JP5074931B2 - Vehicle coolant regenerator - Google Patents

Vehicle coolant regenerator Download PDF

Info

Publication number
JP5074931B2
JP5074931B2 JP2008002040A JP2008002040A JP5074931B2 JP 5074931 B2 JP5074931 B2 JP 5074931B2 JP 2008002040 A JP2008002040 A JP 2008002040A JP 2008002040 A JP2008002040 A JP 2008002040A JP 5074931 B2 JP5074931 B2 JP 5074931B2
Authority
JP
Japan
Prior art keywords
liquid
regeneration
pipe
storage container
old
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008002040A
Other languages
Japanese (ja)
Other versions
JP2009018867A (en
Inventor
浩央 望月
健之 永井
義也 海野
哲央 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIHON CHEMICAL INDUSTRY CO., LTD
MK Seiko Co Ltd
Original Assignee
NIHON CHEMICAL INDUSTRY CO., LTD
MK Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIHON CHEMICAL INDUSTRY CO., LTD, MK Seiko Co Ltd filed Critical NIHON CHEMICAL INDUSTRY CO., LTD
Priority to JP2008002040A priority Critical patent/JP5074931B2/en
Publication of JP2009018867A publication Critical patent/JP2009018867A/en
Application granted granted Critical
Publication of JP5074931B2 publication Critical patent/JP5074931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)

Description

本発明は、自動車などの車両用エンジンの冷却液をラジエータなどの冷却水系から抜き出して再生処理して用いるための車両用冷却液再生装置に関する。   The present invention relates to a vehicular coolant regenerating apparatus for extracting a coolant from a vehicle engine such as an automobile from a cooling water system such as a radiator and performing a regeneration process.

自動車に搭載された水冷式エンジンは、エンジンで発生した熱を冷却液に伝え、この熱をラジエータ(放熱器)から大気に放散するようにしている。ところで、従来、冷却液の交換は、ラジエータの冷却液注入口(ラジエータフィラー)のキャップ及びエンジンとラジエータそれぞれのドレンプラグを外し、両ドレンからそれぞれ古い冷却液を排出して、水道水でラジエータ内を洗浄し、次に、前記ドレンプラグをそれぞれ装着して、ラジエータの冷却液注入口から新しい冷却液をエンジン内とラジエータ内とに充填する、という工程で実施されている。しかし、ラジエータから抜き出した旧液を廃棄するには、所定の希釈処理を行わなければならないなど手間がかかる。従って、旧液の廃棄量はできるだけ少ないことが好ましい。この点に鑑み、特許文献1では、ラジエータから抜き出した旧液を一旦クッションタンクに貯留し、所定量ずつろ過して再生し、これを再びラジエータ内に充填して使用する技術が開示されている。
特開2005−22739号公報
A water-cooled engine mounted on an automobile transmits heat generated by the engine to a coolant, and dissipates this heat from a radiator (radiator) to the atmosphere. By the way, conventionally, replacement of the coolant has been done by removing the cap of the coolant inlet (radiator filler) of the radiator and the drain plugs of the engine and the radiator, and discharging the old coolant from both drains, and using tap water in the radiator. Next, the drain plugs are respectively mounted, and new coolant is filled into the engine and the radiator from the coolant coolant inlet of the radiator. However, in order to discard the old liquid extracted from the radiator, it takes time and effort to perform a predetermined dilution process. Therefore, it is preferable that the waste amount of the old liquid is as small as possible. In view of this point, Patent Document 1 discloses a technique in which old liquid extracted from a radiator is once stored in a cushion tank, filtered and regenerated by a predetermined amount, and filled again into the radiator for use. .
JP-A-2005-22739

特許文献1に開示された技術は、ポンプによってラジエータ内の旧液を押し出し、押し出した旧液を大気開放されたクッションタンク内で再生用の添加剤と接触させ、さらに、ろ過容器でろ過して、ラジエータ内に再生液を送り込むようにしている。   In the technique disclosed in Patent Document 1, the old liquid in the radiator is pushed out by a pump, the old liquid that has been pushed out is brought into contact with a regenerating additive in a cushion tank that is open to the atmosphere, and further filtered through a filtration container. The regenerating liquid is fed into the radiator.

しかし、この技術においては、ポンプによって、ラジエータ内に再生液を送り込み、それによって旧液を押し出すようにしているため、フィルタを通過する際の速度が限られ、ろ過処理に時間がかかる。また、特許文献1では、クッションタンクに再生用の添加剤の充填機構を連結し、ろ過処理する前の旧液に添加剤を添加している。このため、ろ過容器に送り込まれた際には、旧液中のさび等に添加剤が付着し、そのままフィルタに捕捉されてしまう場合もあり、添加剤の有効利用の点でも課題がある。   However, in this technique, since the regeneration liquid is fed into the radiator by the pump and the old liquid is pushed out by the pump, the speed when passing through the filter is limited, and the filtration process takes time. Moreover, in patent document 1, the filling mechanism of the additive for reproduction | regeneration is connected with a cushion tank, and the additive is added to the old liquid before filtering. For this reason, when it is sent to the filtration container, the additive may adhere to rust or the like in the old liquid and be captured by the filter as it is, and there is a problem in terms of effective use of the additive.

本発明は上記に鑑みなされたものであり、従来よりも短時間で効率よく冷却液の交換作業を行うことができる車両用冷却液再生装置を提供することを課題とする。また、本発明は、従来よりも添加剤の有効利用を図ることができる車両用冷却液再生装置を提供することを課題とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a vehicle coolant regenerator capable of performing a coolant replacement operation in a shorter time than in the prior art. Another object of the present invention is to provide a vehicle coolant regenerator capable of more effectively using additives than in the prior art.

上記課題を解決するため、請求項1記載の本発明では、旧液流入口と再生液流出口とを備え、内部にろ過フィルタが設けられたろ過容器と、
再生液流入口と再生液流出口とを備えた再生液貯留容器と、
車両の冷却水系と前記ろ過容器の旧液流入口とを結び、前記冷却水系内の旧液をろ過容器内に取り込むための旧液取り込み管と、
前記ろ過容器の再生液流出口と前記再生液貯留容器の再生液流入口とを結び、再生液を前記再生液貯留容器内に取り込むための再生液取り込み管と、
前記再生液貯留容器の再生液流出口と前記冷却水系とを結び、前記再生液貯留容器内に貯留された再生液を前記冷却水系内に送り込むための再生液供給管と、
前記再生液取り込み管中に配置され、前記再生液貯留容器から前記冷却水系内に再生液を送り込む際に、ろ過容器側への逆流を防止する第1の逆止弁と、
前記再生液供給管中に配置され、前記冷却水系から前記旧液取り込み管を経て前記ろ過容器に旧液を取り込む際に、再生液供給管を通じての逆流を防止する第2の逆止弁と、
前記再生液貯留容器に接続され、再生液貯留容器内を加圧・減圧し、ろ過容器からの再生液の取り込みと、冷却水系内への送り込みとを行う加圧・減圧手段と
を備えることを特徴とする車両用冷却液再生装置を提供する。
請求項2記載の本発明では、前記再生液貯留容器の再生液流出口と再生液流入口とは、再生液貯留容器に形成された一つの再生液流出入口が兼用した構成であり、
前記再生液取り込み管と前記再生液供給管とは、前記再生液流出入口からろ過容器又は冷却水系に至る途中までは一つの再生液流出入管で兼用されており、途中に設けられた分岐部からろ過容器までの再生液取り込み管中に前記第1の逆止弁が配設され、分岐部から冷却水系までの再生液供給管中に前記第2の逆止弁が配設されていることを特徴とする請求項1記載の車両用冷却液再生装置を提供する。
請求項3記載の本発明では、前記再生液貯留容器に再生処理用の添加剤を添加可能に、添加剤充填機構が連結されていることを特徴とする請求項1又は2記載の車両用冷却液再生装置を提供する。
請求項4記載の本発明では、前記加圧・減圧手段は、高圧流体を供給するコンプレッサ、エジェクタ、複数の電磁弁、及び該電磁弁の開閉制御を行う制御装置を備えてなり、前記制御装置により、高圧流体を前記再生液貯留容器内に供給するように電磁弁を切り換えて加圧し、エジェクタから高圧流体を排出するように電磁弁を切り換えて前記再生液貯留容器内を減圧する構成であることを特徴とする請求項1〜3のいずれか1に記載の車両用冷却液再生装置を提供する。
請求項5記載の本発明では、前記再生液貯留容器内の再生液の水位を検出する水位検出センサを備え、前記加圧・減圧手段の制御装置が、検出された水位に基づき、前記電磁弁の切り換えタイミングを調整して制御可能であることを特徴とする請求項4記載の車両用冷却液再生装置を提供する。
請求項6記載の本発明では、前記再生液供給管に、圧力リリーフ弁が設けられていると共に、該圧力リリーフ弁の開弁動作に伴って流出した再生液を再生装置の系内のいずれかに還流させる再生液還流配管が設けられていることを特徴とする請求項1〜5のいずれか1に記載の車両用冷却液再生装置を提供する。
請求項7記載の本発明では、前記再生液還流配管が、前記圧力リリーフ弁と前記添加剤充填機構との間に配設されていることを特徴とする請求項6記載の車両用冷却液再生装置を提供する。
請求項8記載の本発明では、前記旧液取り込み管と前記再生液供給管とは、前記冷却水系を構成するラジエータのラジエータフィラーに接続される接続管に連結されることを特徴とする請求項1〜7のいずれか1に記載の車両用冷却液再生装置を提供する。
請求項9記載の本発明では、前記接続管は、内筒及び外筒からなる二重筒構造で形成され、
前記旧液取り込み管が、前記接続管の内筒又は外筒のうち、ラジエータ内の旧液取り込み用として使用されるいずれか一方に接続され、
前記再生液供給管が、前記接続管の内筒又は外筒のうち、ラジエータ内への再生液送り込み用として使用される他方に接続されて配設されることを特徴とする請求項8記載の車両用冷却液再生装置を提供する。
請求項10記載の本発明では、前記接続管を構成する内筒及び外筒は、内筒先端が外筒先端よりも突出し、ラジエータ内の旧液中に挿入可能であり、内筒が旧液取り込み用に使用され、外筒が再生液送り込み用に使用される構成であることを特徴とする請求項9記載の車両用冷却液再生装置を提供する。
In order to solve the above-mentioned problem, in the present invention according to claim 1, a filtration container having an old liquid inlet and a regenerated liquid outlet and provided with a filtration filter therein,
A regenerative liquid storage container having a regenerative liquid inlet and a regenerative liquid outlet;
Connecting the cooling water system of the vehicle and the old liquid inlet of the filtration container, and an old liquid intake pipe for taking the old liquid in the cooling water system into the filtration container;
Connecting the regeneration liquid outlet of the filtration container and the regeneration liquid inlet of the regeneration liquid storage container, and a regeneration liquid intake pipe for taking the regeneration liquid into the regeneration liquid storage container;
Regenerating liquid supply pipe for connecting the regenerating liquid outlet of the regenerating liquid storage container and the cooling water system, and feeding the regenerating liquid stored in the regenerating liquid storage container into the cooling water system;
A first check valve that is disposed in the regenerative liquid intake pipe and prevents backflow to the filtration container side when the regenerated liquid is sent from the regenerative liquid storage container into the cooling water system;
A second check valve that is disposed in the regenerative liquid supply pipe and prevents backflow through the regenerative liquid supply pipe when the old liquid is taken into the filtration container from the cooling water system via the old liquid intake pipe;
A pressurizing / depressurizing means connected to the regenerative liquid storage container, pressurizing and depressurizing the regenerative liquid storage container, and taking in the regenerative liquid from the filtration container and feeding it into the cooling water system; A vehicular coolant regenerator is provided.
In the present invention according to claim 2, the regeneration liquid outlet and the regeneration liquid inlet of the regeneration liquid storage container are configured so that one regeneration liquid outlet and outlet formed in the regeneration liquid storage container are combined,
The regeneration liquid intake pipe and the regeneration liquid supply pipe are shared by a single regeneration liquid inflow / outflow pipe from the regeneration liquid outflow inlet to the middle of the filtration container or the cooling water system, and from a branch portion provided in the middle The first check valve is disposed in the regenerated liquid intake pipe to the filtration container, and the second check valve is disposed in the regenerated liquid supply pipe from the branch portion to the cooling water system. A vehicle coolant regenerator according to claim 1 is provided.
According to a third aspect of the present invention, there is provided a cooling system for a vehicle according to the first or second aspect, wherein an additive filling mechanism is connected to the regenerated liquid storage container so that an additive for a regeneration process can be added. A liquid regenerating apparatus is provided.
According to a fourth aspect of the present invention, the pressurizing / depressurizing means includes a compressor for supplying a high-pressure fluid, an ejector, a plurality of electromagnetic valves, and a control device that controls opening and closing of the electromagnetic valves. Thus, the electromagnetic valve is switched and pressurized so as to supply the high pressure fluid into the regenerated liquid storage container, and the inside of the regenerative liquid storage container is depressurized by switching the electromagnetic valve so as to discharge the high pressure fluid from the ejector. The vehicle coolant regenerator according to any one of claims 1 to 3 is provided.
In this invention of Claim 5, it has the water level detection sensor which detects the water level of the reproduction | regeneration liquid in the said reproduction | regeneration liquid storage container, and the control apparatus of the said pressurization / pressure reduction means is said electromagnetic valve based on the detected water level. The vehicle coolant regenerator according to claim 4, characterized in that it can be controlled by adjusting the switching timing.
In the present invention described in claim 6, a pressure relief valve is provided in the regeneration fluid supply pipe, and the regeneration fluid that has flowed out in response to the opening operation of the pressure relief valve is any of the systems of the regeneration device. 6. A vehicle coolant regeneration device according to claim 1, further comprising a regeneration fluid reflux pipe for recirculating the coolant.
According to a seventh aspect of the present invention, in the present invention, the regeneration fluid recirculation pipe is disposed between the pressure relief valve and the additive filling mechanism. Providing equipment.
In the present invention according to claim 8, the old liquid intake pipe and the regenerated liquid supply pipe are connected to a connection pipe connected to a radiator filler of a radiator constituting the cooling water system. 1. A vehicle coolant regeneration device according to any one of 1 to 7 is provided.
In this invention of Claim 9, the said connecting pipe is formed with the double cylinder structure which consists of an inner cylinder and an outer cylinder,
The old liquid uptake pipe is connected to any one of the inner cylinder or the outer cylinder of the connection pipe used for taking up the old liquid in the radiator,
9. The regeneration liquid supply pipe according to claim 8, wherein the regeneration liquid supply pipe is connected to the other one of the inner cylinder and the outer cylinder of the connection pipe that is used for feeding the regeneration liquid into the radiator. A vehicle coolant regenerator is provided.
In the tenth aspect of the present invention, the inner cylinder and the outer cylinder constituting the connection pipe have an inner cylinder tip protruding beyond the outer cylinder tip, and can be inserted into the old liquid in the radiator. The vehicle coolant regenerator according to claim 9, wherein the vehicle coolant regenerator is used for intake and the outer cylinder is used for feeding regenerated fluid.

本発明では、ろ過処理された再生液を貯留する再生液貯留容器を備え、この再生液貯留容器に加圧・減圧手段を連結した構成であり、加圧と減圧の両方を行うために、本発明の車両用冷却液再生装置を含む系内は、加圧・減圧手段の動作中はほぼ密閉された経路になっている。これにより、旧液は、加圧・減圧手段によって減圧した場合にろ過容器に吸い込まれてろ過処理される。すなわち、従来のように再生液を送り込んで旧液を押し出す構成ではなく、旧液を積極的に吸い込む構成であるため、フィルタの通過時間(ろ過処理時間)を短縮化でき、フィルタに捕捉される残液量が少なくなり、冷却液交換効率を高めることができる。また、本発明では、ろ過処理した再生液を保持する再生液貯留容器に添加剤充填機構を連結し、ろ過処理後の再生液に添加剤を添加する構成であるため、添加剤がさび等に付着したままろ過用のフィルタに捕捉されることもなく、添加剤が有効に利用される。   In the present invention, a regenerative liquid storage container for storing the regenerated liquid that has been filtered is provided, and a pressurization / decompression means is connected to the regenerative liquid storage container. The system including the vehicle coolant regenerator of the invention has a substantially sealed path during the operation of the pressurizing / depressurizing means. Thus, the old liquid is sucked into the filtration container and filtered when the pressure is reduced by the pressurizing / depressurizing means. That is, it is not a configuration in which the regeneration solution is fed and the old solution is pushed out as in the conventional case, but the old solution is actively sucked in, so that the filter passage time (filtering time) can be shortened and captured by the filter. The amount of the remaining liquid is reduced, and the cooling liquid replacement efficiency can be increased. Further, in the present invention, the additive filling mechanism is connected to the regenerated liquid storage container that holds the regenerated liquid subjected to the filtration treatment, and the additive is added to the regenerated liquid after the filtration treatment. The additive is effectively used without being captured by the filter for filtration while adhering.

以下、図面に示した実施の形態に基づき本発明をさらに詳細に説明する。図1は、本実施形態の車両用冷却液再生装置1の全体構造を模式的に示す図である。この図に示したように、本実施形態の再生装置1は、ろ過容器10と、再生液貯留容器20と、加圧・減圧手段30とを有して構成される。   Hereinafter, the present invention will be described in more detail based on the embodiments shown in the drawings. FIG. 1 is a diagram schematically showing the overall structure of the vehicle coolant regenerator 1 of the present embodiment. As shown in this figure, the regenerator 1 of the present embodiment is configured to include a filtration container 10, a regenerative liquid storage container 20, and pressurizing / depressurizing means 30.

ろ過容器10は、密閉容器からなり、内部にろ過用のフィルタ11が配設されている。フィルタ11の構造は限定されるものではなく、例えば、円筒形に形成され、その周壁の外部から内部へと旧液を通過させることにより、旧液内に含まれるさびや金属イオン凝集物等の不純物が除去されるものである。ろ過容器10内は、このフィルタ11の周壁を隔てて、周壁の外側に位置する未処理の旧液側と周壁の内側に位置するろ過処理された再生液側に分かれ、旧液側において、旧液流入口12が設けられ、再生液側において再生液流出口13が設けられている。   The filtration container 10 is composed of a sealed container, and a filter 11 for filtration is disposed inside. The structure of the filter 11 is not limited. For example, the filter 11 is formed in a cylindrical shape, and by passing the old liquid from the outside to the inside of the peripheral wall, rust, metal ion aggregates, and the like contained in the old liquid Impurities are removed. The inside of the filtration container 10 is divided into an untreated old liquid side positioned outside the peripheral wall and a filtered regenerated liquid side positioned inside the peripheral wall, with the peripheral wall of the filter 11 being separated. A liquid inlet 12 is provided, and a regeneration liquid outlet 13 is provided on the regeneration liquid side.

ろ過容器10の旧液流入口12には、旧液取り込み管40の一端が連結される。旧液取り込み管40の他端は、車両の冷却水系を構成するラジエータ100又はリザーバタンク110に連結されるが、本実施形態では、後述の接続管50を介してこれらに接続される。再生液流出口13には、再生液取り込み管41の一端が連結されるが、これについては後述する。   One end of the old liquid intake pipe 40 is connected to the old liquid inlet 12 of the filtration container 10. The other end of the old liquid intake pipe 40 is connected to the radiator 100 or the reservoir tank 110 constituting the cooling water system of the vehicle. In the present embodiment, the other liquid intake pipe 40 is connected to these via a connection pipe 50 described later. One end of a regeneration liquid intake pipe 41 is connected to the regeneration liquid outlet 13, which will be described later.

再生液貯留容器20は、再生液流出入口21が形成されている。再生液流出入口21には、再生液流出入管42の一端が連結される。再生液流出入管42の他端側に分岐部43が設けられており、この分岐部43に、上記したろ過容器10に一端が連結された再生液取り込み管41の他端が接続されている。分岐部43には、さらに、一端が後述の接続管50を介して車両の冷却水系を構成するラジエータ100又はリザーバタンク110に連結される再生液供給管44の他端が連結される。そして、再生液取り込み管41における、分岐部43とろ過容器10の再生液流出口13との間に第1の逆止弁41aが配設され、再生液供給管44における、分岐部43と接続管50との間に第2の逆止弁44aが配設される。第1の逆止弁41aは、減圧時に、ろ過容器10側から再生液流出入管42側への再生液の流入を許容し、加圧時に、ろ過容器10側への逆流を防止するように設定されており、第2の逆止弁44aは、加圧時に、再生液流出入管42側から再生液供給管44側への再生液の流入を許容し、減圧時に、再生液流出入管42側への逆流を防止するように設定されている。なお、本実施形態では、加圧・減圧手段30を駆動させて冷却液の再生処理を行う際には、再生装置1の系内をほぼ密閉して実施する。このため、系内圧力が高くなりすぎた際の安全のため、適宜箇所、本実施形態では再生液供給管44の中途に圧力リリーフ弁44bを設けている。   The regeneration solution storage container 20 has a regeneration solution outlet 21. One end of a regenerant liquid inflow / outflow pipe 42 is connected to the regenerant liquid outflow inlet 21. A branch part 43 is provided on the other end side of the regenerative liquid inflow / outflow pipe 42, and the other end of the regenerative liquid intake pipe 41 having one end connected to the filtration container 10 is connected to the branch part 43. Further, one end of the regenerative liquid supply pipe 44 connected to the radiator 100 or the reservoir tank 110 constituting the cooling water system of the vehicle is connected to the branch portion 43 via a connection pipe 50 described later. A first check valve 41 a is disposed between the branch part 43 and the regeneration liquid outlet 13 of the filtration container 10 in the regeneration liquid intake pipe 41, and is connected to the branch part 43 in the regeneration liquid supply pipe 44. A second check valve 44 a is disposed between the pipe 50 and the second check valve 44 a. The first check valve 41a is set so as to allow inflow of the regenerated liquid from the filtration container 10 side to the regenerative liquid inflow / outflow pipe 42 side at the time of depressurization and prevent back flow to the filtration container 10 side at the time of pressurization. The second check valve 44a allows the regeneration liquid to flow from the regeneration liquid inflow / outflow pipe 42 side to the regeneration liquid supply pipe 44 side during pressurization, and to the regeneration liquid outflow / inflow pipe 42 side during decompression. It is set to prevent backflow. In the present embodiment, when the coolant regeneration process is performed by driving the pressurizing / depressurizing unit 30, the system of the regeneration apparatus 1 is substantially sealed. For this reason, a pressure relief valve 44 b is provided at an appropriate place, in the present embodiment, in the middle of the regenerative liquid supply pipe 44 for safety when the system pressure becomes too high.

ここで、本実施形態では、ろ過容器10によりろ過処理された再生液は、減圧時においては、再生液取り込み管41から分岐部43を経て再生液流出入管42を通過して再生液貯留容器20に取り込まれ、加圧時においては、再生液貯留容器20から再生液流出入管42に流出し、分岐部43を経て再生液供給管44に送り込まれる。つまり、分岐部43と再生液貯留容器20の再生液流出入口21とを結ぶ再生液流出入管42は、減圧時及び加圧時共に再生液が通過する構成となっている。これにより、再生液貯留容器20に再生液流出入口21を一つ形成すればよく、構成が簡易となるが、再生液貯留容器20に再生液流入口と再生液流出口をそれぞれ形成し、分岐部43を用いずに、前者に再生液取り込み管41を、後者に再生液供給管44を直接接続する構成とすることも可能である。   Here, in the present embodiment, the regenerated liquid filtered by the filtration container 10 passes through the regenerative liquid inflow / outflow pipe 42 from the regenerated liquid intake pipe 41 through the branch portion 43 during decompression, and then regenerated liquid storage container 20. At the time of pressurization, the regenerated liquid storage container 20 flows out into the regenerated liquid inflow / outflow pipe 42 and is sent to the regenerated liquid supply pipe 44 through the branch portion 43. That is, the regenerative liquid inflow / outflow pipe 42 connecting the branch portion 43 and the regenerative liquid outflow inlet 21 of the regenerative liquid storage container 20 is configured to allow the regenerative liquid to pass both during decompression and pressurization. Accordingly, it is only necessary to form one regenerative liquid inflow / outlet 21 in the regenerative liquid storage container 20, which simplifies the configuration. Instead of using the unit 43, it is possible to directly connect the regenerating liquid intake pipe 41 to the former and the regenerating liquid supply pipe 44 to the latter.

再生液貯留容器20には、貯留される再生液の水位を検出する水位検出センサが設けられている。本実施形態では再生液貯留容器20に加圧・減圧手段30を連結し、再生液貯留容器20を加圧又は減圧して再生液の供給、旧液の取り込みを行う構成であるため、再生液貯留容器20内の液量が少なすぎると加圧操作が行いにくくなり、液量が多すぎると減圧操作が行いにくくなる。このため、再生液貯留容器20内において液量を検出し、上限、下限の範囲内でできるだけ中立位置を保つように加圧運転、減圧運転のタイミングを調整するために設けられるものである。本実施形態では、磁石を内蔵したフロート25を配置し、液面の上限位置と下限位置に対応させて、それぞれ近接スイッチ26,27を配設した構成であり、フロート25が上昇又は下降して上限位置又は下限位置に至ると近接スイッチ26又は27がそれらを検出し、その検出信号が、加圧・減圧手段30の制御装置34に送られて所定の制御が行われる。水位検出センサは、このようなフロート25と近接スイッチ26,27を用いるものに限られないことはもちろんであり、他の形式の液面計、あるいは、圧力センサなどを用いることもできる。   The regenerative liquid storage container 20 is provided with a water level detection sensor for detecting the water level of the regenerated liquid stored. In the present embodiment, the pressurizing / depressurizing means 30 is connected to the regenerative liquid storage container 20, and the regenerative liquid storage container 20 is pressurized or depressurized to supply the regenerative liquid and take in the old liquid. When the amount of liquid in the storage container 20 is too small, it is difficult to perform a pressurizing operation, and when the amount of liquid is too large, it is difficult to perform a depressurizing operation. For this reason, it is provided to detect the amount of liquid in the regenerative liquid storage container 20 and adjust the timing of the pressurization operation and the decompression operation so as to keep the neutral position as much as possible within the upper and lower limits. In this embodiment, a float 25 containing a magnet is arranged, and proximity switches 26 and 27 are arranged corresponding to the upper limit position and the lower limit position of the liquid level, respectively, and the float 25 is raised or lowered. When the upper limit position or the lower limit position is reached, the proximity switch 26 or 27 detects them, and the detection signal is sent to the control device 34 of the pressurizing / depressurizing means 30 to perform predetermined control. The water level detection sensor is not limited to the one using the float 25 and the proximity switches 26 and 27, and other types of liquid level gauges or pressure sensors can be used.

再生液貯留容器20には、加圧・減圧手段30が連結される。加圧・減圧手段30は、再生液貯留容器20内の加圧・減圧を行える限り、その構成は限定されるものではない。本実施形態の加圧・減圧手段30は、高圧流体(例えば、高圧エア)を送るコンプレッサ31、レギュレータ32、エジェクタ33、電磁弁SV1〜SV3、及びこれらの駆動制御を行う制御装置34を備えて構成される。制御装置34により、電磁弁SV3,SV2を閉弁し、電磁弁SV1を開弁すると、再生液貯留容器20内に高圧エアが送られて加圧される。電磁弁SV1を閉弁し、電磁弁SV2,SV3を開弁すると、高圧エアがエジャクタ33から排出されるため、再生液貯留容器20内の空気は電磁弁SV2を経由して吸引され、減圧される。   A pressurizing / depressurizing means 30 is connected to the regenerated liquid storage container 20. The configuration of the pressurizing / depressurizing means 30 is not limited as long as the pressurizing / depressurizing in the regenerated liquid storage container 20 can be performed. The pressurizing / depressurizing means 30 of the present embodiment includes a compressor 31 that sends a high-pressure fluid (for example, high-pressure air), a regulator 32, an ejector 33, electromagnetic valves SV1 to SV3, and a control device 34 that performs drive control thereof. Composed. When the control device 34 closes the solenoid valves SV3 and SV2 and opens the solenoid valve SV1, high-pressure air is sent into the regenerated liquid storage container 20 and pressurized. When the solenoid valve SV1 is closed and the solenoid valves SV2 and SV3 are opened, the high-pressure air is discharged from the ejector 33, so that the air in the regenerated liquid storage container 20 is sucked through the solenoid valve SV2 and depressurized. The

また、再生液貯留容器20には、添加剤充填機構60が連結される。添加剤充填機構60は、再生用の添加剤を投入するケミカル投入容器61と、該ケミカル投入容器61と再生液貯留容器20との間に配管される投入管62と、該投入管62に介在配設される電磁弁SV4とを備えてなる。電磁弁SV4は、上記した加圧・減圧手段30の制御装置34によって開閉制御される。具体的には、添加剤を投入する際には、加圧・減圧手段30を駆動し、電磁弁SV1を閉弁して、電磁弁SV2,SV3及びSV4を開弁する。この状態でコンプレッサ31を駆動すると、再生液貯留容器20内が減圧されるため、添加剤がケミカル投入容器61から吸引され、該再生液貯留容器30内に投入される。添加剤充填機構60は、ろ過容器10に接続し、ろ過処理前の旧液に添加剤を投入する構成とすることも可能であるが、この場合には、添加剤が旧液中に含まれるさび等に付着し、そのままフィルタ11に捕捉されることで、無駄が生じる可能性がある。従って、本実施形態のように、ろ過処理後の再生液に添加剤が投入される構成とすると、添加剤の無駄がなくなって有効に活用できるため好ましい。   Further, an additive filling mechanism 60 is connected to the regenerated liquid storage container 20. The additive filling mechanism 60 includes a chemical charging container 61 for charging an additive for regeneration, a charging pipe 62 provided between the chemical charging container 61 and the regenerated liquid storage container 20, and an intervening pipe 62. And an electromagnetic valve SV4 provided. The solenoid valve SV4 is controlled to be opened and closed by the controller 34 of the pressurizing / depressurizing means 30 described above. Specifically, when adding the additive, the pressurizing / depressurizing means 30 is driven, the electromagnetic valve SV1 is closed, and the electromagnetic valves SV2, SV3 and SV4 are opened. When the compressor 31 is driven in this state, the inside of the regenerated liquid storage container 20 is depressurized, so that the additive is sucked from the chemical charging container 61 and charged into the regenerated liquid storage container 30. The additive filling mechanism 60 may be connected to the filtration container 10 and may be configured to add the additive to the old liquid before the filtration treatment. In this case, the additive is included in the old liquid. If it adheres to rust or the like and is captured by the filter 11 as it is, waste may occur. Therefore, it is preferable to use a configuration in which the additive is added to the regenerated liquid after the filtration treatment as in this embodiment because the additive is not wasted and can be effectively used.

接続管50は、車両の冷却水系を構成するラジエータ100のラジエータフィラー101に装着可能な形状、構造を備えた連結部53を有して構成されている。本実施形態では、接続管50は、図2に示したように、内筒51と外筒52との二重筒構造で形成されている。このうち、内筒51は、先端部51bが外筒52の先端部52bより突出しており、ラジエータ100内に挿入することで、旧液を直接吸い込むことができるようになっている。すなわち、本実施形態では、内筒51が旧液吸い込み用として使用され、外筒52が再生液供給用として使用される。旧液を確実に吸い込むためにはかかる構成が好ましいが、特開2002−70556号公報に開示されているように、内筒51を再生液供給用として使用し、外筒52を旧液吸い込み用として使用することも可能である。   The connecting pipe 50 includes a connecting portion 53 having a shape and a structure that can be attached to the radiator filler 101 of the radiator 100 that constitutes the cooling water system of the vehicle. In the present embodiment, the connection pipe 50 is formed in a double cylinder structure of an inner cylinder 51 and an outer cylinder 52 as shown in FIG. Among these, the inner cylinder 51 has a front end portion 51 b protruding from the front end portion 52 b of the outer cylinder 52, and the old liquid can be directly sucked by being inserted into the radiator 100. That is, in this embodiment, the inner cylinder 51 is used for sucking in old liquid, and the outer cylinder 52 is used for supplying regeneration liquid. Such a configuration is preferable for reliably sucking in the old liquid. However, as disclosed in JP-A-2002-70556, the inner cylinder 51 is used for supplying the regeneration liquid, and the outer cylinder 52 is used for sucking the old liquid. It can also be used.

内筒51の他端部には、旧液取り込み管40が接続され、外筒52の他端部には再生液供給管44が接続される。内筒51と旧液取り込み管40、並びに、外筒52と再生液供給管44は、このように別々の部材から構成し、両者を接続するようにしてもよいが、内筒51と旧液取り込み管40が一つの管路からなり、また、外筒52と再生液供給管44が一つの管路からなるもので、中途で分岐させた構造とすることもできる。   An old liquid intake pipe 40 is connected to the other end of the inner cylinder 51, and a regeneration liquid supply pipe 44 is connected to the other end of the outer cylinder 52. The inner cylinder 51 and the old liquid intake pipe 40, and the outer cylinder 52 and the regenerated liquid supply pipe 44 may be configured by separate members as described above. The intake tube 40 is composed of a single conduit, and the outer cylinder 52 and the regenerating liquid supply tube 44 are composed of a single conduit, and the structure can be divided in the middle.

次に、本実施形態の車両用冷却液再生装置1を用いて、車両の冷却系内の冷却液を再生、交換する手順を説明する。まず、ラジエータ100内の冷却液(旧液)の再生処理を始める前の準備工程として、電磁弁SV1を閉じ、電磁弁SV4,SV2,SV3を開弁し、コンプレッサ31を駆動させて吸引を行う。これにより、ケミカル投入容器61内の添加剤が、投入管62を経て、再生液貯留容器20内に投入される。投入量は、例えば、駆動時間により制御する(例えば、10秒間)。   Next, a procedure for regenerating and replacing the coolant in the vehicle cooling system using the vehicle coolant regenerating apparatus 1 of the present embodiment will be described. First, as a preparatory process before starting the regeneration process of the coolant (old liquid) in the radiator 100, the solenoid valve SV1 is closed, the solenoid valves SV4, SV2, SV3 are opened, and the compressor 31 is driven to perform suction. . As a result, the additive in the chemical charging container 61 is charged into the regenerated liquid storage container 20 through the charging pipe 62. The input amount is controlled by, for example, driving time (for example, 10 seconds).

次に、リザーバタンク110内の冷却液(旧液)を抜き取る。この際、旧液取り込み管40及び再生液供給管44を共に、上記接続管50に連結し、その内筒51の先端をリザーバタンク110内に挿入して抜き取ってもよいが、本実施形態では、リザーバタンク110から抜き取る際には、旧液取り込み管40をリザーバタンク110専用の抜き取りチューブ46に連結して行うようにしている(図1参照)。これにより、接続管50は、ラジエータフィラー101に連結したままにしておけばよく、該接続管50をラジエータフィラー101とリザーバタンク110の挿入口との間で行き来させる手間が省ける。   Next, the cooling liquid (old liquid) in the reservoir tank 110 is extracted. At this time, both the old liquid intake pipe 40 and the regenerated liquid supply pipe 44 may be connected to the connection pipe 50 and the tip of the inner cylinder 51 may be inserted into the reservoir tank 110 and removed. When extracting from the reservoir tank 110, the old liquid intake tube 40 is connected to an extraction tube 46 dedicated to the reservoir tank 110 (see FIG. 1). As a result, the connecting pipe 50 may be kept connected to the radiator filler 101, and the labor of moving the connecting pipe 50 between the radiator filler 101 and the insertion port of the reservoir tank 110 can be saved.

旧液取り込み管40を抜き取りチューブ46に連結した状態で、電磁弁SV1,SV4を閉じ、電磁弁SV2,SV3を開弁して、コンプレッサ31を駆動してエジェクタ33から空気を排出して再生液貯留容器20内を減圧する。これにより、リザーバタンク110内の旧液が旧液取り込み管40を経由して、ろ過容器10内に取り込まれ、さらに、内部に配設されたフィルタ11を外側から内側へ通過してろ過され、再生液貯留容器20内に吸引される。リザーバタンク110内の旧液の抜き取りは、再生液貯留容器20内の水位が、上限の近接スイッチ26により検出されるまで行う。再生液貯留容器20内には既に再生用の添加剤が投入されているため、再生液貯留容器20内に流入するろ過処理された再生液は添加剤と接触して処理される。なお、再生用の添加剤としては、アゾール類、リン酸、リン酸塩などを含んだものを用いることができる。   With the old liquid intake pipe 40 connected to the extraction tube 46, the solenoid valves SV1 and SV4 are closed, the solenoid valves SV2 and SV3 are opened, the compressor 31 is driven and air is discharged from the ejector 33 to regenerate the liquid. The inside of the storage container 20 is depressurized. Thereby, the old liquid in the reservoir tank 110 is taken into the filtration container 10 via the old liquid intake pipe 40, and further filtered through the filter 11 disposed inside from the outside to the inside. The regenerated liquid storage container 20 is aspirated. The old liquid in the reservoir tank 110 is extracted until the water level in the regenerated liquid storage container 20 is detected by the upper limit proximity switch 26. Since the regeneration additive has already been introduced into the regeneration liquid storage container 20, the filtered regeneration liquid flowing into the regeneration liquid storage container 20 is processed in contact with the additive. In addition, as an additive for reproduction | regeneration, what contains azoles, phosphoric acid, a phosphate, etc. can be used.

上記準備工程が終了したならば、旧液取り込み管40を接続管50の内筒51に接続する。接続管50は、連結部53をラジエータフィラー101に連結し、内筒51の先端をラジエータ100内の旧液内に挿入する。この状態で、加圧・減圧手段30を動作させる。まず、電磁弁SV1を開き、他の全ての電磁弁SV2〜SV4を閉じて、コンプレッサ31の高圧エアを再生液供給容器20に送る。これにより、再生液供給容器20内の再生液は、再生液流出入管42を経た後、第1の逆止弁41aによりろ過容器10方向へは流入できないため、再生液供給管44に流入して、さらに、接続管50の外筒52を経て、ラジエータ100内に充填される。次に、電磁弁SV1を閉じて、電磁弁SV2,SV3を開き、高圧エアをエジェクタ33側に流すと、再生液貯留容器20内が減圧される。これにより、ラジエータ100内の旧液は、再生液供給管44には第2の逆止弁44aが設けられているため、該再生液供給管44に流入せず、接続管50の内筒51及び旧液取り込み管40を経てろ過容器10内に取り込まれ、フィルタ11を外側から内側へと強制的に貫通してろ過処理される。本実施形態では、このように旧液を吸引してろ過処理するため、フィルタ11を迅速に通過でき、同じ量を加圧のみで一方向に循環させて再生処理する場合よりも、処理時間を短くすることができる。   When the preparation step is completed, the old liquid intake tube 40 is connected to the inner cylinder 51 of the connection tube 50. The connecting pipe 50 connects the connecting portion 53 to the radiator filler 101 and inserts the tip of the inner cylinder 51 into the old liquid in the radiator 100. In this state, the pressurizing / depressurizing means 30 is operated. First, the solenoid valve SV1 is opened, all the other solenoid valves SV2 to SV4 are closed, and the high-pressure air of the compressor 31 is sent to the regenerating liquid supply container 20. As a result, the regenerated liquid in the regenerated liquid supply container 20 cannot flow into the filtration container 10 by the first check valve 41a after passing through the regenerated liquid inflow / outflow pipe 42, and therefore flows into the regenerated liquid supply pipe 44. Further, the radiator 100 is filled through the outer cylinder 52 of the connection pipe 50. Next, when the solenoid valve SV1 is closed, the solenoid valves SV2 and SV3 are opened, and high pressure air is allowed to flow to the ejector 33 side, the inside of the regenerated liquid storage container 20 is decompressed. As a result, the old liquid in the radiator 100 does not flow into the regenerated liquid supply pipe 44 because the second check valve 44 a is provided in the regenerated liquid supply pipe 44, and the inner cylinder 51 of the connection pipe 50. And it is taken in into the filtration container 10 through the old liquid taking-in pipe 40, and is forced through the filter 11 from the outside to the inside to be filtered. In this embodiment, since the old liquid is sucked and filtered in this way, the filter 11 can be quickly passed, and the processing time can be made longer than in the case where the same amount is circulated in one direction only by pressurization. Can be shortened.

ろ過処理された再生液は、さらに、再生液取り込み管41及び再生液流出入管42を経由して再生液貯留容器20内に吸い込まれ、添加剤と接触される。この状態で、上記と同様に、電磁弁SV1を開き、電磁弁SV2,SV3を閉じると、再び、再生液貯留容器20内は加圧され、再生液が再生液流出入管42、再生液供給管44及び接続管50の外筒52を経て、ラジエータ100内に充填される。次いで電磁弁SV1を閉じ、電磁弁SV2,SV3を開くと、再び減圧され、旧液が吸引される。以降、加圧と減圧を繰り返す。   The filtered regenerated liquid is further sucked into the regenerated liquid storage container 20 via the regenerated liquid intake pipe 41 and the regenerated liquid inflow / outflow pipe 42 and is brought into contact with the additive. In this state, when the solenoid valve SV1 is opened and the solenoid valves SV2 and SV3 are closed in the same manner as described above, the inside of the regenerated liquid storage container 20 is again pressurized, and the regenerated liquid flows into the regenerated liquid inflow / outflow pipe 42 and the regenerated liquid supply pipe. 44 and the outer cylinder 52 of the connecting pipe 50 are filled into the radiator 100. Next, when the solenoid valve SV1 is closed and the solenoid valves SV2 and SV3 are opened, the pressure is reduced again and the old liquid is sucked. Thereafter, pressurization and decompression are repeated.

加圧と減圧は、制御装置34によるタイマー制御によって電磁弁SV1〜SV4を切換えて実施する。通常は、タイマー制御によって加圧と減圧を繰り返すが、再生液貯留容器20の水位が、近接スイッチ27によって下限に至ったことが検出されたならば、その検出信号が制御装置34に送られ、電磁弁SV1〜SV4を減圧動作用に切り換えて水位を上昇させ、近接スイッチ26によって上限に至ったことが検出されたならば、その検出信号が制御装置34に送られ、電磁弁SV1〜SV4を加圧動作用に切り換えて水位を低下させる。   Pressurization and decompression are performed by switching the solenoid valves SV1 to SV4 by timer control by the control device 34. Normally, pressurization and depressurization are repeated by timer control, but if it is detected that the water level of the regenerative liquid storage container 20 has reached the lower limit by the proximity switch 27, the detection signal is sent to the control device 34, When the solenoid valves SV1 to SV4 are switched to pressure reducing operation to raise the water level and the proximity switch 26 detects that the upper limit is reached, the detection signal is sent to the control device 34, and the solenoid valves SV1 to SV4 are turned on. Switch to pressurization operation to lower the water level.

所定時間、加圧動作と減圧動作を繰り返すことにより、ラジエータ100を含む冷却水系内の旧液は再生液と置換される。再生処理が終了したならば、接続管50をラジエータフィラー101から取り外す。そして、接続管50の先端、すなわち、内筒51及び外筒52の先端部51b,52bを、オイルジョッキ200などに挿入し、加圧・減圧手段30を動作させ、加圧動作、減圧動作を再度所定時間実施する。これにより、ろ過容器10のフィルタ11内、旧液取り込み管40、再生液供給管44、接続管50等に残存している液体が排出される。この際、本実施形態によれば、加圧、減圧を行って排液するため、フィルタ11等に保持されたまま残存する液体が少ない。   By repeating the pressurizing operation and the depressurizing operation for a predetermined time, the old liquid in the cooling water system including the radiator 100 is replaced with the regenerated liquid. When the regeneration process is completed, the connecting pipe 50 is removed from the radiator filler 101. Then, the distal ends of the connecting pipe 50, that is, the distal end portions 51b and 52b of the inner cylinder 51 and the outer cylinder 52 are inserted into the oil mug 200 or the like, and the pressurizing / depressurizing means 30 is operated to perform the pressurizing operation and the decompressing operation. Conduct again for a predetermined time. Thereby, the liquid remaining in the filter 11 of the filtration container 10, the old liquid intake pipe 40, the regenerated liquid supply pipe 44, the connection pipe 50, and the like is discharged. At this time, according to the present embodiment, the liquid is discharged under pressure and pressure reduction, so that there is little liquid remaining while being held in the filter 11 or the like.

なお、上記実施形態においては、系内圧力が高くなりすぎた場合に備えて再生液供給管44の中途に圧力リリーフ弁44bを設けている。しかし、圧力リリーフ弁44bが開放されて実際に再生液が流出すると、再生液の流出量によっては、再生装置1の運転動作が円滑でなくなるおそれもある。このような事態を防止するため、圧力リリーフ弁44bが開放されて再生液が流出した場合には、流出した再生液を、再生装置1の系内に戻すようにすることが好ましい。戻す位置は任意であるが、上記実施形態においては、再生装置1の系内に添加剤を投入できる添加剤充填機構60が設けているため、この添加剤充填機構60を利用することが好ましい。すなわち、再生液を添加剤充填機構60のケミカル投入容器61に戻せば、添加剤を充填する場合と同様の手順で、具体的には、電磁弁SV1を閉弁すると共に、電磁弁SV2,SV3及びSV4を開弁し、この状態でコンプレッサ31を駆動することで、再生液を再生装置1の系内に戻すことができる。   In the above embodiment, the pressure relief valve 44 b is provided in the middle of the regenerated liquid supply pipe 44 in case the system pressure becomes too high. However, when the pressure relief valve 44b is opened and the regeneration liquid actually flows out, the operation of the regeneration device 1 may not be smooth depending on the amount of the regeneration liquid flowing out. In order to prevent such a situation, when the pressure relief valve 44b is opened and the regenerated liquid flows out, it is preferable to return the regenerated liquid that has flowed out into the system of the regenerator 1. The return position is arbitrary, but in the above-described embodiment, since the additive filling mechanism 60 capable of adding the additive into the system of the regenerator 1 is provided, it is preferable to use the additive filling mechanism 60. That is, when the regenerated liquid is returned to the chemical charging container 61 of the additive charging mechanism 60, the electromagnetic valve SV1 is closed and the electromagnetic valves SV2 and SV3 are specifically closed in the same procedure as when the additive is charged. And SV4 is opened and the compressor 31 is driven in this state, whereby the regenerated liquid can be returned into the system of the regenerator 1.

圧力リリーフ弁44bの開放によって流出した再生液をケミカル投入容器61まで戻す手段としては、例えば、図1に示したオイルジョッキ200などでかかる再生液を受け、手作業でケミカル投入容器61に注ぐようにすることもできるが、図3に示したように、圧力リリーフ弁44bとケミカル投入容器61との間に再生液還流配管70を配設し、人手によらず、圧力リリーフ弁44bから流出した再生液が自動的にケミカル投入容器61に還流する構成とすることが好ましい。   As a means for returning the regenerated liquid that has flowed out by opening the pressure relief valve 44b to the chemical charging container 61, for example, the regenerated liquid is received by the oil mug 200 shown in FIG. 1 and poured into the chemical charging container 61 manually. However, as shown in FIG. 3, a regenerated liquid reflux pipe 70 is disposed between the pressure relief valve 44b and the chemical charging container 61, and the pressure relief valve 44b flows out of the hands without being manually handled. It is preferable that the regenerated liquid automatically returns to the chemical charging container 61.

なお、上記説明では、再生液貯留容器20内の上限近くまで吸引してから、加圧工程をまず行い、その後、減圧、加圧を繰り返すようにしているが、この加圧、減圧運転の順序はこれに限定されるものではない。   In the above description, the pressure process is first performed after suctioning to near the upper limit in the regenerated liquid storage container 20, and then the pressure reduction and pressure increase are repeated. Is not limited to this.

図1は、本発明の再生装置の一の実施形態を示す模式図である。FIG. 1 is a schematic diagram showing an embodiment of a playback apparatus of the present invention. 図2は、上記再生装置における接続管を示す図である。FIG. 2 is a diagram showing a connecting pipe in the reproducing apparatus. 図3は、上記実施形態に再生液還流配管を設けた態様を示す模式図である。FIG. 3 is a schematic view showing an aspect in which a regenerant liquid reflux pipe is provided in the embodiment.

符号の説明Explanation of symbols

1 再生装置
10 ろ過容器
11 フィルタ
12 旧液流入口
13 再生液流出口
20 再生液貯留容器
21 再生液流出入口
25 フロート
26,27 近接スイッチ
30 加圧・減圧手段
31 コンプレッサ
33 エジェクタ
34 制御装置
40 旧液取り込み管
41 再生液取り込み管
41a 第1の逆止弁
42 再生液流出入管
43 分岐部
44 再生液供給管
44a 第2の逆止弁
46 抜き取りチューブ
50 接続管
51 内筒
52 外筒
60 添加剤充填機構
61 ケミカル投入容器
62 投入管
70 再生液還流配管
100 ラジエータ
110 リザーバタンク
SV1,SV2,SV3,SV4 電磁弁
DESCRIPTION OF SYMBOLS 1 Regenerator 10 Filtration container 11 Filter 12 Old liquid inlet 13 Regenerated liquid outlet 20 Regenerated liquid storage container 21 Regenerated liquid outlet 25 Float 26,27 Proximity switch 30 Pressurization / decompression means 31 Compressor 33 Ejector 34 Controller 40 Old Liquid intake pipe 41 Regeneration liquid intake pipe 41a First check valve 42 Regeneration liquid inflow / outflow pipe 43 Branch portion 44 Regeneration liquid supply pipe 44a Second check valve 46 Extraction tube 50 Connection pipe 51 Inner cylinder 52 Outer cylinder 60 Additive Filling mechanism 61 Chemical input container 62 Input pipe 70 Recycle liquid recirculation pipe 100 Radiator 110 Reservoir tanks SV1, SV2, SV3, SV4 Solenoid valve

Claims (10)

旧液流入口と再生液流出口とを備え、内部にろ過フィルタが設けられたろ過容器と、
再生液流入口と再生液流出口とを備えた再生液貯留容器と、
車両の冷却水系と前記ろ過容器の旧液流入口とを結び、前記冷却水系内の旧液をろ過容器内に取り込むための旧液取り込み管と、
前記ろ過容器の再生液流出口と前記再生液貯留容器の再生液流入口とを結び、再生液を前記再生液貯留容器内に取り込むための再生液取り込み管と、
前記再生液貯留容器の再生液流出口と前記冷却水系とを結び、前記再生液貯留容器内に貯留された再生液を前記冷却水系内に送り込むための再生液供給管と、
前記再生液取り込み管中に配置され、前記再生液貯留容器から前記冷却水系内に再生液を送り込む際に、ろ過容器側への逆流を防止する第1の逆止弁と、
前記再生液供給管中に配置され、前記冷却水系から前記旧液取り込み管を経て前記ろ過容器に旧液を取り込む際に、再生液供給管を通じての逆流を防止する第2の逆止弁と、
前記再生液貯留容器に接続され、再生液貯留容器内を加圧・減圧し、ろ過容器からの再生液の取り込みと、冷却水系内への送り込みとを行う加圧・減圧手段と
を備えることを特徴とする車両用冷却液再生装置。
A filtration container having an old liquid inlet and a regenerated liquid outlet, and provided with a filtration filter inside;
A regenerative liquid storage container having a regenerative liquid inlet and a regenerative liquid outlet;
Connecting the cooling water system of the vehicle and the old liquid inlet of the filtration container, and an old liquid intake pipe for taking the old liquid in the cooling water system into the filtration container;
Connecting the regeneration liquid outlet of the filtration container and the regeneration liquid inlet of the regeneration liquid storage container, and a regeneration liquid intake pipe for taking the regeneration liquid into the regeneration liquid storage container;
Regenerating liquid supply pipe for connecting the regenerating liquid outlet of the regenerating liquid storage container and the cooling water system, and feeding the regenerating liquid stored in the regenerating liquid storage container into the cooling water system;
A first check valve that is disposed in the regenerative liquid intake pipe and prevents backflow to the filtration container side when the regenerated liquid is sent from the regenerative liquid storage container into the cooling water system;
A second check valve that is disposed in the regenerative liquid supply pipe and prevents backflow through the regenerative liquid supply pipe when the old liquid is taken into the filtration container from the cooling water system via the old liquid intake pipe;
A pressurizing / depressurizing means connected to the regenerative liquid storage container, pressurizing and depressurizing the regenerative liquid storage container, and taking in the regenerative liquid from the filtration container and feeding it into the cooling water system; A vehicle coolant regenerator.
前記再生液貯留容器の再生液流出口と再生液流入口とは、再生液貯留容器に形成された一つの再生液流出入口が兼用した構成であり、
前記再生液取り込み管と前記再生液供給管とは、前記再生液流出入口からろ過容器又は冷却水系に至る途中までは一つの再生液流出入管で兼用されており、途中に設けられた分岐部からろ過容器までの再生液取り込み管中に前記第1の逆止弁が配設され、分岐部から冷却水系までの再生液供給管中に前記第2の逆止弁が配設されていることを特徴とする請求項1記載の車両用冷却液再生装置。
The regeneration liquid outlet and the regeneration liquid inlet of the regeneration liquid storage container are configured to serve as a single regeneration liquid outlet / inlet formed in the regeneration liquid storage container,
The regeneration liquid intake pipe and the regeneration liquid supply pipe are shared by a single regeneration liquid inflow / outflow pipe from the regeneration liquid outflow inlet to the middle of the filtration container or the cooling water system, and from a branch portion provided in the middle The first check valve is disposed in the regenerated liquid intake pipe to the filtration container, and the second check valve is disposed in the regenerated liquid supply pipe from the branch portion to the cooling water system. The vehicle coolant regenerator according to claim 1.
前記再生液貯留容器に再生処理用の添加剤を添加可能に、添加剤充填機構が連結されていることを特徴とする請求項1又は2記載の車両用冷却液再生装置。   The vehicle coolant regeneration device according to claim 1 or 2, wherein an additive filling mechanism is connected to the regeneration fluid storage container so that an additive for regeneration treatment can be added. 前記加圧・減圧手段は、高圧流体を供給するコンプレッサ、エジェクタ、複数の電磁弁、及び該電磁弁の開閉制御を行う制御装置を備えてなり、前記制御装置により、高圧流体を前記再生液貯留容器内に供給するように電磁弁を切り換えて加圧し、エジェクタから高圧流体を排出するように電磁弁を切り換えて前記再生液貯留容器内を減圧する構成であることを特徴とする請求項1〜3のいずれか1に記載の車両用冷却液再生装置。   The pressurizing / depressurizing means includes a compressor that supplies high-pressure fluid, an ejector, a plurality of solenoid valves, and a control device that controls opening and closing of the solenoid valves. The electromagnetic valve is switched so as to be supplied into the container and pressurized, and the solenoid valve is switched so as to discharge the high-pressure fluid from the ejector so that the inside of the regenerated liquid storage container is depressurized. 4. The vehicle coolant regeneration device according to any one of 3 above. 前記再生液貯留容器内の再生液の水位を検出する水位検出センサを備え、前記加圧・減圧手段の制御装置が、検出された水位に基づき、前記電磁弁の切り換えタイミングを調整して制御可能であることを特徴とする請求項4記載の車両用冷却液再生装置。   Provided with a water level detection sensor for detecting the water level of the regenerated liquid in the regenerated liquid storage container, the control device for the pressurizing / depressurizing means can be controlled by adjusting the switching timing of the solenoid valve based on the detected water level The vehicle coolant regenerator according to claim 4, wherein 前記再生液供給管に、圧力リリーフ弁が設けられていると共に、該圧力リリーフ弁の開弁動作に伴って流出した再生液を再生装置の系内のいずれかに還流させる再生液還流配管が設けられていることを特徴とする請求項1〜5のいずれか1に記載の車両用冷却液再生装置。   The regeneration liquid supply pipe is provided with a pressure relief valve, and a regeneration liquid recirculation pipe for recirculating the regeneration liquid that has flowed out in response to the opening operation of the pressure relief valve to one of the systems of the regeneration apparatus. The vehicle coolant regeneration device according to claim 1, wherein the coolant regeneration device is for a vehicle. 前記再生液還流配管が、前記圧力リリーフ弁と前記添加剤充填機構との間に配設されていることを特徴とする請求項6記載の車両用冷却液再生装置。   7. The vehicle coolant regeneration device according to claim 6, wherein the regeneration fluid reflux pipe is disposed between the pressure relief valve and the additive filling mechanism. 前記旧液取り込み管と前記再生液供給管とは、前記冷却水系を構成するラジエータのラジエータフィラーに接続される接続管に連結されることを特徴とする請求項1〜7のいずれか1に記載の車両用冷却液再生装置。   The said old liquid intake pipe and the said regeneration liquid supply pipe are connected with the connection pipe connected to the radiator filler of the radiator which comprises the said cooling water system, The any one of Claims 1-7 characterized by the above-mentioned. Vehicle coolant regenerator. 前記接続管は、内筒及び外筒からなる二重筒構造で形成され、
前記旧液取り込み管が、前記接続管の内筒又は外筒のうち、ラジエータ内の旧液取り込み用として使用されるいずれか一方に接続され、
前記再生液供給管が、前記接続管の内筒又は外筒のうち、ラジエータ内への再生液送り込み用として使用される他方に接続されて配設されることを特徴とする請求項8記載の車両用冷却液再生装置。
The connection pipe is formed of a double cylinder structure including an inner cylinder and an outer cylinder,
The old liquid uptake pipe is connected to any one of the inner cylinder or the outer cylinder of the connection pipe used for taking up the old liquid in the radiator,
9. The regeneration liquid supply pipe according to claim 8, wherein the regeneration liquid supply pipe is connected to the other one of the inner cylinder and the outer cylinder of the connection pipe that is used for feeding the regeneration liquid into the radiator. Vehicle coolant regenerator.
前記接続管を構成する内筒及び外筒は、内筒先端が外筒先端よりも突出し、ラジエータ内の旧液中に挿入可能であり、内筒が旧液取り込み用に使用され、外筒が再生液送り込み用に使用される構成であることを特徴とする請求項9記載の車両用冷却液再生装置。   The inner cylinder and the outer cylinder constituting the connecting pipe have an inner cylinder tip protruding from the outer cylinder tip, and can be inserted into the old liquid in the radiator, the inner cylinder is used for taking in the old liquid, and the outer cylinder is The vehicle coolant regeneration device according to claim 9, wherein the coolant regeneration device is configured to be used for feeding the regeneration fluid.
JP2008002040A 2007-06-13 2008-01-09 Vehicle coolant regenerator Active JP5074931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008002040A JP5074931B2 (en) 2007-06-13 2008-01-09 Vehicle coolant regenerator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007156887 2007-06-13
JP2007156887 2007-06-13
JP2008002040A JP5074931B2 (en) 2007-06-13 2008-01-09 Vehicle coolant regenerator

Publications (2)

Publication Number Publication Date
JP2009018867A JP2009018867A (en) 2009-01-29
JP5074931B2 true JP5074931B2 (en) 2012-11-14

Family

ID=40358851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008002040A Active JP5074931B2 (en) 2007-06-13 2008-01-09 Vehicle coolant regenerator

Country Status (1)

Country Link
JP (1) JP5074931B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193097A (en) * 1997-12-27 1999-07-21 Shizuoka Mitsubishi Fuso Jidosha Hanbai Kk Tank for storing lubricant, etc., for automobile engine
JP2001072199A (en) * 1999-09-07 2001-03-21 Yasumasa Akazawa Torque converter oil replacing apparatus
JP3526823B2 (en) * 2000-09-08 2004-05-17 柴田産業株式会社 Oil changer
JP2003129843A (en) * 2001-10-23 2003-05-08 Tamatekku:Kk Circuit for regenerating and switching device of coolant
JP2003137397A (en) * 2001-11-08 2003-05-14 Takeuchi Seisakusho:Kk Radiator liquid recycling apparatus and replacing apparatus
JP4490185B2 (en) * 2004-06-18 2010-06-23 日本ケミカル工業株式会社 Coolant replacement jig, coolant replacement device, and coolant replacement method

Also Published As

Publication number Publication date
JP2009018867A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
US6796339B1 (en) Apparatus for flushing, replacing fluid and bleeding hydraulic systems
US10557410B2 (en) Apparatus and method for engine cleaning
KR101519226B1 (en) System and method of air dryer recycling for vehicle
WO2010029970A1 (en) Recycle method, recycle system and recycle system vehicle for release agent waste in an aluminum die-casting machine
US8246840B1 (en) Method and apparatus for changing a diesel engine fuel filter
CN102133719A (en) Tool cleaning device
US6929036B2 (en) Automotive fluid exchange system and method of use
JP5074931B2 (en) Vehicle coolant regenerator
US7390419B2 (en) Waste water recovery system
JP2012081446A (en) Oil cleaning apparatus and oil cleaning method
JP2010105052A (en) Composite machining device equipped with working fluid reproduction feeding device
JP4652968B2 (en) Radiator coolant regeneration device and method
JP4838789B2 (en) Engine coolant changer
JP5775371B2 (en) Sanding device and method
KR200412940Y1 (en) Apparatus for flushig hydraulic of movenment type
KR101765410B1 (en) Tank filtering apparatus with cleaning function
JP4620599B2 (en) Foreign matter removal processing device
JP4490185B2 (en) Coolant replacement jig, coolant replacement device, and coolant replacement method
JP2002028501A (en) Ion exchange tower, ion exchange resin transferring vessel, transferring device of ion exchange resin and method for transferring ion exchange resin
JP6481379B2 (en) Coolant waste recovery device
JPH02178580A (en) Refrigerant gas recovery and reproducing device
JP3654106B2 (en) Liquid injection method and liquid injection device
JP4953806B2 (en) Filtration device
JP3987678B2 (en) Method and apparatus for regenerating degraded hydraulic fluid in hydraulic system
JPH08197531A (en) Method for removing residual concrete from concrete conveying pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5074931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250