trans-4- (2-formylethyl) cyclohexyl) methoxy) -2,3-difluorobenzene.

(3-9) 1-((トランス-4-(3-ブテニル)シクロヘキシル)メトキシ)-2,3-ジフルオロベンゼンの合成
1-((トランス-4-(2-ホルミルエチル)シクロヘキシル)メトキシ)-2,3-ジフルオロベンゼン7.0 gをTHF 30 mLに溶解しメチルトリフェニルホスホニウムブロミド10.6 gを加えた。そこへ、カリウム-t-ブトキシド3.3 gのTHF(15 mL)溶液を内温5 20℃で滴下し、30分撹拌した。水10 mLを加えて溶媒を減圧留去し、ヘキサン、50%メタノール水溶液を加えて有機層を分取した。これを50%メタノール水溶液および飽和食塩水で洗浄し、カラムクロマトグラフィーに付した。溶媒を減圧留去して、1-((トランス-4-(3-ブテニル)シクロヘキシル)メトキシ)-2,3-ジフルオロベンゼン3.0 gを得た。
(3-9) Synthesis of 1-((trans-4- (3-butenyl) cyclohexyl) methoxy) -2,3-difluorobenzene
7.0 g of 1-((trans-4- (2-formylethyl) cyclohexyl) methoxy) -2,3-difluorobenzene was dissolved in 30 mL of THF, and 10.6 g of methyltriphenylphosphonium bromide was added. Thereto was added dropwise a solution of 3.3 g of potassium-t-butoxide in THF (15 mL) at an internal temperature of 520 ° C. and stirred for 30 minutes. 10 mL of water was added and the solvent was distilled off under reduced pressure. Hexane and 50% aqueous methanol solution were added to separate the organic layer. This was washed with 50% aqueous methanol solution and saturated brine, and subjected to column chromatography. The solvent was distilled off under reduced pressure to obtain 3.0 g of 1-((trans-4- (3-butenyl) cyclohexyl) methoxy) -2,3-difluorobenzene.

(3-10) 4-((トランス-4-(3-ブテニル)シクロヘキシル)メトキシ)-2,3-ジフルオロフェノールの合成
1-((トランス-4-(3-ブテニル)シクロヘキシル)メトキシ)-2,3-ジフルオロベンゼン3 gをTHF 30 mLに溶解し、sec-ブチルリチウム(1.01 Mシクロヘキサン、ヘキサン溶液)11.7 mLを内温-40から-60℃で滴下し、30分撹拌した。そこへほう酸トリメチル1.3 gを加えて室温まで昇温し、30%過酸化水素水1.8 mLを加えて40℃で1時間撹拌した。5%塩酸を加えて1時間撹拌し、トルエンを加えて有機層を分取し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥して4-((トランス-4-(3-ブテニル)シクロヘキシル)メトキシ)-2,3-ジフルオロフェノールを得た。
(3-10) Synthesis of 4-((trans-4- (3-butenyl) cyclohexyl) methoxy) -2,3-difluorophenol
Dissolve 3 g of 1-((trans-4- (3-butenyl) cyclohexyl) methoxy) -2,3-difluorobenzene in 30 mL of THF, and add 11.7 mL of sec-butyllithium (1.01 M cyclohexane, hexane solution). The solution was added dropwise at a temperature of -40 to -60 ° C and stirred for 30 minutes. Thereto was added 1.3 g of trimethyl borate, the temperature was raised to room temperature, 1.8 mL of 30% hydrogen peroxide was added, and the mixture was stirred at 40 ° C. for 1 hour. 5% Hydrochloric acid was added and stirred for 1 hour. Toluene was added and the organic layer was separated, washed with saturated brine, dried over anhydrous magnesium sulfate and dried with 4-((trans-4- (3-butenyl) cyclohexyl. ) Methoxy) -2,3-difluorophenol was obtained.

(3-11) 2,3-ジフルオロ-1-((トランス-4-エチルシクロヘキシル)メトキシ)-4-((トランス-4-(3-ブテニル)シクロヘキシル)メトキシ)ベンゼン(1c)の合成
(3-10)で得られた4-((トランス-4-(3-ブテニル)シクロヘキシル)メトキシ)-2,3-ジフルオロフェノールの全量をDMF 20 mLに溶解しリン酸三カリウム3.4 gおよび(トランス-4-エチルシクロヘキシル)メチルブロミド2.6 gを加えて80 100℃で2時間撹拌した。水およびトルエンを加えて有機層を分取し、水および飽和食塩水で洗浄して無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣を再結晶およびカラムクロマトグラフィーで精製し、無色結晶として2,3-ジフルオロ-1-((トランス-4-エチルシクロヘキシル)メトキシ)-4-((トランス-4-(3-ブテニル)シクロヘキシル)メトキシ)ベンゼン(Ic)1.3 gを得た。
相転移温度 C 60.6 N 88.5 I
MS m/z : 420 (M+), 146 (100)
1H-NMR (400 MHz, CDCl3)
δ: 0.88 (t, J = 7.2 Hz, 3 H), 0.85 1.40 (m, 14 H), 1.70 2.20 (m, 12 H), 3.76 (d, J = 6.4 Hz, 4 H), 4.90 5.04 (m, 2 H), 5.75 5.87 (m, 1 H), 6.55 6.65 (m, 2 H)
(実施例4) 液晶組成物の調製(1)
以下の組成からなるホスト液晶組成物(H)
Synthesis of (3-11) 2,3-difluoro-1-((trans-4-ethylcyclohexyl) methoxy) -4-((trans-4- (3-butenyl) cyclohexyl) methoxy) benzene (1c)
The total amount of 4-((trans-4- (3-butenyl) cyclohexyl) methoxy) -2,3-difluorophenol obtained in (3-10) was dissolved in 20 mL of DMF, and 3.4 g of tripotassium phosphate and ( Trans-4-ethylcyclohexyl) methyl bromide (2.6 g) was added, and the mixture was stirred at 80 ° C. for 2 hours. Water and toluene were added, the organic layer was separated, washed with water and saturated brine, and dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by recrystallization and column chromatography, and 2,3-difluoro-1-((trans-4-ethylcyclohexyl) methoxy) -4-((trans-4- (3-butenyl) cyclohexyl) as colorless crystals 1.3 g of methoxy) benzene (Ic) was obtained.
Phase transition temperature C 60.6 N 88.5 I
MS m / z: 420 (M + ), 146 (100)
1 H-NMR (400 MHz, CDCl 3 )
δ: 0.88 (t, J = 7.2 Hz, 3 H), 0.85 1.40 (m, 14 H), 1.70 2.20 (m, 12 H), 3.76 (d, J = 6.4 Hz, 4 H), 4.90 5.04 (m , 2 H), 5.75 5.87 (m, 1 H), 6.55 6.65 (m, 2 H)
(Example 4) Preparation of liquid crystal composition (1)
Host liquid crystal composition comprising the following composition (H)

Figure 0005077621
Figure 0005077621

を調製した。ここで(H)の物性値は以下の通りである。 Was prepared. Here, the physical properties of (H) are as follows.

ネマチック相上限温度(TN-I): 103.2℃
誘電率異方性(Δε): 0.03
屈折率異方性(Δn): 0.099
粘度(mPa・s): 15.2
この母体液晶(H)80%と実施例1で得られた(1a)20%からなる液晶組成物(M-1)を調製した。この組成物の物性値は以下の通りである。
Nematic phase upper limit temperature (TN-I): 103.2 ℃
Dielectric anisotropy (Δε): 0.03
Refractive index anisotropy (Δn): 0.099
Viscosity (mPa · s): 15.2
A liquid crystal composition (M-1) comprising 80% of the base liquid crystal (H) and 20% of (1a) obtained in Example 1 was prepared. The physical properties of this composition are as follows.

ネマチック相上限温度(TN-I): 121.0℃
誘電率異方性(Δε): −1.03
屈折率異方性(Δn): 0.099
粘度(mPa・s): 23.4
本発明の化合物(1a)を含有する液晶組成物(M-1)は、母体液晶(H)に比べ、ネマチック相上限温度(TN-I)は大きく上昇し、誘電率異方性(Δε)は減少して負の値となった。このことから、本発明の化合物は(Ia)は、高い温度でも安定してネマチック相を発現し、誘電率異方性が負であり、その絶対値が極めて大きいことがわかる。
(実施例5)液晶組成物の調製(2)
実施例4で調製した母体液晶(H)80%と実施例2で得られた(1b)20%からなる液晶組成物(M-2)を調製した。この組成物の物性値は以下の通りである。
Nematic phase upper limit temperature (TN-I): 121.0 ℃
Dielectric anisotropy (Δε): −1.03
Refractive index anisotropy (Δn): 0.099
Viscosity (mPa · s): 23.4
The liquid crystal composition (M-1) containing the compound (1a) of the present invention has a significantly increased nematic phase upper limit temperature (TN-I) and dielectric anisotropy (Δε) compared to the base liquid crystal (H). Decreased to a negative value. This shows that the compound (Ia) of the present invention stably exhibits a nematic phase even at a high temperature, has a negative dielectric anisotropy, and has an extremely large absolute value.
(Example 5) Preparation of liquid crystal composition (2)
A liquid crystal composition (M-2) comprising 80% of the base liquid crystal (H) prepared in Example 4 and 20% of (1b) obtained in Example 2 was prepared. The physical properties of this composition are as follows.

ネマチック相上限温度(TN-I): 97.3℃
誘電率異方性(Δε): −1.20
屈折率異方性(Δn): 0.097
粘度(mPa・s): 20.6
本発明の化合物(1b)を含有する液晶組成物(M-2)は、母体液晶(H)に比べ、誘電率異方性(Δε)は大きく減少して負の値となった。このことから、本発明の化合物は(1b)は、誘電率異方性が負であり、その絶対値が極めて大きいことがわかる。
(実施例6) 液晶組成物の調製(3)
実施例4で調製した母体液晶(H)80%と実施例3で得られた(1c)20%からなる液晶組成物(M-3)を調製した。この組成物の物性値は以下の通りである。
Nematic phase upper limit temperature (TN-I): 97.3 ℃
Dielectric anisotropy (Δε): −1.20
Refractive index anisotropy (Δn): 0.097
Viscosity (mPa · s): 20.6
In the liquid crystal composition (M-2) containing the compound (1b) of the present invention, the dielectric anisotropy (Δε) was greatly reduced to a negative value as compared with the base liquid crystal (H). This shows that the compound (1b) of the present invention has a negative dielectric anisotropy and an extremely large absolute value.
(Example 6) Preparation of liquid crystal composition (3)
A liquid crystal composition (M-3) comprising 80% of the base liquid crystal (H) prepared in Example 4 and 20% of (1c) obtained in Example 3 was prepared. The physical properties of this composition are as follows.

ネマチック相上限温度(TN-I): 99.3℃
誘電率異方性(Δε): −1.09
屈折率異方性(Δn): 0.096
粘度(mPa・s): 19.6
本発明の化合物(Ic)を含有する液晶組成物(M-3)は、母体液晶(H)に比べ、誘電率異方性(Δε)は大きく減少して負の値となった。このことから、本発明の化合物は(1c)は、誘電率異方性が負であり、その絶対値が極めて大きいことがわかる。
(比較例1)
実施例4で調製した母体液晶(H)80%と特許文献8記載の化合物(R1)
Nematic phase upper limit temperature (TN-I): 99.3 ℃
Dielectric anisotropy (Δε): −1.09
Refractive index anisotropy (Δn): 0.096
Viscosity (mPa · s): 19.6
In the liquid crystal composition (M-3) containing the compound (Ic) of the present invention, the dielectric anisotropy (Δε) was greatly reduced to a negative value as compared with the base liquid crystal (H). This shows that the compound (1c) of the present invention has a negative dielectric anisotropy and an extremely large absolute value.
(Comparative Example 1)
80% of the base liquid crystal (H) prepared in Example 4 and the compound (R1) described in Patent Document 8

Figure 0005077621
Figure 0005077621

20%からなる液晶組成物(MR-1)を調製した。この組成物の物性値は以下の通りである。 A liquid crystal composition (MR-1) comprising 20% was prepared. The physical properties of this composition are as follows.

ネマチック相上限温度(TN-I): 109.2℃
誘電率異方性(Δε): −1.19
屈折率異方性(Δn): 0.095
粘度(mPa・s): 24.8
実施例5の(M-2)、実施例6の(M-3)及び比較例1の(MR-1)の物性値を以下の表1にまとめる。
Nematic phase upper limit temperature (TN-I): 109.2 ℃
Dielectric anisotropy (Δε): −1.19
Refractive index anisotropy (Δn): 0.095
Viscosity (mPa · s): 24.8
The physical properties of (M-2) in Example 5, (M-3) in Example 6 and (MR-1) in Comparative Example 1 are summarized in Table 1 below.

Figure 0005077621
Figure 0005077621

特許文献1記載の化合物(R1)を含有する液晶組成物(MR-1)は、本願発明の化合物を用いた液晶組成物と比べ、粘度が高くなった。このことから、本願発明の化合物は絶対値の大きい負の誘電率異方性を有し低い粘度を有することがわかる。
(実施例7) 液晶組成物の調製(4)
以下の構造で表される液晶組成物(M-4)を調製しその物性値を測定した。
The liquid crystal composition (MR-1) containing the compound (R1) described in Patent Document 1 has a higher viscosity than the liquid crystal composition using the compound of the present invention. From this, it can be seen that the compound of the present invention has a negative dielectric anisotropy having a large absolute value and a low viscosity.
(Example 7) Preparation of liquid crystal composition (4)
A liquid crystal composition (M-4) represented by the following structure was prepared and measured for physical properties.

Figure 0005077621
Figure 0005077621

(M-4)の物性値は、Tni:81.2℃、Δn:0.074、Δε:-4.7、η:22.2mPa・sであった。
(比較例2)
比較例2として一般式(I)で表される化合物を含まない以下の構造で表される液晶組成物(MR-2)を調整しその物性値を測定した。
The physical properties of (M-4) were Tni: 81.2 ° C., Δn: 0.074, Δε: −4.7, and η: 22.2 mPa · s.
(Comparative Example 2)
As Comparative Example 2, a liquid crystal composition (MR-2) represented by the following structure which does not contain the compound represented by the general formula (I) was prepared and measured for physical properties.

Figure 0005077621
Figure 0005077621

(MR-2)の物性値は、Tni:77.5℃、Δn:0.073、Δε:-4.8、η:23.5mPa・sであった。
(M-4)は、(MR-2)と同等のΔnと絶対値の大きな負のΔεを有するが、(MR-2)よりもTniが高く、低い粘度を有する、優れた液晶組成物であることがわかる。
(実施例8) 液晶組成物の調製(5)
以下の構造で表される液晶組成物(M-5)を調整しその物性値を測定した。
The physical properties of (MR-2) were Tni: 77.5 ° C., Δn: 0.073, Δε: −4.8, η: 23.5 mPa · s.
(M-4) is an excellent liquid crystal composition having Δn equivalent to (MR-2) and negative Δε having a large absolute value, but having higher Tni and lower viscosity than (MR-2). I know that there is.
(Example 8) Preparation of liquid crystal composition (5)
A liquid crystal composition (M-5) represented by the following structure was prepared and measured for physical properties.

Figure 0005077621
Figure 0005077621

(M-5)の物性値は、Tni:79.5℃、Δn:0.074、Δε:-4.7、η:22.4mPa・sであった。
(実施例9) 液晶組成物の調製(6)
以下の構造で表される液晶組成物(M-6)を調整しその物性値を測定した。
The physical properties of (M-5) were Tni: 79.5 ° C., Δn: 0.074, Δε: −4.7, η: 22.4 mPa · s.
(Example 9) Preparation of liquid crystal composition (6)
A liquid crystal composition (M-6) represented by the following structure was prepared and measured for physical properties.

Figure 0005077621
Figure 0005077621

(M-6)の物性値は、Tni:80.3℃、Δn:0.074、Δε:-4.8、η:19.0mPa・sであった。
これらの物性値を表2にまとめる。
The physical properties of (M-6) were Tni: 80.3 ° C., Δn: 0.074, Δε: −4.8, η: 19.0 mPa · s.
These physical property values are summarized in Table 2.

Figure 0005077621
Figure 0005077621

MR−2はM-4、M-5及びM-6と比較して、液晶相上限温度及び粘度の点で劣ることが明らかである。
(実施例10)液晶組成物の調製(7)
Δnのやや大きい組成物として以下の組成からなる液晶組成物(M-7)を調製した。
It is apparent that MR-2 is inferior in terms of liquid crystal phase upper limit temperature and viscosity as compared with M-4, M-5 and M-6.
(Example 10) Preparation of liquid crystal composition (7)
A liquid crystal composition (M-7) having the following composition was prepared as a composition having a slightly larger Δn.

Figure 0005077621
Figure 0005077621

この(M-7)の物性値は以下の通りであった。
ネマチック相上限温度(TN-I): 79.4℃
誘電率異方性(Δε): −2.55
屈折率異方性(Δn): 0.106
粘度(mPa・s): 24.4
(実施例11)液晶組成物の調製(8)
Δnのやや大きい組成物として以下の組成からなる液晶組成物(M-8)を調製した。
The physical properties of (M-7) were as follows.
Nematic phase upper limit temperature (TN-I): 79.4 ℃
Dielectric anisotropy (Δε): −2.55
Refractive index anisotropy (Δn): 0.106
Viscosity (mPa · s): 24.4
(Example 11) Preparation of liquid crystal composition (8)
A liquid crystal composition (M-8) having the following composition was prepared as a composition having a slightly larger Δn.

Figure 0005077621
Figure 0005077621

この(M-8)の物性値は以下の通りであった。
ネマチック相上限温度(TN-I): 79.6℃
誘電率異方性(Δε): −2.50
屈折率異方性(Δn): 0.108
粘度(mPa・s): 24.6
The physical properties of (M-8) were as follows.
Nematic phase upper limit temperature (TN-I): 79.6 ℃
Dielectric anisotropy (Δε): −2.50
Refractive index anisotropy (Δn): 0.108
Viscosity (mPa · s): 24.6

Claims (12)

第一成分として、一般式(I)
Figure 0005077621
(式中、R1は炭素数1から10のアルキル基又は炭素数2から10のアルケニル基を表し、これらの基中に存在する1個のCH2基又は隣接していない2個以上のCH2基はO及び/又はSに置換されてもよく、またこれらの基中に存在する1個又は2個以上の水素原子はF又はClに置換されてもよく、R2は炭素数1から10のアルキル基、炭素数1から10のアルコキシル基、炭素数2から10のアルケニル基又は炭素数3から10のアルケニルオキシ基を表し、
mは0、1又は2表す。)
で表される化合物を1種又は2種以上含有し、
第二成分として、一般式(II)
Figure 0005077621
(式中、R3及びR4はそれぞれ独立的に一般式(I)におけるR2と同じ意味を表し、
B1及びB2はそれぞれ独立的に
(a) トランス-1,4-シクロへキシレン基(この基中に存在する1個のCH2基又は隣接していない2個のCH2基は酸素原子又は硫黄原子に置換されてもよい)
(b) 1,4-フェニレン基(この基中に存在する1個又は2個以上のCH基は窒素原子に置換されてもよい)
(c) 1,4-シクロヘキセニレン基及び1,4-ビシクロ[2.2.2]オクチレン基
からなる群より選ばれる基を表し、上記の基(a)、基(b)又は基(c)はCN又はハロゲンで置換されていてもよく、
Y1及びY2はそれぞれ独立的に
-CH2CH2-、-CH=CH-、-CF2CF2-、-CF=CF-、-(CH2)4-、-C≡C-又は単結合を表し、
Y2及びB2が複数存在する場合は、それらは同一でもよく異なっていてもよく、
pは1又は2を表す。)
で表される化合物を1種又は2種以上含有する誘電率異方性が負のネマチック液晶組成物。
As the first component, the general formula (I)
Figure 0005077621
(In the formula, R 1 represents an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms, and one CH 2 group present in these groups or two or more non-adjacent CHs. Two groups may be substituted with O and / or S, and one or more hydrogen atoms present in these groups may be substituted with F or Cl, and R 2 has 1 to Represents an alkyl group having 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkenyloxy group having 3 to 10 carbon atoms,
m represents 0, 1 or 2. )
Containing one or more compounds represented by:
As the second component, the general formula (II)
Figure 0005077621
(Wherein R 3 and R 4 each independently represent the same meaning as R 2 in formula (I),
B 1 and B 2 are each independently
(a) trans-1,4-cyclohexylene group (two CH 2 groups not one CH 2 group or adjacent present in this group may be substituted with an oxygen atom or a sulfur atom)
(b) 1,4-phenylene group (one or more CH groups present in this group may be substituted with a nitrogen atom)
(c) represents a group selected from the group consisting of a 1,4-cyclohexenylene group and a 1,4-bicyclo [2.2.2] octylene group, and the group (a), the group (b) or the group (c) May be substituted with CN or halogen,
Y 1 and Y 2 are independently
-CH 2 CH 2 -, - CH = CH -, - CF 2 CF 2 -, - CF = CF -, - (CH 2) 4 -, - C≡C- or a single bond,
When there are a plurality of Y 2 and B 2 , they may be the same or different,
p represents 1 or 2. )
A nematic liquid crystal composition having a negative dielectric anisotropy containing one or more compounds represented by the formula:
一般式(I-A)及び一般式(I-B)
Figure 0005077621
(式中、R5、R6、R7及びR8は、一般式(I)におけるR2と同じ意味を表す。)
で表される化合物群から選ばれる1種又は2種以上の化合物を含有する、請求項1記載のネマチック液晶組成物。
General formula (IA) and general formula (IB)
Figure 0005077621
(In the formula, R 5 , R 6 , R 7 and R 8 represent the same meaning as R 2 in the general formula (I).)
The nematic liquid crystal composition of Claim 1 containing the 1 type, or 2 or more types of compound chosen from the compound group represented by these.
一般式(II-A)から一般式(II-I)
Figure 0005077621
(式中、R13、R14、R15、R16、R17、R18、R19、R20、R21、R22、R23、R24、R25、R26、R27、R28、R29及びR30は一般式(I)におけるR2と同じ意味を表す。)で表される化合物群から選ばれる1種又は2種以上の化合物を含有する請求項1又は2記載のネマチック液晶組成物。
From general formula (II-A) to general formula (II-I)
Figure 0005077621
(In the formula, R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 , R 28 , R 29, and R 30 represent the same meaning as R 2 in the general formula (I), and contain one or more compounds selected from the group of compounds represented by claim 1 or 2. Nematic liquid crystal composition.
一般式(I-A)及び一般式(I-B)からなる化合物群から選ばれる1種又は2種以上の化合物を10から80質量%含有し、一般式(II-A)から一般式(II-I)からなる化合物群から選ばれる1種又は2種以上の化合物を20から70質量%含有する、請求項3に記載のネマチック液晶組成物。 10 to 80% by mass of one or more compounds selected from the group consisting of general formula (IA) and general formula (IB), and from general formula (II-A) to general formula (II-I) The nematic liquid crystal composition according to claim 3, wherein the nematic liquid crystal composition contains 20 to 70% by mass of one or more compounds selected from the compound group consisting of: 一般式(III-A)から一般式(III-J)
Figure 0005077621
(式中、R31及びR32はそれぞれ独立して炭素数1から10のアルキル基又は炭素数2から10のアルケニル基を表し、これらの基中に存在する1個のCH2基又は隣接していない2個以上のCH2基はO及び/又はSに置換されてもよく、またこれらの基中に存在する1個又は2個以上の水素原子はF又はClに置換されてもよい。)
からなる化合物群から選ばれる1種又は2種以上の化合物を更に含有する、請求項4に記載のネマチック液晶組成物。
From general formula (III-A) to general formula (III-J)
Figure 0005077621
(Wherein R 31 and R 32 each independently represents an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms, and one CH 2 group present in these groups or adjacent thereto. Two or more CH 2 groups not present may be substituted with O and / or S, and one or more hydrogen atoms present in these groups may be substituted with F or Cl. )
The nematic liquid crystal composition according to claim 4, further comprising one or more compounds selected from the group consisting of:
25℃における誘電率異方性Δεが-2.0から-8.0の範囲であり、25℃における屈折率異方性Δnが0.06から0.16の範囲であり、20℃における粘度が10から40mPa・sの範囲であり、ネマチック相−等方性液体相転移温度Tniが70℃から130℃の範囲である、請求項1から5に記載のネマチック液晶組成物。 The dielectric anisotropy Δε at 25 ° C. is in the range of −2.0 to −8.0, the refractive index anisotropy Δn at 25 ° C. is in the range of 0.06 to 0.16, and the viscosity at 20 ° C. is in the range of 10 to 40 mPa · s. 6. The nematic liquid crystal composition according to claim 1, wherein the nematic phase-isotropic liquid phase transition temperature Tni is in the range of 70 ° C. to 130 ° C. 6. 一般式(I-1)
Figure 0005077621
(式中、Raは炭素原子数2から7の直鎖状アルケニル基を表し、Rbは炭素原子数1から7の直鎖状アルキル基又は炭素原子数2から7の直鎖状アルケニル基を表し、p1及びp2はそれぞれ独立的に1又は2を表し、p1及びp2の合計は3以下である。)で表されるジフルオロベンゼン誘導体。
Formula (I-1)
Figure 0005077621
(In the formula, R a represents a linear alkenyl group having 2 to 7 carbon atoms, and R b represents a linear alkyl group having 1 to 7 carbon atoms or a linear alkenyl group having 2 to 7 carbon atoms. P1 and p2 each independently represent 1 or 2, and the sum of p1 and p2 is 3 or less.)
一般式(I-1)において、Raがビニル基を表し、Rbが炭素原子数1から7の直鎖状アルキル基を表す請求項記載の化合物。 The compound according to claim 7, wherein in the general formula (I-1), R a represents a vinyl group and R b represents a linear alkyl group having 1 to 7 carbon atoms. 請求項7又は8記載の化合物を含有する液晶組成物。 A liquid crystal composition containing the compound according to claim 7 or 8. 請求項1から6又は請求項9のいずれかに記載のネマチック液晶組成物を用いた液晶表示素子。 A liquid crystal display device using the nematic liquid crystal composition according to claim 1. 請求項1から6又は請求項9のいずれかに記載のネマチック液晶組成物を用いた、アクティブマトリックス駆動用液晶表示素子。 A liquid crystal display element for active matrix driving using the nematic liquid crystal composition according to claim 1. 請求項1から6又は請求項9のいずれかに記載のネマチック液晶組成物を用いた、VAモード、IPSモード又はECBモード用液晶表示素子。 A liquid crystal display element for VA mode, IPS mode or ECB mode, using the nematic liquid crystal composition according to claim 1.
JP2006074151A 2005-03-17 2006-03-17 Difluorobenzene derivative and liquid crystal composition using the same Expired - Fee Related JP5077621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006074151A JP5077621B2 (en) 2005-03-17 2006-03-17 Difluorobenzene derivative and liquid crystal composition using the same

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2005077026 2005-03-17
JP2005077026 2005-03-17
JP2005159224 2005-05-31
JP2005159224 2005-05-31
JP2005191843 2005-06-30
JP2005191843 2005-06-30
JP2006074151A JP5077621B2 (en) 2005-03-17 2006-03-17 Difluorobenzene derivative and liquid crystal composition using the same

Publications (2)

Publication Number Publication Date
JP2007039642A JP2007039642A (en) 2007-02-15
JP5077621B2 true JP5077621B2 (en) 2012-11-21

Family

ID=37797926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006074151A Expired - Fee Related JP5077621B2 (en) 2005-03-17 2006-03-17 Difluorobenzene derivative and liquid crystal composition using the same

Country Status (1)

Country Link
JP (1) JP5077621B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040942A (en) * 2007-08-10 2009-02-26 Dic Corp Nematic liquid crystal composition
JP5428164B2 (en) * 2008-01-31 2014-02-26 Dic株式会社 Nematic liquid crystal composition
CN101407719B (en) * 2008-03-28 2012-12-12 河北迈尔斯通电子材料有限公司 Negative dielectric anisotropy liquid crystal material composition and liquid crystal display device using the same
WO2010057575A1 (en) * 2008-11-19 2010-05-27 Merck Patent Gmbh Liquid crystalline medium
WO2011158820A1 (en) * 2010-06-16 2011-12-22 Jnc株式会社 Liquid crystal composition and liquid crystal display element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10136751B4 (en) * 2000-08-18 2013-08-29 Merck Patent Gmbh 4-core and 5-core compounds and their use in liquid-crystalline media
JP4442179B2 (en) * 2002-10-10 2010-03-31 チッソ株式会社 Allyl ether compound, liquid crystal composition containing this compound, and liquid crystal display device containing this liquid crystal composition

Also Published As

Publication number Publication date
JP2007039642A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
JP4947339B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
JP6552254B2 (en) 4,6-difluorodibenzothiophene derivatives
TWI405841B (en) Nematic liquid crystal composition and liquid crystal display element using the same
JP6797544B2 (en) Fluorinated dibenzofuran and dibenzothiophene derivatives
JP4947342B2 (en) Difluorobenzene derivative and liquid crystal composition using the same
EP1640433B1 (en) Chroman derivative and liquid-crystal composition containing the compound
KR101212083B1 (en) Difluorobenzene derivative and nematic liquid crystal composition making use of the same
JP4876420B2 (en) Difluorobenzene derivative
KR102565571B1 (en) Dibenzofuran derivatives and dibenzothiophene derivatives
EP1857524B1 (en) Difluorobenzene derivative and nematic liquid crystal composition using the same
JP6137419B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
TWI787298B (en) Thioether derivatives of dibenzothiophene and dibenzofuran
JP4887605B2 (en) Chroman derivative and liquid crystal composition containing the compound
JP4940626B2 (en) Compound having alkyl group in benzene ring, liquid crystal composition containing this compound, and liquid crystal display device containing this liquid crystal composition
JP5077621B2 (en) Difluorobenzene derivative and liquid crystal composition using the same
WO2005095311A9 (en) Benzene derivative, liquid crystal composition and liquid crystal display
JP6085912B2 (en) Compound, liquid crystal composition, and liquid crystal display device
JP2003183285A (en) Oxabicyclooctane
KR102077868B1 (en) Liquid crystal compound, liquid crystal composition and liquid crystal display device
JP2020513406A (en) Thioether compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5077621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees