JP5076518B2 - Method for producing galvannealed steel sheet - Google Patents

Method for producing galvannealed steel sheet Download PDF

Info

Publication number
JP5076518B2
JP5076518B2 JP2007020883A JP2007020883A JP5076518B2 JP 5076518 B2 JP5076518 B2 JP 5076518B2 JP 2007020883 A JP2007020883 A JP 2007020883A JP 2007020883 A JP2007020883 A JP 2007020883A JP 5076518 B2 JP5076518 B2 JP 5076518B2
Authority
JP
Japan
Prior art keywords
mold
magnetic field
immersion nozzle
steel sheet
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007020883A
Other languages
Japanese (ja)
Other versions
JP2008183601A (en
Inventor
祐司 三木
隆司 高岡
大輔 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007020883A priority Critical patent/JP5076518B2/en
Publication of JP2008183601A publication Critical patent/JP2008183601A/en
Application granted granted Critical
Publication of JP5076518B2 publication Critical patent/JP5076518B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、合金化溶融亜鉛めっき鋼板の製造方法に係り、特に、自動車外板に用いられる合金化溶融亜鉛めっき鋼板を製造する際に用いるのに好適な、磁界印加による鋳型内溶鋼流動の改善に関する。 The present invention relates to a method for producing an alloyed hot-dip galvanized steel sheet, and particularly, to improve the flow of molten steel in a mold by applying a magnetic field, which is suitable for use in producing an alloyed hot-dip galvanized steel sheet used for an automobile outer plate. About.

合金化溶融亜鉛めっき鋼板は、溶接性、塗装性、塗装後耐食性に優れ、自動車車体や家電製品、建材等、幅広く用いられている。この合金化亜鉛溶融めっき鋼板は、自動車外板にも用いられるが、そのめっきむらは、外観不良につながり、製品価値を損ねる原因となって問題となっていた。   Alloyed hot-dip galvanized steel sheets are excellent in weldability, paintability, and corrosion resistance after painting, and are widely used in automobile bodies, home appliances, building materials, and the like. This alloyed galvannealed steel sheet is also used for an automobile outer plate, but the plating unevenness leads to a poor appearance and causes a problem of deteriorating the product value.

合金化溶融亜鉛めっき鋼板は、溶融めっき後、加熱して母板の鉄成分を亜鉛めっき層に拡散させたものであり、母板の表面状態により合金化溶融亜鉛めっき層が変化する。従って、めっき不良の原因は種々考えられるが、圧延後の集合組織に着目し、集合組織を調整する技術等が、例えば特許文献1に開示されている。   The alloyed hot dip galvanized steel sheet is obtained by heating and hot diffusing the iron component of the base plate into the galvanized layer, and the galvannealed layer changes depending on the surface state of the base plate. Therefore, although various causes of plating defects are conceivable, for example, Patent Document 1 discloses a technique for adjusting the texture by paying attention to the texture after rolling.

特開2001−294977号公報Japanese Patent Laid-Open No. 2001-294977

しかしながら、圧延前の鋳片製造段階から根本的に改善する方法は提案されていなかった。   However, a method for fundamental improvement from the slab manufacturing stage before rolling has not been proposed.

本発明は、前記従来の問題点を解決するべくなされたもので、圧延前の鋳片製造段階からめっき不良を根本的に改善することを課題とする。   The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to fundamentally improve plating defects from the slab manufacturing stage before rolling.

本発明は、合金化溶融亜鉛めっき鋼板の製造に際して、図1(鉛直断面図)及び図2(水平断面図)に例示する如く、長辺10aと短辺10bを有する矩形鋳型10の長辺10aの対向側壁の背面に配設した磁極12で磁界を発生させ、該磁界により浸漬ノズル6から鋳型10内に供給される溶鋼8の流動を制御する鋼の連続鋳造方法であって、浸漬ノズル6の上部に配置した磁極12により、浸漬ノズル吐出孔6aより上部の位置の鋳型幅中央で且つ鋳型厚み中央の位置で、0.03T〜0.15Tの直流磁場を印加し、且つ、凝固シェル(14a)滞在時間0〜10秒の間、熱流束150万〜300万W/m 鋳型10を介して鋳片14を冷却する鋼の連続鋳造方法で製造した鋳片14を用いるようにして、前記課題を解決したものである。 In the production of the galvannealed steel sheet according to the present invention, as illustrated in FIG. 1 (vertical sectional view) and FIG. 2 (horizontal sectional view), the long side 10a of the rectangular mold 10 having the long side 10a and the short side 10b is illustrated. A continuous casting method of steel in which a magnetic field is generated by a magnetic pole 12 disposed on the back surface of the opposite side wall of the steel plate and the flow of molten steel 8 supplied from the immersion nozzle 6 into the mold 10 is controlled by the magnetic field. The magnetic pole 12 disposed on the upper side of the substrate is applied with a direct current magnetic field of 0.03T to 0.15T at the center of the mold width at the position above the immersion nozzle discharge hole 6a and at the center of the mold thickness, and the solidified shell ( 14a) during the dwell time 0-10 seconds, to use a slab 14 produced by the continuous casting method of steel to cool the slab 14 through the template 10 with the heat flux from 1,500,000 to 3,000,000 W / m 2 And solved the above problems It is.

前記凝固シェル滞在時間は、鋳型10の高さDを鋳造速度Vcで割ることによって、D/Vcとして得られる。   The solidified shell residence time is obtained as D / Vc by dividing the height D of the mold 10 by the casting speed Vc.

ここで、浸漬ノズル吐出孔より上部の位置の鋳型幅中央で且つ鋳型厚み中央の位置での直流磁界としたのは、モールドフラックスの巻き込みは鋳型厚み中央の溶鋼流の渦生成に起因するので、直流磁界で、この渦を抑制する目的から適切と考えられたからである。   Here, the DC magnetic field at the center of the mold width at the position above the immersion nozzle discharge hole and at the center of the mold thickness is because the entrainment of the mold flux is caused by the vortex generation of the molten steel flow at the center of the mold thickness, This is because it was considered appropriate for the purpose of suppressing this eddy with a DC magnetic field.

又、直流磁場の磁界強度の下限を0.03Tとするのは、磁界強度が0.03T未満であると、直流磁場による制動効果が不充分で、湯面変動が大きく、モールドフラックス16を巻き込んで欠陥が発生するからである。   Moreover, the lower limit of the magnetic field strength of the DC magnetic field is set to 0.03T. If the magnetic field strength is less than 0.03T, the braking effect by the DC magnetic field is insufficient, the molten metal surface fluctuation is large, and the mold flux 16 is involved. This is because defects occur.

一方、磁界強度の上限を0.15Tとするのは、磁界強度が0.15Tを超えると、直流磁場による制動がかかり過ぎて溶鋼流速が遅くなり、温度が不均一となって、低流速域の部分が早く凝固し、偏析によりMn、C、P等の成分が集中して、成分が不均一となり、凝固組織が不均一となって、筋状模様を発生するためである。   On the other hand, the upper limit of the magnetic field strength is set to 0.15 T. When the magnetic field strength exceeds 0.15 T, braking by the DC magnetic field is excessively applied, the molten steel flow velocity becomes slow, the temperature becomes uneven, and the low flow velocity region This is because the portion solidifies rapidly, components such as Mn, C, and P are concentrated due to segregation, the components become non-uniform, the solidified structure becomes non-uniform, and a streak pattern is generated.

又、冷却の熱流の下限を150万W/mとするのは、熱流が150万W/m未満であると、溶鋼8の熱流が低過ぎて、図3(A)に例示する如く、凝固シェル14aの成長が遅れ、薄くなる部分が生じるためである。 Moreover, the lower limit of the heat flux of cooling is 1.5 million W / m 2 because if the heat flux is less than 1.5 million W / m 2 , the heat flux of the molten steel 8 is too low, as shown in FIG. This is because, as illustrated, the growth of the solidified shell 14a is delayed and a thinned portion is generated.

一方、熱流の上限を300万W/mとするのは、熱流が300万W/mを越えると、溶鋼8の熱流が高過ぎて、図3(B)に例示する如く、凝固シェル厚が異常成長するところが生じるからである。 On the other hand, the upper limit of the heat flux is set to 3 million W / m 2 because when the heat flux exceeds 3 million W / m 2 , the heat flux of the molten steel 8 is too high, as illustrated in FIG. This is because the solidified shell thickness grows abnormally.

熱流とシェル厚みのばらつきの関係の一例を図4に示す。 An example of the relationship between the heat flux and the shell thickness variation is shown in FIG.

本発明によれば、凝固組織、特に表層の凝固組織を均一化して、合金化溶融亜鉛めっき鋼板の外観不良を防ぐことが可能となる。   According to the present invention, it is possible to uniformize the solidified structure, particularly the solidified structure of the surface layer, and prevent the appearance defect of the galvannealed steel sheet.

以下図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の第1実施形態は、図1及び図2に示した如く、長辺10aと短辺10bを有する矩形鋳型10の長辺10aの対向側壁の背面に配設した磁極12で磁界を発生させ、該磁界により浸漬ノズル6から鋳型10内に供給される溶鋼8の流動を制御する際に、浸漬ノズル6の上部に配置した磁極12により、浸漬ノズル吐出孔6aより上部の位置の鋳型幅中央で且つ鋳型厚み中央の位置で、0.03T〜0.15Tの直流磁場を印加し、且つ、凝固シェル滞在時間0〜10秒の間で、熱流150万〜300万W/mの熱流で鋳型10を介して鋳片14を冷却するようにしたものである。 In the first embodiment of the present invention, as shown in FIGS. 1 and 2, a magnetic field is generated by the magnetic pole 12 disposed on the back surface of the opposing side wall of the long side 10a of the rectangular mold 10 having the long side 10a and the short side 10b. When the flow of the molten steel 8 supplied from the immersion nozzle 6 into the mold 10 is controlled by the magnetic field, the mold width at the position above the immersion nozzle discharge hole 6a is set by the magnetic pole 12 arranged at the upper part of the immersion nozzle 6. in and position of the central mold thickness at the center, by applying a DC magnetic field 0.03T~0.15T, and, between the solidified shell residence time 0-10 seconds, the heat flux from 1,500,000 to 3,000,000 W / m 2 The slab 14 is cooled by the heat flux through the mold 10.

本発明は、C:0.001〜0.005重量%、Si:0.034重量%以下、Mn:0.03〜0.3重量%、P:0.01〜0.08重量%の鋼組成を有する溶融亜鉛めっき鋼板の製造において、めっきむら等の欠陥発生の対策として特に良好な効果を奏する。   The present invention is a steel of C: 0.001 to 0.005 wt%, Si: 0.034 wt% or less, Mn: 0.03 to 0.3 wt%, P: 0.01 to 0.08 wt% In the production of a hot dip galvanized steel sheet having a composition, it has a particularly good effect as a countermeasure against the occurrence of defects such as uneven plating.

そこで、実施例では、C:0.002重量%、Si:0.02重量%、Mn:0.1重量%、P:0.05重量%の成分を含む溶鋼で試験を行なった。結果を次の表に示す。   Therefore, in the examples, the test was performed with molten steel containing components of C: 0.002 wt%, Si: 0.02 wt%, Mn: 0.1 wt%, and P: 0.05 wt%. The results are shown in the following table.

Figure 0005076518
Figure 0005076518

ここで、「スリーパー状欠陥指数」は、スラブを溶融亜鉛めっき鋼板に仕上げた後、コイルの外表面を目視で検査し、スリーパー状欠陥発生状況を指数化したもので、指数化は、コイルの長手方向に延びたスリーパー状の欠陥の長さを計測し、その総和を検査したコイルの全長で割算することにより求め、最大指数を10として指数化した。   Here, the “Sleeper-like defect index” is obtained by visually inspecting the outer surface of the coil after finishing the slab into a hot-dip galvanized steel sheet and indexing the occurrence of the sleeper-like defect. The length of the sleeper-like defect extending in the longitudinal direction was measured, and the sum was divided by the total length of the inspected coil.

又、「めっきむら評価指数」は、スラブを溶融亜鉛めっき鋼板に仕上げた後、コイルの外表面を目視で検査し、めっきむらに起因した欠陥発生状況を指数化したもので、指数化は、コイルの長手方向に延びためっきむらに起因した筋状欠陥の長さを計測し、その総和を検査したコイルの全長で割算することにより求め、最大指数を10として指数化した。   Also, the “Plating unevenness evaluation index” is obtained by visually inspecting the outer surface of the coil after finishing the slab into a hot dip galvanized steel sheet, and indexing the occurrence of defects caused by uneven plating. The length of the streak defect due to the plating unevenness extending in the longitudinal direction of the coil was measured, and the total sum was divided by the total length of the inspected coil.

実施例では、幅1500mm、厚さ220mmの鋳片幅方向に4箇所をサンプリングし、断面をEDX解析し、硫黄分布を調査し、凝固シェル厚を評価した。   In the examples, four locations were sampled in the width direction of a slab having a width of 1500 mm and a thickness of 220 mm, a cross section was subjected to EDX analysis, a sulfur distribution was investigated, and a solidified shell thickness was evaluated.

ここで、凝固シェル厚の確認は、硫黄プリント法(Sプリント法)で行なった。即ち、凝固中のある時点で、鋳型内に硫黄を添加し、鋳片を解体し、硫黄の分布状態を鋳片の断面観察により確認し、凝固シェルの成長状態を確認した。   Here, the thickness of the solidified shell was confirmed by a sulfur printing method (S printing method). That is, at a certain point during solidification, sulfur was added into the mold, the slab was disassembled, the distribution state of sulfur was confirmed by observing the cross section of the slab, and the growth state of the solidified shell was confirmed.

その結果、図4に示したように、熱流150万〜300万W/mでは、シェル厚10mmに対し、±2mmの範囲内でのばらつきで良好であった。これに対して、150万W/m以下や300万W/m以上では、ばらつきが±4mmとなり、不良であった。 As a result, as shown in FIG. 4, the heat flux from 1,500,000 to 3,000,000 W / m 2, relative to the shell thickness 10 mm, it exhibited a good dispersion of within the range of ± 2 mm. On the other hand, at 1.5 million W / m 2 or less or 3 million W / m 2 or more, the variation was ± 4 mm, which was a failure.

なお、第1実施形態では、浸漬ノズル6の上部に配置した磁極14のみにより直流磁界を印加していたが、図5に示す第2実施形態のように、浸漬ノズル6の下側にも磁極16を配置し、この磁極16により、上部磁界と同じ磁場条件の磁界を印加しても良い。   In the first embodiment, the DC magnetic field is applied only by the magnetic pole 14 disposed on the top of the immersion nozzle 6. However, the magnetic pole is also provided below the immersion nozzle 6 as in the second embodiment shown in FIG. 16 and a magnetic field having the same magnetic field condition as that of the upper magnetic field may be applied by the magnetic pole 16.

本発明を実施するための鋳型周辺の構成を示す鉛直断面図Vertical sectional view showing a configuration around a mold for carrying out the present invention 同じく図2のII−II線に沿う水平断面図Similarly, a horizontal sectional view along the line II-II in FIG. 本発明の原理を説明するための、冷却の熱流と凝固シェルの成長遅れや異常成長の関係を示す断面図Sectional drawing which shows the relationship between the heat flux of cooling, the growth delay of a solidified shell, and abnormal growth for demonstrating the principle of this invention 同じく冷却の熱流と凝固シェル厚みのばらつきの関係を示す線図Similarly, a diagram showing the relationship between cooling heat flux and solid shell thickness variation 本発明の第2実施形態を実施するための鋳型周辺の構成を示す断面図Sectional drawing which shows the structure around the casting_mold | template for implementing 2nd Embodiment of this invention

符号の説明Explanation of symbols

6…浸漬ノズル
6a…ノズル吐出孔
8…溶鋼
10…鋳型
10a…長辺
10b…短辺
12、16…磁極
14…鋳片
14a…凝固シェル
6 ... Submerged nozzle 6a ... Nozzle discharge hole 8 ... Molten steel 10 ... Mold 10a ... Long side 10b ... Short side 12, 16 ... Magnetic pole 14 ... Slab 14a ... Solidified shell

Claims (1)

長辺と短辺を有する矩形鋳型の長辺の対向側壁の背面に配設した磁極で磁界を発生させ、該磁界により浸漬ノズルから鋳型内に供給される溶鋼の流動を制御する鋼の連続鋳造方法であって、
浸漬ノズルの上部に配置した磁極により、浸漬ノズル吐出孔より上部の位置の鋳型幅中央で且つ鋳型厚み中央の位置で、0.03T〜0.15Tの直流磁場を印加し、且つ、
凝固シェル滞在時間0〜10秒の間、熱流束150万〜300万W/m 鋳型を介して鋳片を冷却する鋼の連続鋳造方法で製造した鋳片を用いることを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
Continuous casting of steel that generates a magnetic field with magnetic poles arranged on the back side of the opposing side wall of the long side of a rectangular mold having a long side and a short side, and controls the flow of molten steel supplied from the immersion nozzle into the mold by the magnetic field A method,
Applying a DC magnetic field of 0.03T to 0.15T at the center of the mold width at the position above the immersion nozzle discharge hole and at the center of the mold thickness by the magnetic pole disposed on the top of the immersion nozzle; and
Between solidified shells residence time 0-10 seconds, characterized by using a cast slab produced by continuous casting method of steel to cool a heat flux from 1.5 to 3 million cast piece through a mold in W / m 2 A method for producing a galvannealed steel sheet.
JP2007020883A 2007-01-31 2007-01-31 Method for producing galvannealed steel sheet Active JP5076518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007020883A JP5076518B2 (en) 2007-01-31 2007-01-31 Method for producing galvannealed steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007020883A JP5076518B2 (en) 2007-01-31 2007-01-31 Method for producing galvannealed steel sheet

Publications (2)

Publication Number Publication Date
JP2008183601A JP2008183601A (en) 2008-08-14
JP5076518B2 true JP5076518B2 (en) 2012-11-21

Family

ID=39726971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007020883A Active JP5076518B2 (en) 2007-01-31 2007-01-31 Method for producing galvannealed steel sheet

Country Status (1)

Country Link
JP (1) JP5076518B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2761179B2 (en) * 1993-12-22 1998-06-04 新日本製鐵株式会社 Method for producing thin steel sheet with extremely good surface properties
JPH08132185A (en) * 1994-11-07 1996-05-28 Kobe Steel Ltd Mold for continuous casting
JPH1110285A (en) * 1997-06-20 1999-01-19 Sumitomo Metal Ind Ltd Mold for continuous casting and continuous casting method
JP2003164947A (en) * 2001-11-30 2003-06-10 Kawasaki Steel Corp Continuous casting for steel
JP3994848B2 (en) * 2002-10-22 2007-10-24 住友金属工業株式会社 Continuous casting method of steel
JP2004322210A (en) * 2003-04-09 2004-11-18 Jfe Steel Kk Continuous casting method for steel
JP4303670B2 (en) * 2004-11-01 2009-07-29 新日本製鐵株式会社 Steel continuous casting method

Also Published As

Publication number Publication date
JP2008183601A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
EP2500120B1 (en) Method of continuous casting of steel
KR101419585B1 (en) Method for producing a coated metal strip with an improved appearance
EP2500121B1 (en) Method of continuous casting of steel
US8312916B2 (en) Method for casting a composite ingot
JP2014501334A (en) High corrosion resistant hot dip galvanized steel sheet and method for producing the same
JP2022106758A (en) Hot press molding steel sheet excellent in coating adhesion and after-painting corrosion resistance and method for manufacturing the same
JP5381785B2 (en) Continuous cast slab for high-strength steel sheet, and steel plate obtained from the slab
KR20150049991A (en) HOT DIP Al PLATED STEEL SHEET HAVING EXCELLENT SURFACE APPEARANCE AND HEAT RESISTANCE AND METHOD FOR MANUFACTURING THE SAME
JP5217785B2 (en) Steel continuous casting method
JP5034547B2 (en) Method for continuously casting steel and method for producing hot dip galvanized steel sheet
JP5076518B2 (en) Method for producing galvannealed steel sheet
JP6509160B2 (en) Molten Al-Zn based plated steel sheet and manufacturing method thereof
TWI690377B (en) Continuous casting method of steel
JP5824905B2 (en) Manufacturing method of molten metal plated steel strip
JP7393553B2 (en) Aluminum alloy plated steel sheet with excellent workability and corrosion resistance and its manufacturing method
JP2007136464A (en) METHOD FOR MANUFACTURING Al-Mg-Si SYSTEM ALUMINUM ALLOY SHEET EXCELLENT IN SURFACE QUALITY
JP4661172B2 (en) Adhesion amount control method and adhesion amount control device for continuous molten metal plating
JP2022551899A (en) Aluminum-based alloy-plated steel sheet with excellent workability and corrosion resistance, and method for producing the same
JP2023507328A (en) Aluminum-based alloy-plated steel sheet with excellent workability and corrosion resistance, and method for producing the same
JP2010058148A (en) Continuous casting method of steel
JP2007284775A (en) Coating weight controller for continuous hot dip metal plating
JP4946604B2 (en) Continuous casting method of P-containing steel
KR101170313B1 (en) Die with coating
JP5217784B2 (en) Steel continuous casting method
JP2003293109A (en) Highly corrosion resistant hot dip plated steel wire and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5076518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250