JP5074312B2 - Optical head device - Google Patents

Optical head device Download PDF

Info

Publication number
JP5074312B2
JP5074312B2 JP2008172479A JP2008172479A JP5074312B2 JP 5074312 B2 JP5074312 B2 JP 5074312B2 JP 2008172479 A JP2008172479 A JP 2008172479A JP 2008172479 A JP2008172479 A JP 2008172479A JP 5074312 B2 JP5074312 B2 JP 5074312B2
Authority
JP
Japan
Prior art keywords
polarized light
wavelength
beam splitter
light
incident angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008172479A
Other languages
Japanese (ja)
Other versions
JP2010015617A (en
Inventor
雅夫 永田
景之 佐藤
高由 斉藤
好晴 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optical Coatings Japan
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Optical Coatings Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Optical Coatings Japan filed Critical Asahi Glass Co Ltd
Priority to JP2008172479A priority Critical patent/JP5074312B2/en
Publication of JP2010015617A publication Critical patent/JP2010015617A/en
Application granted granted Critical
Publication of JP5074312B2 publication Critical patent/JP5074312B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Optical Head (AREA)

Description

光記録媒体としてDVDやCDなどの光ディスクが普及し、高密度情報記録光ディスクBD(Blu−ray Disc)が製品化され、光ディスクへの情報記録および記録情報の再生(以下、「記録再生」とよぶ)に光ヘッド装置が用いられる。
従来の光ヘッド装置300の構成例の模式図を図11に示す。レーザ光源1と、偏光ビームスプリッタプリズム2aと、コリメートレンズ3および対物レンズ5と、光検出器6とを備え、レーザ光源1からの出射光が偏光ビームスプリッタプリズム2aを透過し、コリメートレンズ3により平行光となり、対物レンズ5により光ディスク7の情報記録面に集光され、情報記録面で反射された信号光が対物レンズ5を再度透過して平行光となり、コリメートレンズ3により、偏光ビームスプリッタプリズム2aで反射された信号光が光検出器6の受光面に集光される。
Optical discs such as DVDs and CDs are widely used as optical recording media, and high-density information recording optical discs BD (Blu-ray Discs) have been commercialized. Information recording on optical discs and reproduction of recorded information (hereinafter referred to as “recording / reproduction”). ) Is an optical head device.
A schematic diagram of a configuration example of a conventional optical head device 300 is shown in FIG. A laser light source 1, a polarizing beam splitter prism 2 a, a collimating lens 3, an objective lens 5, and a photodetector 6 are provided, and light emitted from the laser light source 1 passes through the polarizing beam splitter prism 2 a and is collimated by the collimating lens 3. The signal light is collimated and focused on the information recording surface of the optical disk 7 by the objective lens 5, and the signal light reflected by the information recording surface is transmitted again through the objective lens 5 to become parallel light. The signal light reflected by 2a is collected on the light receiving surface of the photodetector 6.

ここで、レーザ光源1からの出射光を効率よく情報記録面に集光するとともに、情報記録面で反射された信号光を効率よく光検出器に分波するために、2個の直角2等辺三角柱ガラスの一方の斜面に多層膜を成膜し接合された六面体ガラスブロック形態の偏光ビームスプリッタプリズム2aが1/4波長板4とともに用いられる。レーザ光源から出射された直線偏光はP偏光(第1の直線偏光)として偏光ビームスプリッタプリズム2aに入射して透過され、情報記録面に集光および反射されて1/4波長板4を往復透過することでS偏光(第2の直線偏光)となって偏光ビームスプリッタプリズム2aに入射して反射される。   Here, in order to efficiently collect the light emitted from the laser light source 1 on the information recording surface and efficiently demultiplex the signal light reflected by the information recording surface to the photodetector, two right isosceles sides A polarizing beam splitter prism 2 a in the form of a hexahedral glass block formed by bonding a multilayer film on one inclined surface of a triangular prism glass is used together with the quarter wavelength plate 4. The linearly polarized light emitted from the laser light source enters the polarizing beam splitter prism 2a as P-polarized light (first linearly polarized light) and is transmitted therethrough. Then, the linearly polarized light is condensed and reflected on the information recording surface, and is transmitted back and forth through the quarter wavelength plate 4. As a result, it becomes S-polarized light (second linearly polarized light) and is incident on the polarization beam splitter prism 2a and reflected.

ここで用いられる偏光ビームスプリッタプリズム2aでは、空気の屈折率(n=1)に比べてプリズムである直角2等辺三角柱ガラスの屈折率(n>1)が大きなため、空気と接する多層膜(ここで、多層膜材料の屈折率をnとする)に斜入射する平板ビームスプリッタに比べ、Snell屈折則により入射角θに対する多層膜中の屈折角θ=arcsin{(n/n)sinθ}の低下が少ない。後述するように、多層膜中の屈折角が大きなほどP偏光を透過しS偏光を反射する偏光分離波長領域が広くなるため、偏光ビームスプリッタとして機能する広い波長帯域を確保できる。その結果、例えばBD光ディスクの記録再生に用いられる青色半導体レーザ光源の使用波長帯域である398〜415nmにおいて、発散入射光に対しても高いS偏光反射率かつ高いP偏光透過率を示す偏光分離特性が得られ、レーザ光源から光ディスクへと進行する往路および光ディスクから光検出器へと進行する復路において高い光利用効率を実現できる。 In the polarizing beam splitter prism 2a used here, the refractive index ( ng > 1) of the right isosceles triangular prism glass which is a prism is larger than the refractive index of air ( ng = 1). Compared with a flat plate beam splitter that is obliquely incident on (where the refractive index of the multilayer film material is n), the refraction angle θ in the multilayer film with respect to the incident angle θ 0 according to the Snell refraction rule is θ = arcsin {( ng / n) There is little decrease in sin θ 0 }. As will be described later, the larger the refraction angle in the multilayer film is, the wider the polarization separation wavelength region for transmitting P-polarized light and reflecting S-polarized light is, so that a wide wavelength band that functions as a polarizing beam splitter can be secured. As a result, for example, in a wavelength range of 398 to 415 nm of a blue semiconductor laser light source used for recording / reproduction of a BD optical disc, polarization separation characteristics exhibiting a high S-polarized reflectance and a high P-polarized transmittance for divergent incident light. Thus, high light utilization efficiency can be realized in the forward path from the laser light source to the optical disk and in the backward path from the optical disk to the photodetector.

また、従来の光ヘッド装置の他の構成例の模式図を図12に示す。光ヘッド装置400は、図11に示す偏光ビームスプリッタプリズム2aの代わりに、平行平板の透光性基板の片面に多層膜が成膜された平板ビームスプリッタ2bを用いている(例えば、特許文献1および2参照)。
特開2007−280460号公報 特開2002−4915号公報
FIG. 12 shows a schematic diagram of another configuration example of the conventional optical head device. The optical head device 400 uses a flat plate beam splitter 2b in which a multilayer film is formed on one surface of a parallel flat light transmitting substrate instead of the polarizing beam splitter prism 2a shown in FIG. 11 (for example, Patent Document 1). And 2).
JP 2007-280460 A JP 2002-4915 A

しかし、図11に示す光ヘッド装置300においては、2個の直角2等辺三角柱ガラスを精度よく加工した後、多層膜の成膜および六面体ガラスブロック形態に接着する必要があり、図12に示す平板ビームスプリッタに比べて加工が複雑化するとともにコストアップとなるといった問題があった。また、有機接着材を用いるため、高温および高湿度環境における長時間特性安定性や青色レーザ光照射に伴う耐光性などの信頼性に課題があった。   However, in the optical head device 300 shown in FIG. 11, it is necessary to process two right-angled isosceles triangular prism glasses with high precision, and then to form a multilayer film and adhere to a hexahedral glass block form. Compared with the beam splitter, the processing is complicated and the cost is increased. In addition, since an organic adhesive is used, there are problems in reliability such as long-term characteristic stability in a high temperature and high humidity environment and light resistance accompanying blue laser light irradiation.

また、図12に示す光ヘッド装置400においては、平板ビームスプリッタ2bにおいて、空気と多層膜材料との屈折率差が大きいため、偏光ビームスプリッタプリズム2aに比べてSnell屈折則による多層膜中の屈折角が小さな値となる。その結果、斜入射におけるP偏光とS偏光の実効屈折率の差が低下し、例えば、青色半導体レーザ光源の使用波長帯域である398〜415nmにおいて、発散入射光に対し高い偏光分離特性の実現が困難であった。その結果、往路および復路の光利用効率が低下し、高出力の青色半導体レーザ光源が必要となるとともに、光検出器のSN比(信号とノイズの比)低下を招くといった問題があった。また、入射角中心値を70°以上の大きな値とすることにより平板ビームスプリッタ2bの多層膜中の屈折角を大きな値に設定し偏光分離特性を向上することができるが、大面積の平板ビームスプリッタ2bが必要となり光ヘッド装置の大形化を招くといった問題があった。   In the optical head device 400 shown in FIG. 12, since the refractive index difference between air and the multilayer film material is large in the flat plate beam splitter 2b, the refraction in the multilayer film is based on the Snell refraction rule as compared with the polarization beam splitter prism 2a. The corner is a small value. As a result, the difference in effective refractive index between P-polarized light and S-polarized light at oblique incidence is reduced. For example, high polarization separation characteristics can be realized with respect to divergent incident light in the wavelength range of 398 to 415 nm that is used by the blue semiconductor laser light source. It was difficult. As a result, there is a problem that the light utilization efficiency in the forward path and the backward path is reduced, a high-power blue semiconductor laser light source is required, and the SN ratio (signal to noise ratio) of the photodetector is lowered. In addition, by setting the central angle of incidence to a large value of 70 ° or more, the refraction angle in the multilayer film of the flat plate beam splitter 2b can be set to a large value and the polarization splitting characteristics can be improved. There is a problem that the splitter 2b is required and the size of the optical head device is increased.

本発明は、上記した事情に鑑み、高い偏光分離特性を有する平板の偏光ビームスプリッタを搭載した光利用効率の高い光ヘッド装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an optical head device having a high light utilization efficiency equipped with a flat polarizing beam splitter having high polarization separation characteristics.

本発明は、レーザ光源と、前記レーザ光源から出射された第1の直線偏光を円偏光に変換するとともに、光記録媒体から反射された円偏光を第1の直線偏光と直交する第2の直線偏光に変換する1/4波長板と、前記1/4波長板を透過した円偏光を光記録媒体に集光する対物レンズと、前記光記録媒体により反射され前記1/4波長板により変換された第2の直線偏光を検出する光検出器と、前記レーザ光源と前記1/4波長板との間の光路中に配置され、前記レーザ光源から出射された第1の直線偏光を透過又は反射し、かつ、前記光記録媒体から反射され前記1/4波長板で円偏光から第2の直線偏光に変換された反射光を反射又は透過する偏光ビームスプリッタと、を備えた光ヘッド装置であって、前記偏光ビームスプリッタは、透光性基板の表面に屈折率の異なる少なくとも2種以上の膜材料からなる多層膜が成膜され、斜入射光線の入射角に伴う反射帯の立ち上がり・立ち下がりの偏光透過特性の違いを利用し、互いに直交する偏光成分を透過・反射させるとともに、互いに長、短波長を中心波長とする2つの反射帯多層膜層をその分離面に設け、短波長反射帯の長波長側立ち上がりと長波長反射帯の短波長側立ち下がりを近接させ、それぞれの反射、透過偏光特性を乗ずることにより偏光分離有効波長域を拡げたことを特徴とする。   The present invention converts a laser light source and first linearly polarized light emitted from the laser light source into circularly polarized light, and converts the circularly polarized light reflected from the optical recording medium into a second straight line orthogonal to the first linearly polarized light. A quarter-wave plate for converting to polarized light, an objective lens for condensing the circularly polarized light transmitted through the quarter-wave plate on the optical recording medium, and reflected by the optical recording medium and converted by the quarter-wave plate. The second linearly polarized light detector is disposed in the optical path between the laser light source and the quarter-wave plate, and transmits or reflects the first linearly polarized light emitted from the laser light source. And a polarizing beam splitter that reflects or transmits reflected light reflected from the optical recording medium and converted from circularly polarized light to second linearly polarized light by the quarter-wave plate. The polarizing beam splitter is transparent. A multilayer film made of at least two kinds of film materials having different refractive indexes is formed on the surface of the conductive substrate, and utilizing the difference in polarization transmission characteristics of the rising and falling of the reflection band according to the incident angle of the oblique incident light, Transmits and reflects polarized components that are orthogonal to each other, and has two reflection band multilayer films with a long wavelength and a short wavelength as the center wavelength on the separation surface. The rising side of the short wavelength reflection band and the long wavelength reflection band The effective wavelength range of polarized light separation is expanded by making the falling of the short wavelength side close to each other and multiplying the reflection and transmission polarization characteristics thereof.

また、前記光ヘッド装置において、前記光前記偏光ビームスプリッタの法線と入射光の主光線で規定される平面内における入射角の相違に起因して発生する分光特性の入射角依存性を補正するように、前記多層膜層の光学膜厚が調整されていることを特徴とする。   Further, in the optical head device, the incident angle dependence of the spectral characteristic generated due to the difference in the incident angle in a plane defined by the normal of the polarization beam splitter and the principal ray of the incident light is corrected. As described above, the optical film thickness of the multilayer film layer is adjusted.

また、前記光ヘッド装置において、前記多層膜が、少なくとも短波長反射帯多層膜層および長波長反射帯多層膜層であることを特徴とする。   In the optical head device, the multilayer film is at least a short wavelength reflection band multilayer film layer and a long wavelength reflection band multilayer film layer.

本発明の光ヘッド装置では、透光性基板の表面に多層膜が成膜された平板の偏光ビームスプリッタを用いるため、安価で大面積のガラス基板を用いて生産性よく多層膜の成膜が可能となり、従来の偏光ビームスプリッタプリズムを用いた光ヘッド装置に比べてコストダウンとなる。   In the optical head device of the present invention, a flat polarizing beam splitter having a multilayer film formed on the surface of a light-transmitting substrate is used. Therefore, a multilayer film can be formed with high productivity using a low-cost and large-area glass substrate. This is possible, and the cost is reduced as compared with a conventional optical head device using a polarizing beam splitter prism.

また、本発明の光ヘッド装置では、レーザ光源の使用波長帯域において、高い偏光分離特性が実現できるため、往路および復路において高い光利用効率が得られる。その結果、比較的低出力のレーザ光源を用いてSN比の高い光信号検出が可能となる。   Further, in the optical head device of the present invention, high polarization separation characteristics can be realized in the use wavelength band of the laser light source, so that high light utilization efficiency can be obtained in the forward path and the return path. As a result, it is possible to detect an optical signal with a high S / N ratio using a laser light source with a relatively low output.

また、本発明の光ヘッド装置では、発散光中に平板偏光ビームスプリッタが配置された場合、偏光分離特性の波長依存性および入射角依存性を補正できるため、レーザ光源の波長変動に対して平板偏光ビームスプリッタにより偏光分離された光の強度分布が安定化する。その結果、光ヘッド装置の大型化を招くことなく、往路および復路において高い光利用効率を実現できる。   Further, in the optical head device of the present invention, when the flat polarizing beam splitter is arranged in the divergent light, the wavelength dependency and the incident angle dependency of the polarization separation characteristic can be corrected. The intensity distribution of the light separated by the polarization beam splitter is stabilized. As a result, high light utilization efficiency can be realized in the forward path and the return path without increasing the size of the optical head device.

また、前記平板偏光ビームスプリッタは光透過面および光反射面に接着材が用いられないため、高い信頼性が実現するとともに高密度情報記録光ディスクBD用の光ヘッド装置に用いられる青色レーザ光に対する耐光性を確保しやすい。   In addition, since the flat polarizing beam splitter does not use an adhesive on the light transmitting surface and the light reflecting surface, high reliability is achieved and light resistance against blue laser light used in an optical head device for a high-density information recording optical disk BD is achieved. It is easy to secure sex.

本発明の光ヘッド装置100の構成例の模式図を図1に示す。図12に示す従来の光ヘッド装置400の構成例と同じ機能の部品は同じ番号を記し、説明を省略する。   A schematic diagram of a configuration example of the optical head device 100 of the present invention is shown in FIG. Parts having the same functions as those in the configuration example of the conventional optical head device 400 shown in FIG.

偏光ビームスプリッタとして、平行平板の透光性基板の片面に多層膜が成膜された平板偏光ビームスプリッタ10を用い、レーザ光源1から出射する光の主光線が平板偏光ビームスプリッタ10の偏光反射面に対して入射角θで入射する。なお、平板偏光ビームスプリッタ10の偏光反射面である多層膜面の法線と入射光の主光線で規定される平面に対して、入射光の偏光のうち面内の偏光をP偏光、面に垂直な偏光をS偏光と呼ぶこととする。   As the polarizing beam splitter, a flat polarizing beam splitter 10 in which a multilayer film is formed on one side of a parallel flat translucent substrate is used, and the principal ray of light emitted from the laser light source 1 is a polarizing reflecting surface of the flat polarizing beam splitter 10. Is incident at an incident angle θ. It should be noted that with respect to the plane defined by the normal of the multilayer film surface, which is the polarization reflection surface of the plate polarization beam splitter 10, and the principal ray of the incident light, the in-plane polarization of the polarization of the incident light is P-polarized and the surface is Vertically polarized light is referred to as S-polarized light.

ここで、レーザ光源1から出射する直線偏光をS偏光(第1の直線偏光)として平板偏光ビームスプリッタ10に入射することにより高い反射率が得られる。レーザ光源1から出射する直線偏光がS偏光でない場合は、レーザ光源1と平板偏光ビームスプリッタ10の間の光路中に1/2波長板を配置し、1/2波長板の透過偏光を回転させてS偏光に変換すればよい。また、レーザ光源1からの出射光の一部が平板偏光ビームスプリッタ10を透過し、透過光を図示されていない光検出器により検出し、光ディスク7の情報記録面に到達する光が一定となるようにレーザ光源1の発光強度を帰還制御する場合、P偏光成分も平板偏光ビームスプリッタ10に入射するように、主光線を回転軸としてレーザ光源1を回転する、あるいは前記1/2波長板を用いてその遅相軸の角度を回転調整して出射直線偏光の方向を所望の角度にすればよい。   Here, when the linearly polarized light emitted from the laser light source 1 is incident on the flat polarizing beam splitter 10 as S-polarized light (first linearly polarized light), a high reflectance can be obtained. When the linearly polarized light emitted from the laser light source 1 is not S-polarized light, a half-wave plate is disposed in the optical path between the laser light source 1 and the flat-plate polarization beam splitter 10 and the transmitted polarization of the half-wave plate is rotated. To convert it to S-polarized light. Further, part of the light emitted from the laser light source 1 passes through the flat polarizing beam splitter 10 and the transmitted light is detected by a photodetector (not shown), so that the light reaching the information recording surface of the optical disc 7 is constant. Thus, when the emission intensity of the laser light source 1 is feedback controlled, the laser light source 1 is rotated about the principal ray as the rotation axis so that the P-polarized component is also incident on the flat-plate polarization beam splitter 10, or the half-wave plate is It is only necessary to adjust the angle of the slow axis and adjust the direction of the outgoing linearly polarized light to a desired angle.

平板偏光ビームスプリッタ10により反射されたS偏光は、光ディスク7の情報記録面で反射し信号光となり、1/4波長板4を往復することによりP偏光(第2の直線偏光)に変換されて平板偏光ビームスプリッタ10に入射する。平板偏光ビームスプリッタ10はP偏光に対して高い偏光透過率を示すため、効率よく光検出器6の受光面に集光されて電気信号に変換される。   The S-polarized light reflected by the flat polarizing beam splitter 10 is reflected on the information recording surface of the optical disk 7 to become signal light, and is converted into P-polarized light (second linearly polarized light) by reciprocating the quarter-wave plate 4. The light enters the flat polarizing beam splitter 10. Since the flat polarizing beam splitter 10 exhibits a high polarization transmittance with respect to the P-polarized light, it is efficiently condensed on the light receiving surface of the photodetector 6 and converted into an electric signal.

本発明の光ヘッド装置100に用いられる平板偏光ビームスプリッタ10について、その構造を示す断面図である図2を用いて偏光分離機能を以下に説明する。
図1では平板偏光ビームスプリッタ10を発散光中に配置し、往路でS偏光反射および復路でP偏光透過となる光ヘッド装置としているが、往路でP偏光透過および復路でS偏光反射となる配置とした光ヘッド装置としてもよい。
The polarization separation function of the flat polarizing beam splitter 10 used in the optical head device 100 of the present invention will be described below with reference to FIG. 2 which is a sectional view showing the structure thereof.
In FIG. 1, a flat polarizing beam splitter 10 is arranged in the divergent light, and the optical head device is configured to transmit S-polarized light on the forward path and transmit P-polarized light on the return path. The optical head device may be used.

ただし、発散光中に平板偏光ビームスプリッタ10を斜入射で配置した場合、主光線の入射角と発散光の角度幅および基板の厚さに応じて透過光に非点収差が発生する。往路における透過波面収差が大きな場合、光ディスクの情報記録面の集光スポット形状が劣化し記録再生エラーとなるため、図1に示す往路でS偏光反射および復路でP偏光透過となる光ヘッド装置の構成が好ましい。   However, when the flat polarizing beam splitter 10 is arranged at an oblique incidence in diverging light, astigmatism occurs in the transmitted light according to the incident angle of the principal ray, the angular width of the diverging light, and the thickness of the substrate. When the transmitted wavefront aberration in the forward path is large, the condensing spot shape of the information recording surface of the optical disk deteriorates and a recording / reproducing error occurs. Therefore, the optical head device of FIG. A configuration is preferred.

図2は本発明に係る光ヘッド装置100に用いられるに用いられる平板偏光ビームスプリッタ10の構造を示すもので、異なる2つの中心波長からなる短波長反射帯多層膜層12Sと長波長反射帯多層膜層12Lがこの場合は平板基板11一面上に重ねられている。光線が入射したときのP,S偏光の分光透過特性形状を図3に示す。図中、実線(黒丸●および白丸○)は短波長反射帯の長波長側立ち上がり部であって、左側の線がP偏光分光透過特性を、右側の線がS偏光分光透過特性を表し、図中の破線(黒四角■および白四角□)は長波長反射帯の短波長側立ち下がり部分であって、左側の線がS偏光分光透過特性を、右側の線がP偏光分光透過特性を表す。この2つの分光透過特性の重ね合わせにより図中央部のP偏光透過波長領域が合成される。また同様にS偏光についても短波長反射帯と長波長反射帯のS偏光透過特性の重ね合わせにより、図中の白菱形◇で示すように全領域にわたるS偏光反射波長領域が合成される。長波長反射帯の短波長側立ち下がり部及び、短波長反射帯の長波長側立ち上がり部とも単独では従来の有効偏光分離波長領域が小さいが、双方の特性が合成されることにより、結果として、図中央部に示されるように幅広い有効偏光分離波長領域を得ることとなる。   FIG. 2 shows the structure of a flat polarizing beam splitter 10 used for the optical head device 100 according to the present invention. The short wavelength reflection band multilayer film 12S and the long wavelength reflection band multilayer are composed of two different center wavelengths. In this case, the film layer 12L is overlaid on the entire surface of the flat substrate 11. FIG. 3 shows the spectral transmission characteristic shapes of P and S polarized light when a light beam is incident. In the figure, solid lines (black circles ● and white circles ○) are rising portions on the long wavelength side of the short wavelength reflection band, the left line represents the P-polarized spectral transmission characteristics, and the right line represents the S-polarized spectral transmission characteristics. The broken lines (black squares ■ and white squares □) are the falling portions on the short wavelength side of the long wavelength reflection band, the left line represents the S-polarized spectral transmission characteristic, and the right line represents the P-polarized spectral transmission characteristic. . By superimposing these two spectral transmission characteristics, the P-polarized transmission wavelength region in the center of the figure is synthesized. Similarly, for the S-polarized light, the S-polarized reflection wavelength region over the entire region is synthesized by superimposing the S-polarized light transmission characteristics of the short wavelength reflection band and the long wavelength reflection band, as indicated by the white rhombus 形 in the figure. The short wavelength side falling part of the long wavelength reflection band and the long wavelength side rising part of the short wavelength reflection band alone are small in the conventional effective polarization separation wavelength region, but by combining both characteristics, as a result, As shown in the center of the figure, a wide effective polarization separation wavelength region is obtained.

平板基板11の片面に成膜する短波長反射帯多層膜層12Sと長波長反射帯多層膜層12Lの順番に制約はなく、図2と逆でもよい。
使用波長帯域における多層膜層の光吸収はほとんど無いため、透過率と反射率の和はほぼ100%となる。
なお、平板偏光ビームスプリッタ10の他方の平面において、レーザ光源1の使用波長帯域の少なくともP偏光に対して、反射が低減される入射角の配置、あるいは反射防止膜などの反射防止処理を施すことが好ましい。
The order of the short wavelength reflection band multilayer film layer 12S and the long wavelength reflection band multilayer film layer 12L formed on one surface of the flat substrate 11 is not limited, and may be the reverse of FIG.
Since the multilayer film layer hardly absorbs light in the used wavelength band, the sum of transmittance and reflectance is almost 100%.
In addition, on the other plane of the flat polarizing beam splitter 10, an arrangement of an incident angle at which reflection is reduced or an antireflection treatment such as an antireflection film is applied to at least P-polarized light in the use wavelength band of the laser light source 1. Is preferred.

短波長反射帯多層膜層12Sおよび長波長反射帯多層膜層12Lは、屈折率の異なる透明誘電体膜が積層された多層膜層から成り、高屈折率nの誘電体膜と低屈折率nの誘電体膜を交互に積層された構造が一般的である。高屈折率nの誘電体膜として屈折率2以上のTiO、Ta、Nb、ZrOなどを用い、低屈折率nの誘電体膜として屈折率1.5以下のSiO、MgF、AlF、NaF、非結晶フッ素樹脂などを用いる。 The short-wavelength reflection band multilayer film layer 12S and the long-wavelength reflection band multilayer film layer 12L are composed of multilayer film layers in which transparent dielectric films having different refractive indexes are laminated, and have a high refractive index n H dielectric film and a low refractive index. A structure in which n L dielectric films are alternately stacked is common. TiO 2 , Ta 2 O 5 , Nb 2 O 5 , ZrO 2 or the like having a refractive index of 2 or more is used as a dielectric film having a high refractive index n H, and a refractive index of 1.5 or less is used as a dielectric film having a low refractive index n L. SiO 2 , MgF 2 , AlF 3 , NaF, amorphous fluororesin, or the like is used.

なお、多層膜の構成材料として、常光屈折率nと異常光屈折率n(n>n)の複屈折材料を高屈折膜として用い、屈折率がnに略等しい均質屈折率の低屈折膜と交互に積層した多層膜層としてもよい。この場合、複屈折材料の常光屈折率nの方向をP偏光方向に一致させることにより、広い入射角範囲および広い波長帯域でP偏光に対して高い透過率が得られる。また、多層膜は短波長反射帯多層膜層および長波長反射帯多層膜層からなる2層に限らず、3層以上であってもよい。 As a constituent material of the multilayer film, a birefringent material having an ordinary light refractive index n o and an extraordinary light refractive index n e (n e > n o ) is used as a high refractive film, and the homogeneous refractive index is substantially equal to n o. It may be a multilayer film layered alternately with the low refractive film. In this case, by matching the direction of the ordinary refractive index n o of the birefringent material in the P polarization direction, a high transmittance is obtained for P-polarized light in a wide incident angle range and a wide wavelength band. The multilayer film is not limited to two layers including a short wavelength reflection band multilayer film layer and a long wavelength reflection band multilayer film layer, and may be three or more layers.

多層膜形成方法として、真空蒸着法、スパッタ法、CVD法などの乾式法と、塗布法、ゾルゲル法などの湿式法が用いられる。   As a multilayer film forming method, a dry method such as a vacuum deposition method, a sputtering method, or a CVD method, and a wet method such as a coating method or a sol-gel method are used.

以下、本発明の光ヘッド装置100に用いられるに用いられる平板偏光ビームスプリッタ10の原理について説明する。
屈折率1の大気中の多層膜に入射角θで光が入射した時、高屈折率nおよび低屈折率nのP偏光およびS偏光に対する実効屈折率ηHP、ηHSおよびηLP、ηLSは(1a)から(1d)式で記載される。
ηHP=n/cosθ=n/{1−(sinθ/n0.5 (1a)
ηHS=n×cosθ=n×{1−(sinθ/n0.5 (1b)
ηLP=n/cosθ=n/{1−(sinθ/n0.5 (1c)
ηLS=n×cosθ=n×{1−(sinθ/n0.5 (1d)
Hereinafter, the principle of the flat polarizing beam splitter 10 used in the optical head device 100 of the present invention will be described.
When light is incident on the multilayer film in the atmosphere having a refractive index of 1 at an incident angle θ, effective refractive indices η HP , η HS and η LP for P-polarized light and S-polarized light having a high refractive index n H and a low refractive index n L , η LS is described by the formulas (1a) to (1d).
η HP = n H / cos θ H = n H / {1- (sin θ / n H ) 2 } 0.5 (1a)
η HS = n H × cos θ H = n H × {1- (sin θ / n H ) 2 } 0.5 (1b)
η LP = n L / cos θ L = n L / {1- (sin θ / n L ) 2 } 0.5 (1c)
η LS = n L × cos θ L = n L × {1- (sin θ / n L ) 2 } 0.5 (1d)

したがって、垂直入射でない場合は高屈折率誘電体膜と低屈折率誘電体膜のP偏光およびS偏光に対する実効屈折率差△ηと△ηは異なるとともに入射角θに依存し、(2a)および(2b)式で記載される。
△η=ηHP−ηLP=(n−n)×A×C (2a)
△η=ηHS−ηLS=(n−n)×A (2b)
ここで、A、AおよびCは(3a)から(3c)式で記載される。
=(n+n)/(ηHP+ηLP (3a)
=(n+n)/(ηHS+ηLS (3b)
C={(n−(n +n )sinθ}/(ηHSηLS(3c)
Therefore, when not perpendicularly incident, the effective refractive index differences Δη P and Δη S of the high-refractive index dielectric film and the low-refractive index dielectric film with respect to the P-polarized light and the S-polarized light are different and depend on the incident angle θ (2a ) And (2b).
Δη P = η HP −η LP = (n H −n L ) × A P × C (2a)
Δη S = η HS −η LS = (n H −n L ) × A S (2b)
Here, A P , A S and C are described by the formulas (3a) to (3c).
A P = (n H + n L ) / (η HP + η LP ) (3a)
A S = (n H + n L ) / (η HS + η LS ) (3b)
C = {(n H n L ) 2 - (n H 2 + n L 2) sin 2 θ} / (η HS η LS) 2 (3c)

入射角θの増加に伴いsinθは増加するため、S偏光の実効屈折率ηHSおよびηLSは(1b)、(1d)式より減少する。その結果、(3b)式よりAが増加するため、実効屈折率差△ηは(2b)式より増加する。また、屈折率差(n−n)の大きな誘電体膜材料ほど実効屈折率差△ηは大きくなる。 Since sin θ increases as the incident angle θ increases, the effective refractive indices η HS and η LS of S-polarized light decrease from the equations (1b) and (1d). As a result, to increase from A S is (3b) wherein the effective refractive index difference △ eta S is increased from (2b) equation. Further, the effective refractive index difference Δη S becomes larger as the dielectric film material has a larger refractive index difference (n H −n L ).

一方、P偏光の実効屈折率ηHPおよびηLPは(1a)、(1c)式より入射角θの増加に伴い増加し、(3a)、(3c)式よりAおよびCは減少するため、実効屈折率差△ηは(2a)式より減少する。特に、(3c)式において、(n/(n +n )≦0.5のため、n、nおよびθの設定によってはゼロに近い値となり、実効屈折率差△ηを小さくできる。 On the other hand, the effective refractive index eta HP and eta LP of P-polarized light (1a), increases with increasing angle of incidence θ from (1c) formula, (3a), (3c) A P and for C is decreased from the equation The effective refractive index difference Δη P decreases from the equation (2a). In particular, in the formula (3c), since (n H n L ) 2 / (n H 2 + n L 2 ) ≦ 0.5, depending on the setting of n H , n L and θ, the value is close to zero, and effective refraction the rate difference △ η P can be reduced.

高屈折率nで膜厚dの誘電体膜と低屈折率nで膜厚dの誘電体膜の光学膜厚はn×dおよびn×dであり、各層の干渉に寄与する光路長差LおよびLは(4a)、(4b)式で記述される。入射光の基準波長λに対して光路長差LおよびLがλ/4となる膜厚dおよびdの条件で交互に積層した多層膜層の場合、透過率50%となる反射帯の波長間隔で定義されるP偏光およびS偏光の反射帯の波長幅△λおよび△λは(5a)、(5b)式で記載される。 The optical film thicknesses of the dielectric film having a high refractive index n H and a film thickness d H and the low refractive index n L and the dielectric film having a film thickness d L are n H × d H and n L × d L. The optical path length differences L H and L L that contribute to interference are described by equations (4a) and (4b). For multilayer film in which the optical path length difference L H and L L are alternately stacked under the condition of lambda 0/4 and the film thickness d H and d L with respect to the reference wavelength lambda 0 of incident light, the transmittance of 50% and The wavelength widths Δλ P and Δλ S of the reflection bands of P-polarized light and S-polarized light defined by the wavelength interval of the reflection bands are expressed by the equations (5a) and (5b).

=n×d×cosθ
=n×d×{1−(sinθ/n0.5 (4a)
=n×d×cosθ
=n×d×{1−(sinθ/n0.5 (4b)
△λ/λ=(4/π)×sin−1{△η/(ηHP+ηLP)} (5a)
△λ/λ=(4/π)×sin−1{△η/(ηHS+ηLS)} (5b)
L H = n H × d H × cos θ H
= N H × d H × { 1- (sinθ / n H) 2} 0.5 (4a)
L L = n L × d L × cos θ L
= N L × d L × { 1- (sinθ / n L) 2} 0.5 (4b)
Δλ P / λ 0 = (4 / π) × sin −1 {Δη P / (η HP + η LP )} (5a)
Δλ S / λ 0 = (4 / π) × sin −1 {Δη S / (η HS + η LS )} (5b)

この時のP偏光およびS偏光に対する分光透過率TpとTsの計算例を図4に示す。
なお、高屈折率nと低屈折率nの誘電体膜の積層数を多くするほど、また実効屈折率差△ηおよび△ηが大きなほど、透過帯と反射帯の境界波長域の分光特性が急峻となる。
FIG. 4 shows a calculation example of the spectral transmittances Tp and Ts for the P-polarized light and S-polarized light at this time.
As the number of stacked dielectric films having a high refractive index n H and a low refractive index n L is increased and the effective refractive index differences Δη P and Δη S are increased, the boundary wavelength region between the transmission band and the reflection band is increased. The spectral characteristics of the image become steep.

したがって、P偏光とS偏光の入射光に対する反射帯の波長幅△λと△λが△λ<△λの大小関係となり、入射角θおよび屈折率差(n−n)の増加に伴い反射帯の波長幅△λと△λの差が拡大する。 Therefore, the wavelength widths Δλ P and Δλ S of the reflection bands for incident light of P-polarized light and S-polarized light have a magnitude relationship of Δλ P <Δλ S , and the incident angle θ and the refractive index difference (n H −n L ). The difference between the wavelength widths Δλ P and Δλ S of the reflection band is increased with the increase of.

その結果、基準波長λとする反射波長帯の短波長域と長波長域で、P偏光を透過しS偏光を反射する立ち下がり部と立ち上がり部の偏光分離波長帯が発現し、平板偏光ビームスプリッタの機能が得られる。 As a result, in the short wavelength region and the long wavelength region of the reflection wavelength band having the reference wavelength λ 0 , the polarization separation wavelength band of the falling portion and the rising portion that transmits the P-polarized light and reflects the S-polarized light appears, and the plate polarized beam The function of a splitter is obtained.

本発明の平板偏光ビームスプリッタ10において、短波長反射帯多層膜層12Sおよび長波長反射帯多層膜層12Lを構成する多層膜の膜厚dおよびdを調整することにより、使用波長域に中心波長に対して各々の反射帯の波長幅の略中心波長に相当する基準波長λを短波長反射帯多層膜層12Sでは短波長側に長波長反射帯多層膜層12Lでは長波長側にするとともに、短波長反射帯多層膜層12SのS偏光立ち上がり部と長波長反射帯多層膜層12LのS偏光立ち下がり部が使用波長域の中心波長に近接するように多層膜層を設計する。その結果、図3に示す所望の広い有効偏光分離波長領域を有する平板偏光ビームスプリッタ10が得られる。 In the flat polarizing beam splitter 10 of the present invention, by adjusting the film thicknesses d H and d L of the multilayer films constituting the short wavelength reflection band multilayer film layer 12S and the long wavelength reflection band multilayer film layer 12L, The reference wavelength λ 0 corresponding to the substantially central wavelength of the wavelength width of each reflection band with respect to the center wavelength is set to the short wavelength side in the short wavelength reflection band multilayer film layer 12S and to the long wavelength side in the long wavelength reflection band multilayer film layer 12L. At the same time, the multilayer film layer is designed so that the S-polarized light rising portion of the short-wavelength reflective band multilayer film layer 12S and the S-polarized light falling portion of the long-wavelength reflective band multilayer film layer 12L are close to the center wavelength of the used wavelength region. As a result, a flat polarizing beam splitter 10 having a desired wide effective polarization separation wavelength region shown in FIG. 3 is obtained.

なお、各層の光路長差LおよびLがλ/4の単純な多層膜とした場合、有効偏光分離波長領域におけるP偏光透過率の波長変動が大きくなるため、膜厚dおよびdを調整することによりP偏光透過率が95%以上となる多層膜構成とすることが好ましい。 Incidentally, when the optical path length difference of each layer L H and L L is a simple multi-layer film of lambda 0/4, because the wavelength variation of the P-polarized light transmittance in the effective polarization separation wavelength region is increased, the film thickness d H and d It is preferable to adjust the L so that the P-polarized light transmittance is 95% or more.

高屈折率誘電体膜と低屈折率誘電体膜の屈折率差(n−n)が大きなほど、主光線の入射角θが大きな配置ほど、短波長反射帯多層膜層12Sおよび長波長反射帯多層膜層12Lの個々の偏光分離波長帯が広いため、平板偏光ビームスプリッタ10においても広い有効偏光分離波長領域が得られる。 As the refractive index difference (n H −n L ) between the high refractive index dielectric film and the low refractive index dielectric film is larger and the incident angle θ of the principal ray is larger, the shorter wavelength reflection band multilayer film layer 12S and the longer wavelength are increased. Since each polarization separation wavelength band of the reflection band multilayer film layer 12L is wide, a wide effective polarization separation wavelength region can be obtained also in the flat plate polarization beam splitter 10.

例えば、レーザ光源1として高情報記録密度光ディスクBDの記録再生用の光ヘッド装置に搭載される青色半導体レーザを用いる場合、レーザ光源の発振波長の個体差ばらつきおよび温度変化に伴う発振波長変動を考慮すると、使用波長帯域は398〜415nm程度となり、この使用波長帯域においてS偏光反射およびP偏光透過の偏光分離機能が重要となる。本発明の平板偏光ビームスプリッタ10を入射角θ=45°の配置で用いた光ヘッド装置とすることにより、使用波長帯域において95%以上の高いS偏光反射およびP偏光透過の偏光分離機能が実現できる。   For example, when a blue semiconductor laser mounted on an optical head device for recording / reproduction of a high information recording density optical disc BD is used as the laser light source 1, the variation in the oscillation wavelength of the laser light source and the variation in the oscillation wavelength due to the temperature change are considered. Then, the used wavelength band is about 398 to 415 nm, and the polarization separation function of S polarized light reflection and P polarized light transmission becomes important in this used wavelength band. By using the flat polarizing beam splitter 10 of the present invention as an optical head device with an incident angle θ = 45 °, a polarization separation function of high S-polarized reflection and P-polarized light transmission of 95% or more in the used wavelength band is realized. it can.

一方、短波長反射帯多層膜層12Sあるいは長波長反射帯多層膜層12Lのみが平板基板11の片面に成膜された従来の平板偏光ビームスプリッタとした場合、同等の偏光分離機能が得られる波長帯域幅は10nm以下の狭い領域に留まるため、青色半導体レーザの波長変動に伴い光ヘッド装置の信号光量が安定せず、記録再生エラーが発生し問題となる。   On the other hand, when a conventional flat-plate polarization beam splitter in which only the short-wavelength reflection-band multilayer film layer 12S or the long-wavelength reflection-band multilayer film layer 12L is formed on one surface of the flat-plate substrate 11, a wavelength capable of obtaining an equivalent polarization separation function. Since the bandwidth remains in a narrow region of 10 nm or less, the signal light amount of the optical head device is not stabilized with the wavelength variation of the blue semiconductor laser, and a recording / reproducing error occurs, which becomes a problem.

また、図1の光ヘッド装置100に示すように、平板偏光ビームスプリッタ10が発散光および収束光の入射光配置において用いられる場合、短波長反射帯多層膜層12Sおよび長波長反射帯多層膜層12Lを構成する高屈折率nおよび低屈折率nの誘電体膜の光路長差LおよびLは、(4a)、(4b)式に示すように入射角θに応じて変化する。主光線の入射角θに比べて、大きな入射角では偏光分離波長領域が短波長側に、小さな入射角では偏光分離波長領域が長波長側にシフトする。 As shown in the optical head device 100 of FIG. 1, when the flat polarizing beam splitter 10 is used in the incident light arrangement of diverging light and convergent light, the short wavelength reflection band multilayer film layer 12S and the long wavelength reflection band multilayer film layer are used. The optical path length differences L H and L L of the high refractive index n H and low refractive index n L constituting 12L change according to the incident angle θ as shown in the equations (4a) and (4b). . Compared with the incident angle θ of the principal ray, the polarization separation wavelength region shifts to the short wavelength side at a large incident angle, and the polarization separation wavelength region shifts to the long wavelength side at a small incident angle.

その結果、例えば入射角θ=45°の平行光に対しては使用波長帯域において高い偏光分離特性が実現できるが、入射角45°±8°の発散光に対しては、使用波長帯域をカバーする高い偏光分離特性が実現できないといった問題が生じる可能性がある。具体的には、入射角θ=45°で波長帯域幅約25nmに対して高い偏光分離機能を示す平板偏光ビームスプリッタ10の場合、入射角45°±8°の発散光に対する高い偏光分離特性が得られる波長幅は約5nmに低下する。   As a result, for example, a high polarization separation characteristic can be realized in the used wavelength band for parallel light with an incident angle θ = 45 °, but the used wavelength band is covered for divergent light with an incident angle of 45 ° ± 8 °. However, there is a possibility that the high polarization separation characteristic cannot be realized. Specifically, in the case of the flat polarizing beam splitter 10 that exhibits a high polarization separation function with respect to a wavelength bandwidth of about 25 nm at an incident angle θ = 45 °, a high polarization separation characteristic for divergent light with an incident angle of 45 ° ± 8 ° is obtained. The resulting wavelength width is reduced to about 5 nm.

光ヘッド装置100において、レーザ光源1からの出射光はその半値強度全角の放射角が6°から22°程度の楕円強度分布を有し、コリメートレンズ3で平行光とした後対物レンズで光ディスクの情報記録面に集光する。このとき、対物レンズの開口径に対して実効的な開口数が低下しない強度分布となるようにレーザ光源1の出射発散光に対するコリメートレンズ3による取り込み角が設定される。その結果、レーザ光源1とコリメートレンズ3の間の光路中に配置された平板偏光ビームスプリッタ10は、入射光が主光線の入射角θに対して±6°から±9°程度の発散光の配置となる。   In the optical head device 100, the light emitted from the laser light source 1 has an elliptical intensity distribution with a half-value intensity full-angle radiation angle of about 6 ° to 22 °. Condensed on the information recording surface. At this time, the taking-in angle by the collimating lens 3 with respect to the emitted divergent light of the laser light source 1 is set so as to obtain an intensity distribution that does not reduce the effective numerical aperture with respect to the aperture diameter of the objective lens. As a result, the flat polarizing beam splitter 10 disposed in the optical path between the laser light source 1 and the collimating lens 3 emits divergent light whose incident light is about ± 6 ° to ± 9 ° with respect to the incident angle θ of the principal ray. Arrangement.

平板偏光ビームスプリッタへの入射角が主光線に対して分布した発散光中でも高い偏光分離特性を実現する2種類の方法を以下に説明する。   Two methods for realizing high polarization separation characteristics even in the divergent light in which the incident angle to the flat polarizing beam splitter is distributed with respect to the principal ray will be described below.

1.光学膜厚が空間分布した多層膜層
平板偏光ビームスプリッタの多層膜層を構成する高屈折率nと低屈折率nの誘電体膜の光路長差LおよびLは(4a)、(4b)式に示す入射角依存性があるため、主光線に対する入射角θからの差異による光路長差変化分を各誘電体膜の膜厚dおよびdを調整することにより補償すればよい。
1. Multilayer film layer in which optical film thickness is spatially distributed The optical path length differences L H and L L of the dielectric film having a high refractive index n H and a low refractive index n L constituting the multilayer film layer of the flat polarizing beam splitter are (4a), Since there is the incident angle dependency shown in the equation (4b), if the change in optical path length difference due to the difference from the incident angle θ with respect to the principal ray is compensated by adjusting the film thicknesses d H and d L of each dielectric film, Good.

このような多層膜層構造を有する平板偏光ビームスプリッタ20の法線と入射光の主光線で規定されるXZ面における断面構造の模式図を図5に示す。なお、実際の多層膜層の総膜厚は0.5μmから10μm程度とわずかだが、説明のために膜厚を拡大強調して示している。   FIG. 5 is a schematic diagram of a cross-sectional structure in the XZ plane defined by the normal line of the flat-plate polarizing beam splitter 20 having such a multilayer film structure and the principal ray of incident light. The actual total film thickness of the multilayer film is as small as about 0.5 μm to 10 μm, but the film thickness is enlarged and emphasized for the sake of explanation.

各誘電体膜の膜厚dおよびdは主光線の入射角θに対し、広角(θ+α)側では厚く、狭角(θ−α)側では薄くなるよう、狭角側から広角側へ各誘電体膜の膜厚が連続的に空間分布した多層膜層構造とする。 From the narrow angle side to the wide angle side, the thicknesses d H and d L of the dielectric films are thicker at the wide angle (θ + α) side and thinner at the narrow angle (θ−α) side than the incident angle θ of the principal ray. A multilayer film structure in which the thickness of each dielectric film is continuously spatially distributed is adopted.

なお、図5の紙面に垂直なY軸方向において、平板偏光ビームスプリッタ20に対する主光線の入射角成分は0°のため、(4a)、(4b)式より±10°以下程度の発散光における入射角変化に対する光路長差LおよびLの変動はわずかであり、Y軸方向の各誘電体膜の膜厚を調整する可能性は低い。 In addition, in the Y-axis direction perpendicular to the paper surface of FIG. 5, the incident angle component of the principal ray with respect to the flat polarizing beam splitter 20 is 0 °. Therefore, in the divergent light of about ± 10 ° or less from the equations (4a) and (4b). Variations in the optical path length differences L H and L L with respect to the change in the incident angle are slight, and the possibility of adjusting the film thickness of each dielectric film in the Y-axis direction is low.

このような多層膜層の分光特性における入射角依存性を膜厚調整で補正する技術は、ウェッジ付き光学フィルタなどの製品に適用されている成膜時に膜厚補正板を配置するなどの手法を用いることにより実現可能である。   The technology for correcting the incident angle dependence in the spectral characteristics of the multilayer film layer by adjusting the film thickness is a technique such as arranging a film thickness correction plate during film formation applied to products such as optical filters with wedges. It can be realized by using.

2.主光線の入射角θが大きくなる配置
前述したように、平板偏光ビームスプリッタの多層膜層を構成する高屈折率誘電体膜と低屈折率誘電体膜の屈折率差(n−n)が大きいほど、主光線の入射角θが大きな配置ほど、短波長反射帯多層膜層12Sおよび長波長反射帯多層膜層12Lの個々の偏光分離波長帯が拡がるため、平板偏光ビームスプリッタにおいても有効偏光分離波長領域を拡大することができる。
2. Arrangement in which the incident angle θ of the chief ray is large As described above, the refractive index difference (n H −n L ) between the high refractive index dielectric film and the low refractive index dielectric film constituting the multilayer film layer of the flat polarizing beam splitter Is larger, the larger the incident angle θ of the principal ray, the wider the individual polarization separation wavelength bands of the short wavelength reflection band multilayer film layer 12S and the long wavelength reflection band multilayer film layer 12L. The polarization separation wavelength region can be expanded.

屈折率差(n−n)は用いられる実用的な透明誘電体膜材料によって制約が有る。一方、主光線の入射角θを大きくするほど入射光束径に対する平板偏光ビームスプリッタ10の受光面積を拡大することが重要である。これは平板偏光ビームスプリッタ10の大型化およびコストアップを招き光ヘッド装置100の大形化につながるといった問題が生じやすいからである。また、図1においてレーザ光源1と光検出器6が近づき干渉するため、配置上許容される入射角θには上限が有る。 The refractive index difference (n H −n L ) is limited by the practical transparent dielectric film material used. On the other hand, it is important to increase the light receiving area of the flat polarizing beam splitter 10 with respect to the incident light beam diameter as the incident angle θ of the chief ray increases. This is because problems such as an increase in the size and cost of the flat polarizing beam splitter 10 and an increase in the size of the optical head device 100 are likely to occur. Further, since the laser light source 1 and the photodetector 6 approach and interfere in FIG. 1, there is an upper limit on the incident angle θ that is allowed in the arrangement.

このような問題を回避し、発散光中配置においてレーザ光源の使用波長帯域にわたり高い偏光分離特性を実現するためには、主光線の入射角θを45°から65°の範囲とすることが有効である。   In order to avoid such problems and achieve high polarization separation characteristics over the wavelength band of the laser light source in the divergent light arrangement, it is effective to set the incident angle θ of the chief ray in the range of 45 ° to 65 °. It is.

[例1]
高密度情報記録光ディスクBDの記録再生用の光ヘッド装置に用いられる青色半導体レーザをBD用の405nm波長帯の使用波長帯域398〜415nmのレーザ光源1とし、主光線の入射角θ=45°の平行光中に平板偏光ビームスプリッタ21を配置した本発明の光ヘッド装置200の構成例の模式図を図6に示す。光ヘッド装置100の構成例の模式図を示す図1と同じ機能の部品は同じ番号を記し、説明を省略する。
[Example 1]
A blue semiconductor laser used in an optical head device for recording / reproducing of a high-density information recording optical disc BD is a laser light source 1 having a used wavelength band of 398 to 415 nm for BD, and an incident angle θ of a principal ray is 45 °. FIG. 6 shows a schematic diagram of a configuration example of the optical head device 200 of the present invention in which the flat polarizing beam splitter 21 is arranged in parallel light. Components having the same functions as those in FIG. 1 showing a schematic diagram of a configuration example of the optical head device 100 are denoted by the same reference numerals, and description thereof is omitted.

光ヘッド装置100との相違点として、レーザ光源1から出射したP偏光(第1の直線偏光)の発散光がコリメートレンズ3により平行光となって平板偏光ビームスプリッタ21に入射角θ=45°で入射する。さらに、光ディスク7の情報記録面により反射された信号光が対物レンズ5を再度透過して平行光となり、1/4波長板4を往復することによりS偏光(第2の直線偏光)に変換されて平板偏光ビームスプリッタ21に入射し、反射された光は平板ビームスプリッタ21bで反射され、平板ビームスプリッタ21aを透過し、コリメートレンズ3aにより光検出器6aの受光面に集光される。   A difference from the optical head device 100 is that the divergent light of P-polarized light (first linearly polarized light) emitted from the laser light source 1 becomes parallel light by the collimator lens 3 and is incident on the flat polarizing beam splitter 21 at an incident angle θ = 45 °. Incident at. Further, the signal light reflected by the information recording surface of the optical disk 7 passes through the objective lens 5 again to become parallel light, and is converted into S-polarized light (second linearly polarized light) by reciprocating the quarter-wave plate 4. Then, the light incident on and reflected by the flat polarizing beam splitter 21 is reflected by the flat beam splitter 21b, passes through the flat beam splitter 21a, and is collected on the light receiving surface of the photodetector 6a by the collimator lens 3a.

さらに、光ヘッド装置200ではDVDおよびCDの光ディスクの記録再生も実現するため、DVDとCD用の光ヘッド装置200aが一体化されている。DVD用の660nm波長帯の光とCD用の785nm波長帯の光を切り替えて発振する2波長レーザ光源1aから出射するS偏光の発散光のうち約90%が平板ビームスプリッタ21aで反射され、コリメートレンズ3aにより平行光となって平板ビームスプリッタ21bを透過し、DVDおよびCD用の対物レンズ5aにより光ディスク7aの情報記録面に集光される。光ディスク7aの情報記録面で反射された信号光が前記対物レンズ5aを再度透過して平行光となり、1/4波長板4aを往復することによりP偏光に変換されて平板ビームスプリッタ21bを透過し、コリメートレンズ3aにより平板ビームスプリッタ21aを透過した一部の光が光検出器6aの受光面に集光される。   Further, the optical head device 200 integrates the DVD and CD optical head device 200a in order to realize recording and reproduction of DVD and CD optical disks. About 90% of the s-polarized divergent light emitted from the two-wavelength laser light source 1a that oscillates by switching between the light for the 660 nm wavelength band for DVD and the light for the 785 nm wavelength band for CD is reflected by the flat plate beam splitter 21a and collimated. The light is converted into parallel light by the lens 3a, is transmitted through the flat beam splitter 21b, and is condensed on the information recording surface of the optical disk 7a by the objective lens 5a for DVD and CD. The signal light reflected by the information recording surface of the optical disk 7a is transmitted again through the objective lens 5a to become parallel light, converted into P-polarized light by reciprocating through the quarter-wave plate 4a, and transmitted through the flat beam splitter 21b. A part of the light transmitted through the flat beam splitter 21a by the collimator lens 3a is condensed on the light receiving surface of the photodetector 6a.

ここで、平板ビームスプリッタ21bはBD用の405nm波長帯の少なくともS偏光を反射し、DVD用の660nm波長帯およびCD用の785nm波長帯のP偏光およびS偏光を透過する分光特性を有する平板ビームスプリッタである。また、平板ビームスプリッタ21aはBD用の405nm波長帯の少なくともS偏光を透過し、DVD用の660nm波長帯およびCD用の785nm波長帯の少なくともS偏光を90%以上反射するとともに少なくともP偏光を10%以上透過する分光特性を有する平板ビームスプリッタである。平板ビームスプリッタ21aおよび21bは偏光分離機能が必須ではないため、従来の多層膜設計にて所望の分光特性が実現できる。   Here, the plate beam splitter 21b reflects at least S-polarized light in the 405 nm wavelength band for BD, and has a spectral characteristic that transmits P-polarized light and S-polarized light in the 660 nm wavelength band for DVD and the 785 nm wavelength band for CD. It is a splitter. The flat beam splitter 21a transmits at least S-polarized light in the 405 nm wavelength band for BD, reflects at least 90% of S-polarized light in the 660 nm wavelength band for DVD and 785 nm wavelength band for CD, and at least 10 P-polarized light. It is a flat plate beam splitter having a spectral characteristic of transmitting at least%. Since the plate beam splitters 21a and 21b do not necessarily have a polarization separation function, a desired spectral characteristic can be realized by a conventional multilayer film design.

図6には記載していないが、レーザ光源1とコリメートレンズ3の間の光路中や、レーザ光源1aとコリメートレンズ3aの間の光路中にトラッキングサーボ信号を得るために、0次透過光と±1次回折光を生成する3ビーム回折格子を配置する場合がある。また、平板ビームスプリッタ21aと光検出器6aの間の光路中にフォーカスサーボ信号を得るために、透過光に非点収差を発生させるシリンドリカルレンズなどを配置する場合がある。   Although not shown in FIG. 6, in order to obtain a tracking servo signal in the optical path between the laser light source 1 and the collimating lens 3 or in the optical path between the laser light source 1a and the collimating lens 3a, A three-beam diffraction grating that generates ± first-order diffracted light may be arranged. Further, in order to obtain a focus servo signal in the optical path between the flat beam splitter 21a and the photodetector 6a, a cylindrical lens that generates astigmatism in transmitted light may be arranged.

次に、平板偏光ビームスプリッタ21の具体的な構成および機能を図2を用いて以下に説明する。屈折率1.52の透光性ガラスの平板基板11の片面に、基板側から高屈折率n=2.20のTa誘電体膜と低屈折率n=1.47のSiO誘電体膜を交互に、長波長反射帯多層膜層12Lおよび短波長反射帯多層膜層12Sを各々30層ずつ積層し、合計60層の構成となるように成膜する。図2の12Sと12Lの順番が逆の構成に対応する。 Next, a specific configuration and function of the flat polarizing beam splitter 21 will be described below with reference to FIG. A Ta 2 O 5 dielectric film having a high refractive index n H = 2.20 and a SiO 2 having a low refractive index n L = 1.47 are formed on one side of a flat glass substrate 11 made of translucent glass having a refractive index of 1.52. The two dielectric films are alternately stacked with 30 layers each of the long-wavelength reflection band multilayer film layer 12L and the short-wavelength reflection band multilayer film layer 12S so as to form a total of 60 layers. This corresponds to a configuration in which the order of 12S and 12L in FIG. 2 is reversed.

青色半導体レーザ光源の基準波長λ=405nmを用いると、(4a)、(4b)式で定義される光路長差の60層の平均値は0.268λ、長波長反射帯多層膜層12Lと短波長反射帯多層膜層12Sの各30層の光路長差の平均値は0.305λと0.231λである。使用波長帯域398〜415nmにおける主光線の入射角θ=45°で±3°の発散および収束光に対して高いP偏光透過率を確保するために、長波長反射帯多層膜層12Lにおける平板基板11および短波長反射帯多層膜層12Sとの境界の数層と、短波長反射帯多層膜層12Sにおける大気との境界の数層は光路長差の各平均値0.305λと0.231λに対して最大0.4λ程度異なる光路長差に設定するとともに、その他の層の各光路長差を各平均値から±0.06λ以内で各誘電体膜の膜厚dおよびdを微調整した設計としている。 When the reference wavelength λ 0 = 405 nm of the blue semiconductor laser light source is used, the average value of the 60 layers of the optical path length difference defined by the equations (4a) and (4b) is 0.268λ 0 , and the long wavelength reflection band multilayer film layer 12L the average value of the optical path length difference of each 30 layers of short wavelength reflection band multilayer film 12S is 0.305Ramuda 0 and 0.231λ 0. In order to ensure a high P-polarized light transmittance for ± 3 ° divergence and convergent light at an incident angle θ = 45 ° of the principal ray in the used wavelength band 398 to 415 nm, a flat substrate in the long wavelength reflection band multilayer film layer 12L and 11 and short-wavelength reflection band multilayer film 12S and several layers of boundary, several layers of the boundary between the atmosphere in the short-wavelength reflection band multilayer film 12S is each average 0.305Ramuda 0 of the optical path length difference 0.231λ The optical path length difference is set to be different by about 0.4λ 0 from 0 at the maximum, and the film thicknesses d H and d of each dielectric film are set within ± 0.06λ 0 from each average value. L is finely adjusted.

なお、主光線の入射角θ=45°に対して±3°の発散および収束光としたのは、情報記録面が2層からなるBD用の光ディスクの場合、光ディスクカバー厚の相違に応じて発生する情報記録面における集光スポットの球面収差を補正するためにコリメートレンズ3および3aを光軸方向に移動して±3°以下の範囲で発散光または収束光に調整することが必要となるためである。コリメートレンズ3と3aの光軸方向の移動は、2個のコリメートレンズをホルダに一体固定し、ステッピングモータなどを用いて駆動する。   Note that the divergence and convergent light of ± 3 ° with respect to the incident angle θ = 45 ° of the chief ray is used in the case of an optical disc for BD having an information recording surface of two layers according to the difference in optical disc cover thickness. In order to correct the spherical aberration of the condensed spot on the information recording surface that occurs, it is necessary to move the collimating lenses 3 and 3a in the direction of the optical axis and adjust them to divergent light or convergent light within a range of ± 3 ° or less. Because. To move the collimating lenses 3 and 3a in the optical axis direction, two collimating lenses are integrally fixed to a holder and driven using a stepping motor or the like.

このような構成からなる平板偏光ビームスプリッタ21のP偏光とS偏光に対する分光透過率波長依存性の計算結果を図7に示す。(P−45)と(S−45)は入射角45°、(P−42)と(S−42)は入射角42°、(P−48)と(S−48)は入射角48°に対するP偏光とS偏光の分光透過率を示す。すなわち、使用波長帯域398〜415nmにおける入射角45°±3°の発散光に対し、95%以上のP偏光透過率と96%以上のS偏光反射率を示す平板偏光ビームスプリッタ21となっている。なお、入射角θ=45°の平行光に対しては、波長帯域395〜417nmにおいて98%以上のP偏光透過率と98%以上のS偏光反射率を示す。   FIG. 7 shows the calculation result of the spectral transmittance wavelength dependency for the P-polarized light and the S-polarized light of the plate polarizing beam splitter 21 having such a configuration. (P-45) and (S-45) have an incident angle of 45 °, (P-42) and (S-42) have an incident angle of 42 °, and (P-48) and (S-48) have an incident angle of 48 °. The spectral transmittance of P-polarized light and S-polarized light is shown. That is, the plate-type polarizing beam splitter 21 exhibits a P-polarized light transmittance of 95% or more and an S-polarized light reflectance of 96% or more with respect to divergent light having an incident angle of 45 ° ± 3 ° in the used wavelength band 398 to 415 nm. . For parallel light having an incident angle θ = 45 °, a P-polarized light transmittance of 98% or more and an S-polarized light reflectance of 98% or more are shown in the wavelength band 395 to 417 nm.

比較例1として、従来技術である短波長反射帯多層膜層12Sのみからなる平板偏光ビームスプリッタとした時のP偏光とS偏光に対する分光透過率波長依存性の計算結果を図8に示す。入射角θ=45°の平行光に対して90%以上のP偏光透過率と90%以上のS偏光反射率を示す波長帯域は400〜412nmで、入射角45°±3°の発散光に対して90%以上のP偏光透過率と90%以上のS偏光反射率を示す波長帯域は405〜409nmとなり、使用波長帯域に対する高い偏光分離特性が得られにくい。   As Comparative Example 1, FIG. 8 shows the calculation result of the spectral transmittance wavelength dependence for P-polarized light and S-polarized light when the plate polarization beam splitter is formed of only the short wavelength reflection band multilayer film layer 12S as the prior art. The wavelength band showing P-polarized light transmittance of 90% or more and S-polarized light reflectance of 90% or more for parallel light with an incident angle θ = 45 ° is 400 to 412 nm, and divergent light with an incident angle of 45 ° ± 3 °. On the other hand, the wavelength band showing P-polarized light transmittance of 90% or more and S-polarized light reflectance of 90% or more is 405 to 409 nm, and it is difficult to obtain high polarization separation characteristics with respect to the used wavelength band.

また、比較例2として、従来技術である長波長反射帯多層膜層12Lのみからなる平板偏光ビームスプリッタとした時のP偏光とS偏光に対する分光透過率波長依存性の計算結果を図9に示す。入射角θ=45°の平行光に対して90%以上のP偏光透過率と90%以上のS偏光反射率を示す波長帯域は400〜410nmで、入射角45°±3°の発散光に対して90%以上のP偏光透過率と90%以上のS偏光反射率を示す波長帯域は405〜407nmとなり、使用波長帯域に対する高い偏光分離特性が得られにくい。   As Comparative Example 2, FIG. 9 shows the calculation results of the spectral transmittance wavelength dependence for P-polarized light and S-polarized light when a plate polarization beam splitter consisting only of the long-wavelength reflection band multilayer film 12L, which is the prior art, is used. . The wavelength band showing a P-polarized light transmittance of 90% or more and an S-polarized light reflectance of 90% or more for parallel light with an incident angle θ = 45 ° is 400 to 410 nm, and divergent light with an incident angle of 45 ° ± 3 °. On the other hand, the wavelength band showing P-polarized light transmittance of 90% or more and S-polarized light reflectance of 90% or more is 405 to 407 nm, and it is difficult to obtain high polarization separation characteristics with respect to the used wavelength band.

本発明の光ヘッド装置200によれば、BD用光ディスク7の記録再生において往路および復路の高い光利用効率が得られ、比較的低消費電力の青色半導体レーザ光源を用いることができるとともに、SNの高い光信号検出ができるため安定した動作が実現する。また、偏光ビームスプリッタプリズムの代わりに平板偏光ビームスプリッタ21を用い、他の光合分波素子も平板ビームスプリッタから成るため、生産性が高くコストダウンが可能となる。さらに、DVDおよびCDの用光ディスク7aの記録再生に対しても、BD用と共通の光検出器6aを用いるため、光ヘッド装置の小型化につながるとともにコストダウンとなる。   According to the optical head device 200 of the present invention, high light utilization efficiency in the forward path and the backward path can be obtained in the recording / reproduction of the BD optical disc 7, and a blue semiconductor laser light source with relatively low power consumption can be used. Stable operation is realized because high optical signal detection is possible. In addition, since the plate polarization beam splitter 21 is used instead of the polarization beam splitter prism and the other optical multiplexing / demultiplexing elements are also composed of the plate beam splitter, the productivity is high and the cost can be reduced. Further, the optical detector 6a common to that for BD is used for recording and reproduction of the optical disk 7a for DVD and CD, which leads to miniaturization of the optical head device and cost reduction.

[例2]
本発明の第2の実施例を、光ヘッド装置100の構成例の模式図である図1を用いて説明する。
レーザ光源1とし実施例1と同じ青色半導体レーザを用い、主光線の入射角θ=45°で±8°の発散光中に平板偏光ビームスプリッタ20を配置した構成としている。光ヘッド装置100の構成および作用は実施の形態に記したため説明を省略する。
平板偏光ビームスプリッタ20の具体的な構成および機能を図5を用いて以下に説明する。
[Example 2]
A second embodiment of the present invention will be described with reference to FIG. 1, which is a schematic diagram of a configuration example of the optical head device 100. FIG.
The same blue semiconductor laser as that of the first embodiment is used as the laser light source 1, and the flat polarizing beam splitter 20 is arranged in the divergent light of ± 8 ° at the incident angle θ of the chief ray of 45 °. Since the configuration and operation of the optical head device 100 are described in the embodiment, description thereof is omitted.
A specific configuration and function of the flat polarizing beam splitter 20 will be described below with reference to FIG.

平板偏光ビームスプリッタ20の片面に成膜された多層膜層は、主光線の入射角θ=45°となる位置において、実施例1の平板偏光ビームスプリッタ10と同じ各誘電体膜の膜厚dおよびdの多層膜設計構成としている。さらに、平板偏光ビームスプリッタ10のXZ面内で、入射角が45°に対して狭角(45°−8°)側から広角(45°+8°)側に向かって連続的に各誘電体膜の膜厚が厚くなるように空間分布したウェッジ付き多層膜層とし、多層膜層の分光特性における入射角依存性を補正している。 The multilayer film formed on one surface of the flat polarizing beam splitter 20 has the same film thickness d of each dielectric film as the flat polarizing beam splitter 10 of Example 1 at a position where the incident angle θ of the chief ray is θ = 45 °. and a multilayer film design structure of H and d L. Further, in the XZ plane of the plate polarizing beam splitter 10, each dielectric film is continuously formed from the narrow angle (45 ° -8 °) side to the wide angle (45 ° + 8 °) side with respect to 45 °. The multi-layer film with wedges is spatially distributed so that the film thickness of the multi-layer film becomes thick, and the incident angle dependence in the spectral characteristics of the multi-layer film layer is corrected.

具体的には、入射角が37°(=45°−8°)でおよび53°(=45°+8°)の時、入射角θ=45°に比較して有効偏光分離波長領域が略+9nmおよび略−9nmだけ波長シフトするため、各誘電体膜の膜厚を入射角θ=45°の位置の膜厚に対する比率として、入射角が37°および53°の位置で略−2.3%および略+2.3%程度の連続的な膜厚分布を形成する。   Specifically, when the incident angle is 37 ° (= 45 ° -8 °) and 53 ° (= 45 ° + 8 °), the effective polarization separation wavelength region is approximately +9 nm compared to the incident angle θ = 45 °. Further, since the wavelength shift is performed by approximately −9 nm, the thickness of each dielectric film is approximately −2.3% at the incident angles of 37 ° and 53 ° as a ratio to the film thickness at the incident angle θ = 45 °. Further, a continuous film thickness distribution of about + 2.3% is formed.

その結果、使用波長帯域398〜415nmにおいて、主光線の入射角θ=45°で±8°の発散光に対し96%以上のP偏光透過率と96%以上のS偏光反射率となる高い偏光分離特性を示す平板偏光ビームスプリッタ20が得られ、比較的低消費電力で安定したSNの高い光信号検出ができる光ヘッド装置が実現する。   As a result, in the used wavelength band of 398 to 415 nm, high polarization having a P-polarized light transmittance of 96% or more and an S-polarized light reflectance of 96% or more with respect to the divergent light of ± 8 ° at the incident angle θ = 45 ° of the principal ray A flat polarizing beam splitter 20 exhibiting separation characteristics can be obtained, and an optical head device capable of detecting an optical signal having a relatively high power consumption and a stable SN can be realized.

[例3]
レーザ光源1とし実施例1および2と同じ青色半導体レーザを用い、主光線の入射角θ=60°で±8°の発散光中に平板偏光ビームスプリッタ10を配置した図1に示す本発明の光ヘッド装置100において、図2に示す平板偏光ビームスプリッタ10の本実施例における具体的な構成および機能を以下に説明する。光ヘッド装置100の構成および作用は実施の形態に記したため説明を省略する。
[Example 3]
The same blue semiconductor laser as in Examples 1 and 2 is used as the laser light source 1, and the flat polarizing beam splitter 10 is arranged in the divergent light of ± 8 ° at the incident angle θ = 60 ° of the principal ray. In the optical head device 100, a specific configuration and function of the flat polarizing beam splitter 10 shown in FIG. Since the configuration and operation of the optical head device 100 are described in the embodiment, description thereof is omitted.

屈折率1.52の透光性ガラスの平板基板11の片面に、基板側から高屈折率n=2.20のTa誘電体膜と低屈折率n=1.47のSiO誘電体膜を交互に合計58層積層した構成からなる短波長反射帯多層膜層12Sと長波長反射帯多層膜層12Lを成膜する。青色半導体レーザ光源の基準波長λ=405nmを用いると、(4a)、(4b)式で定義される光路長差の58層の平均値は0.263λ、30層からなる短波長反射帯多層膜層12Sと28層からなる長波長反射帯多層膜層12Lの各光路長差の平均値は0.223λと0.304λである。使用波長帯域398〜415nmおよび入射角60°±8°の発散光に対して高いP偏光透過率を確保するために、短波長反射帯多層膜層12Sにおける平板基板11との境界の数層と、長波長反射帯多層膜層12Lにおける短波長反射帯多層膜層12Sおよび大気との境界の数層は光路長差の各平均値0.223λと0.304λに対して最大0.4λ程度異なる光路長差に設定するとともに、その他の層の各光路長差を各平均値から±0.06λ以内となるように各誘電体膜の膜厚dおよびdを微調整した多層膜設計としている。 A Ta 2 O 5 dielectric film having a high refractive index n H = 2.20 and a SiO 2 having a low refractive index n L = 1.47 are formed on one side of a flat glass substrate 11 made of translucent glass having a refractive index of 1.52. A short-wavelength reflection band multilayer film layer 12S and a long-wavelength reflection band multilayer film layer 12L having a configuration in which a total of 58 layers of two dielectric films are alternately stacked are formed. When the reference wavelength λ 0 = 405 nm of the blue semiconductor laser light source is used, the average value of 58 layers of the optical path length difference defined by the equations (4a) and (4b) is 0.263λ 0 , a short wavelength reflection band consisting of 30 layers average value of the optical path length difference of the multilayer film layer 12S and a long wavelength reflection band multilayer film 12L formed of 28 layers is 0.223Ramuda 0 and 0.304λ 0. In order to ensure a high P-polarized light transmittance with respect to divergent light having a used wavelength band of 398 to 415 nm and an incident angle of 60 ° ± 8 °, several layers at the boundary with the flat substrate 11 in the short wavelength reflection band multilayer film layer 12S In the long wavelength reflection band multilayer film layer 12L, the short wavelength reflection band multilayer film layer 12S and several layers at the boundary with the atmosphere have a maximum of 0.4λ with respect to the respective average values of the optical path length differences of 0.223λ 0 and 0.304λ 0 . The optical path length differences differed by about 0, and the film thicknesses d H and d L of each dielectric film were finely adjusted so that the optical path length differences of the other layers were within ± 0.06λ 0 from the respective average values. Multi-layer design.

このような構成からなる平板偏光ビームスプリッタ10のP偏光とS偏光に対する分光透過率波長依存性の計算結果を図10に示す。(P−60)と(S−60)は入射角60°、(P−52)と(S−52)は入射角52°、(P−68)と(S−68)は入射角68°に対するP偏光とS偏光の分光透過率を示す。すなわち、使用波長帯域398〜415nmにおける入射角60°±8°の発散光に対し、98%以上のP偏光透過率と98%以上のS偏光反射率を示す平板偏光ビームスプリッタ10となっている。なお、入射角θ=60°の平行光に対しては、波長帯域389〜422nmにおいて93%以上のP偏光透過率と99%以上のS偏光反射率を示す。   FIG. 10 shows the calculation result of the spectral transmittance wavelength dependency for the P-polarized light and the S-polarized light of the plate polarizing beam splitter 10 having such a configuration. (P-60) and (S-60) have an incident angle of 60 °, (P-52) and (S-52) have an incident angle of 52 °, and (P-68) and (S-68) have an incident angle of 68 °. The spectral transmittance of P-polarized light and S-polarized light is shown. That is, the plate-type polarizing beam splitter 10 exhibits a P-polarized light transmittance of 98% or more and an S-polarized light reflectance of 98% or more for divergent light having an incident angle of 60 ° ± 8 ° in the used wavelength band 398 to 415 nm. . For parallel light with an incident angle θ = 60 °, a P-polarized light transmittance of 93% or more and an S-polarized light reflectance of 99% or more are shown in the wavelength band 389 to 422 nm.

比較例として、従来技術である短波長反射帯多層膜層12Sまたは長波長反射帯多層膜層12Lのみからなる平板偏光ビームスプリッタとした時のP偏光とS偏光に対する分光透過率波長依存性の計算結果から、入射角θ=60°の平行光に対して90%以上のP偏光透過率と90%以上のS偏光反射率を示す波長帯域は400〜412nmで、入射角60°±8°の発散光に対して90%以上のP偏光透過率と90%以上のS偏光反射率を示す波長帯域405〜409nmとなり、使用波長帯域に対する高い偏光分離特性が得られない。   As a comparative example, calculation of spectral transmittance wavelength dependence for P-polarized light and S-polarized light when using a conventional polarizing beam splitter composed of only the short-wavelength reflection band multilayer film layer 12S or the long-wavelength reflection band multilayer film layer 12L. From the results, the wavelength band showing the P-polarized light transmittance of 90% or more and the S-polarized light reflectance of 90% or more with respect to the parallel light with the incident angle θ = 60 ° is 400 to 412 nm, and the incident angle is 60 ° ± 8 °. A wavelength band of 405 to 409 nm showing 90% or higher P-polarized light transmittance and 90% or higher S-polarized light reflectance with respect to divergent light, and high polarization separation characteristics for the used wavelength band cannot be obtained.

本発明の光ヘッド装置100によれば、BD用光ディスク7の記録再生において往路および復路の高い光利用効率が得られ、比較的低消費電力の青色半導体レーザ光源を用いることができるとともに、SNの高い光信号検出ができるため安定した動作が実現する。また、偏光ビームスプリッタプリズムの代わりに平板偏光ビームスプリッタを用いているため、生産性が高くコストダウンが可能となる。   According to the optical head device 100 of the present invention, high light utilization efficiency in the forward path and the backward path can be obtained in the recording / reproduction of the BD optical disc 7, and a blue semiconductor laser light source with relatively low power consumption can be used. Stable operation is realized because high optical signal detection is possible. Further, since a flat polarizing beam splitter is used instead of the polarizing beam splitter prism, the productivity is high and the cost can be reduced.

実施例1から3では、レーザ光源1としてBD用光ディスクの使用波長帯域398〜415nmの青色半導体レーザ光源を用いる例について説明したが、DVD用光ディスクの使用波長帯域645〜675nmの赤色レーザ光源や、CD用光ディスクの使用波長帯域765〜805nmの近赤外レーザ光源を用いる場合でも、平板偏光ビームスプリッタの多層膜層の基準波長λの相違に応じて各誘電体膜の膜厚dおよびdを調整した多層膜設計構成に変更すれば対応できる。 In Examples 1 to 3, an example in which a blue semiconductor laser light source having a used wavelength band of 398 to 415 nm of a BD optical disk is used as the laser light source 1 is described. However, a red laser light source having a used wavelength band of 645 to 675 nm of a DVD optical disk, Even when a near-infrared laser light source having a wavelength band of 765 to 805 nm for a CD optical disk is used, the film thicknesses d H and d of the dielectric films are varied according to the difference in the reference wavelength λ 0 of the multilayer film layer of the plate polarization beam splitter. This can be dealt with by changing to a multilayer film design configuration in which L is adjusted.

また、同じ多層膜設計手法を用いて、BD波長用の多層膜層とDVD波長用の多層膜層を積層することにより、BD使用波長帯域およびDVD使用波長帯域に対して高い偏光分離機能を実現する平板偏光ビームスプリッタとすることができるため、光ヘッド装置のさらなる小型化およびコストダウンにつながる。   In addition, by using the same multilayer design method, a multi-layer film for BD wavelengths and a multilayer film layer for DVD wavelengths are stacked to achieve a high polarization separation function for the BD wavelength band and DVD wavelength band. Therefore, the optical head device can be further reduced in size and cost.

本発明の実施形態の光ヘッド装置の構成例を示す模式図。1 is a schematic diagram illustrating a configuration example of an optical head device according to an embodiment of the present invention. 本発明の光ヘッド装置に搭載された平板偏光ビームスプリッタの構造を示す断面図。Sectional drawing which shows the structure of the flat plate polarization beam splitter mounted in the optical head apparatus of this invention. 本発明の光ヘッド装置に搭載された平板偏光ビームスプリッタのP、S偏光の分光透過特性形状例を示すグラフ。The graph which shows the example of the spectral transmission characteristic shape of P and S polarization | polarized-light of the flat polarizing beam splitter mounted in the optical head apparatus of this invention. 光路長差がλ/4の高屈折率と低屈折率の誘電体膜を交互に積層した多層膜の斜入射光に対するP、S偏光の分光透過特性形状例を示すグラフ。Graph showing P, and spectral transmission characteristic shape example of S-polarized light with respect to oblique incident light of multilayer film optical path length difference are alternately stacked dielectric films of high and low refractive index of λ 0/4. 本発明の光ヘッド装置に搭載された平板偏光ビームスプリッタにおいて、多層膜層に膜厚分布が付与された構造を示す断面図。Sectional drawing which shows the structure where the film thickness distribution was provided to the multilayer film layer in the flat polarizing beam splitter mounted in the optical head apparatus of this invention. 本発明の第1の実施例の光ヘッド装置の構成例を示す模式図。1 is a schematic diagram showing a configuration example of an optical head device according to a first embodiment of the present invention. 本発明の第1の実施例の光ヘッド装置に搭載された平板偏光ビームスプリッタのP、S偏光の分光透過特性を示すグラフ。3 is a graph showing the spectral transmission characteristics of P and S polarized light of the flat polarizing beam splitter mounted on the optical head device according to the first embodiment of the present invention. 比較例1として、従来の平板ビームスプリッタのP、S偏光の分光透過特性を示すグラフ。As Comparative Example 1, a graph showing the spectral transmission characteristics of P and S polarized light of a conventional flat plate beam splitter. 比較例2として、従来の平板ビームスプリッタのP、S偏光の分光透過特性を示すグラフ。As Comparative Example 2, a graph showing the spectral transmission characteristics of P and S polarized light of a conventional flat plate beam splitter. 本発明の第3の実施例の光ヘッド装置に搭載された平板偏光ビームスプリッタのP、S偏光の分光透過特性を示すグラフ。7 is a graph showing the spectral transmission characteristics of P and S polarized light of a flat-plate polarization beam splitter mounted on the optical head device according to the third embodiment of the present invention. 従来の偏光ビームスプリッタプリズムを搭載した光ヘッド装置の構成例を示す模式図。FIG. 6 is a schematic diagram showing a configuration example of an optical head device equipped with a conventional polarizing beam splitter prism. 従来の平板ビームスプリッタを搭載した光ヘッド装置の構成例を示す模式図。The schematic diagram which shows the structural example of the optical head apparatus carrying the conventional flat plate beam splitter.

符号の説明Explanation of symbols

1、1a:レーザ光源
2a:偏光ビームスプリッタプリズム
2b、21a、21b:平板ビームスプリッタ
3、3a:コリメートレンズ
4、4a:1/4波長板
5、5a:対物レンズ
6、6a:光検出器
7、7a:光ディスク
10、20、21:平板偏光ビームスプリッタ
11:平板基板
12S:短波長反射帯多層膜層
12L:長波長反射帯多層膜層
100、200、200a:光ヘッド装置
DESCRIPTION OF SYMBOLS 1, 1a: Laser light source 2a: Polarizing beam splitter prism 2b, 21a, 21b: Flat plate beam splitter 3, 3a: Collimating lens 4, 4a: 1/4 wavelength plate 5, 5a: Objective lens 6, 6a: Photo detector 7 7a: optical discs 10, 20, 21: flat plate polarization beam splitter 11: flat plate substrate 12S: short wavelength reflection band multilayer film layer 12L: long wavelength reflection band multilayer film layers 100, 200, 200a: optical head device

Claims (5)

レーザ光源と、
前記レーザ光源から出射された第1の直線偏光を円偏光に変換するとともに、光記録媒体から反射された円偏光を第1の直線偏光と直交する第2の直線偏光に変換する1/4波長板と、
前記1/4波長板を透過した円偏光を光記録媒体に集光する対物レンズと、
前記光記録媒体により反射され前記1/4波長板により変換された第2の直線偏光を検出する光検出器と、
前記レーザ光源と前記1/4波長板との間の発散光の光路中に配置され、前記レーザ光源から出射された第1の直線偏光を透過又は反射し、かつ、前記光記録媒体から反射され前記1/4波長板で円偏光から第2の直線偏光に変換された反射光を反射又は透過する偏光ビームスプリッタと、を備えた光ヘッド装置であって、
前記偏光ビームスプリッタは、平行平板の透光性基板の片面の表面に屈折率の異なる少なくとも2種以上の膜材料からなる多層膜が成膜され、
前記多層膜は、青色半導体レーザ光源の使用波長帯域である398〜415nmにおいて、斜入射光線の入射角に伴う反射帯の立ち上がり・立ち下がりの偏光透過特性の違いを利用し、互いに直交する偏光成分を透過・反射させるとともに、互いに長、短波長を中心波長とする2つの反射帯多層膜層からなり、短波長反射帯の長波長側立ち上がりと長波長反射帯の短波長側立ち下がりを近接させ、一方の偏光成分の透過率が95%以上となるように前記各層の膜厚を調整することにより偏光分離有効波長域を拡げたことを特徴とする光ヘッド装置。
A laser light source;
A quarter wavelength that converts the first linearly polarized light emitted from the laser light source into circularly polarized light and converts the circularly polarized light reflected from the optical recording medium into a second linearly polarized light orthogonal to the first linearly polarized light. The board,
An objective lens for condensing circularly polarized light transmitted through the quarter-wave plate on an optical recording medium;
A photodetector for detecting a second linearly polarized light reflected by the optical recording medium and converted by the quarter-wave plate;
Wherein arranged in the optical path of the divergent light between the laser light source the quarter-wave plate, and transmitting or reflecting the first linearly polarized light emitted from the laser light source and reflected from the optical recording medium A polarizing beam splitter that reflects or transmits reflected light converted from circularly polarized light to second linearly polarized light by the ¼ wavelength plate, and an optical head device comprising:
In the polarizing beam splitter, a multilayer film made of at least two kinds of film materials having different refractive indexes is formed on the surface of one surface of a parallel-plate translucent substrate,
The multilayer film uses the difference in polarization transmission characteristics between the rising and falling of the reflection band according to the incident angle of the obliquely incident light in the wavelength range of 398 to 415 nm that is the use wavelength band of the blue semiconductor laser light source, and the polarization components orthogonal to each other and to reflect, reflect, together long, consists of two reflective bands multilayer film centered wavelength shorter wavelength, it is brought close to the short wavelength side falling on the long wavelength side rise and long wavelength reflection band of the short wavelength reflection band An optical head device characterized in that the polarization separation effective wavelength region is expanded by adjusting the film thickness of each layer so that the transmittance of one polarization component is 95% or more .
前記偏光ビームスプリッタは、入射光の主光線の入射角が45°から65°の範囲であることを特徴とする請求項1に記載の光ヘッド装置。  2. The optical head device according to claim 1, wherein the polarization beam splitter has an incident angle of a principal ray of incident light in a range of 45 ° to 65 °. 前記偏光ビームスプリッタは、入射光の主光線の入射角に対して±6°から±9°の発散光中に配置されることを特徴とする請求項1又は2に記載の光ヘッド装置。  3. The optical head device according to claim 1, wherein the polarization beam splitter is disposed in divergent light having an angle of ± 6 ° to ± 9 ° with respect to an incident angle of a principal ray of incident light. 前記多層膜層を構成する高屈折率誘電体膜と低屈折率誘電体膜の光学膜厚が、主光線の入射角に対し、広角側の入射角では厚く、狭角側の入射角では薄くなるよう、狭角側から広角側へ各誘電体膜の膜厚が連続的に空間分布した多層膜層構造とすることで、前記偏光ビームスプリッタの法線と入射光の主光線で規定される平面内における入射角の相違に起因して発生する分光特性の入射角依存性を補正することを特徴とする請求項1〜3のいずれか1項に記載の光ヘッド装置。 The optical film thickness of the high refractive index dielectric film and the low refractive index dielectric film constituting the multilayer film layer is thicker at the incident angle on the wide angle side and thinner at the incident angle on the narrow angle side than the incident angle of the principal ray. As described above, the multilayer film structure in which the thickness of each dielectric film is continuously spatially distributed from the narrow-angle side to the wide-angle side is defined by the normal line of the polarization beam splitter and the principal ray of the incident light. the optical head device according to any one of claims 1-3, characterized in a Turkey to correct the incident angle dependence of the spectral characteristics caused by the difference in the incident angle in a plane. レーザ光源と、
前記レーザ光源から出射された第1の直線偏光を円偏光に変換するとともに、光記録媒体から反射された円偏光を第1の直線偏光と直交する第2の直線偏光に変換する1/4波長板と、
前記1/4波長板を透過した円偏光を光記録媒体に集光する対物レンズと、
前記光記録媒体により反射され前記1/4波長板により変換された第2の直線偏光を検出する光検出器と、
前記レーザ光源と前記1/4波長板との間の発散光の光路中に配置され、前記レーザ光源から出射された第1の直線偏光を透過又は反射し、かつ、前記光記録媒体から反射され前記1/4波長板で円偏光から第2の直線偏光に変換された反射光を反射又は透過する偏光ビームスプリッタと、を備えた光ヘッド装置であって、
前記偏光ビームスプリッタは、平行平板の透光性基板の片面の表面に屈折率の異なる少なくとも2種以上の膜材料からなる多層膜が成膜され、斜入射光線の入射角に伴う反射帯の立ち上がり・立ち下がりの偏光透過特性の違いを利用し、互いに直交する偏光成分を透過・反射させるとともに、互いに長、短波長を中心波長とする2つの反射帯多層膜層をその分離面に設け、短波長反射帯の長波長側立ち上がりと長波長反射帯の短波長側立ち下がりを近接させ、それぞれの反射、透過偏光特性を乗ずることにより偏光分離有効波長域を拡げるとともに、前記多層膜層を構成する高屈折率誘電体膜と低屈折率誘電体膜の光学膜厚が、主光線の入射角に対し、広角側の入射角では厚く、狭角側の入射角では薄くなるよう、狭角側から広角側へ各誘電体膜の膜厚が連続的に空間分布した多層膜層構造とすることを特徴とする光ヘッド装置。
A laser light source;
A quarter wavelength that converts the first linearly polarized light emitted from the laser light source into circularly polarized light and converts the circularly polarized light reflected from the optical recording medium into a second linearly polarized light orthogonal to the first linearly polarized light. The board,
An objective lens for condensing circularly polarized light transmitted through the quarter-wave plate on an optical recording medium;
A photodetector for detecting a second linearly polarized light reflected by the optical recording medium and converted by the quarter-wave plate;
Wherein arranged in the optical path of the divergent light between the laser light source the quarter-wave plate, and transmitting or reflecting the first linearly polarized light emitted from the laser light source and reflected from the optical recording medium A polarizing beam splitter that reflects or transmits reflected light converted from circularly polarized light to second linearly polarized light by the ¼ wavelength plate, and an optical head device comprising:
In the polarizing beam splitter, a multilayer film made of at least two kinds of film materials having different refractive indexes is formed on the surface of one side of a parallel-plate translucent substrate, and a reflection band rises with an incident angle of obliquely incident light. Utilizing the difference in falling polarization transmission characteristics, it transmits and reflects polarized components orthogonal to each other, and two reflective band multilayer films with a long wavelength and a short wavelength as the center wavelength are provided on the separation surface, It is close to the short wavelength side falling on the long wavelength side rise and long wavelength reflection band wavelength reflection band, each of the reflection, Rutotomoni expanding the polarization separating effective wavelength range by multiplying the transmitting polarization characteristics, the multilayer film structure The optical film thickness of the high-refractive index dielectric film and the low-refractive index dielectric film is narrower so that the incident angle on the wide-angle side is thicker than the incident angle of the principal ray, and is thinner at the narrower-angled incident angle. Dielectric from wide angle side to An optical head device which is characterized in that the multilayer film structure thickness of a film was continuously spatial distribution.
JP2008172479A 2008-07-01 2008-07-01 Optical head device Expired - Fee Related JP5074312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008172479A JP5074312B2 (en) 2008-07-01 2008-07-01 Optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008172479A JP5074312B2 (en) 2008-07-01 2008-07-01 Optical head device

Publications (2)

Publication Number Publication Date
JP2010015617A JP2010015617A (en) 2010-01-21
JP5074312B2 true JP5074312B2 (en) 2012-11-14

Family

ID=41701601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008172479A Expired - Fee Related JP5074312B2 (en) 2008-07-01 2008-07-01 Optical head device

Country Status (1)

Country Link
JP (1) JP5074312B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4103454B2 (en) * 2002-05-17 2008-06-18 ウシオ電機株式会社 Polarizing filter and polarized light irradiation apparatus using the filter
JP3812527B2 (en) * 2002-09-26 2006-08-23 コニカミノルタオプト株式会社 Polarizing beam splitter
JP2005129186A (en) * 2003-10-27 2005-05-19 Konica Minolta Opto Inc Optical pickup unit

Also Published As

Publication number Publication date
JP2010015617A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
TWI410965B (en) Optical pick-up apparatus
US20100254008A1 (en) Cemented optical element and cementing method
WO2004003901A1 (en) Optical pickup
KR19980087526A (en) Optical head and optical disk unit
JP5042352B2 (en) Optical head for optical recording / reproducing apparatus
US20050111516A1 (en) Optical pickup apparatus
US20050213471A1 (en) Reflecting optical element and optical pickup device
JP4300784B2 (en) Optical head device
JP4742630B2 (en) Reflective optical element and optical pickup device
JP2011187139A (en) Grating element and method for manufacturing the same, and optical pickup device using the grating element
JP3667984B2 (en) Broadband polarization separation element and optical head using the broadband polarization separation element
JP5074312B2 (en) Optical head device
JP5382124B2 (en) Optical pickup device
JPH0139561B2 (en)
JP4507738B2 (en) Laminated wave plate and optical pickup using the same
JP2008004146A (en) Optical element and optical head device provided with optical element
JP4311370B2 (en) 3-wavelength pickup
JP2008004145A (en) Optical element and optical head device provided with optical element
JPH09145924A (en) Optical element and optical head
JP4407563B2 (en) Broadband wave plate and optical pickup using it
JP4876826B2 (en) Phase difference element and optical head device
JPH03252928A (en) Optical pickup device
JP2011227944A (en) Optical head device
JP4577447B2 (en) Optical pickup
JP3980677B2 (en) Optical pickup device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120823

R150 Certificate of patent or registration of utility model

Ref document number: 5074312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees