JP5075168B2 - Power semiconductor device and method for manufacturing power semiconductor device - Google Patents

Power semiconductor device and method for manufacturing power semiconductor device Download PDF

Info

Publication number
JP5075168B2
JP5075168B2 JP2009163786A JP2009163786A JP5075168B2 JP 5075168 B2 JP5075168 B2 JP 5075168B2 JP 2009163786 A JP2009163786 A JP 2009163786A JP 2009163786 A JP2009163786 A JP 2009163786A JP 5075168 B2 JP5075168 B2 JP 5075168B2
Authority
JP
Japan
Prior art keywords
metal
source electrode
semiconductor device
bonding
power semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009163786A
Other languages
Japanese (ja)
Other versions
JP2011018841A (en
Inventor
修平 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009163786A priority Critical patent/JP5075168B2/en
Publication of JP2011018841A publication Critical patent/JP2011018841A/en
Application granted granted Critical
Publication of JP5075168B2 publication Critical patent/JP5075168B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01031Gallium [Ga]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/2076Diameter ranges equal to or larger than 100 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)

Description

本発明は、電力用半導体スイッチング素子及びダイオードからなる電力用半導体装置に関し、とくに短絡事故時に発生する大電流に対する耐量(短絡耐量)を向上させるための構造およびその製造方法に関するものである。   The present invention relates to a power semiconductor device including a power semiconductor switching element and a diode, and more particularly to a structure for improving a resistance against a large current (short-circuit resistance) generated in a short-circuit accident and a manufacturing method thereof.

インバーターなどのパワーエレクトロニクス機器の省エネのためには、これらの機器に使用されるスイッチング素子(IGBT、MOSFET等)での電力損失を低減する必要がある。電力損失は、素子のいわゆるON抵抗により決定され、ON抵抗を低減するためにSiCなどの新しい半導体材料を用いる開発が進められている。一方、事故時(負荷短絡時)に素子に流れる電流値は、ON抵抗値に反比例して大きくなるので、ON抵抗値の小さい素子ほど、自己発熱により破損しやすくなる(短絡時の耐量の低下)。つまり、トレードオフの関係にある損失低減と短絡時の耐量向上を両立させることが、低ON抵抗素子の実用化に求められている技術課題である。   In order to save power electronics devices such as inverters, it is necessary to reduce power loss in switching elements (IGBT, MOSFET, etc.) used in these devices. The power loss is determined by the so-called ON resistance of the device, and development using a new semiconductor material such as SiC is underway to reduce the ON resistance. On the other hand, the value of the current that flows through the element at the time of an accident (when the load is short-circuited) increases in inverse proportion to the ON resistance value. Therefore, the smaller the ON resistance value, the easier it is to break due to self-heating (decrease in withstand capability during short circuit) ). That is, it is a technical problem required for the practical use of a low ON resistance element to achieve both a reduction in loss that is in a trade-off relationship and an improvement in withstand capability at the time of a short circuit.

例えば、SiCのようなワイドバンドギャップ半導体の場合、Siと異なり、温度上昇による半導体自体の性能劣化はほとんどなく、高温に対しての耐性は高い。しかし、回路との接続には金属電極が使用され、例えば、金属電極にアルミニウムを用いる場合、半導体と金属電極の境界面の温度がアルミニウムの融点(660℃)を超えると、金属電極の溶融が起こり、電極の信頼性に重大な問題を生じる。従って、ワイドバンドギャップ半導体を用いる場合には、Siを用いる場合とは異なる放熱設計や損失制御を行う必要があり、金属電極と半導体の境界面がある一定の温度以下になるように、負荷短絡時の発生損失と放熱条件を設定しなければならない。   For example, in the case of a wide band gap semiconductor such as SiC, unlike Si, there is almost no performance degradation of the semiconductor itself due to temperature rise, and resistance to high temperatures is high. However, a metal electrode is used for connection to the circuit. For example, when aluminum is used for the metal electrode, if the temperature at the interface between the semiconductor and the metal electrode exceeds the melting point of aluminum (660 ° C.), the metal electrode melts. Occurs and causes significant problems in electrode reliability. Therefore, when using a wide bandgap semiconductor, it is necessary to perform heat dissipation design and loss control different from the case of using Si, and load short-circuiting so that the interface between the metal electrode and the semiconductor is below a certain temperature. Loss of time and heat dissipation conditions must be set.

そこで、ワイドバンドギャップ半導体よりなる半導体素子部の表側の面(ソース電極面に相当)に50μm以上の厚さの金属電極を形成し、放熱効果を高めて短絡時の温度上昇を抑制する半導体装置が提案されている(例えば、特許文献1参照)。   Therefore, a semiconductor device in which a metal electrode having a thickness of 50 μm or more is formed on the front side surface (corresponding to the source electrode surface) of the semiconductor element portion made of a wide band gap semiconductor, thereby enhancing the heat dissipation effect and suppressing the temperature rise during short circuit Has been proposed (see, for example, Patent Document 1).

特開2006−319213号公報(段落0032、図3)JP 2006-319213 A (paragraph 0032, FIG. 3)

しかしながら、半導体素子本体(半導体材料)と金属電極(金属)とでは、線膨張率が異なるので、金属電極全体が厚くなっていると、使用時のヒートサイクルのたびに金属電極と半導体素子本体との間に発生する応力によって金属電極の剥離が発生し、長期的な信頼性が低下するおそれがあった。   However, since the linear expansion coefficient differs between the semiconductor element body (semiconductor material) and the metal electrode (metal), if the entire metal electrode is thick, the metal electrode and the semiconductor element body each time the heat cycle is used. There was a possibility that peeling of the metal electrode occurred due to the stress generated during this period, and long-term reliability was lowered.

本発明は、上記のような課題を解決するためになされたもので、信頼性が高く、損失低減と短絡時の耐量向上を両立させた電力用半導体装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a power semiconductor device that has high reliability and achieves both a reduction in loss and an improvement in withstand capability during short-circuiting.

本発明の電力用半導体装置は、絶縁性の基板と、前記絶縁性の基板の主面に形成された複数の配線と、前記複数の配線のうちの第1の配線に接合されたワイドバンドギャップ半導体材料を用いた半導体素子と、前記半導体素子の前記第1の配線との接合面と反対側にアルミニウムを用いて形成されソース電極の一部と、前記複数の配線のうち第2の配線とを電気的に接続するワイヤと、を備え、前記ソース電極には、複数の金属塊が分散して接合され、前記複数の金属塊のそれぞれは、前記ソース電極との接合面以外が絶縁物で覆われていることを特徴とする。 A power semiconductor device according to the present invention includes an insulating substrate, a plurality of wirings formed on a main surface of the insulating substrate, and a wide band gap bonded to a first wiring of the plurality of wirings. A part of a source electrode formed using aluminum on a side opposite to a bonding surface between a semiconductor element using a semiconductor material and the first wiring of the semiconductor element, and a second wiring among the plurality of wirings A plurality of metal lumps are dispersed and joined to the source electrode, and each of the plurality of metal lumps is an insulator except for a joint surface with the source electrode. It is covered with.

本発明の電力用半導体装置の製造方法は、絶縁性の基板の主面に複数の配線を形成し、前記複数の配線のうちの第1の配線にワイドバンドギャップ半導体材料を用いた半導体素子を接合し、ボンディング用ワイヤを前記半導体素子のアルミニウムを用いて形成されたソース電極の一部に第1ボンドによりボンディングし、前記複数の配線のうちの第2の配線に第2ボンドによりボンディングすることにより前記ソース電極と前記第2の配線とを電気的に接続し、前記ソース電極においてそれぞれ異なる位置に、前記ボンディング用ワイヤを第1ボンドによりボンディングし、当該ボンディングにより形成された圧縮根を残して切り離すことにより、前記ソース電極上に複数の金属塊を形成する、ことを特徴とする。 A method for manufacturing a power semiconductor device according to the present invention includes: forming a plurality of wirings on a main surface of an insulating substrate; and a semiconductor element using a wide band gap semiconductor material for a first wiring among the plurality of wirings. Bonding, bonding a bonding wire to a part of a source electrode formed using aluminum of the semiconductor element by a first bond, and bonding to a second wiring of the plurality of wirings by a second bond. Electrically connecting the source electrode and the second wiring, bonding the bonding wire by a first bond at different positions in the source electrode, leaving a compression root formed by the bonding A plurality of metal lumps are formed on the source electrode by separating them.

本発明の電力用半導体装置および電力用半導体装置の製造方法によれば、半導体素子のソース電極の表面に、複数の金属塊を接合させたので、負荷短絡時の熱を金属塊が吸収して温度上昇を抑制するとともに、金属塊がソース電極との接合面以外が絶縁物で覆われているので、ヒートサイクルを受けても信頼性が高く、損失低減と短絡時の耐量向上を両立させた電力用半導体装置を得ることができる。   According to the power semiconductor device and the method for manufacturing the power semiconductor device of the present invention, a plurality of metal lumps are bonded to the surface of the source electrode of the semiconductor element. In addition to suppressing the temperature rise, the metal lump is covered with an insulator other than the joint surface with the source electrode, so it is highly reliable even when subjected to a heat cycle, and both reduction in loss and improvement in resistance during short-circuiting are achieved. A power semiconductor device can be obtained.

本発明の実施の形態1にかかる電力用半導体装置の半導体素子の構成を示す図である。It is a figure which shows the structure of the semiconductor element of the power semiconductor device concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる電力用半導体装置の構成を示す図である。It is a figure which shows the structure of the semiconductor device for electric power concerning Embodiment 1 of this invention. 本発明の実施の形態2にかかる電力用半導体装置の構成を示す図である。It is a figure which shows the structure of the semiconductor device for electric power concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる電力用半導体装置における温度上昇低減効果を示す図である。It is a figure which shows the temperature rise reduction effect in the semiconductor device for electric power concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる電力用半導体装置の構成を示す図である。It is a figure which shows the structure of the semiconductor device for electric power concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる電力用半導体装置における構成を最適化するための試験データを示す図である。It is a figure which shows the test data for optimizing the structure in the power semiconductor device concerning Embodiment 2 of this invention. 本発明の実施の形態2の変形例にかかる電力用半導体装置の構成を示す図である。It is a figure which shows the structure of the semiconductor device for electric power concerning the modification of Embodiment 2 of this invention.

実施の形態1.
本発明の実施の形態1にかかる電力用半導体装置について、図に基づいて説明する。図1と図2は、本発明にかかる実施の形態1にかかる電力用半導体装置を説明するためのもので、図1は、電力用半導体装置のうち、半導体素子部分の平面構成を示す図であり、図2は、電力用半導体装置を半導体素子のソース電極部分との関連で説明するため平面図と断面図である。
Embodiment 1 FIG.
A power semiconductor device according to a first embodiment of the present invention will be described with reference to the drawings. 1 and 2 are diagrams for explaining a power semiconductor device according to a first embodiment of the present invention. FIG. 1 is a diagram showing a planar configuration of a semiconductor element portion of the power semiconductor device. FIG. 2 is a plan view and a cross-sectional view for explaining the power semiconductor device in relation to the source electrode portion of the semiconductor element.

本実施の形態1にかかる電力用半導体装置に用いる半導体素子は、炭化ケイ素(SiC)や窒化ガリウム(GaN)を用いたワイドバンドギャップ半導体であり、種類としては、IGBT(Insulated Gate Bipolar Transistor)、またはMOSFET(Metal Oxide Semiconductor Field-Effect-Transistor)のようないわゆるスイッチング素子である。半導体素子3の表側の面には、図1に示すように、図における上端中央部には、外部の制御回路(図示せず。)からゲート電圧が印加されるゲートパッド3GPが形成されている。又、MOSFETのセルの集合体領域であるセル領域内に、MOSFETの各セルのソース電極3Sが形成されている。そして、ソース電極3Sの周囲を全体的に取り囲むゲートフィンガー電極3GFが、ゲートパッド3GPと構造的に繋がった状態で、半導体素子3の外周部に沿って形成されている。 The semiconductor element used in the power semiconductor device according to the first embodiment is a wide bandgap semiconductor using silicon carbide (SiC) or gallium nitride (GaN), and the type is IGBT (Insulated Gate Bipolar Transistor), Or it is what is called a switching element like MOSFET (Metal Oxide Semiconductor Field-Effect-Transistor). The front surface of the semiconductor element 3, as shown in FIG. 1, the upper central portion of the figure, an external control circuit (not shown.) The gate pad 3G P gate voltage is applied from the is formed Yes. In addition, a source electrode 3 S of each cell of the MOSFET is formed in a cell region which is an aggregate region of the MOSFET cell. The gate finger electrode 3 GF surrounding the source electrode 3 S Overall is in a state that is connected to the gate pad 3G P structurally, it is formed along the outer periphery of the semiconductor element 3.

図2(a)は、本発明の特徴を説明するために電力用半導体装置のソース電極部分を抽出して簡略化した図である。なお、半導体素子全体の構成を示す図1においてはソース電極を3Sと表示しているが、ソース電極3Sは、半導体素子3における発熱を伴う代表的な面であるので、以降、半導体素子のうちの他の部分の記載を省略し、ソース電極(の主面)を3fと表記する。図2(b)は図2(a)のIIb−IIb線で切断した断面図である。図において、電力用半導体装置は、絶縁性のパッケージ基板1と、基板1の主面1fの異なる位置に形成された複数の配線2と、複数の配線2のうちの第1の配線2aに接合された半導体素子3と、半導体素子3の第1の配線2aとの接合面と反対側になるソース電極3fの一部と、複数の配線2のうちの(第1の配線2aと異なる)第2の配線2bとを電気的に接続するため、ボンディング用ワイヤ(図示せず)をソース電極3fの一部に第1ボンドによりボンディングし、第2の配線2bに第2ボンドによりボンディングすることにより形成されたワイヤ4と、を備え、半導体素子のソース電極3fには、複数の金属塊5bが分散して接合されている。 FIG. 2A is a simplified view of the source electrode portion of the power semiconductor device extracted in order to explain the characteristics of the present invention. In FIG. 1 showing the configuration of the entire semiconductor element, the source electrode is indicated as 3 S. However, since the source electrode 3 S is a representative surface with heat generation in the semiconductor element 3, the semiconductor element is hereinafter referred to. The description of the other part is omitted, and the source electrode (the main surface thereof) is denoted as 3f. FIG. 2B is a cross-sectional view taken along the line IIb-IIb in FIG. In the figure, a power semiconductor device is bonded to an insulating package substrate 1, a plurality of wirings 2 formed at different positions on the main surface 1 f of the substrate 1, and a first wiring 2 a among the plurality of wirings 2. A part of the source electrode 3f on the opposite side to the bonding surface of the semiconductor element 3 and the first wiring 2a of the semiconductor element 3, and the second of the plurality of wirings 2 (different from the first wiring 2a) In order to electrically connect the second wiring 2b, a bonding wire (not shown) is bonded to a part of the source electrode 3f by a first bond, and is bonded to the second wiring 2b by a second bond. And a plurality of metal masses 5b are dispersed and bonded to the source electrode 3f of the semiconductor element.

なお、ソース電極3fの表面には、接続を良くするための図示しない厚さ数μmの薄いアルミニウムの下地が形成されており、上述したワイヤ4や金属塊5bは、アルミニウムの下地を介してソース電極3fに接続されており、各金属塊5bは同電位となっている。なお、厚み数μm程度の金属の下地は、特許文献1に示すような厚い金属電極と異なり、ヒートサイクル時に応力を及ぼすものではないので、以降下地部分も半導体材料とみなし、ソース電極3f上にワイヤ4や金属塊5bが接合されているとして説明する。   A thin aluminum base (not shown) having a thickness of several μm (not shown) for improving the connection is formed on the surface of the source electrode 3f. The wire 4 and the metal block 5b described above are connected to the source via the aluminum base. It is connected to the electrode 3f, and each metal block 5b has the same potential. Note that, unlike a thick metal electrode as shown in Patent Document 1, a metal base having a thickness of about several μm does not exert stress during a heat cycle, and hence the base part is regarded as a semiconductor material and is placed on the source electrode 3f. A description will be given assuming that the wire 4 and the metal block 5b are joined.

そして、複数の金属塊5bのそれぞれは、ソース電極3fにおいてそれぞれ異なる位置に、ワイヤ4を形成する時と同様にボンディング用ワイヤを第1ボンドによりボンディングし、当該ボンディングにより形成された圧縮根を残してボンディングワイヤを切り離すことにより形成する。最終的に、ソース電極3fや配線2b等を含め、半導体装置の表面は絶縁物7で覆われており、金属塊5bもソース電極3fとの接合面以外は絶縁物7で覆われている。図では、ソース電極3f部分を覆う絶縁物7の一部分のみ示しているが、実際には電力用半導体装置のほぼ全面が絶縁物7により覆われている。なお、金属塊5bのソース電極3fとの接合面以外は、全て「もの」としての絶縁物7により覆われている必要はなく、空隙(真空または電気的に不活性なガス雰囲気)であってもよく、その場合も絶縁物で覆われているとみなして説明する。   Then, each of the plurality of metal blocks 5b is bonded to the bonding wire by the first bond at the different positions in the source electrode 3f in the same manner as when the wire 4 is formed, and the compressed root formed by the bonding is left. Then, it is formed by cutting the bonding wire. Finally, the surface of the semiconductor device including the source electrode 3f and the wiring 2b is covered with the insulator 7, and the metal block 5b is also covered with the insulator 7 except for the joint surface with the source electrode 3f. In the figure, only a part of the insulator 7 covering the source electrode 3 f is shown, but in practice, almost the entire surface of the power semiconductor device is covered with the insulator 7. It should be noted that everything except the joint surface of the metal block 5b with the source electrode 3f does not need to be covered with the insulator 7 as "thing", and is a void (vacuum or electrically inert gas atmosphere). In this case, it is assumed that it is covered with an insulator.

ボンディングワイヤとしては、直径300μmのアルミニウム(Al)を用い、バードピークボンディングにより接続している。これにより、金属塊5bやワイヤ4のソース電極3fとの接合面を広くとることができるとともに、ボンディングワイヤの切断を連続的に行うことができるので、多数の金属塊5bを容易に形成することができる。   As a bonding wire, aluminum (Al) having a diameter of 300 μm is used and connected by bird peak bonding. As a result, it is possible to widen the joining surface of the metal lump 5b and the source electrode 3f of the wire 4 and to continuously cut the bonding wire, so that a large number of metal lumps 5b can be easily formed. Can do.

なお、本実施の形態1では、直径300μmのアルミニウムを用いていたが、直径300μm以外のアルミニウムを用いたとしても同様の効果が期待できる。また、ワイヤ以外の材料を用いたボンディング(例えばリボンボンディング)を用いても同様の効果を得ることができる。また、ボンディングワイヤに金(Au)を用いてもよく、その場合は第1ボンドを接合強度の高いネイルヘッドボンディングで行ってもよい。   In Embodiment 1, aluminum having a diameter of 300 μm is used, but the same effect can be expected even if aluminum having a diameter other than 300 μm is used. The same effect can be obtained by using bonding (for example, ribbon bonding) using a material other than a wire. Further, gold (Au) may be used for the bonding wire, and in that case, the first bond may be performed by nail head bonding with high bonding strength.

次に動作について説明する。
通常使用時の動作については、従来の電力用半導体装置と同様なので、ここでは、負荷短絡(異常)が発生した時の動作について説明する。負荷短絡が発生した場合、半導体素子3には電源電圧が加わった状態で負荷が短絡されるので、半導体素子3には素子抵抗及び負荷抵抗(この場合は殆ど0になる)及び電源電圧で決まる電流が流れることになる。その電流値は、通常電流値より1桁以上大きく、その結果、素子の内部抵抗と電流値で半導体素子3の内部(主にソース電極)で発熱が発生し、素子温度が上昇する。素子温度が上昇して金属電極の溶融が起こると、電力用半導体装置が破損する。
Next, the operation will be described.
Since the operation during normal use is the same as that of a conventional power semiconductor device, the operation when a load short circuit (abnormality) occurs will be described here. When a load short-circuit occurs, the load is short-circuited with the power supply voltage applied to the semiconductor element 3, so that the semiconductor element 3 is determined by the element resistance, the load resistance (in this case, almost zero) and the power supply voltage. Current will flow. The current value is larger by one digit or more than the normal current value. As a result, heat is generated inside the semiconductor element 3 (mainly the source electrode) due to the internal resistance and current value of the element, and the element temperature rises. When the element temperature rises and the metal electrode melts, the power semiconductor device is damaged.

ここで、短絡が長期間にわたって継続する場合、発生した熱を継続して放出する必要があり、特許文献1に示されるような外部との効率的な熱伝導経路を形成する必要がある。しかし、通常のインバーター制御システムにおいては、外部制御回路系に保護回路を設け、負荷電流値が一定電流以上になるとゲート電圧を低減してソース電極に流れる電流値を抑制し、発生熱量を制限するようにしている。したがって、IGBTやMOSFETのような電力用半導体装置は、負荷短絡時に保護回路が動作するまでの短い期間において、高電圧、大電流のストレス状態に耐えられるようにすればよい。電力用半導体装置に求められる負荷短絡耐量の規格としては、素子の絶対定格の2/3の電源電圧において、通常オン状態のゲート電圧が印加されたときに、10μ秒以内に素子が破壊しないこと、となっている。   Here, when the short circuit continues for a long period of time, it is necessary to continuously release the generated heat, and it is necessary to form an efficient heat conduction path with the outside as disclosed in Patent Document 1. However, in a normal inverter control system, a protection circuit is provided in the external control circuit system, and when the load current value exceeds a certain value, the gate voltage is reduced to suppress the current value flowing through the source electrode, thereby limiting the amount of heat generated. I am doing so. Therefore, a power semiconductor device such as an IGBT or a MOSFET may be able to withstand a high voltage and large current stress state in a short period until the protection circuit operates when a load is short-circuited. The standard for the load short-circuit withstand capability required for power semiconductor devices is that the device does not break within 10 μs when a normally on-state gate voltage is applied at a power supply voltage of 2/3 of the absolute rating of the device. It has become.

そこで、本発明の実施の形態1にかかる電力用半導体装置では、半導体素子3のソース電極3f上に配線2aとの電気接続に用いるワイヤ4以外に、複数の金属塊5bを設け、短絡が始まってから保護回路が動作するまでの10μSの間の発熱を複数の金属塊5b(の熱容量により)に吸収させて、半導体素子3の温度上昇を抑制する。金属塊5bは、ワイヤボンディングに通常用いられるアルミニウムないしは金などの熱伝導度が良好で熱容量も大きい金属体で形成されているので、発熱部であるソース電極3fの直上に(短期間機能する)ヒートシンクを構成していることと同等の状況を形成できる。このように発熱部の近傍に保護回路が動作するまで実質的にヒートシンクとして機能する金属塊5bを分散して配置したことにより短絡による発熱量が大きくなったとしても温度上昇を低減することが可能である。つまり、通常のシステムでは10μs程度で保護回路が動作することになるので、このように限られた時間内(瞬間的な)の温度上昇を抑制することにより、電力用半導体装置の破損を防止することができる。   Therefore, in the power semiconductor device according to the first embodiment of the present invention, a plurality of metal blocks 5b are provided on the source electrode 3f of the semiconductor element 3 in addition to the wire 4 used for electrical connection with the wiring 2a, and a short circuit starts. The heat generated for 10 μS from when the protection circuit operates until the plurality of metal blocks 5b (due to the heat capacity) is absorbed, and the temperature rise of the semiconductor element 3 is suppressed. Since the metal block 5b is formed of a metal body having a good thermal conductivity and a large heat capacity such as aluminum or gold, which is usually used for wire bonding, the metal block 5b is directly above the source electrode 3f which is a heat generating part (functions for a short period of time). A situation equivalent to configuring a heat sink can be formed. As described above, the metal mass 5b that substantially functions as a heat sink is dispersedly arranged in the vicinity of the heat generating portion until the protection circuit operates, so that the temperature rise can be reduced even if the amount of heat generated by the short circuit increases. It is. In other words, since the protection circuit operates in about 10 μs in a normal system, the power semiconductor device is prevented from being damaged by suppressing the temperature rise within a limited time (instantaneous) in this way. be able to.

しかも、それぞれの金属塊5bはアイランド状に配置されており、ソース電極3fとの接合面以外は絶縁物7(空隙も含めて)で覆われている。ここで、金属塊の表面を覆っている絶縁物7は、もともとソース電極3f上を全面的に覆った場合でも、ヒートサークルのたびにソース電極3fに対して応力を与えてしまわないような性質を有している。したがって、複数の金属塊5bのそれぞれは、ヒートサイクルの際、ソース電極3f全体の面積に対してソース電極3fに対して応力をかけることはない。しかも、各金属塊5bとソース電極3fとの接合面は小さいので、ヒートサイクル時にそれぞれの金属塊5bとソース電極3fとの接合面間にかかる応力は小さく、接合面の剥離を誘発することはない。   In addition, each metal block 5b is arranged in an island shape, and is covered with an insulator 7 (including a gap) except for the joint surface with the source electrode 3f. Here, the insulator 7 covering the surface of the metal block does not give stress to the source electrode 3f at every heat circle even when the entire surface of the source electrode 3f is originally covered. have. Therefore, each of the plurality of metal blocks 5b does not apply stress to the source electrode 3f with respect to the entire area of the source electrode 3f during the heat cycle. In addition, since the joining surface between each metal lump 5b and the source electrode 3f is small, the stress applied between the joining surfaces between each metal lump 5b and the source electrode 3f during the heat cycle is small, and the peeling of the joining surface is not induced. Absent.

したがって、ヒートサイクル時に線膨張率の差により歪が生ずる領域が、それぞれの金属塊5bの接合面というごく小さな領域に限定されるとともに、金属塊5bの膨張収縮等による機械的変形も金属塊5bの周りの絶縁物7により吸収される。これは、各金属塊5bに、それぞれヒートサイクル時のストレスに対する遊びが設けられていることになり、各金属塊5bのそれぞれにかかった力が他の金属塊5bに影響することがない。そのため、使用時のヒートサイクルのたびに接合面にかかる応力が無視できる程度に小さくなり、接合面の剥離の発生が抑制され、長期的な信頼性が向上する。   Therefore, the region where distortion occurs due to the difference in linear expansion coefficient during the heat cycle is limited to a very small region called the joint surface of each metal lump 5b, and mechanical deformation due to expansion / contraction of the metal lump 5b is also caused by the metal lump 5b. It is absorbed by the insulator 7 around. This means that each metal lump 5b is provided with play against stress during the heat cycle, and the force applied to each metal lump 5b does not affect the other metal lump 5b. Therefore, the stress applied to the joint surface is reduced to a level that can be ignored at each heat cycle during use, the occurrence of peeling of the joint surface is suppressed, and long-term reliability is improved.

また、半導体素子3と配線2bとを電気接続するワイヤ4を形成するときに用いたワイヤボンディング工程の一部を金属塊5bの形成に応用したので、複雑な製造工程を追加する必要がなく、電気接続配線を形成する際の連続した工程の中で金属塊5bを形成することができる。つまり、スループットが向上し、製造コストや製造時間を大きく増大させることなく、負荷短絡耐量を向上させることができる。   In addition, since a part of the wire bonding process used when forming the wire 4 that electrically connects the semiconductor element 3 and the wiring 2b is applied to the formation of the metal lump 5b, there is no need to add a complicated manufacturing process, The metal block 5b can be formed in a continuous process when forming the electrical connection wiring. That is, the throughput is improved, and the load short-circuit tolerance can be improved without greatly increasing the manufacturing cost and the manufacturing time.

一方、金属塊5bに配線との電気接続を担わせようと、例えば、特開2005−50961号公報(段落0053、図12))のように、バンプ電極と半導体素子の表面を導電性の接着材で覆うようにした場合、上面から電気接続を行うために圧力をかける必要がある。また、電流を流すための導電性接着材の場合、導電材料を密に充填する必要があるため、接着剤自体が金属と同様の性質を持つことになり、各バンプ電極がつながった1枚の板のように作用して、特許文献1と同様にヒートサイクル時に接合面に応力がかかり、剥離等を起こす可能性がある。   On the other hand, in order to allow the metal block 5b to be electrically connected to the wiring, for example, as disclosed in JP-A-2005-50961 (paragraph 0053, FIG. 12), the bump electrode and the surface of the semiconductor element are electrically bonded. When covered with a material, it is necessary to apply pressure to make an electrical connection from the upper surface. In addition, in the case of a conductive adhesive for passing an electric current, it is necessary to densely fill the conductive material. Therefore, the adhesive itself has the same property as that of a metal, and one bump electrode is connected to each other. As in the case of Patent Document 1, it acts like a plate, and stress is applied to the joint surface during the heat cycle, which may cause peeling.

しかし、本発明の実施の形態1にかかる電力用半導体装置では、金属塊5bのそれぞれが、ソース電極3fとの接合面以外を絶縁物で覆うようにしたので、ヒートサイクル時に実質的に各金属塊5bが機械的な拘束を受けることがないので、ヒートサイクル時に接合面にかかる応力が小さくなり、剥離の発生を抑制することができる。   However, in the power semiconductor device according to the first embodiment of the present invention, each of the metal lumps 5b is covered with an insulator except for the joint surface with the source electrode 3f. Since the lump 5b is not mechanically restrained, the stress applied to the joint surface during the heat cycle is reduced, and the occurrence of peeling can be suppressed.

また、金属塊5bやソース電極3fに直接触れる絶縁物として、例えばゲル状のエポキシ材料のように流動性のある絶縁物を用いれば、各金属塊5bのソース電極3fとの接合面以外は機械的に解放されることになるので、ヒートサイクル時に接合面にかかる応力がさらに小さくなり、剥離の発生を効果的に抑制することができる。   Further, as an insulator that directly touches the metal block 5b and the source electrode 3f, for example, if a fluid insulating material such as a gel-like epoxy material is used, a part other than the joint surface with the source electrode 3f of each metal block 5b is mechanical. Therefore, the stress applied to the joint surface during the heat cycle is further reduced, and the occurrence of peeling can be effectively suppressed.

以上のように、本発明の実施の形態1にかかる電力用半導体装置によれば、絶縁性の基板1と、絶縁性の基板1の主面1fの異なる位置に形成された複数の配線2と、複数の配線2のうちの第1の配線2aに接合された半導体素子3と、半導体素子3の第1の配線2aとの接合面と反対側になるソース電極3fの一部と、複数の配線2のうちの第2の配線2bとを電気的に接続するワイヤ4と、を備え、ソース電極3fには、複数の金属塊5bが分散して接合され、複数の金属塊5bのそれぞれは、ソース電極3fとの接合面以外を絶縁物で覆うように構成したので、信頼性が高く、損失低減と短絡時の耐量向上を両立させた電力用半導体装置を得ることができる。   As described above, according to the power semiconductor device of the first embodiment of the present invention, the insulating substrate 1 and the plurality of wirings 2 formed at different positions on the main surface 1f of the insulating substrate 1 The semiconductor element 3 bonded to the first wiring 2a of the plurality of wirings 2, a part of the source electrode 3f on the opposite side to the bonding surface of the semiconductor element 3 to the first wiring 2a, A wire 4 that electrically connects the second wire 2b of the wires 2, and a plurality of metal lumps 5b are dispersed and joined to the source electrode 3f, and each of the plurality of metal lumps 5b is In addition, since the structure other than the joint surface with the source electrode 3f is covered with an insulator, it is possible to obtain a power semiconductor device that has high reliability and achieves both a reduction in loss and an improvement in resistance against short circuit.

とくに、絶縁物7としてゲル状の絶縁物を用いたので、より信頼性が高く、損失低減と短絡時の耐量向上を両立させた電力用半導体装置を得ることができる。   In particular, since a gel-like insulator is used as the insulator 7, it is possible to obtain a power semiconductor device that is more reliable and that achieves both a reduction in loss and an improvement in resistance against short circuit.

また、本発明の実施の形態1にかかる電力用半導体装置の製造方法によれば、絶縁性の基板1の主面1fに複数の配線2を形成し、複数の配線2のうちの第1の配線2aに半導体素子3を接合し、ボンディング用ワイヤを半導体素子3のソース電極3fの一部に第1ボンドによりボンディングし、複数の配線2のうちの第2の配線2bに第2ボンドによりボンディングすることによりソース電極3fと第2の配線2bとを電気的に接続し、ソース電極3fにおいてそれぞれ異なる位置に、前記ボンディング用ワイヤを第1ボンドによりボンディングし、当該ボンディングにより形成された圧縮根5bを残して切り離すことにより、ソース電極3f上に複数の金属塊5bを形成する、ように構成した。つまり、ワイヤ4は、ボンディング用ワイヤをソース電極3fの一部に第1ボンド4aによりボンディングし、第2の配線2bに第2ボンド4bによりボンディングすることにより形成し、複数の金属塊5bは、ソース電極3fにおいてそれぞれ異なる位置に、前記ボンディング用ワイヤをワイヤ4と同様に第1ボンドによりボンディングし、当該ボンディングにより形成された圧縮根を残して切り離すことにより形成するように構成したので、スループットが向上し、製造コストや製造時間を大きく増大させることなく、負荷短絡耐量を向上させることができる。   In addition, according to the method for manufacturing the power semiconductor device according to the first embodiment of the present invention, the plurality of wirings 2 are formed on the main surface 1f of the insulating substrate 1, and the first of the plurality of wirings 2 is formed. The semiconductor element 3 is bonded to the wiring 2a, the bonding wire is bonded to a part of the source electrode 3f of the semiconductor element 3 by the first bond, and the second wiring 2b of the plurality of wirings 2 is bonded by the second bond. By doing so, the source electrode 3f and the second wiring 2b are electrically connected, and the bonding wire is bonded to the source electrode 3f at different positions by the first bond, and the compressed root 5b formed by the bonding is used. A plurality of metal lumps 5b are formed on the source electrode 3f by separating the metal electrode 5f. That is, the wire 4 is formed by bonding a bonding wire to a part of the source electrode 3f by the first bond 4a and bonding to the second wiring 2b by the second bond 4b. Since the bonding wire is bonded to the source electrode 3f at different positions by the first bond in the same manner as the wire 4, and is formed by cutting off the compression root formed by the bonding, the throughput is increased. It is possible to improve the load short-circuit tolerance without greatly increasing the manufacturing cost and the manufacturing time.

なお、本実施の形態1ではワイヤ4を1本設けた場合の例を示しているが、ワイヤ4を複数本設けても同様の効果が得られる。また副次的な効果としては、本構成をとることにより、通常のソース電極3fのように表面が下地のAl膜(厚み数μm程度)のみの場合に対して、第1ボンドにより形成した金属塊5b(圧縮根)が面内に多数存在することにより、ソース電極3fの表面を流れる電流の経路の抵抗値が低減し素子の動作特性が改善される。従来はこの点を改善するために複数本のワイヤを形成する必要があった。   Although the first embodiment shows an example in which one wire 4 is provided, the same effect can be obtained even if a plurality of wires 4 are provided. Further, as a secondary effect, by adopting this configuration, the metal formed by the first bond with respect to the case where the surface is only the base Al film (thickness of about several μm) like the normal source electrode 3f. Since there are a large number of masses 5b (compression roots) in the plane, the resistance value of the path of the current flowing through the surface of the source electrode 3f is reduced, and the operating characteristics of the element are improved. Conventionally, it has been necessary to form a plurality of wires in order to improve this point.

実施の形態2.
本実施の形態2にかかる電力用半導体装置では、金属塊として実施の形態1において用いたワイヤボンディングの第1ボンドの圧縮根5bの代わりに、金属膜5mを使用するようにした。図3は、本実施の形態2にかかる電力用半導体装置の構成を示す図で、図3(a)は電力用半導体装置の平面図、図3(b)は図3(a)のIIIb−IIIb線で切断した断面図である。図において、電力用半導体装置は、半導体素子3の第1の配線2aとの接合面と反対側になるソース電極3f上には、金属塊としての厚み30μmの複数のアルミニウムによる金属膜5mが、面内に分散するように形成されている。そして、半導体素子3と第2の配線2bとを電気的に接続するために金属膜5mのひとつと、第2の配線2bとをワイヤボンディングにより接続したワイヤ4と、を備えている。なお、説明の簡略化のため、図3では絶縁物7の記載を省略しているが、各金属膜5mのソース電極3fとの接合面以外は実施の形態1と同様に絶縁物7で覆われており、以降の図でも同様である。
Embodiment 2. FIG.
In the power semiconductor device according to the second embodiment, the metal film 5m is used in place of the compression bond 5b of the first bond of the wire bonding used in the first embodiment as the metal lump. 3A and 3B are diagrams showing the configuration of the power semiconductor device according to the second embodiment. FIG. 3A is a plan view of the power semiconductor device, and FIG. 3B is a cross-sectional view taken along line IIIb- in FIG. It is sectional drawing cut | disconnected by the IIIb line. In the figure, in the power semiconductor device, a metal film 5m made of a plurality of aluminum having a thickness of 30 μm as a metal lump is formed on the source electrode 3f on the opposite side to the joint surface of the semiconductor element 3 with the first wiring 2a. It is formed so as to be dispersed in the plane. And in order to electrically connect the semiconductor element 3 and the 2nd wiring 2b, one of the metal films 5m and the wire 4 which connected the 2nd wiring 2b by wire bonding are provided. For simplification of description, the illustration of the insulator 7 is omitted in FIG. 3, but the metal film 5m is covered with the insulator 7 in the same manner as in the first embodiment except for the joint surface with the source electrode 3f. The same applies to the following figures.

本実施の形態2では、ソース電極3f上に分散し、それぞれ接合面以外が絶縁物で覆われている金属塊として、図示しないマスキングを用いて、厚さ30μmの複数(図では20個)のアルミニウムの金属膜5mをアイランド状に形成した。各金属膜5mを微細なアイランド状に形成することにより、半導体素子3が高温状態と低温状態を繰り返すヒートサイクルにさらされた場合でも、熱膨張率の差により金属膜5mと半導体素子3のソース電極(ソース電極面)に加わる熱応力を低減することができる。この結果として熱応力に強い電力用半導体装置を得ることができる。つまり、本実施の形態2のように金属塊として金属膜5mを用いた場合でも、熱サイクルによる膜はがれの問題を生じさせることなく、短絡時の温度上昇を低減することができる。   In the second embodiment, a plurality (20 in the figure) of 30 μm in thickness is used as a metal lump that is dispersed on the source electrode 3f and is covered with an insulator except for the bonding surface, using masking (not shown). An aluminum metal film 5m was formed in an island shape. By forming each metal film 5m into a fine island shape, even when the semiconductor element 3 is exposed to a heat cycle in which a high temperature state and a low temperature state are repeated, the metal film 5m and the source of the semiconductor element 3 are caused by the difference in thermal expansion coefficient. Thermal stress applied to the electrode (source electrode surface) can be reduced. As a result, a power semiconductor device resistant to thermal stress can be obtained. That is, even when the metal film 5m is used as a metal lump as in the second embodiment, the temperature rise at the time of short circuit can be reduced without causing the problem of film peeling due to thermal cycling.

なお、本実施の形態2として厚さ30μmのアルミニウムの膜を用いているが、本実施の形態2のような金属膜5により金属塊を形成する場合では、マスクを用いてスパッタ―ないしは蒸着方法によりアイランド状の金属膜を形成することが可能であり、信頼性が高く、損失低減と短絡時の耐量向上を両立させる電力用半導体装置を得ることができるという効果を有する。また、マスクを通してアルミニウムの金属塊を形成しているが、前述の方法もしくは印刷法、ディッピング、メッキ法等により一様な膜を形成後にエッチングにより膜をアイランド状に形成したとしても、信頼性が高く、損失低減と短絡時の耐量向上を両立させる電力用半導体装置を得ることができ、更に、印刷法により直接的にパターンを形成しても、信頼性が高く、損失低減と短絡時の耐量向上を両立させる電力用半導体装置を得ることができる。   Although the aluminum film having a thickness of 30 μm is used as the second embodiment, when a metal lump is formed by the metal film 5 as in the second embodiment, a sputtering or vapor deposition method using a mask is used. Thus, an island-like metal film can be formed, and there is an effect that it is possible to obtain a power semiconductor device that has high reliability and can achieve both reduction in loss and improvement in withstand capability during short-circuiting. In addition, although the aluminum metal lump is formed through the mask, even if the film is formed in an island shape by etching after forming a uniform film by the above-mentioned method or printing method, dipping, plating method, etc., the reliability is high. High power semiconductor device that achieves both low loss and improved short-circuit withstand capability can be obtained, and even if the pattern is formed directly by printing, it is highly reliable, with low loss and short-circuit withstand capability. It is possible to obtain a power semiconductor device that achieves both improvements.

なお、本実施の形態2においては、ワイヤ4を金属膜5mの一部の上にボンディングするようにしたが、ワイヤ4をボンディングする部分には金属膜5mを形成せず、ソース電極3fの露出面(下地のAl膜)にボンディングするようにしてもよい。この場合、金属膜5mの材料としてワイヤよりも融点の低い材料を用い、ワイヤ4よりも先に金属膜5mを融解させるようにして、金属膜5mの融解熱により温度上昇を抑制するようにしてもよい。   In the second embodiment, the wire 4 is bonded onto a part of the metal film 5m. However, the metal film 5m is not formed on the portion where the wire 4 is bonded, and the source electrode 3f is exposed. Bonding to a surface (underlying Al film) may also be possible. In this case, a material having a melting point lower than that of the wire is used as the material of the metal film 5m, the metal film 5m is melted before the wire 4, and the temperature rise is suppressed by the heat of fusion of the metal film 5m. Also good.

つぎに、上述した実施の形態1や実施の形態2における金属塊の形状等の好適範囲について検討を行った。   Next, a suitable range such as the shape of the metal block in the first embodiment and the second embodiment described above was examined.

<金属塊の厚みの最適化>
図4は、短絡を10μS間生じさせたときのAl面の温度上昇(金属膜5mの膜断面内の最大温度上昇:縦軸)と金属膜5m(Al)の膜厚(横軸)の関係を示している。基本的に膜厚みを厚くするほど、Al層の温度上昇を低く抑えることができるが、膜厚みを30μm以上にしたとしても温度上昇を抑える効果は少なくなる。また、Al膜厚を3μmにした場合、650K程度の温度上昇が予想されるが、膜厚みを10μm以上にすることで上昇を100K程度抑制することが可能となる。このとき使用雰囲気を200℃とすると最大温度は750℃となる。
<Optimization of metal lump thickness>
FIG. 4 shows the relationship between the Al surface temperature rise (maximum temperature rise in the cross section of the metal film 5m: vertical axis) and the metal film 5m (Al) film thickness (horizontal axis) when a short circuit occurs for 10 μS. Is shown. Basically, the thicker the film thickness, the lower the temperature rise of the Al layer, but the effect of suppressing the temperature rise is reduced even if the film thickness is 30 μm or more. Further, when the Al film thickness is 3 μm, a temperature increase of about 650 K is expected, but by increasing the film thickness to 10 μm or more, the increase can be suppressed by about 100 K. At this time, if the use atmosphere is 200 ° C., the maximum temperature is 750 ° C.

なお、特許文献1においては、「アルミニウム(Al)を用いる場合、半導体とアルミニウム電極の境界面の温度がアルミニウムの融点、すなわち660℃を超えないようにしなければならない。660℃を超えると、素子破壊が生じなくても、アルミニウム電極の溶融が起こり、電極の信頼性に重大な問題を生じる」と記載されている。しかし、図4に示す上昇温度は、膜の断面内の最も温度が高い点の温度上昇を示しているのであって、短絡が発生してから10μs以内に短絡状態が解除されれば、最高点の温度は周辺への熱拡散により急速に冷却される。このことを考慮すると、最高点の温度が750℃(上所温度550K)になったとしても先行技術に示されるように電極の溶融が発生することはない。つまり、保護回路の動作が開始されるまでの10μsという期間での温度分布およびその後の温度分布の変化を考慮すると、最高点の温度は融点より100K程度高い値まで許容できることになる。したがって、膜厚みを10μm以上にすることにより、実用上は金属電極の溶融を引き起こすことなく、電力用半導体装置の信頼性を保つことができる。   In Patent Document 1, “when aluminum (Al) is used, the temperature of the interface between the semiconductor and the aluminum electrode must not exceed the melting point of aluminum, that is, 660 ° C. If the temperature exceeds 660 ° C., the element Even if no breakdown occurs, the aluminum electrode melts, causing a serious problem in the reliability of the electrode. However, the rising temperature shown in FIG. 4 indicates the temperature rise at the highest temperature in the cross section of the film, and the highest point is achieved if the short circuit state is released within 10 μs after the short circuit occurs. The temperature of is rapidly cooled by thermal diffusion to the surroundings. Considering this, even if the maximum temperature reaches 750 ° C. (upper temperature 550 K), melting of the electrode does not occur as shown in the prior art. That is, in consideration of the temperature distribution in the period of 10 μs until the operation of the protection circuit and the change in the subsequent temperature distribution are taken into consideration, the maximum temperature can be allowed to be about 100K higher than the melting point. Therefore, by setting the film thickness to 10 μm or more, the reliability of the power semiconductor device can be kept practically without causing melting of the metal electrode.

つまり、金属塊5の厚みを10μm以上としたので、短絡が発生して保護回路が動作するまでの間の発熱による電力用半導体装置の故障を確実に防止することができる。   That is, since the thickness of the metal block 5 is set to 10 μm or more, it is possible to reliably prevent failure of the power semiconductor device due to heat generation until a short circuit occurs and the protection circuit operates.

また、金属塊5の厚みを30μm以下としたので、金属塊5(とくに金属膜5m)を形成する工程を短く抑えることができ、安価で迅速に電力用半導体装置を製造することができる。そのため、低コストで、しかも短絡が発生して保護回路が動作するまでの間の発熱による電力用半導体装置の故障を確実に防止することができる。   In addition, since the thickness of the metal block 5 is 30 μm or less, the process of forming the metal block 5 (particularly the metal film 5 m) can be kept short, and a power semiconductor device can be manufactured quickly and inexpensively. Therefore, it is possible to reliably prevent a failure of the power semiconductor device due to heat generation at a low cost until the short circuit occurs and the protection circuit operates.

なお、金属塊として圧縮根5bを使用する場合でも、ボンディング用ワイヤの径を調整することで厚みを調整することはできる。   Even when the compression root 5b is used as the metal lump, the thickness can be adjusted by adjusting the diameter of the bonding wire.

<金属塊の配置の最適化>
つづいて、金属塊の配置について検討を行った。図5は、図3における円V部分の拡大図で、図5(a)は平面図、図5(b)は断面図である。配置について図3及び図5を用いて説明する。図3で示しているのは、各金属膜5mが方形であり、縦横に整列配置している例である。実際の配置は後述するように様々な配置が考えられるが、ここでは、説明のしやすい図3の配置で説明する。また、金属塊としては形状がはっきりしている実施の形態2における金属膜5mの図を用いているが、実施の形態1における第1ボンドの圧縮根5bでも同様の考え方ができるので、金属膜5mや圧縮根5bを総称して金属塊5として説明する。
<Optimization of metal lump arrangement>
Subsequently, the arrangement of metal blocks was examined. FIG. 5 is an enlarged view of a circle V portion in FIG. 3, FIG. 5 (a) is a plan view, and FIG. 5 (b) is a cross-sectional view. The arrangement will be described with reference to FIGS. FIG. 3 shows an example in which each metal film 5m is square and aligned in the vertical and horizontal directions. Although various arrangements can be considered as will be described later, here, the arrangement shown in FIG. Moreover, although the figure of the metal film 5m in Embodiment 2 in which the shape is clear is used as the metal lump, since the same idea can be applied to the compressed root 5b of the first bond in Embodiment 1, the metal film 5m and the compressed root 5b will be collectively referred to as a metal lump 5.

図5(a)にてわかるように、各金属塊5を格子状に配置した場合、半導体素子3のソース電極3f上で、金属塊5が接合されていない露出部分が碁盤目のように存在する。露出部分のうち、金属塊5が接合されている部分と最も距離を有する部分は、碁盤目の中央にあたる位置Pfとなる。この位置Pfから金属塊5との最短距離をDPfとすると、本実施の形態では、DPfが50μm以下になるように、金属塊5の間隔D55(図5(b)に示すようにソース電極3fとの接合部分での間隔)を70μm(≒50×2/20.5:(DPFの最大値)×(対角と辺の換算))に設定した。 As can be seen from FIG. 5A, when each metal block 5 is arranged in a lattice pattern, an exposed portion where the metal block 5 is not joined exists on the source electrode 3f of the semiconductor element 3 like a grid. To do. Of the exposed portion, the portion having the longest distance from the portion to which the metal block 5 is joined is the position Pf corresponding to the center of the grid. Assuming that the shortest distance from this position Pf to the metal block 5 is D Pf , in this embodiment, the distance D 55 between the metal blocks 5 (as shown in FIG. 5B) so that D Pf is 50 μm or less. The distance at the junction with the source electrode 3f was set to 70 μm (≈50 × 2/2 0.5 : (maximum value of DPF ) × (conversion of diagonal and side)).

図6は、先ほどの最短距離DPfを求めるために行った試験結果を示している。図6下部は、短絡試験を行った素子表面状態の写真で、上部は写真の各領域を説明するための模式図である。試験は半導体素子の一部に電流を流し(図中13f(模式図の網掛部に相当する))、それ以外の部分(図中15の領域(2点鎖線VIa-VIaより右上側で、模式図の網
掛を行っていない部分))には電流を流していない。ここで、電流を流した部分13fは半導体素子3の第1主面3fでの露出領域とみなし、電流の流れていない部分15はヒートシンクとして作用するので、半導体素子3の第1主面3fでの金属塊5が接合されている部分と同様の部分であるとみなすことができる。
FIG. 6 shows the result of the test performed to obtain the shortest distance D Pf as described above. The lower part of FIG. 6 is a photograph of the surface state of the element subjected to the short circuit test, and the upper part is a schematic diagram for explaining each region of the photograph. In the test, a current was passed through a part of the semiconductor element (13f in the figure (corresponding to the shaded area in the schematic diagram)), and the other parts (15 regions in the figure (upper right of the two-dot chain line VIa-VIa In the figure, no shade is applied)). Here, the portion 13 f through which current flows is regarded as an exposed region on the first main surface 3 f of the semiconductor element 3, and the portion 15 through which no current flows functions as a heat sink, and therefore the first main surface 3 f of the semiconductor element 3. It can be considered that it is a part similar to the part to which the metal lump 5 is joined.

試験の結果、図中に示される一点鎖線VIb-VIbの左下側は発熱によるダメージを受けて、表面に形成されているAl面(本試験では厚みは3μm)が熱のため変色している。このとき、電流の流れていない領域15からダメージを受けずに済んだ領域の幅(2点鎖線VIa-VIaと一点鎖線VIb-VIbとの間隔)が50μmであった。   As a result of the test, the lower left side of the alternate long and short dash line VIb-VIb shown in the figure is damaged by heat generation, and the Al surface (thickness of 3 μm in this test) formed on the surface is discolored due to heat. At this time, the width (interval between the two-dot chain line VIa-VIa and the one-dot chain line VIb-VIb) of the region that did not receive damage from the region 15 where no current flows was 50 μm.

したがって、ヒートシンク(金属塊5)がある場合、そこ(接合部分)から50μmの範囲はヒートシンクの熱吸収効果により素子温度の上昇が抑制されていることが判る。したがって、ソース電極3fの露出部分における金属塊5との最短距離DPfが50μm以下になるように、例えば、本実施の形態では金属塊5同士の間隔D55を70μmとした。しかし、間隔D55を100μmとしても、高温になるのは碁盤の目の中央部のごくわずかな
領域のみとなるので、金属塊5を密に形成することが困難な場合、実用的には、金属塊5同士の間隔D55を100μm以下と設定してもよい。あるいは、どのような配置パターンを用いても最短距離DPfが50μm以下となるように、金属塊5同士の間隔D55を50μm以下と設定するようにしてもよい。
Therefore, when there is a heat sink (metal lump 5), it can be seen that the rise of the element temperature is suppressed by the heat absorption effect of the heat sink in the range of 50 μm from that (joint portion). Thus, as the shortest distance D Pf of the metal block 5 in the exposed portion of the source electrode 3f becomes 50μm or less, for example, in this embodiment it was 70μm metal ingot 5 between distance D 55 of the. However, even if the distance D 55 is set to 100 μm, only a very small area at the center of the grid is high, so that it is practically difficult to form the metal block 5 densely, the metal block 5 spacing D 55 between may be set as 100μm or less. Alternatively, using any arrangement pattern as the shortest distance D Pf also becomes 50μm or less, the metal block 5 between distance D 55 of the may be set to 50μm or less.

上記のように、露出部分における金属塊5との最短距離DPfが所定値以下に保たれるのであれば、各金属塊の接合部分の形状が方形である必要はなく、円形や六角形など、様々な形状でもその効果に差異はない。さらに、配置パターンも千鳥状であったり、亀甲状であったり、あるいはランダム形状でもよい。また、本実施の形態では金属塊5を20個のアイランドに分割しているが、熱応力によりAl膜が破損(剥離)する事象の発生は、素子の動作温度、冷却方法、膜の製造方法、積層構造(バリアメタルの配置等)に依存する。従って使用環境によって、分割個数は適宜調整すればよいが、いずれの個数に分割しようと、分割しない場合(面全体を接合)に対して、ヒートサイクル時の剥離の発生を抑制して信頼性を向上させる効果を有する。 As described above, if the shortest distance D Pf with the metal lump 5 in the exposed portion is kept below a predetermined value, the shape of the joint portion of each metal lump need not be a square, but a circle, a hexagon, etc. There are no differences in the effect of various shapes. Furthermore, the arrangement pattern may be a staggered pattern, a turtle shell pattern, or a random pattern. Further, in this embodiment, the metal block 5 is divided into 20 islands, but the occurrence of an event that the Al film is damaged (peeled) due to thermal stress depends on the operating temperature of the element, the cooling method, and the film manufacturing method. Depends on the laminated structure (arrangement of barrier metal, etc.). Therefore, the number of divisions may be adjusted as appropriate depending on the use environment. However, regardless of the number of divisions, when not divided (joining the entire surface), the occurrence of peeling during heat cycle is suppressed and reliability is improved. Has the effect of improving.

実施の形態3.
上記各実施の形態では、発熱パターンに関係なく、金属塊5をソース電極3f内で、ほぼ均等に分散配置した例を示したが、本実施の形態3では、発熱分布に応じて金属塊5の配置を変化させるようにした。例えば、図7に示すように電流経路からの大きな電流が流れ、発熱が大きくなるワイヤ4の接続部分4a近傍で金属膜5mの形状を大きな形状5mL
とし、4aから離れるに従って中間の形状の金属膜5mM、小さな形状の金属膜5mSと発熱部からの距離が近いほど金属塊5の熱容量が大きくなるように配置した。
Embodiment 3 FIG.
In each of the above-described embodiments, an example in which the metal block 5 is distributed almost uniformly in the source electrode 3f regardless of the heat generation pattern has been described. However, in the present embodiment 3, the metal block 5 is set according to the heat generation distribution. The arrangement of was changed. For example, the flow a large current from the current path as shown in FIG. 7, the heat generation becomes large wire 4 of the connecting portion 4a larger shape 5m the shape of the metal film 5m in the vicinity L
As the distance from 4a is increased, the heat capacity of the metal mass 5 is increased as the distance from the heat generating portion to the intermediate metal film 5m M and the small metal film 5m S is decreased.

なお、本実施の形態3では、説明が容易になるように金属膜5mの大きさで熱容量を変化させた場合を示したが、例えば、圧縮根5bを用いる場合、ボンディングを行う位置を調整することにより、発熱量の多いところほど、金属塊5の個数密度を上げるようにしてもよい。   In the third embodiment, the case where the heat capacity is changed depending on the size of the metal film 5m is shown for easy explanation. However, for example, when the compression root 5b is used, the bonding position is adjusted. Accordingly, the number density of the metal blocks 5 may be increased as the amount of heat generation increases.

1:絶縁性の基板、 2:配線、 2a:第1の配線、2b:第2の配線、 3:(ワイドバンドギャップ)電力用半導体素子、 3S(3f,13f):ソース電極、 4:ワイヤ、 5:金属塊(5b:ワイヤボンドの第1ボンドによる圧縮根、 5m:金属膜)、 7:絶縁物、
Pf:ソース電極の露出部分において、金属塊またはワイヤが接している部分からの距離が最も遠くなる位置、 DPf:位置Pfから金属塊またはワイヤが接している部分との最短距離。
1: insulating substrate, 2: wiring, 2a: first wiring, 2b: second wiring, 3: (wide band gap) power semiconductor element, 3 S (3f, 13f): source electrode, 4: Wire, 5: metal block (5b: compression root by the first bond of wire bond, 5m: metal film), 7: insulator
P f : The position where the distance from the portion where the metal block or wire is in contact is the farthest in the exposed portion of the source electrode, D Pf : The shortest distance from the position P f to the portion where the metal block or wire is in contact.

Claims (5)

絶縁性の基板と、
前記絶縁性の基板の主面に形成された複数の配線と、
前記複数の配線のうちの第1の配線に接合されたワイドバンドギャップ半導体材料を用いた半導体素子と、
前記半導体素子の前記第1の配線との接合面と反対側にアルミニウムを用いて形成されたソース電極の一部と、前記複数の配線のうちの第2の配線とを電気的に接続するワイヤと、を備え、
前記ソース電極には、複数の金属塊が分散して接合され、前記複数の金属塊のそれぞれは、前記ソース電極との接合面以外が絶縁物で覆われていることを特徴とする電力用半導体装置。
An insulating substrate;
A plurality of wirings formed on the main surface of the insulating substrate;
A semiconductor element using a wide band gap semiconductor material bonded to a first wiring of the plurality of wirings;
A wire for electrically connecting a part of the source electrode formed using aluminum on the opposite side of the bonding surface of the semiconductor element to the first wiring and the second wiring of the plurality of wirings And comprising
A plurality of metal lumps are dispersed and joined to the source electrode, and each of the plurality of metal lumps is covered with an insulator except for a joint surface with the source electrode. apparatus.
前記複数の金属塊同士の間隔が50μm以下であることを特徴とする請求項1に記載の電力用半導体装置。   The power semiconductor device according to claim 1, wherein an interval between the plurality of metal lumps is 50 μm or less. 前記複数の金属塊の厚みは、10μm以上であることを特徴とする請求項1または2に記載の電力用半導体装置。 The thickness of the plurality of metal mass, power semiconductor device according to claim 1 or 2, characterized in that at 10μm or more. 前記ワイドバンドギャップ半導体材料が、炭化珪素または窒化ガリウムであることを特徴とする請求項1ないし3のいずれか1項に記載の電力用半導体装置。4. The power semiconductor device according to claim 1, wherein the wide band gap semiconductor material is silicon carbide or gallium nitride. 5. 絶縁性の基板の主面に複数の配線を形成し、
前記複数の配線のうちの第1の配線にワイドバンドギャップ半導体材料を用いた半導体素子を接合し、
ボンディング用ワイヤを前記半導体素子のアルミニウムを用いて形成されたソース電極の一部に第1ボンドによりボンディングし、前記複数の配線のうちの第2の配線に第2ボンドによりボンディングすることにより前記ソース電極と前記第2の配線とを電気的に接続し、
前記ソース電極においてそれぞれ異なる位置に、前記ボンディング用ワイヤを第1ボンドによりボンディングし、当該ボンディングにより形成された圧縮根を残して切り離すことにより、前記ソース電極上に複数の金属塊を形成する、
ことを特徴とする電力用半導体装置の製造方法。
Form multiple wirings on the main surface of the insulating substrate,
Bonding a semiconductor element using a wide band gap semiconductor material to a first wiring of the plurality of wirings;
Bonding a bonding wire to a part of a source electrode formed using aluminum of the semiconductor element by a first bond, and bonding to a second wiring of the plurality of wirings by a second bond. Electrically connecting the electrode and the second wiring;
Bonding the bonding wire with a first bond at different positions in the source electrode, and leaving a compressed root formed by the bonding to form a plurality of metal masses on the source electrode,
A method of manufacturing a power semiconductor device.
JP2009163786A 2009-07-10 2009-07-10 Power semiconductor device and method for manufacturing power semiconductor device Active JP5075168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009163786A JP5075168B2 (en) 2009-07-10 2009-07-10 Power semiconductor device and method for manufacturing power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009163786A JP5075168B2 (en) 2009-07-10 2009-07-10 Power semiconductor device and method for manufacturing power semiconductor device

Publications (2)

Publication Number Publication Date
JP2011018841A JP2011018841A (en) 2011-01-27
JP5075168B2 true JP5075168B2 (en) 2012-11-14

Family

ID=43596397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009163786A Active JP5075168B2 (en) 2009-07-10 2009-07-10 Power semiconductor device and method for manufacturing power semiconductor device

Country Status (1)

Country Link
JP (1) JP5075168B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107924845A (en) * 2015-08-28 2018-04-17 夏普株式会社 Nitride compound semiconductor device
US11545460B2 (en) 2020-01-10 2023-01-03 Fuji Electric Co., Ltd. Semiconductor device and method for manufacturing semiconductor device having first and second wires in different diameter
CN112002645B (en) * 2020-06-24 2022-12-09 西安理工大学 Method for improving power circulation capability of SiC power chip bonding wire

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4169882B2 (en) * 1999-08-30 2008-10-22 Necエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
JP2005101293A (en) * 2003-09-25 2005-04-14 Renesas Technology Corp Semiconductor device
JP2005311019A (en) * 2004-04-21 2005-11-04 Hitachi Ltd Semiconductor power module
JP2006319213A (en) * 2005-05-13 2006-11-24 Fuji Electric Device Technology Co Ltd Semiconductor device

Also Published As

Publication number Publication date
JP2011018841A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
JP6230660B2 (en) Power semiconductor module
US9171773B2 (en) Semiconductor device
US4996586A (en) Crimp-type semiconductor device having non-alloy structure
EP2503595A1 (en) Power semiconductor module and method of manufacturing a power semiconductor module
JP6897141B2 (en) Semiconductor devices and their manufacturing methods
US20050077599A1 (en) Package type semiconductor device
JP6576108B2 (en) Power semiconductor device
JP2007110002A (en) Semiconductor device
US20240153862A1 (en) Double-side cooled power modules with sintered-silver interposers
JP2018026417A (en) Power semiconductor device
US20230238307A1 (en) Dual-side cooling semiconductor packages and related methods
EP2544229A1 (en) Power semiconductor arrangement
JP5075168B2 (en) Power semiconductor device and method for manufacturing power semiconductor device
WO2017183580A1 (en) Semiconductor device, power module, and method for manufacturing same
JP7139286B2 (en) semiconductor equipment
JP3601529B2 (en) Semiconductor device
TWM595383U (en) A heat dissipation type electronic device
JP2005019798A (en) Mold type semiconductor device and method for manufacturing the same
CN111834307B (en) Semiconductor module
JP7230419B2 (en) Semiconductor device, method for manufacturing semiconductor device
JP2009231685A (en) Power semiconductor device
JP2017079217A (en) Power semiconductor device and manufacturing method therefor
JP6452748B2 (en) Method for manufacturing laminated member
EP2802007A1 (en) Power semiconductor module
JP2015115349A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120824

R151 Written notification of patent or utility model registration

Ref document number: 5075168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250