JP5075708B2 - Method for producing fine particle dispersion, fine particle dispersion of metal or metal compound produced using the same, and fine particle dispersion obtained by replacing it with dispersion medium - Google Patents

Method for producing fine particle dispersion, fine particle dispersion of metal or metal compound produced using the same, and fine particle dispersion obtained by replacing it with dispersion medium Download PDF

Info

Publication number
JP5075708B2
JP5075708B2 JP2008085786A JP2008085786A JP5075708B2 JP 5075708 B2 JP5075708 B2 JP 5075708B2 JP 2008085786 A JP2008085786 A JP 2008085786A JP 2008085786 A JP2008085786 A JP 2008085786A JP 5075708 B2 JP5075708 B2 JP 5075708B2
Authority
JP
Japan
Prior art keywords
fine particle
particle dispersion
metal
dispersion
vapor pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008085786A
Other languages
Japanese (ja)
Other versions
JP2009235544A (en
Inventor
武 佐藤
貴生 松本
敏男 古高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DNP Fine Chemicals Co Ltd
Original Assignee
DNP Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DNP Fine Chemicals Co Ltd filed Critical DNP Fine Chemicals Co Ltd
Priority to JP2008085786A priority Critical patent/JP5075708B2/en
Publication of JP2009235544A publication Critical patent/JP2009235544A/en
Application granted granted Critical
Publication of JP5075708B2 publication Critical patent/JP5075708B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Colloid Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、微粒子分散体の製造方法に関し、更に詳しくは、特定の方法で金属の気体又は金属化合物の分散液を製造する際に、分散媒に特定の化合物を溶解させておくことにより、小粒径の微粒子の分散性、分散安定性等が大幅に改善された微粒子分散体の製造方法に関する。   The present invention relates to a method for producing a fine particle dispersion, and more specifically, when a metal gas or a metal compound dispersion is produced by a specific method, a specific compound is dissolved in a dispersion medium, thereby reducing the size of the dispersion. The present invention relates to a method for producing a fine particle dispersion in which the dispersibility, dispersion stability and the like of fine particles having a particle size are greatly improved.

金属又は該金属化合物の微粒子分散液は、IC基板、半導体素子等の配線、半導体モジュールの層間接続、透明導電膜の形成、金属と非金属との接合、液のコロイド色を利用した色フィルター等に広く用いられている。   Metal or fine particle dispersion of the metal compound is used for IC substrates, wiring of semiconductor elements, interlayer connection of semiconductor modules, formation of transparent conductive film, bonding of metal and nonmetal, color filter using colloid color of liquid, etc. Widely used in

金属又は該金属化合物の微粒子分散液の製造方法としては、金酸塩等の酸化状態の金属化合物の水溶液を、還元剤で還元して金属微粒子の分散液を得る方法が従来から広く知られている。しかしながら、このような化学的方法では、還元されずに残留した物質や還元反応による不純物が含有された微粒子分散液しか調製できず、その用途が限定されたものとなっていた。また、この方法に関しては、使用する還元剤の種類、使用する物質の純度、保護コロイドの有無、調製時のpHや温度等を変化させることによって、分散性を向上させる方法が多く検討されているが、何れも充分な分散安定性を得られるまでには至っていなかった。   As a method for producing a metal or fine particle dispersion of the metal compound, a method of obtaining a dispersion of metal fine particles by reducing an aqueous solution of a metal compound in an oxidized state such as a metal salt with a reducing agent has been widely known. Yes. However, in such a chemical method, only a fine particle dispersion containing substances remaining without reduction or impurities due to a reduction reaction can be prepared, and its use is limited. In addition, regarding this method, many methods for improving the dispersibility by changing the kind of reducing agent used, the purity of the substance used, the presence or absence of protective colloid, the pH and temperature at the time of preparation, etc. have been studied. However, none of them has reached a sufficient dispersion stability.

以上のような化学的方法とは異なり、スパークエロージョン法、ガス中蒸発法、真空蒸着法等の物理的方法が知られている。   Unlike the above chemical methods, physical methods such as a spark erosion method, a gas evaporation method, and a vacuum deposition method are known.

スパークエロージョン法は、分散させたい金属等を電極として用い、分散媒中で電極間に放電を発生させることによって、微粒子分散液を製造する方法である。しかしながら、この方法では、分散媒中に電気良導体である界面活性剤を含有させておくことが難しいため、微粒子の凝集を抑制することができない等の場合があった。   The spark erosion method is a method for producing a fine particle dispersion by using a metal or the like to be dispersed as electrodes and generating a discharge between the electrodes in a dispersion medium. However, in this method, since it is difficult to contain a surfactant that is a good electrical conductor in the dispersion medium, there are cases where aggregation of fine particles cannot be suppressed.

ガス中蒸発法は、0.1〜30Torr(mmHg)(1.3×10Pa〜4×10Pa)の不活性気体の存在下に、分散させたい金属又は金属化合物の蒸気を発生させ、気相中で微粒子を生成させ、生成した直後に、それを溶媒に捕集して微粒子分散液を製造する方法である(特許文献1参照)。また、不活性気体中に常温で液体である有機物の気体を共存させておくことによって、その有機物中に分散された微粒子を得て、その後溶媒交換等をして微粒子分散液を製造する方法も知られている。 In the gas evaporation method, a vapor of a metal or a metal compound to be dispersed is generated in the presence of an inert gas of 0.1 to 30 Torr (mmHg) (1.3 × 10 1 Pa to 4 × 10 3 Pa). In this method, fine particles are produced in a gas phase, and immediately after production, the fine particles are collected in a solvent to produce a fine particle dispersion (see Patent Document 1). There is also a method of producing a fine particle dispersion by obtaining fine particles dispersed in an organic substance by allowing an organic gas that is liquid at room temperature to coexist in an inert gas, and then performing solvent exchange or the like. Are known.

しかしながら、これらガス中蒸発法では、平均粒径をそろえることが困難であった。すなわち、発生した金属又は金属化合物の蒸気は、不活性気体原子との衝突によって冷却されて微粒子を形成するが、発生した微粒子は再び不活性気体中で会合しクラスターを形成しやすい等の、気体と気体との接触に起因する問題点があった。   However, in these gas evaporation methods, it is difficult to make the average particle diameter uniform. In other words, the generated metal or metal compound vapor is cooled by collision with an inert gas atom to form fine particles, but the generated fine particles are likely to associate again in the inert gas and form a cluster. There was a problem caused by contact with gas.

真空蒸着法は、界面活性剤等で表面が覆われた油の表面に金属等を蒸着させ、金属原子等が凝集して微粒子が形成されると同時に、その微粒子を界面活性剤等で保護して微粒子同士の会合を防止し、微粒子が油中に分散された分散体を得る方法である(特許文献2参照)。この方法では、微粒子が直接液体中に生成するので、上記ガス中蒸発法で問題となる、気体と気体との接触に起因する問題点、微粒子同士の会合等は生じ難い。   The vacuum evaporation method deposits metal etc. on the surface of oil whose surface is covered with a surfactant etc., and metal atoms etc. aggregate to form fine particles, and at the same time, protect the fine particles with surfactant etc. This is a method for preventing the association between fine particles and obtaining a dispersion in which fine particles are dispersed in oil (see Patent Document 2). In this method, since the fine particles are directly generated in the liquid, the problems caused by the contact between the gas and the gas, the association between the fine particles, and the like, which are problems in the gas evaporation method, are hardly generated.

しかしながら、真空蒸着法における上記界面活性剤や分散剤等の溶解させておく化合物については、殆ど研究がなされておらず、特許文献2で界面活性剤として用いられているコハク酸イミドポリアミンでは、微粒子同士が界面活性剤により保護される前に会合し、クラスターを形成してしまう等の問題点が依然としてあった。従って、比較的優れた方法である真空蒸着法を用いても、金属、合金又は金属化合物の微粒子分散液に、充分な分散性や分散安定性を付与するまでには至っていなかった。   However, little research has been conducted on the compounds to be dissolved such as the surfactant and the dispersant in the vacuum deposition method. In the succinimide polyamine used as the surfactant in Patent Document 2, fine particles are used. There were still problems such as the fact that they were associated before forming a cluster before being protected by the surfactant. Therefore, even if the vacuum deposition method, which is a relatively excellent method, is used, sufficient dispersibility and dispersion stability have not been imparted to the fine particle dispersion of metal, alloy or metal compound.

特開2002−121606号公報JP 2002-121606 A 国際公開WO2005/099941号公報International Publication WO2005 / 099941

本発明は上記背景技術に鑑みてなされたものであり、その課題は、極めて小さな粒径で分散が可能で、分散性、分散安定性、高濃度分散性等が良好な、金属、合金又は金属化合物の微粒子分散体の製造方法を提供することにあり、また、その製造方法を使用して製造された微粒子分散体、更には、その微粒子分散体に対して溶媒置換を施した微粒子分散液を提供することにある。   The present invention has been made in view of the above-described background art, and its problem is that it can be dispersed with an extremely small particle diameter, and has good dispersibility, dispersion stability, high-concentration dispersibility, and the like. An object of the present invention is to provide a method for producing a fine particle dispersion of a compound. Further, a fine particle dispersion produced by using the production method, and a fine particle dispersion obtained by subjecting the fine particle dispersion to solvent substitution. It is to provide.

本発明者は、上記の課題を解決すべく鋭意検討を重ねた結果、金属の気体又は金属化合物の分散体を特定の方法で製造するに際し、分散媒に特定の化合物を溶解させておくことにより、分散性等が改善されることを見出して、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor has made a specific compound dissolved in a dispersion medium when a metal gas or a metal compound dispersion is produced by a specific method. The present inventors have found that the dispersibility and the like are improved and have completed the present invention.

すなわち、本発明は、金属、合金又は金属化合物の気体を低蒸気圧液体に接触させることによって、金属、合金又は金属化合物の微粒子が該低蒸気圧液体に体積分布メジアン径(D50)100nm以下で分散された分散体を製造する方法であって、該低蒸気圧液体中に脂肪酸を溶解させておくことを特徴とする微粒子分散体の製造方法を提供するものである。   That is, according to the present invention, a metal, alloy, or metal compound gas is brought into contact with a low vapor pressure liquid so that the fine particles of the metal, alloy, or metal compound have a volume distribution median diameter (D50) of 100 nm or less in the low vapor pressure liquid. It is a method for producing a dispersed dispersion, and provides a method for producing a fine particle dispersion, wherein a fatty acid is dissolved in the low vapor pressure liquid.

また、本発明は、上記製造方法を使用して製造された金属、合金又は金属化合物の微粒子分散体を提供するものである。   The present invention also provides a fine particle dispersion of a metal, alloy or metal compound produced using the above production method.

また、本発明は、上記の「金属、合金又は金属化合物の微粒子分散体」中の低蒸気圧液体を、他の分散媒に置換したものであることを特徴とする金属、合金又は金属化合物の微粒子分散液を提供するものである。   The present invention also relates to a metal, alloy or metal compound obtained by substituting the low vapor pressure liquid in the “fine particle dispersion of metal, alloy or metal compound” with another dispersion medium. A fine particle dispersion is provided.

本発明によれば、極めて小さな体積分布メジアン径(D50)を有する微粒子にまで分散が可能であり、また、小粒径に分散しても、分散性に優れ、微粒子の凝集がなく、分散安定性にも優れた「金属、合金又は金属化合物の微粒子分散体」を提供することができる。また、得られた微粒子分散体を溶媒置換することによって、分散性に優れた「金属、合金又は金属化合物の微粒子分散液」を提供することができる。   According to the present invention, it is possible to disperse even to fine particles having an extremely small volume distribution median diameter (D50), and even when dispersed to a small particle size, the dispersibility is excellent, there is no aggregation of fine particles, and the dispersion is stable. It is possible to provide a “fine particle dispersion of metal, alloy or metal compound” which is also excellent in properties. Further, by replacing the obtained fine particle dispersion with a solvent, it is possible to provide a “fine particle dispersion of metal, alloy or metal compound” having excellent dispersibility.

以下、本発明について説明するが、本発明は、以下の実施の具体的形態に限定されるものではなく、発明の要旨の範囲内で任意に変形できるものである。   Hereinafter, the present invention will be described, but the present invention is not limited to the following specific embodiments, and can be arbitrarily modified within the scope of the gist of the invention.

本発明は、金属の気体、合金の気体又は金属化合物の気体(以下、「金属類の気体」と略記する)を、低蒸気圧液体に接触させることによって、該金属、該合金又は該金属化合物の微粒子が該低蒸気圧液体に分散された分散体を製造する方法に関するものである。「合金の気体」とは、複数の金属の混合気体をも含むものである。   The present invention provides a metal gas, an alloy gas or a metal compound gas (hereinafter abbreviated as “metal gas”) by contacting the metal, the alloy or the metal compound with a low vapor pressure liquid. The present invention relates to a method for producing a dispersion in which the fine particles are dispersed in the low vapor pressure liquid. “Alloy gas” includes a mixed gas of a plurality of metals.

本発明の方法で分散される「金属、合金又は金属化合物」(以下、「金属類」と略記する)としては、加熱等によって気体になるものであれば特に限定はない。本発明の製造方法で微粒子となる金属類としては、微粒子状態で非結晶粒子となるものが、分散媒に分散した場合に光散乱が低いため透明性が高くなる点、良好な分散性を達成できる点、低温で融解する点等から好ましい。具体的には、例えば、Ag、Cu、Sn、Pd、In、Au、Zn、Bi、Fe、鉛、Ni、Al、Pt等の金属若しくはそれらを含む合金、又は、それらの酸化物、窒化物等の金属化合物が特に好ましいものとして挙げられる。   The “metal, alloy or metal compound” (hereinafter abbreviated as “metals”) dispersed by the method of the present invention is not particularly limited as long as it becomes a gas by heating or the like. As the metals that become fine particles in the production method of the present invention, those that become non-crystalline particles in the fine particle state have high transparency due to low light scattering when dispersed in a dispersion medium, and achieve good dispersibility. It is preferable from the point that it can be melted at a low temperature. Specifically, for example, metals such as Ag, Cu, Sn, Pd, In, Au, Zn, Bi, Fe, lead, Ni, Al, and Pt, alloys containing them, or oxides and nitrides thereof And the like are particularly preferable.

金属類を気体にする方法は特に限定はされず、公知の加熱方法で金属類を加熱する。加熱温度も気体状態にできるために充分な温度であれば特に限定はなく、また、金属類の種類によっても異なるが、200〜2000℃が好ましく、400〜1800℃がより好ましく、600〜1600℃が特に好ましく、800〜1400℃が更に好ましい。   There is no particular limitation on the method of making the metals gaseous, and the metals are heated by a known heating method. The heating temperature is not particularly limited as long as it is sufficient to be in a gaseous state, and also varies depending on the type of metal, but is preferably 200 to 2000 ° C, more preferably 400 to 1800 ° C, and 600 to 1600 ° C. Is particularly preferable, and 800 to 1400 ° C is more preferable.

本発明においては、金属類の気体を、後述する低蒸気圧液体に接触させて分散体を形成させるが、その際、金属類の気体中に、ヘリウム、アルゴン、窒素等の不活性気体;分散媒、分散助剤等の有機物気体等を共存させることを排除するものではないが、分子を液体に接触させて、液相界面で分散状態を作る本発明の作用原理から、それらを共存させる必要性はない。好ましくは、上記不活性気体を共存させない方がよい。   In the present invention, a metal gas is brought into contact with a low vapor pressure liquid described later to form a dispersion. In this case, an inert gas such as helium, argon or nitrogen is dispersed in the metal gas; Although it does not exclude the coexistence of organic gases such as a medium and a dispersion aid, it is necessary to make them coexist from the principle of operation of the present invention in which a molecule is brought into contact with a liquid to create a dispersed state at a liquid phase interface. There is no sex. Preferably, the inert gas is not allowed to coexist.

金属類の気体を、後述する低蒸気圧液体に接触させて分散体を形成させる際の圧力は特に限定はないが、10−1Pa以下であることが好ましい。 There is no particular limitation on the pressure when forming a dispersion by bringing a metal gas into contact with a low vapor pressure liquid described later, but it is preferably 10 −1 Pa or less.

これらの点で、0.1〜30Torr(mmHg)(1.3×10Pa〜4×10Pa)の圧力下で、不活性気体との相互作用によって、金属類の蒸気を凝集させて、気体中で微粒子を生成させる、前記したガス中蒸発法とは、本発明は全く異なる技術思想によるものである。 In these respects, the vapors of metals are aggregated by interaction with an inert gas under a pressure of 0.1 to 30 Torr (mmHg) (1.3 × 10 1 Pa to 4 × 10 3 Pa). The present invention is based on a completely different technical idea from the above-described gas evaporation method in which fine particles are generated in a gas.

本発明において、上記圧力は10−1Pa以下であることが好ましく、10−2Pa以下であることが特に好ましい。また、10−4Pa以上であることが好ましく、10−3Pa以上であることが特に好ましい。圧力が大きすぎる、すなわち真空度が悪いと、加熱温度を高くする必要がある点、そこに介在する気体の影響がでて微粒子が変質する点等の問題が生じる場合がある。圧力が小さすぎる、すなわち真空度を不必要に高くすると、低蒸気圧液体が揮発したり、生産性が落ちたり、真空ポンプに負荷がかかりすぎたりする場合がある。 In the present invention, the pressure is preferably 10 −1 Pa or less, particularly preferably 10 −2 Pa or less. Moreover, it is preferable that it is 10 <-4 > Pa or more, and it is especially preferable that it is 10 <-3 > Pa or more. When the pressure is too high, that is, the degree of vacuum is poor, problems such as the need to increase the heating temperature and the influence of the gas intervening there may cause changes in the fine particles. If the pressure is too low, that is, if the degree of vacuum is unnecessarily high, the low vapor pressure liquid may volatilize, productivity may drop, or the vacuum pump may be overloaded.

本発明においては、「金属の気体、合金の気体又は金属化合物の気体」(金属類の気体)を、低蒸気圧液体に接触させることによって、それを該低蒸気圧液体中に分散させる。「低蒸気圧液体」とは、分散時の温度で低蒸気圧であって、10−3Paで実質的に揮発しない液体をいう。低蒸気圧でないと、蒸発して「金属の気体、合金の気体又は金属化合物の気体」と気体同士で相互作用をして分散性に悪影響を与える場合がある。その蒸気圧は、好ましくは、25℃で、10−10Pa〜10−5Pa、特に好ましくは、25℃で、10−8Pa〜10−6Paである。かかる低蒸気圧液体の1気圧での沸点は特に限定はないが、上記と同じ理由で、180℃以上が好ましく、200℃以上がより好ましく、220℃以上が特に好ましく、240℃以上が更に好ましい。 In the present invention, "metal gas, alloy gas or metal compound gas" (metal gas) is brought into contact with a low vapor pressure liquid to disperse it in the low vapor pressure liquid. A “low vapor pressure liquid” refers to a liquid that has a low vapor pressure at the temperature at the time of dispersion and does not substantially volatilize at 10 −3 Pa. If the vapor pressure is not low, the gas may evaporate and interact with the “metal gas, alloy gas or metal compound gas” to adversely affect dispersibility. The vapor pressure is preferably 10 −10 Pa to 10 −5 Pa at 25 ° C., particularly preferably 10 −8 Pa to 10 −6 Pa at 25 ° C. The boiling point at 1 atm of such a low vapor pressure liquid is not particularly limited, but for the same reason as above, it is preferably 180 ° C. or higher, more preferably 200 ° C. or higher, particularly preferably 220 ° C. or higher, and further preferably 240 ° C. or higher. .

具体的には、例えば、アルキルナフタレン、エチレンオレフィン共重合体等の脂肪族及び/又は芳香族炭化水素類;アルキルジフェニルエーテル、ポリフェニルエーテル、ポリアルキルフェニルエーテル等の芳香族エーテル類;シリコーン油、ポリアルキルシロキサン等のシロキサン化合物類;フルオロカーボン油類;多価アルコール類等が挙げられる。ここで、上記アルキル基としては特に限定はないが、炭素数4〜24個のものが好ましく、8〜22個のものがより好ましく、12〜20個のものが特に好ましい。また、「脂肪族及び/又は芳香族炭化水素類」である場合には、炭素数の合計が14以上であることが好ましく、20以上であることがより好ましく、25以上であることが特に好ましい。これらは1種又は2種以上を混合して用いられる。また、低蒸気圧液体として、市販の拡散ポンプ油も好ましく用いられる。   Specifically, for example, aliphatic and / or aromatic hydrocarbons such as alkyl naphthalene and ethylene olefin copolymer; aromatic ethers such as alkyl diphenyl ether, polyphenyl ether and polyalkyl phenyl ether; silicone oil, poly Siloxane compounds such as alkylsiloxanes; fluorocarbon oils; polyhydric alcohols and the like. Here, the alkyl group is not particularly limited, but preferably has 4 to 24 carbon atoms, more preferably has 8 to 22 carbon atoms, and particularly preferably has 12 to 20 carbon atoms. In the case of “aliphatic and / or aromatic hydrocarbons”, the total number of carbon atoms is preferably 14 or more, more preferably 20 or more, and particularly preferably 25 or more. . These are used alone or in combination of two or more. A commercially available diffusion pump oil is also preferably used as the low vapor pressure liquid.

本発明の微粒子分散体の製造方法においては、気体を低蒸気圧液体に接触させることによって、その気体が固体の微粒子になって上記該低蒸気圧液体に分散されるが、その際、該低蒸気圧液体中に脂肪酸を溶解させておくことを特徴とする。脂肪酸を溶解させておくことによって、体積分布メジアン径(D50)の小さい分散粒子を形成させることができ、また、小粒径でも分散性、分散安定性、高濃度分散性等が優れた分散体を得ることができる。   In the method for producing a fine particle dispersion of the present invention, by bringing a gas into contact with a low vapor pressure liquid, the gas becomes solid fine particles and dispersed in the low vapor pressure liquid. The fatty acid is dissolved in the vapor pressure liquid. Dispersion particles having a small volume distribution median diameter (D50) can be formed by dissolving the fatty acid, and a dispersion having excellent dispersibility, dispersion stability, high concentration dispersibility, etc. even with a small particle size. Can be obtained.

脂肪酸は、カルボキシル基を有し鎖状構造をもつものであれば特に限定はなく、直鎖構造のものも側鎖を有するものも含まれ、また、飽和脂肪酸も不飽和脂肪酸も含まれる。また、本発明の効果を損なわない範囲で置換基を有していてもよい。特に限定はないが、低蒸気圧液体への溶解性が良好等の点から不飽和脂肪酸が特に好ましい。   The fatty acid is not particularly limited as long as it has a carboxyl group and has a chain structure, and includes those having a linear structure and those having a side chain, and saturated fatty acids and unsaturated fatty acids are also included. Moreover, you may have a substituent in the range which does not impair the effect of this invention. Although there is no particular limitation, an unsaturated fatty acid is particularly preferable from the viewpoint of good solubility in a low vapor pressure liquid.

本発明の微粒子分散体の製造方法において用いられる脂肪酸の炭素数は特に限定はないが、カルボン酸の炭素数も入れて11以上が、金属類の気体を低蒸気圧液体に接触させて分散体を形成させる際に蒸発し難い点、低蒸気圧液体への溶解性の点等から好ましい。炭素数の上限は、飽和脂肪酸の場合には17以下が、低蒸気圧液体に対する溶解性、溶解安定性の点等から好ましい。不飽和脂肪酸の場合には炭素数25以下が同様の点から好ましく、20以下が特に好ましい。   The number of carbon atoms of the fatty acid used in the method for producing a fine particle dispersion of the present invention is not particularly limited, but the dispersion is obtained by bringing a metal gas into contact with a low vapor pressure liquid including 11 or more carbon atoms of the carboxylic acid. It is preferable from the point of being difficult to evaporate and forming a low vapor pressure liquid. The upper limit of the number of carbon atoms is preferably 17 or less in the case of saturated fatty acids from the viewpoint of solubility in a low vapor pressure liquid, dissolution stability, and the like. In the case of an unsaturated fatty acid, a carbon number of 25 or less is preferable from the same point, and 20 or less is particularly preferable.

本発明においては、上記低蒸気圧液体中に上記脂肪酸を溶解させておくが、その濃度は特に限定はなく適宜調節可能であるが、低蒸気圧液体100質量部に対して、脂肪酸0.3〜50質量部が好ましく、1〜20質量部がより好ましく、3〜10質量部が特に好ましい。脂肪酸が少なすぎると、分散性が不足し、良好に分散できない場合があり、一方、多すぎると分散体の粘度が高くなり過ぎ、回転ドラムの回転による「新しい低蒸気圧液体の膜」ができにくくなる場合がある。   In the present invention, the fatty acid is dissolved in the low vapor pressure liquid. The concentration of the fatty acid is not particularly limited and can be appropriately adjusted. However, the fatty acid is 0.3 parts per 100 parts by mass of the low vapor pressure liquid. -50 mass parts is preferable, 1-20 mass parts is more preferable, and 3-10 mass parts is especially preferable. If the amount of fatty acid is too small, the dispersibility may be insufficient and may not be dispersed well. On the other hand, if the amount is too large, the viscosity of the dispersion becomes too high, and a “new low vapor pressure liquid film” can be formed by rotating the rotating drum. It may be difficult.

本発明の微粒子分散体の製造方法によると、金属類の気体が液体の界面に蒸着され液中に取り込まれ、体積分布メジアン径(D50)が100nm以下の微粒子が生成するものであり、そこで使用される脂肪酸は、液中への取り込み、液中での微粒子の生成、微粒子の体積分布メジアン径(D50)の制御、微粒子同士の会合の抑制等に直接関与していると考えられる。従って、かかる役割・効果が極めて特殊であるので、一般的な微粒子の分散性改良に用いられる界面活性剤、添加剤、分散剤等の知見・技術は殆ど役に立たない。すなわち、他の微粒子分散液の製造方法において知られている分散のために用いられる化合物の本発明への単なる転用はできない。また、公知の分散剤の本発明への単なる転用もできない。   According to the method for producing a fine particle dispersion of the present invention, a metal gas is vapor-deposited at the liquid interface and taken into the liquid to produce fine particles having a volume distribution median diameter (D50) of 100 nm or less. The fatty acid is considered to be directly involved in incorporation into the liquid, generation of fine particles in the liquid, control of the volume distribution median diameter (D50) of the fine particles, suppression of association between the fine particles, and the like. Therefore, since such roles and effects are very special, knowledge and techniques such as surfactants, additives, and dispersants used for improving dispersibility of general fine particles are hardly useful. That is, a compound used for dispersion known in other methods for producing fine particle dispersions cannot be simply used for the present invention. Further, it is not possible to simply convert a known dispersant to the present invention.

また、微粒子が磁性紛(強磁性体紛)であることは、その微粒子が結晶性を有する程度に大きいということであり、そのような結晶性粒子若しくはそこまで大きい微粒子の分散技術は、本発明の、極めて小さい粒子に分散できる技術には応用できないものである。   Further, the fact that the fine particles are magnetic powder (ferromagnetic powder) means that the fine particles are large enough to have crystallinity, and the technique for dispersing such crystalline particles or fine particles so large is the present invention. However, this technique cannot be applied to a technology that can disperse into extremely small particles.

本発明の微粒子分散体の製造方法を用いると、体積分布メジアン径(D50)100nm以下で分散された分散体を極めて分散性よく安定に製造できる。また、10nm以下でも安定に分散でき、更には、2nm以下でも分散できる。従って、本発明の製造方法を使用して得られる微粒子分散体中の微粒子の体積分布メジアン径(D50)は、通常1〜100nm、好ましくは2〜50nm、より好ましくは3〜20nm、特に好ましくは4〜15nm、更に好ましくは5〜10nmである。体積分布メジアン径(D50)は小さいほど本発明の効果を発揮し易いので好ましい。   When the method for producing a fine particle dispersion of the present invention is used, a dispersion dispersed with a volume distribution median diameter (D50) of 100 nm or less can be produced stably with excellent dispersibility. Moreover, it can disperse | distribute stably even if it is 10 nm or less, Furthermore, it can disperse | distribute also at 2 nm or less. Therefore, the volume distribution median diameter (D50) of the fine particles in the fine particle dispersion obtained by using the production method of the present invention is usually 1 to 100 nm, preferably 2 to 50 nm, more preferably 3 to 20 nm, particularly preferably. It is 4 to 15 nm, more preferably 5 to 10 nm. The smaller the volume distribution median diameter (D50), the better the effect of the present invention is achieved.

本発明における「体積分布メジアン径(D50)」は、(株)日立ハイテクノロジーズ社製、走査型電子顕微鏡S−4800に、同社製STEMオプションパーツを取り付け、走査透過電子顕微鏡(以下、「STEM」と略記する)として使用し、専用の明視野STEM試料台を取り付け、20万倍のSTEM写真を撮り、下記のソフトウェアに取り込み、写真上で任意に数百個から2千個程度の微粒子を選び、それぞれの直径を測定し、体積基準の分布から体積で50%累積粒子径として求めた。   In the present invention, the “volume distribution median diameter (D50)” is a scanning electron microscope (S-4800) manufactured by Hitachi High-Technologies Corporation, and a scanning transmission electron microscope (hereinafter “STEM”). A special bright-field STEM sample stand is attached, a 200,000 times magnification STEM photograph is taken, and the software is loaded into the following software, and several hundred to 2,000 particles are arbitrarily selected on the photograph. Each diameter was measured and determined as a 50% cumulative particle size by volume from a volume-based distribution.

STEMに供する測定試料は、微粒子分散液を、トルエンで適宜希釈調製し、コロジオン膜貼付メッシュに滴下して調製した。また、STEM写真から体積基準の粒径分布や体積分布メジアン径(D50)を求めるときには、(株)マウンテック社製の画像解析式粒度分布測定ソフトウェア「Mac−View Ver.4」を用いた。   A measurement sample to be subjected to STEM was prepared by appropriately diluting a fine particle dispersion with toluene and dropping it onto a collodion film-attached mesh. Moreover, when obtaining the volume-based particle size distribution and volume distribution median diameter (D50) from the STEM photograph, image analysis type particle size distribution measurement software “Mac-View Ver. 4” manufactured by Mountec Co., Ltd. was used.

金属類の微粒子の形状は特に限定されず、球状、棒状、板状、不定形等何れでもよい。また、微粒子の結晶構造も特に限定はないが、非結晶であることが、分散体及び後述する分散液の透明性が高くなる点で好ましい。従って、本発明の製造方法は非結晶微粒子の形成に好適である。   The shape of the metal fine particles is not particularly limited, and may be any shape such as a spherical shape, a rod shape, a plate shape, and an indefinite shape. Further, the crystal structure of the fine particles is not particularly limited, but it is preferable that the fine particles are non-crystalline because the transparency of the dispersion and the dispersion described later is increased. Therefore, the production method of the present invention is suitable for forming amorphous fine particles.

本発明の製造方法によって製造された微粒子分散体中の微粒子の濃度は特に限定はないが、微粒子分散体100質量部に対して、1〜90質量部が好ましく、10〜80質量部がより好ましく、20〜70質量部が特に好ましい。本発明を使用すれば、高濃度の微粒子分散体が得られる。   The concentration of the fine particles in the fine particle dispersion produced by the production method of the present invention is not particularly limited, but is preferably 1 to 90 parts by mass, more preferably 10 to 80 parts by mass with respect to 100 parts by mass of the fine particle dispersion. 20-70 mass parts is especially preferable. By using the present invention, a high-concentration fine particle dispersion can be obtained.

本発明の微粒子分散体の製造方法について、図1に示す製造装置を例に更に詳しく説明する。ただし、図1は、本発明に用いられる具体的装置の一例であり、本発明は図1に示す装置を用いたものには限定されない。   The method for producing a fine particle dispersion of the present invention will be described in more detail with reference to the production apparatus shown in FIG. However, FIG. 1 is an example of a specific apparatus used in the present invention, and the present invention is not limited to the apparatus using the apparatus shown in FIG.

図1において、チャンバー(1)は、固定軸(2)の回りに回転するドラム状であり、固定軸(2)を通してチャンバー(1)の内部が高真空に排気される構造になっている。チャンバー(1)には、脂肪酸が溶解された低蒸気圧液体(3)が入れてあり、ドラム状のチャンバー(1)の回転によって、チャンバー(1)の内壁に、脂肪酸が溶解された低蒸気圧液体(3)の膜(4)が形成される。チャンバー(1)の内部には、金属類(5)を入れる容器(6)が固定されている。金属類(5)は、抵抗線に電流を流す等して所定温度まで加熱され、気体となってチャンバー(1)の中に放出される。   In FIG. 1, the chamber (1) has a drum shape rotating around the fixed shaft (2), and the inside of the chamber (1) is evacuated to high vacuum through the fixed shaft (2). The chamber (1) contains a low vapor pressure liquid (3) in which fatty acids are dissolved, and the low vapor in which fatty acids are dissolved on the inner wall of the chamber (1) by the rotation of the drum-shaped chamber (1). A film (4) of pressurized liquid (3) is formed. A container (6) for holding the metal (5) is fixed inside the chamber (1). The metal (5) is heated to a predetermined temperature, for example, by passing an electric current through a resistance wire, and is released into the chamber (1) as a gas.

チャンバー(1)の外壁は、水流(8)で全体が冷却されている。加熱された「金属類(5)」から真空中に放出された原子(9)は、脂肪酸が溶解された低蒸気圧液体(3)の膜(4)の表面から取り込まれ、微粒子(10)が形成される。次いで、かかる微粒子(10)が分散された低蒸気圧液体(3)は、チャンバー(1)の回転に伴ってチャンバー(1)の底部にある低蒸気圧液体(3)の中に輸送され、同時に、新しい「低蒸気圧液体(3)の膜(4)」がチャンバー(1)の上部に供給される。   The entire outer wall of the chamber (1) is cooled by the water flow (8). The atoms (9) released from the heated “metals (5)” into the vacuum are taken from the surface of the film (4) of the low vapor pressure liquid (3) in which the fatty acid is dissolved, and the fine particles (10). Is formed. Next, the low vapor pressure liquid (3) in which such fine particles (10) are dispersed is transported into the low vapor pressure liquid (3) at the bottom of the chamber (1) as the chamber (1) rotates, At the same time, a new “low vapor pressure liquid (3) membrane (4)” is fed to the top of the chamber (1).

この過程を継続することによって、チャンバー(1)の底部にある低蒸気圧液体(3)は、金属類(5)が高濃度に分散した分散体になっていく。   By continuing this process, the low vapor pressure liquid (3) at the bottom of the chamber (1) becomes a dispersion in which the metals (5) are dispersed at a high concentration.

本発明においては、金属の気体、合金の気体又は金属化合物の気体が、脂肪酸が溶解された低蒸気圧液体中に直接取り込まれることによって微粒子分散体が製造される。本発明は、以下の作用・原理には限定されないが、以下のように考えられる。すなわち、金属の気体、合金の気体又は金属化合物の気体は、気相で凝集せずに直接低蒸気圧液体中に取り込まれ、低蒸気圧液体中で凝集が起こり、ある程度の体積分布メジアン径(D50)を有するようになった時点で、その凝集粒子は脂肪酸によって取り囲まれ、ナノ微粒子として安定化するものと考えられる。その際、脂肪酸は、凝集粒子をより素早く包み込み、互いの会合をより強く抑制し、ナノ微粒子としてより安定化させるものと考えられる。   In the present invention, a fine particle dispersion is produced by directly incorporating a metal gas, an alloy gas, or a metal compound gas into a low vapor pressure liquid in which a fatty acid is dissolved. The present invention is not limited to the following actions and principles, but is considered as follows. That is, a metal gas, an alloy gas, or a metal compound gas is directly taken into a low vapor pressure liquid without agglomerating in the gas phase, causing aggregation in the low vapor pressure liquid, and a certain volume distribution median diameter ( It is considered that the aggregated particles are surrounded by fatty acids and stabilized as nano-particles at the time of having D50). At that time, it is considered that the fatty acid wraps the aggregated particles more quickly, suppresses the association with each other more strongly, and stabilizes more as nanoparticulates.

本発明の製造方法を使用して得られた微粒子分散体は、分散媒に上記低蒸気圧液体が用いられているが、分散媒に上記低蒸気圧液体が用いられていると、その後の用途にとって不適当な場合は、かかる「金属類の微粒子分散体」中の低蒸気圧液体を、他の分散媒に置換して、「金属類の微粒子分散液」を調製することが好ましい。すなわち、上記低蒸気圧液体は分散性の観点から好適なものが使用されるが、その後、その微粒子が用いられる用途に応じて好適な「他の分散媒」に置換されることが好ましい。   The fine particle dispersion obtained by using the production method of the present invention uses the low vapor pressure liquid as a dispersion medium, but if the low vapor pressure liquid is used as a dispersion medium, the subsequent use If it is inappropriate for the above, it is preferable to prepare a “metal fine particle dispersion” by substituting the low vapor pressure liquid in the “metal fine particle dispersion” with another dispersion medium. That is, the low vapor pressure liquid is preferably one that is suitable from the viewpoint of dispersibility, but is preferably replaced with “another dispersion medium” that is suitable for the application in which the fine particles are used.

「他の分散媒」としては特に限定はなく、分散液の用途に応じて選択できる。具体的には、例えば、ノルマルヘキサン、シクロヘキサン、ノルマルペンタン、ノルマルヘプタン、オクタン、デカン、ドデカン、テトラデカン、ヘキサデカン等の脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;ジエチルエーテル、ジフェニルエーテル等のエーテル類;プロピレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノエチルエーテル等のグリコール系分散媒類;メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、ヘプタノール、オクタノール、デカノール、シクロヘキサノール、2−エチル−1−ヘキサノール等の1価アルコール類;エチレングリコール、ジエチレングリコール、1,2−プロパンジオール、ジプロピレングリコール、1,4−ブタンジオール、2,3−ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール等の2価のアルコール類;メチルエチルケトン、アセトン、メチルイソブチルケトン、アセチルアセトン、シクロヘキサノン等のケトン類;酢酸エチル等のエステル類;2−ジメチルアミノエタノール、2−ジエチルアミノエタノール、2−ジメチルアミノイソプロパノール、3−ジエチルアミノ−1−プロパノール、2−ジメチルアミノ−2−プロパノール、2−メチルアミノエタノール、4−ジメチルアミノ−1−ブタノール等のアミノ基含有アルコール類等を挙げることができる。これらは単独でも、2種以上混合して使用してもよい。   The “other dispersion medium” is not particularly limited, and can be selected according to the use of the dispersion. Specific examples include aliphatic hydrocarbons such as normal hexane, cyclohexane, normal pentane, normal heptane, octane, decane, dodecane, tetradecane and hexadecane; aromatic hydrocarbons such as toluene and xylene; diethyl ether and diphenyl ether Ethers such as propylene glycol monoethyl ether, propylene glycol monoethyl ether acetate, dipropylene glycol monoethyl ether, etc .; glycol-based dispersion media; methanol, ethanol, propanol, butanol, hexanol, heptanol, octanol, decanol, cyclohexanol , Monohydric alcohols such as 2-ethyl-1-hexanol; ethylene glycol, diethylene glycol, 1,2-propanediol, dipropylene Divalent alcohols such as glycol, 1,4-butanediol, 2,3-butanediol, pentanediol, hexanediol, and octanediol; ketones such as methyl ethyl ketone, acetone, methyl isobutyl ketone, acetylacetone, and cyclohexanone; ethyl acetate Esters such as 2-dimethylaminoethanol, 2-diethylaminoethanol, 2-dimethylaminoisopropanol, 3-diethylamino-1-propanol, 2-dimethylamino-2-propanol, 2-methylaminoethanol, 4-dimethylamino- Examples include amino group-containing alcohols such as 1-butanol. These may be used alone or in combination of two or more.

低蒸気圧液体を、他の分散媒に置換する方法としては、公知の溶媒置換・分散媒置換の方法が用いられる。本発明で得られた微粒子は分散媒を置換しても、分散媒置換中も、その後の分散液保存中も安定に分散状態を保つことができる。   As a method of substituting the low vapor pressure liquid with another dispersion medium, a known solvent replacement / dispersion medium replacement method is used. The fine particles obtained in the present invention can maintain a stable dispersion state even when the dispersion medium is replaced, during dispersion medium replacement, and during subsequent storage of the dispersion.

以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples unless it exceeds the gist.

実施例1
低蒸気圧液体としてライオン拡散ポンプ油(A)(ライオン社製)380gを用い、それに脂肪酸として10−ウンデセン酸(CH=CH(CHCOOH)を20g添加し攪拌した。ライオン拡散ポンプ油(A)は、炭素数12〜16個のアルキル基を有するアルキルナフタレンである。また、10−ウンデセン酸は炭素数11の不飽和脂肪酸である。
Example 1
Using 380 g of Lion diffusion pump oil (A) (manufactured by Lion Corporation) as a low vapor pressure liquid, 20 g of 10-undecenoic acid (CH 2 ═CH (CH 2 ) 8 COOH) was added as a fatty acid and stirred. Lion diffusion pump oil (A) is an alkylnaphthalene having an alkyl group having 12 to 16 carbon atoms. 10-Undecenoic acid is an unsaturated fatty acid having 11 carbon atoms.

図1に示す装置を用いて分散液を製造した。容器(6)内に、銀(Ag)粒(徳力本店社製:純度99.99%)を20g入れ、回転ドラム式のチャンバー(1)内に上記液体を入れた。真空ポンプで吸引することによって、チャンバー(1)内の圧力を、10−3Paに到達させた。次いで、チャンバー(1)を水流(7)で冷却させながら回転させ、容器(6)の下部に設けたヒーターに電流を流し、銀(Ag)が溶解・蒸発するまで、その電流値を上昇させた。 A dispersion was produced using the apparatus shown in FIG. 20 g of silver (Ag) grains (manufactured by Tokuru Honten Co., Ltd .: purity 99.99%) was put in the container (6), and the liquid was put in the rotating drum type chamber (1). By suctioning with a vacuum pump, the pressure in the chamber (1) reached 10 −3 Pa. Next, the chamber (1) is rotated while being cooled with the water flow (7), and an electric current is supplied to the heater provided in the lower part of the container (6), and the current value is increased until the silver (Ag) is dissolved and evaporated. It was.

銀(Ag)粒は溶解し、銀(Ag)の気体は、分散媒面(10−ウンデセン酸が溶解された低蒸気圧液体(3)の膜(4)の表面)に接触し、10−ウンデセン酸に取り込まれることで、銀(Ag)微粒子分散体が形成された。   The silver (Ag) grains are dissolved, and the silver (Ag) gas comes into contact with the dispersion medium surface (the surface of the film (4) of the low vapor pressure liquid (3) in which 10-undecenoic acid is dissolved). A silver (Ag) fine particle dispersion was formed by incorporation into undecenoic acid.

図2に示すSTEM写真、図3に示す粒径分布から、2〜9nm程度の粒子が凝集することなく分散されていることが確認できた。体積分布メジアン径(D50)は5.4nmであった。   From the STEM photograph shown in FIG. 2 and the particle size distribution shown in FIG. 3, it was confirmed that particles of about 2 to 9 nm were dispersed without agglomeration. The volume distribution median diameter (D50) was 5.4 nm.

実施例2
実施例1において、脂肪酸として、10−ウンデセン酸に代えて、オレイン酸(C17CH=CH(CHCOOH(cis))を用いた以外は実施例1と同様の方法で行なった。オレイン酸は炭素数17の不飽和脂肪酸である。
Example 2
In Example 1, as a fatty acid, in place of 10-undecenoic acid, except for using oleic acid (C 8 H 17 CH = CH (CH 2) 7 COOH (cis)) is carried out in the same manner as in Example 1 It was. Oleic acid is an unsaturated fatty acid having 17 carbon atoms.

図4に示すSTEM写真、図5に示す粒径分布から、3〜10nm程度の粒子が凝集することなく分散されていることが確認できた。体積分布メジアン径(D50)は5.2nmであった。   From the STEM photograph shown in FIG. 4 and the particle size distribution shown in FIG. 5, it was confirmed that particles of about 3 to 10 nm were dispersed without agglomeration. The volume distribution median diameter (D50) was 5.2 nm.

得られた「銀(Ag)微粒子分散体」の分散媒である「低蒸気圧液体としてのライオン拡散ポンプ油(A)」を、常法に従って、トルエンに分散媒置換して、銀(Ag)の微粒子分散液を得た。STEM観察により、2〜15nm程度の粒子が凝集することなく分散されていることが確認できた。体積分布メジアン径(D50)もほぼ5.2nmであり、脂肪酸を用いると、分散媒置換を行っても分散性が悪くならず、分散維持性に優れていることも分かった。この微粒子分散液は、汎用溶媒であるトルエンが分散媒であるので、種々の用途に適用できるものである。   “Lion diffusion pump oil (A) as a low vapor pressure liquid” which is a dispersion medium of the obtained “silver (Ag) fine particle dispersion” is substituted with toluene as a dispersion medium according to a conventional method, and silver (Ag) A fine particle dispersion was obtained. By STEM observation, it was confirmed that particles of about 2 to 15 nm were dispersed without aggregation. The volume distribution median diameter (D50) was also about 5.2 nm, and it was also found that when fatty acid was used, the dispersibility did not deteriorate even when the dispersion medium was replaced, and the dispersion maintenance was excellent. This fine particle dispersion can be applied to various uses because toluene, which is a general-purpose solvent, is a dispersion medium.

実施例3
実施例1において、脂肪酸として、10−ウンデセン酸に代えて、エルカ酸を用いた以外は実施例1と同様の方法で行なった。エルカ酸は炭素数22の不飽和脂肪酸である。
Example 3
In Example 1, it replaced with 10-undecenoic acid as a fatty acid, and performed by the method similar to Example 1 except having used erucic acid. Erucic acid is an unsaturated fatty acid having 22 carbon atoms.

図6に示すSTEM写真、図7に示す粒径分布から、1〜10nm程度の粒子が凝集することなく分散されていることが確認できた。体積分布メジアン径(D50)は5.9nmであった。   From the STEM photograph shown in FIG. 6 and the particle size distribution shown in FIG. 7, it was confirmed that particles of about 1 to 10 nm were dispersed without agglomeration. The volume distribution median diameter (D50) was 5.9 nm.

比較例1
実施例1において、10−ウンデセン酸に代えて、コハク酸イミドポリアミンを用いた以外は、実施例1と同様の方法で行なった。
Comparative Example 1
In Example 1, it replaced with 10-undecenoic acid and performed by the method similar to Example 1 except having used succinimide polyamine.

しかし、STEM観察で、粒子が互いに凝集していることを確認した。また、目視でも微粒子が沈降、堆積していることが観察でき、良好な分散体ができなかった。   However, STEM observation confirmed that the particles were agglomerated with each other. Further, it was observed visually that the fine particles had settled and accumulated, and a good dispersion could not be obtained.

比較例2
実施例1において、10−ウンデセン酸に代えて、Disperbyk−102(ビックケミー社製)を用いた以外は、実施例1と同様の方法で行なった。Disperbyk−102は、酸性基を有するコポリマーである。
Comparative Example 2
In Example 1, it replaced with 10-undecenoic acid and performed by the method similar to Example 1 except having used Disperbyk-102 (made by a Big Chemie company). Disperbyk-102 is a copolymer having acidic groups.

しかし、STEM観察で、粒子が互いに凝集していることを確認した。また、目視でも微粒子が沈降、堆積していることが観察でき、良好な分散体ができなかった。   However, STEM observation confirmed that the particles were agglomerated with each other. Further, it was observed visually that the fine particles had settled and accumulated, and a good dispersion could not be obtained.

上記結果から明らかなように、本発明の実施例1ないし実施例3では、何れも脂肪酸を用いたため、微粒子同士の会合が抑制され、良好な分散性と分散安定性を有する微粒子分散体を得ることができた。   As is clear from the above results, in Examples 1 to 3 of the present invention, since fatty acids were used, association between fine particles was suppressed, and a fine particle dispersion having good dispersibility and dispersion stability was obtained. I was able to.

一方、脂肪酸を使用しないもの(比較例1及び比較例2)では、実施例1ないし実施例3に比べ、全て分散性、分散安定性が悪かった。   On the other hand, those using no fatty acid (Comparative Example 1 and Comparative Example 2) were all poor in dispersibility and dispersion stability as compared with Examples 1 to 3.

本発明の微粒子分散体の製造方法を使用して得られた分散体、分散液は、IC基板、半導体素子等の配線、半導体モジュールの層間接続、透明導電膜の形成、金属と非金属との接合、液のコロイド色を利用した色フィルター等に広く利用されるものである。   Dispersions and dispersions obtained by using the method for producing a fine particle dispersion of the present invention include IC substrates, wiring of semiconductor elements, interlayer connection of semiconductor modules, formation of transparent conductive films, and between metal and nonmetal. It is widely used for bonding, color filters using the colloidal color of liquid, and the like.

本発明の微粒子分散体の製造方法に使用される装置の一例の概略断面図である。It is a schematic sectional drawing of an example of the apparatus used for the manufacturing method of the fine particle dispersion of this invention. 脂肪酸として10−ウンデセン酸を用いて実施例1で製造された銀(Ag)微粒子分散体中の微粒子のSTEM写真である(倍率、20万倍)。It is a STEM photograph of the fine particles in the silver (Ag) fine particle dispersion produced in Example 1 using 10-undecenoic acid as a fatty acid (magnification, 200,000 times). 脂肪酸として10−ウンデセン酸を用いて実施例1で製造された銀(Ag)微粒子分散体中の微粒子の体積基準の粒径分布である。3 is a volume-based particle size distribution of fine particles in a silver (Ag) fine particle dispersion produced in Example 1 using 10-undecenoic acid as a fatty acid. 脂肪酸としてオレイン酸を用いて実施例2で製造された銀(Ag)微粒子分散体中の微粒子のSTEM写真である(倍率、20万倍)。It is a STEM photograph of the fine particles in the silver (Ag) fine particle dispersion produced in Example 2 using oleic acid as a fatty acid (magnification, 200,000 times). 脂肪酸としてオレイン酸を用いて実施例2で製造された銀(Ag)微粒子分散体中の微粒子の体積基準の粒径分布である。3 is a volume-based particle size distribution of fine particles in a silver (Ag) fine particle dispersion produced in Example 2 using oleic acid as a fatty acid. 脂肪酸としてエルカ酸を用いて実施例3で製造された銀(Ag)微粒子分散体中の微粒子のSTEM写真である(倍率、20万倍)。It is a STEM photograph of the fine particles in the silver (Ag) fine particle dispersion produced in Example 3 using erucic acid as a fatty acid (magnification, 200,000 times). 脂肪酸としてエルカ酸を用いて実施例3で製造された銀(Ag)微粒子分散体中の微粒子の体積基準の粒径分布である。FIG. 3 is a volume-based particle size distribution of fine particles in a silver (Ag) fine particle dispersion produced in Example 3 using erucic acid as a fatty acid. FIG.

符号の説明Explanation of symbols

1 チャンバー
2 固定軸
3 脂肪酸が溶解された低蒸気圧液体
4 脂肪酸が溶解された低蒸気圧液体の膜
5 金属、合金又は金属化合物(金属類)
6 容器
7 水流
8 回転方向
9 原子又は分子
10 「金属、合金又は金属化合物」の微粒子(金属類の微粒子)
1 Chamber 2 Fixed shaft 3 Low vapor pressure liquid in which fatty acid is dissolved 4 Low vapor pressure liquid film in which fatty acid is dissolved 5 Metal, alloy or metal compound (metals)
6 Container 7 Water flow 8 Direction of rotation 9 Atom or molecule 10 Fine particles of “metal, alloy or metal compound” (fine particles of metals)

Claims (5)

金属、合金又は金属化合物の気体を低蒸気圧液体に接触させることによって、金属、合金又は金属化合物の微粒子が該低蒸気圧液体に体積分布メジアン径(D50)100nm以下で分散された分散体を製造する方法であって、該低蒸気圧液体中に脂肪酸を溶解させておくことを特徴とする微粒子分散体の製造方法。   By bringing a metal, alloy or metal compound gas into contact with a low vapor pressure liquid, a dispersion in which fine particles of the metal, alloy or metal compound are dispersed in the low vapor pressure liquid with a volume distribution median diameter (D50) of 100 nm or less is obtained. A method for producing a fine particle dispersion, wherein a fatty acid is dissolved in the low vapor pressure liquid. 上記脂肪酸が炭素数11以上のものである請求項1記載の微粒子分散体の製造方法。   The method for producing a fine particle dispersion according to claim 1, wherein the fatty acid has 11 or more carbon atoms. 金属の気体又は金属化合物の気体の、該低蒸気圧液体への接触を、10−4Pa〜10−1Paの範囲の圧力下で行なう請求項1又は請求項2記載の微粒子分散体の製造方法。 The fine particle dispersion according to claim 1 or 2, wherein the metal gas or the metal compound gas is contacted with the low vapor pressure liquid under a pressure in the range of 10 -4 Pa to 10 -1 Pa. Method. 請求項1ないし請求項3の何れかの請求項記載の微粒子分散体の製造方法を使用して製造されたものであることを特徴とする微粒子分散体。   A fine particle dispersion produced by using the method for producing a fine particle dispersion according to any one of claims 1 to 3. 請求項4記載の微粒子分散体中の低蒸気圧液体を、他の分散媒に置換したものであることを特徴とする、金属、合金又は金属化合物の微粒子分散液。   5. A fine particle dispersion of metal, alloy or metal compound, wherein the low vapor pressure liquid in the fine particle dispersion according to claim 4 is replaced with another dispersion medium.
JP2008085786A 2008-03-28 2008-03-28 Method for producing fine particle dispersion, fine particle dispersion of metal or metal compound produced using the same, and fine particle dispersion obtained by replacing it with dispersion medium Expired - Fee Related JP5075708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008085786A JP5075708B2 (en) 2008-03-28 2008-03-28 Method for producing fine particle dispersion, fine particle dispersion of metal or metal compound produced using the same, and fine particle dispersion obtained by replacing it with dispersion medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085786A JP5075708B2 (en) 2008-03-28 2008-03-28 Method for producing fine particle dispersion, fine particle dispersion of metal or metal compound produced using the same, and fine particle dispersion obtained by replacing it with dispersion medium

Publications (2)

Publication Number Publication Date
JP2009235544A JP2009235544A (en) 2009-10-15
JP5075708B2 true JP5075708B2 (en) 2012-11-21

Family

ID=41249850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085786A Expired - Fee Related JP5075708B2 (en) 2008-03-28 2008-03-28 Method for producing fine particle dispersion, fine particle dispersion of metal or metal compound produced using the same, and fine particle dispersion obtained by replacing it with dispersion medium

Country Status (1)

Country Link
JP (1) JP5075708B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005013685A1 (en) 2005-03-18 2006-09-28 Roche Diagnostics Gmbh Tape magazine for a hand-held device for examining a body fluid, as well as a hand-held device
JP5830237B2 (en) * 2010-11-10 2015-12-09 Dowaエレクトロニクス株式会社 Silver particle-containing composition, dispersion and method for producing paste
KR102416072B1 (en) * 2021-03-02 2022-07-05 충남대학교산학협력단 Suspension of Metal Powder in Fluoro Oil and Preparation Method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003245540A (en) * 2002-02-25 2003-09-02 Fuji Photo Film Co Ltd Method for manufacturing ultrafine particle
WO2005099941A1 (en) * 2004-04-16 2005-10-27 National Institute For Materials Science Colloidal solution of fine metal particles, electroconductive pasty material, electroconductive ink material and method for producting them
JP5007020B2 (en) * 2004-12-20 2012-08-22 株式会社アルバック Method for forming metal thin film and metal thin film
JP5257965B2 (en) * 2006-04-25 2013-08-07 独立行政法人物質・材料研究機構 Method for producing alloy fine particle colloid
JP2008150630A (en) * 2006-12-14 2008-07-03 National Institute For Materials Science Method for manufacturing fine colloidal particle and equipment for executing it

Also Published As

Publication number Publication date
JP2009235544A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP5623861B2 (en) Metal nanoparticle dispersion composition
JP5926322B2 (en) Coated copper particles and method for producing the same
KR102200822B1 (en) Coated copper particles and production method therefor
US8784702B2 (en) Copper-containing nanoparticles and manufacturing method therefor
JP2013072091A (en) Metal microparticle and method for producing the same, metal paste containing the metal microparticle, and metal coat made of the metal paste
JP6033485B2 (en) Coated copper particles
JP2014001443A (en) Oxide coated copper fine particle and production method of the same
JP5162383B2 (en) Method for producing silver-coated copper fines
JP5075708B2 (en) Method for producing fine particle dispersion, fine particle dispersion of metal or metal compound produced using the same, and fine particle dispersion obtained by replacing it with dispersion medium
JP2004232012A (en) Method for producing high-concentration metal microparticle dispersion
TW201719678A (en) Nickel powder and nickel paste
JP6209249B2 (en) Method for producing oxide-coated copper fine particles
JP2005281781A (en) Method for producing copper nanoparticle
JP4674376B2 (en) Method for producing silver particle powder
JP4433743B2 (en) Method for producing copper fine particles
JP5058665B2 (en) Method for producing fine particle dispersion and fine particle dispersion of metal or metal compound produced using the same
JP2009013443A (en) Method for producing silver fine powder
KR101096059B1 (en) Method for manufacturing of copper nanopowders
TW201235291A (en) Nanowire preparation methods, compositions, and articles
JP2013001954A (en) Method for producing metal fine particle
JP5822265B2 (en) Method for producing metal nanoparticles
TW202146114A (en) Method for producing inorganic fine powder
JP2009240970A (en) Method for replacing dispersion medium of ultrafine particle dispersion, and ultrafine particle dispersion liquid manufactured thereby
JP5912888B2 (en) Method for producing alloy particles
JP2009238666A (en) Conductive coat manufacturing method and copper circuit wiring provided using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees