JP5073518B2 - Siderophore, marine environment modifier containing the siderophore, and marine environment reforming method - Google Patents
Siderophore, marine environment modifier containing the siderophore, and marine environment reforming method Download PDFInfo
- Publication number
- JP5073518B2 JP5073518B2 JP2008019493A JP2008019493A JP5073518B2 JP 5073518 B2 JP5073518 B2 JP 5073518B2 JP 2008019493 A JP2008019493 A JP 2008019493A JP 2008019493 A JP2008019493 A JP 2008019493A JP 5073518 B2 JP5073518 B2 JP 5073518B2
- Authority
- JP
- Japan
- Prior art keywords
- siderophore
- iron
- compound
- culture
- marine environment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- RUPLMJIKGWAPKK-UHFFFAOYSA-N CC(C(C([O]=C(C1NC(C(CCCNC(N)=N)NC(c(cccc2O)c2O)=O)=O)O)=O)NC(C(CCCNC(N)=N)NC(c(cccc2O)c2O)=O)=O)OC1=O Chemical compound CC(C(C([O]=C(C1NC(C(CCCNC(N)=N)NC(c(cccc2O)c2O)=O)=O)O)=O)NC(C(CCCNC(N)=N)NC(c(cccc2O)c2O)=O)=O)OC1=O RUPLMJIKGWAPKK-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/20—Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Peptides Or Proteins (AREA)
- Fertilizers (AREA)
- Cultivation Of Seaweed (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
Abstract
Description
本発明は、鉄イオンと高い結合能を有する新規化合物からなるシデロフォア、およびその化合物を利用して海洋環境の保全をおこなう技術に関するものである。 The present invention relates to a siderophore composed of a novel compound having a high binding ability with iron ions, and a technique for preserving the marine environment using the compound.
鉄はほとんどの生物にとって必須の元素である。鉄は、地球において最も豊富に存在する元素ではあるものの、酸素の存在下で容易に2価イオンから3価イオンに酸化され、この3価の鉄イオンは、中性あるいはアルカリ性において、生物が利用することができない難溶性の塩を生じる。このような鉄イオンの性質が、生物が鉄イオンを摂取することを困難にしている。 Iron is an essential element for most organisms. Although iron is the most abundant element on earth, it is easily oxidized from divalent ions to trivalent ions in the presence of oxygen, and these trivalent iron ions are used by organisms in neutrality or alkalinity. Produces sparingly soluble salts that cannot be made. This nature of iron ions makes it difficult for organisms to take up iron ions.
そこで、多くの微生物は、環境中にわずかに存在する鉄イオンを取り込むために、シデロフォアと呼ばれる3価の鉄イオンと高い親和力を有する低分子の有機化合物を分泌し、分泌されたシデロフォアは、環境中に微量に存在する3価の鉄イオンと結合し、鉄−シデロフォア複合体を形成する。この複合体は、そのシデロフォアに特異的な外膜レセプターを介して細胞内にとりこまれ、取り込まれた複合体から、シデロフォアの加水分解あるいは鉄を2価に還元するような酵素によって、鉄が複合体からはずれ、微生物に利用される。このようにある種の微生物はシデロフォアを分泌することによって水中の微量な鉄イオンを効果的に取り込むことを可能にしている。 Therefore, many microorganisms secrete low molecular weight organic compounds having high affinity with trivalent iron ions called siderophores in order to take up iron ions that are slightly present in the environment. It binds to trivalent iron ions that are present in a trace amount, thereby forming an iron-siderophore complex. This complex is taken into the cell via an outer membrane receptor specific to the siderophore, and the complex is formed from the incorporated complex by hydrolysis of the siderophore or an enzyme that reduces iron bivalently. It is off the body and used by microorganisms. Thus, certain microorganisms can effectively take in trace amounts of iron ions in water by secreting siderophores.
また、微生物、特に病原菌のシデロフォアの産生は宿主への感染と病原性の発現に深く関与していることから、病原菌のシデロフォア産生はよく研究され多くのシデロフォアが単離・構造決定されている(非特許文献1参照)。ある種の微生物にとっては、特定のシデロフォアしか利用することができず、他のシデロフォアによって生育が抑制されることも考えられ、シデロフォアを抗菌剤として用いようとする考え方がある(非特許文献2参照)。また、シデロフォアのなかでも、ストレプトマイセス属をはじめとする数種の放線菌の菌株が産生するデフェロキサミンBのように鉄排出薬として実用化されているものもある(非特許文献3参照)。 In addition, since the production of microorganisms, particularly siderophores of pathogenic bacteria, is deeply involved in host infection and pathogenic expression, the production of siderophores of pathogenic bacteria has been well studied and many siderophores have been isolated and structurally determined ( Non-patent document 1). For certain microorganisms, only specific siderophores can be used, and growth may be suppressed by other siderophores, and there is an idea of using siderophores as antibacterial agents (see Non-Patent Document 2). ). Some siderophores have been put to practical use as iron excretion drugs such as deferoxamine B produced by several actinomycetes strains including Streptomyces (see Non-patent Document 3).
さらに海洋環境、特に光合成に必要な太陽光線が届く表層域においては、溶存酸素によって鉄イオンは速やかに3価に酸化され鉄イオンが水酸化鉄として沈降してしまうためその濃度が極めて低くなり、そのために、海洋における炭酸ガス吸収の主体たる植物プランクトン等の海洋生物の生育が抑制されていることが知られており(非特許文献4参照)、海洋の表層域における鉄イオン濃度を高めることができれば、海洋環境における植物プランクトンの光合成能力を高めることができ、その結果として、海洋の炭酸ガス固定能を増強でき、地球温暖化対策の一助となる。 Furthermore, in the marine environment, especially in the surface layer where sunlight necessary for photosynthesis reaches, iron ions are rapidly oxidized to trivalent by dissolved oxygen, and the iron ions settle as iron hydroxide, so the concentration becomes extremely low. For this reason, it is known that the growth of marine organisms such as phytoplankton, which mainly absorbs carbon dioxide in the ocean, is suppressed (see Non-Patent Document 4), and it is possible to increase the iron ion concentration in the surface area of the ocean. If possible, the photosynthesis ability of phytoplankton in the marine environment can be increased, and as a result, the ability to fix carbon dioxide in the ocean can be enhanced, which helps to counter global warming.
しかしながら、海洋環境中の鉄イオン濃度を高めることができるシデロフォアは今まで殆ど知られておらず、また、そのシデロフォアを用いた海洋環境の改質方法も知られていなかった。 However, almost no siderophore that can increase the iron ion concentration in the marine environment has been known so far, and no method for modifying the marine environment using the siderophore has been known.
本発明は、鉄イオンと高い結合能を有し、海洋環境中の鉄イオン濃度を高めることができるシデロフォア、および、当該シデロフォアを含有する海洋環境改質剤、並びに、当該シデロフォアを利用する海洋環境改質方法を提供することを目的とする。 The present invention relates to a siderophore having high binding ability with iron ions and capable of increasing the iron ion concentration in the marine environment, a marine environment modifier containing the siderophore, and a marine environment using the siderophore. An object is to provide a reforming method.
本発明者は、海中の藻類およびアマモから得られた多数の微生物から、CAS(Chrome azurol S)アッセイを実施して、シデロフォア生産能を有する微生物を1株得ることができた。検討の結果、当該微生物はストレプトマイセス属に属する新規な微生物であることが判ったが、当該微生物菌株を培養したところ、その培養液から得られた化合物が、鉄イオンと高い結合性を有し、三価鉄イオンが水溶液中に安定して存在することを補助する特性を有する新規なシデロフォアであることを見出した。更に、このシデロフォアは貧鉄環境にて培養した藻類に成長促進効果を有することを見出し、本発明を為すに至った。 The present inventor was able to obtain one strain of siderophore-producing microorganism by conducting CAS (Chrome azurol S) assay from a large number of microorganisms obtained from seaweed and sea cucumber. As a result of the examination, it was found that the microorganism was a novel microorganism belonging to the genus Streptomyces, but when the microorganism strain was cultured, the compound obtained from the culture had high binding properties with iron ions. And it discovered that it was a novel siderophore which has the characteristic which assists that a trivalent iron ion exists stably in aqueous solution. Furthermore, this siderophore has been found to have a growth promoting effect on algae cultured in a poor iron environment, leading to the present invention.
尚、CASアッセイとは、シデロフォアの存在を判定する方法であり、例えば、非特許文献5に記載されている。CASは、鉄イオンと結合すると特徴的な呈色をする色素化合物であり、CASを含んだ溶液にシデロフォアのような鉄結合能の高い化合物を添加するとシデロフォアはCAS-鉄複合体から鉄イオンを奪い取り、その結果、CAS-鉄複合体に特徴的な呈色が解消することから、判定することができる。つまり、この評価方法は海水中でのシデロフォアと三価鉄イオンとの結合能を反映していると考えられる。 The CAS assay is a method for determining the presence of a siderophore and is described in Non-Patent Document 5, for example. CAS is a pigment compound that develops a characteristic color when bound to iron ions. When a compound with a high iron-binding ability such as siderophore is added to a solution containing CAS, siderophore absorbs iron ions from the CAS-iron complex. As a result, the coloration characteristic of the CAS-iron complex is eliminated, so that the determination can be made. In other words, this evaluation method is considered to reflect the binding ability between siderophore and trivalent iron ions in seawater.
本発明の要旨は、以下の通りである。
(1)下記の化学構造式(I):
(2)また、本発明は、(1)記載のシデロフォアを含有し、海水中の鉄イオン濃度を向上させる機能を有することを特徴とする海洋環境改質剤に関する。
(3)また、本発明は、(1)記載のシデロフォアを生産するストレプトマイセス属に属する微生物であるストレプトマイセス・スピーシーズYM5-799株(NITE AP-480)を土に添加し、当該微生物が添加された土を、海底に投入または埋設することにより海水中の鉄イオン濃度を向上させることを特徴とする、海洋環境改質方法に関する。
The gist of the present invention is as follows.
(1) The following chemical structural formula (I):
(2) Moreover, this invention relates to the marine environment modifier which contains the siderophore of (1) description, and has the function to improve the iron ion density | concentration in seawater.
(3) Moreover, this invention adds the Streptomyces species YM5-799 strain | stump | stock (NITE AP-480) which is microorganisms which belong to the Streptomyces genus which produces the siderophore of (1 ) to soil, The said microorganisms soil but which has been added, characterized in that to improve the concentration of iron ions in seawater by on or embedded in the seabed, related to the marine environment modification method.
本発明に係るシデロフォアは、鉄イオンと高い結合能を有し、海洋環境中の生物利用可能な鉄イオン濃度を上昇させ、海洋環境の保全あるいは藻類の成長促進剤として有用である。これにより、海洋中の二酸化炭素の固定能力を向上させることが可能であると考えられる。 The siderophore according to the present invention has a high binding ability with iron ions, increases the bioavailable iron ion concentration in the marine environment, and is useful as a marine environment conservation or algal growth promoter. Thereby, it is considered possible to improve the fixing ability of carbon dioxide in the ocean.
以下に本発明を詳細に説明する。
(1)本発明の化合物の構造および性質
本発明のシデロフォアは、下記の化学構造式(I)、
塩としては、塩酸塩、リン酸塩、硫酸塩、フマル酸塩、マレイン酸塩等の酸付加塩、ナトリウム塩等のアルカリ金属塩等本化合物の鉄結合能および生物利用性に影響を与えない範囲で適宜選択できる。
The present invention is described in detail below.
(1) Structure and properties of the compound of the present invention The siderophore of the present invention has the following chemical structural formula (I),
As salts, acid addition salts such as hydrochloride, phosphate, sulfate, fumarate and maleate, and alkali metal salts such as sodium salt do not affect the iron binding ability and bioavailability of this compound. It can be selected appropriately within a range.
なお、本発明の化合物を医薬として使用する場合には、塩は薬学上許容されるものとするのが望ましい。 When the compound of the present invention is used as a medicine, the salt is desirably pharmaceutically acceptable.
その用途としては、現在医薬品として実用化されているシデロフォアであるメシル酸デフェロキサミンと同様に、輸血による鉄過剰症に対する治療薬として、あるいは創傷治療薬として利用することができる。また、本発明の化合物をシデロフォアとして利用できない微生物に対する抗生物質として利用できる。 As its use, it can be used as a therapeutic agent for iron overload caused by blood transfusion or as a therapeutic agent for wounds, like deferoxamine mesylate, which is a siderophore currently in practical use as a pharmaceutical. Moreover, the compound of this invention can be utilized as an antibiotic with respect to the microorganisms which cannot be utilized as a siderophore.
医薬として許容される塩の種類としては、慣用の無毒性の酸付加塩を挙げることができる。より具体的には、無機酸付加塩(例えば、塩酸塩、硫酸塩、燐酸塩等)、有機カルボン酸付加塩または有機スルホン酸付加塩(例えば、ギ酸塩、酢酸塩、トリフルオロ酸塩、マレイン酸塩、酒石酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、パラトルエンスルホン酸塩等)、塩基性アミノ酸または酸性アミノ酸との塩(例えば、アルギニン、アスパラギン酸、グルタミン酸等)があげられる。 Examples of the pharmaceutically acceptable salt include conventional non-toxic acid addition salts. More specifically, inorganic acid addition salts (for example, hydrochloride, sulfate, phosphate, etc.), organic carboxylic acid addition salts or organic sulfonic acid addition salts (for example, formate, acetate, trifluoroate, maleate) Acid salts, tartrate salts, methanesulfonate salts, benzenesulfonate salts, paratoluenesulfonate salts, etc.), salts with basic amino acids or acidic amino acids (for example, arginine, aspartic acid, glutamic acid, etc.).
化学構造式(I)の化合物、および化学構造式(II)の化合物の性質は以下の通りである。 Properties of the compound of the chemical structural formula (I) and the compound of the chemical structural formula (II) are as follows.
<式(I)の化合物の性質>
(1)物質の色:無色
(2)分子量:804.80
(3)分子式:C34H48N10O13
(4)質量分析:高分解FABMS 実測値 805.3454 (M+H)+
計算値 805.3481 (C34H49N10O13)
(5) 赤外線吸収スペクトル(KBr):νmax 3423, 1638, 1543, 1386, 1262, 1205, 1132 cm-1
(6) 紫外線吸収スペクトル (H2O, pH 4.0):λmax (log ε): 247 (3.99), 317 (3.65), 357 (3.44) nm
<Properties of compound of formula (I)>
(1) Color of the substance: colorless (2) Molecular weight: 804.80
(3) Molecular formula: C 34 H 48 N 10 O 13
(4) Mass spectrometry: High resolution FABMS measured value 805.3454 (M + H) +
Calculated value 805.33481 (C 34 H 49 N 10 O 13 )
(5) Infrared absorption spectrum (KBr): ν max 3423, 1638, 1543, 1386, 1262, 1205, 1132 cm -1
(6) UV absorption spectrum (H 2 O, pH 4.0): λ max (log ε): 247 (3.99), 317 (3.65), 357 (3.44) nm
(7)1H-NMR(重ジメチルスルホキシド中で測定、750MHz)
δ ppm 11.80 (brs, 1H), 11.67 (brs, 1H), 9.36 (brs, 1H), 9.34 (brs, 1H), 8.81 (d, 1H), 8.79 (d, 1H), 8.42 (brs, 1H), 8.08 (brd, 1H), 7.52 (brt, 1H), 7.50 (brs, 1H), 7.40 (m, 2H), 6.94 (m. 2H), 6.72 (m, 2H), 5.32 (m, 1H), 4.93 (brd, 1H), 4.70 (m, 2H), 4.64 (brd, 1H), 4.36 (dd, 1H), 4.29 (brm, 1H), 3.14 (m, 4H), 1.86 (m, 2H), 1.75 (m, 2H), 1.58 (m, 4H), 1.15 (t, 3H), 1.08 (t, 3H)
(7) 1 H-NMR (measured in deuterated dimethyl sulfoxide, 750 MHz)
δ ppm 11.80 (brs, 1H), 11.67 (brs, 1H), 9.36 (brs, 1H), 9.34 (brs, 1H), 8.81 (d, 1H), 8.79 (d, 1H), 8.42 (brs, 1H) , 8.08 (brd, 1H), 7.52 (brt, 1H), 7.50 (brs, 1H), 7.40 (m, 2H), 6.94 (m. 2H), 6.72 (m, 2H), 5.32 (m, 1H), 4.93 (brd, 1H), 4.70 (m, 2H), 4.64 (brd, 1H), 4.36 (dd, 1H), 4.29 (brm, 1H), 3.14 (m, 4H), 1.86 (m, 2H), 1.75 (m, 2H), 1.58 (m, 4H), 1.15 (t, 3H), 1.08 (t, 3H)
(8)13C-NMR(重ジメチルスルホキシド中で測定、125MHz)
δ ppm 171.89, 171.66, 170.59, 169.32, 168.56, 168.34, 156.66, 148.39, 148.15, 146.03, 146.00, 118.78, 118.71, 118.56, 118.35, 118.14, 116.09, 115.87, 70.52, 66.21, 57.19, 54.77, 52.53, 52.49, 40.54, 40.41, 29.14, 29.01, 25.18, 20.12, 16.24
(8) 13 C-NMR (measured in deuterated dimethyl sulfoxide, 125 MHz)
δ ppm 171.89, 171.66, 170.59, 169.32, 168.56, 168.34, 156.66, 148.39, 148.15, 146.03, 146.00, 118.78, 118.71, 118.56, 118.35, 118.14, 116.09, 115.87, 70.52, 66.21, 57.19, 54.77, 52.53 40.54, 40.41, 29.14, 29.01, 25.18, 20.12, 16.24
(9)溶解性 :水に易溶、DMSO、メタノールに可溶、アセトン、酢酸エチルおよびクロロホルムに難溶。 (9) Solubility: Easily soluble in water, soluble in DMSO and methanol, hardly soluble in acetone, ethyl acetate and chloroform.
(10)CASアッセイ:本化合物の鉄結合能は、非特許文献5に記載のCASアッセイにて評価した。CAS(Chrome azurol S)は、鉄イオンと結合すると特徴的な呈色をする色素化合物であり、CASを含んだ溶液にシデロフォアのような鉄結合能の高い化合物を添加するとシデロフォアはCAS-鉄複合体から鉄イオンを奪い取り、その結果、CAS-鉄複合体に特徴的な呈色が解消することから、シデロフォアの存在を判定することができる。つまり、この評価方法は海水中でのシデロフォアと三価鉄イオンとの結合能を反映していると考えられる。本評価法によって、対照のデフェロキサミンB(ED50 0.3 mM)の3倍の活性(ED50 0.1 mM)を示した。 (10) CAS assay: The iron binding ability of this compound was evaluated by the CAS assay described in Non-Patent Document 5. CAS (Chrome azurol S) is a pigment compound that develops a characteristic color when combined with iron ions. When a compound with a high iron-binding ability such as siderophore is added to a solution containing CAS, siderophore becomes a CAS-iron complex. The iron color is taken away from the body, and as a result, the coloration characteristic of the CAS-iron complex is eliminated, so that the presence of the siderophore can be determined. In other words, this evaluation method is considered to reflect the binding ability between siderophore and trivalent iron ions in seawater. This evaluation method showed three times the activity (ED 50 0.1 mM) of the control deferoxamine B (ED 50 0.3 mM).
<式(II)の化合物の性質>
(1)物質の色:無色
(2)分子量:1180.18
(3)分子式:C51H69N15O18
(4)質量分析:高分解FABMS 実測値 1180.5004 (M+H)+
計算値 1180.5023 (C51H70N15O18)
(5)赤外線吸収スペクトル (KBr):νmax 3422, 1751, 1675, 1543, 1265, 1203, 1137 cm-1
(6)紫外線吸収スペクトル: λmax (MeOH) (log ε) 246 (3.08), 320 (2.62), 357 (1.98) nm
<Properties of compound of formula (II)>
(1) Color of the substance: colorless (2) Molecular weight: 1180.18
(3) Molecular formula: C 51 H 69 N 15 O 18
(4) Mass spectrometry: High resolution FABMS measured value 1180.5004 (M + H) +
Calculated 1180.5023 (C 51 H 70 N 15 O 18 )
(5) Infrared absorption spectrum (KBr): ν max 3422, 1751, 1675, 1543, 1265, 1203, 1137 cm -1
(6) UV absorption spectrum: λ max (MeOH) (log ε) 246 (3.08), 320 (2.62), 357 (1.98) nm
(7)1H-NMR(重ジメチルスルホキシド中で測定、750 MHz)
δ ppm 11.55 (s, 3H), 9.41 (brs, 3H), 8.79 (brs, 6H), 7.47 (brt, 3H), 7.40 (d, 3H), 6.93 (d, 3H), 6.70 (t, 3H), 5.43 (s, 3H), 4.88 (d, 3H), 4.78 (brs, 3H), 3.20 (brs, 3H), 3.10 (brs, 3H), 1.90 (brs, 3H), 1.80 (brs, 3H), 1.63-1.58 (brd, 6H), 1.15 (d, 9H)
(7) 1 H-NMR (measured in deuterated dimethyl sulfoxide, 750 MHz)
δ ppm 11.55 (s, 3H), 9.41 (brs, 3H), 8.79 (brs, 6H), 7.47 (brt, 3H), 7.40 (d, 3H), 6.93 (d, 3H), 6.70 (t, 3H) , 5.43 (s, 3H), 4.88 (d, 3H), 4.78 (brs, 3H), 3.20 (brs, 3H), 3.10 (brs, 3H), 1.90 (brs, 3H), 1.80 (brs, 3H), 1.63-1.58 (brd, 6H), 1.15 (d, 9H)
(8)13C-NMR(重ジメチルスルホキシド中で測定、125MHz)
δ ppm 172.28, 168.10, 168.07, 156.68, 147.78, 145.94, 118.75, 118.61, 118.24, 116.46, 70.80, 55.36, 52.61, 40.61, 28.89, 24.94, 16.15
(8) 13 C-NMR (measured in deuterated dimethyl sulfoxide, 125 MHz)
δ ppm 172.28, 168.10, 168.07, 156.68, 147.78, 145.94, 118.75, 118.61, 118.24, 116.46, 70.80, 55.36, 52.61, 40.61, 28.89, 24.94, 16.15
(9)溶解性 :水に易溶、DMSO、メタノールに可溶、アセトン、酢酸エチルおよびクロロホルムに難溶。
(10)CASアッセイ:本化合物の鉄結合能を、前記した非特許文献5に記載のCASアッセイにて評価した。CASアッセイにおいて、対照のデフェロキサミンB(ED50 0.3mM)の1.5倍の活性(ED50 0.2mM)を示した。
(9) Solubility: Easily soluble in water, soluble in DMSO and methanol, hardly soluble in acetone, ethyl acetate and chloroform.
(10) CAS assay: The iron binding ability of this compound was evaluated by the CAS assay described in Non-Patent Document 5 described above. The CAS assay showed 1.5 times the activity (ED 50 0.2 mM) of the control deferoxamine B (ED 50 0.3 mM).
次に、本発明に係るシデロフォアの製造方法の1例を説明する。
本発明の式(I)、(II)の化合物は、微生物を培地に培養し、培養物中に該化合物を生成蓄積させ、該培養物から該化合物を採取することにより製造することができる。
Next, an example of a method for producing a siderophore according to the present invention will be described.
The compounds of the formulas (I) and (II) of the present invention can be produced by culturing a microorganism in a medium, producing and accumulating the compound in the culture, and collecting the compound from the culture.
(1)微生物
本発明の製造方法において用いることのできる微生物としては、ストレプトマイセス(Streptomyces)属に属し、かつ上記式(I)、(II)で表される化合物またはそれらの塩を生産する能力を有する微生物であれば特に限定されない。
(1) Microorganism As a microorganism that can be used in the production method of the present invention, a compound belonging to the genus Streptomyces and represented by the above formulas (I) and (II) or a salt thereof is produced. There is no particular limitation as long as it is a microorganism having ability.
ここで、「式(I)、(II)で表される化合物またはそれらの塩を生産する能力を有する微生物」とは、典型的には、菌株を200 mLのマリンブロス培地を入れた1 Lバッフル付き三角フラスコ中で、30 ℃にて5日間回転震盪(100 rpm)培養して種菌とし、該種菌を1 Lの該化合物の生産用培地(ASG培地)の入った2 Lバッフル付きフラスコ10本 (計10 L) に10 mLずつ植菌し、30 ℃、7〜14日間、回転震盪 (100 rpm) 培養して得られた培養液10 Lを、遠心分離(6000 xg, 30分間)して菌体と上清に分離し、上清をHP20樹脂にて処理、該化合物を樹脂に吸着させ、樹脂を蒸留水で洗浄後、メタノール−蒸留水の混合溶媒にて該化合物を溶出し、その溶出した画分を高速液体クロマトグラフィーにて精製するという操作を行った場合に、培養液10 Lあたり1 mg以上、より好ましくは5 mg以上、最も好ましくは10 mg以上の量で上記式(I)、(II)で表される化合物またはそれらの塩を生産することができる微生物を意味する。 Here, “microorganisms having the ability to produce compounds represented by formulas (I) and (II) or salts thereof” typically means that the strain is 1 L containing 200 mL of marine broth medium. Incubate in an Erlenmeyer flask with baffle at 30 ° C for 5 days by rotating and shaking (100 rpm) to make an inoculum, and inoculate the inoculum with 1 L of medium for production of the compound (ASG medium) 10 Inoculate 10 mL each of this (total 10 L), and culture (10 x L, 30 minutes) 10 L of the culture solution obtained by rotating and shaking (100 rpm) for 7 to 14 days at 30 ° C. The bacterial cells and the supernatant are separated, the supernatant is treated with HP20 resin, the compound is adsorbed on the resin, the resin is washed with distilled water, and the compound is eluted with a mixed solvent of methanol-distilled water, When the eluted fraction is purified by high performance liquid chromatography, 1 mg or more per 10 L of culture solution is more preferable. Ku is 5 mg or more, the formula most preferably in an amount of more than 10 mg (I), it means a microorganism capable of producing compounds or salts thereof represented by (II).
そのような微生物としては、例えば、ストレプトマイセス・スピーシーズYM5-799株が挙げられる。当該菌株は、北海道沿岸域より採取した藻類およびアマモを滅菌海水中で破砕し、マリンブロス寒天培地に塗布し、7日間培養して得た約300株の細菌の中から、下記の非特許文献5に記載のCAS(Chrome azurol S)アッセイによってシデロフォアの生産能力を評価し、当該能力があることを確認した菌株である。 Examples of such microorganisms include Streptomyces sp. YM5-799 strain. These strains are the following non-patent documents from about 300 bacteria obtained by crushing algae and sea cucumber collected from the coastal area of Hokkaido in sterilized seawater, applying them to a marine broth agar medium, and culturing them for 7 days. 5. A siderophore production capacity was evaluated by the CAS (Chrome azurol S) assay described in 5, and confirmed to have the capacity.
ストレプトマイセス・スピーシーズYM5-799株は、独立行政法人製品評価技術基盤機構特許微生物寄託センター(千葉県木更津市かずさ鎌足2−5−8)に、平成20年1月24日付で受託番号NITE AP-480として寄託されている。 Streptomyces sp. YM5-799 is registered as an independent administrative agency, Product Evaluation Technology Foundation, Patent Microorganisms Deposit Center (2-5-8, Kazusa Kamashika, Kisarazu City, Chiba Prefecture) with a deposit number of NITE as of January 24, 2008. Deposited as AP-480.
ストレプトマイセス・スピーシーズYM5-799株の菌学的性質は以下のとおりである。
a.形態的及び培養的性質
1)胞子の有無 :有り
2)気菌糸の形状 分岐あり。幅 0.8-1.0mm。
3)運動性の有無 :無し
4)ISP培地 No.2 平板培養 :コロニーサイズ 直径1-2 mm。コロニー表面の形状 紋縞状。色調 表面(気菌糸)褐色、裏面(基生菌糸)褐色。褐色水溶性色素産生。
5)ISP培地 No.3 平板培養 :生育する。表面:灰色、裏面:灰色。
6)ISP培地 No.4 平板培養 :生育する。表面:灰色、裏面:灰色。
7)ISP培地 No.5 平板培養 :生育する。表面:灰色、裏面:灰色。
The mycological properties of Streptomyces sp. YM5-799 are as follows.
a. Morphological and cultural properties 1) Presence / absence of spores: Yes 2) Shape of aerial hyphae With branching. Width 0.8-1.0mm.
3) Presence of motility: None 4) ISP medium No.2 Plate culture: Colony size Diameter 1-2 mm. Colony surface shape Striped pattern. Color tone Front (aerial mycelium) brown, back side (basic mycelia) brown. Brown water-soluble pigment production.
5) ISP medium No.3 Plate culture: Grows. Front: Gray, Back: Gray
6) ISP medium No.4 Plate culture: Grows. Front: Gray, Back: Gray
7) ISP medium No.5 Plate culture: Grows. Front: Gray, Back: Gray
b.生理・生化学的性質(+:陽性、−:陰性)
1)ゼラチンの液化:−
2)デンプンの加水分解:+
3)硝酸還元反応:+
4)脱脂粉乳のペプトン化・凝固:−
5)生育温度の範囲:20〜30℃ 生育する。37℃ 生育しない。
6)耐塩性:1〜4% 生育する。5% 生育しない。
7)炭素源の利用性
ISP培地No.9(陰性コントロール) :−
グルコース(陽性コントロール) :+
L-ラムノース :−
D-マンニトール :+
D-フラクトース :+
L-アラビノース :−
ラフィノース :−
シュクロース :−
D-キシロース :−
イノシトール :−
8)メラニン様色素の生成
ISP培地No.6 :+
ISP培地No.7 :−
9)16S rDNA配列 配列表に示す(配列番号1)。
b. Physiological and biochemical properties (+: positive,-: negative)
1) Liquefaction of gelatin:-
2) Starch hydrolysis: +
3) Nitric acid reduction reaction: +
4) Peptonization and coagulation of skim milk powder:-
5) Growth temperature range: 20-30 ° C. 37 ° C Does not grow.
6) Salt tolerance: 1 to 4% grows. 5% does not grow.
7) Availability of carbon sources
ISP medium No. 9 (negative control):-
Glucose (positive control): +
L-rhamnose:-
D-mannitol: +
D-fructose: +
L-arabinose : −
Raffinose:-
Sucrose : −
D-xylose:-
Inositol:-
8) Formation of melanin-like pigment
ISP medium No.6: +
ISP medium No.7:-
9) 16S rDNA sequence Shown in the sequence listing (SEQ ID NO: 1).
この配列をもとにDDBJ(日本DNAデータバンク)の塩基配列データベースに対しての相同性検索(BLAST検索)を行ったところStreptomyces sp. AR17 (EF672649.1)が最も高い相同性(99%)を示したが、完全に一致する配列は確認されなかったことから、これまでに報告のない新規の微生物であった。なお、最も高い相同性を示したStreptomyces sp. AR17株がシデロフォアを生産するとする報告はない。 Based on this sequence, a homology search (BLAST search) against the nucleotide sequence database of DDBJ (Japan DNA Data Bank) revealed that Streptomyces sp. AR17 (EF672649.1) had the highest homology (99%) However, since a completely identical sequence was not confirmed, it was a novel microorganism not reported so far. There is no report that Streptomyces sp. AR17 strain showing the highest homology produces siderophore.
さらに、ストレプトマイセス・スピーシーズYM5-799株に由来する変異株であって上記式(I)、(II)で表される化合物を生産する能力を有するものも用いることができる。ここでいう「変異株」は任意の適当な変異原を用いた変異誘発処理により得られたものであり、「変異原」なる語は、その広義において、例えば変異原効果を有する薬剤のみならずUV照射の如き変異原効果を有する処理をも含むものと理解すべきである。適当な変異原の例として、エチルメタンスルホネート、UV照射、N−メチル−N’−ニトロ−N−ニトロソグアニジン、ブロモウラシルのようなヌクレオチド塩基類似体およびアクリジン類が挙げられるが、他の任意の効果的な変異原もまた使用され得る。 Furthermore, mutant strains derived from Streptomyces sp. YM5-799 and having the ability to produce the compounds represented by the above formulas (I) and (II) can also be used. The “mutant strain” here is obtained by mutagenesis treatment using any appropriate mutagen, and the term “mutagen” in the broad sense includes not only a drug having a mutagenic effect, for example. It should be understood to include treatments with mutagenic effects such as UV irradiation. Examples of suitable mutagens include ethyl methanesulfonate, UV irradiation, N-methyl-N′-nitro-N-nitrosoguanidine, nucleotide base analogs such as bromouracil, and acridines, but any other Effective mutagens can also be used.
(2)微生物の培養
本発明における微生物の培養は、通常の微生物の培養方法が用いられる。培地としては、資化可能な炭素源、窒素源、無機物および必要な生育・生産促進物質を適宜含有する培地であれば、合成培地又は天然培地のいずれでも使用可能である。炭素源としては、グルコース、澱粉、デキストリン、マンノース、フラクトース、シュクロース、ラクトース、キシロース、アラビノース、マンニトール、糖蜜などを単独又は組み合わせて用いることができる。さらに、必要に応じて炭化水素、アルコール類、有機酸、アミノ酸(トリプトファン等)なども用いることができる。窒素源としては塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、硝酸ナトリウム、尿素、ペプトン、肉エキス、酵母エキス、乾燥酵母、コーン・スチープ・リカー、大豆粉、綿実かす、カザミノ酸などを単独又は組み合わせて用いることができる。そのほか、必要に応じて食塩、塩化カリウム、硫酸マグネシウム、炭酸カルシウム、リン酸二水素カリウム、リン酸水素ニカリウム、硫酸第一鉄、塩化カルシウム、硫酸マンガン、硫酸亜鉛などの無機塩類を加えることができる。さらに使用する微生物の生育や本発明の化合物の生産を促進する微量成分を適当に添加することができ、当業者であればそのような成分として適当なものを選択することができる。
(2) Microbial culture In the present invention, a normal microorganism culture method is used for the culture of the microorganism. As the medium, any of a synthetic medium or a natural medium can be used as long as it contains an assimilated carbon source, nitrogen source, inorganic substance, and necessary growth / production promoting substances as appropriate. As the carbon source, glucose, starch, dextrin, mannose, fructose, sucrose, lactose, xylose, arabinose, mannitol, molasses and the like can be used alone or in combination. Furthermore, hydrocarbons, alcohols, organic acids, amino acids (such as tryptophan) and the like can be used as necessary. As the nitrogen source, use ammonium chloride, ammonium sulfate, ammonium nitrate, sodium nitrate, urea, peptone, meat extract, yeast extract, dry yeast, corn steep liquor, soybean flour, cottonseed meal, casamino acid, etc. alone or in combination. Can do. In addition, inorganic salts such as sodium chloride, potassium chloride, magnesium sulfate, calcium carbonate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, ferrous sulfate, calcium chloride, manganese sulfate, and zinc sulfate can be added as necessary. . Furthermore, trace components that promote the growth of the microorganisms to be used and the production of the compounds of the present invention can be added appropriately, and those skilled in the art can select appropriate components as such components.
培養法としては、液体培養が適しているが、これに限定されるものではない。培養温度は、25〜37℃が適当であり、培養中の培地のpHは7〜9に維持することが望ましく、振盪速度が30〜120rpmで回転又は往復振盪培養することが望ましい。液体培養で通常5〜14日間培養を行うと、目的化合物が培養液中に生成蓄積される。通常は、培養物中の生成量が最大に達した時に培養を停止する。 As a culture method, liquid culture is suitable, but is not limited thereto. The culture temperature is suitably 25 to 37 ° C., the pH of the medium during the culture is preferably maintained at 7 to 9, and the culture is preferably performed by rotating or reciprocating shaking culture at a shaking speed of 30 to 120 rpm. When culturing is usually performed for 5 to 14 days in liquid culture, the target compound is produced and accumulated in the culture solution. Usually, the culture is stopped when the production amount in the culture reaches the maximum.
(3)シデロフォアの製造
培養物からの本発明のシデロフォアの製造は、微生物代謝生産物を培養物から単離・精製するために常用される方法に従って行われ得る。ここで、「培養物」とは、培養上清、培養菌体、又は菌体の破砕物のいずれをも意味するものである。例えば培養物を濾過や遠心分離により培養濾液と菌体に分け、菌体を適当な溶媒で抽出する。また培養濾液は酢酸エチル、クロロホルムなどで抽出することができる。また、合成吸着剤等を用いて化合物を抽出することもできる。次いで、菌体抽出液、培養濾液若しくは培養濾液の抽出物をそれぞれ単独で又はそれらの2種以上を合わせて濃縮し、カラムクロマトグラフィー、分取薄層クロマトグラフィー、高速液体クロマトグラフィーなどにより精製を行い、本発明のシデロフォアを得ることができる。得られたシデロフォアは、NMR解析等の通常の化学的手法により、上記「式(I)の化合物、および式(II)の化合物の性質」に記載した性質を示すか否かを調べることにより、本発明の化合物であることを確認することができる。
(3) Production of Siderophore Production of the siderophore of the present invention from the culture can be carried out according to a commonly used method for isolating and purifying microbial metabolic products from the culture. Here, “culture” means any of culture supernatant, cultured cells, or disrupted cells. For example, the culture is separated into a culture filtrate and cells by filtration or centrifugation, and the cells are extracted with an appropriate solvent. The culture filtrate can be extracted with ethyl acetate, chloroform or the like. A compound can also be extracted using a synthetic adsorbent or the like. Next, the bacterial cell extract, culture filtrate or culture filtrate extract is concentrated alone or in combination of two or more thereof, and purified by column chromatography, preparative thin layer chromatography, high performance liquid chromatography, etc. And the siderophore of the present invention can be obtained. By examining whether or not the obtained siderophore exhibits the properties described in the above-mentioned “properties of the compound of the formula (I) and the compound of the formula (II)” by an ordinary chemical method such as NMR analysis, It can be confirmed that it is a compound of the present invention.
また、式(I)の化合物と式(II)の化合物は、分子量や極性が異なるため常法に従って逆相カラムを用いた高速液体クロマトグラフィー(HPLC)にて分離することができる。 In addition, since the compound of formula (I) and the compound of formula (II) have different molecular weights and polarities, they can be separated by high performance liquid chromatography (HPLC) using a reverse phase column according to a conventional method.
例えば、式(I)の化合物と式(II)の化合物を含む上記抽出物をHPLCにて精製し、分画してシデロフォアを含む画分を集め、CASアッセイを行ってシデロフォアの活性を測定し、(I)のシデロフォアにピークを有する画分や、(II)のシデロフォアにピークを有する画分を回収すればよい。より純度の高い化合物を得るためには、一度回収した画分を更にHPLCにて精製し、分画後、画分を回収することを繰り返せば良い。 For example, the above extract containing the compound of formula (I) and the compound of formula (II) is purified by HPLC, fractionated and fractions containing siderophore are collected, and CAS assay is performed to measure siderophore activity. A fraction having a peak in the siderophore (I) and a fraction having a peak in the siderophore (II) may be collected. In order to obtain a compound with higher purity, the fraction collected once may be further purified by HPLC, and after fractionation, the fraction may be collected repeatedly.
(4)抗菌剤や鉄排出剤(医薬品)としての利用
本発明の化合物もしくはその塩は、非特許文献2に記載されたような抗菌剤や非特許文献3に記載されたような鉄排出薬として利用することができる。
(4) Use as an antibacterial agent or iron excretion agent (medicine) The compound of the present invention or a salt thereof is an antibacterial agent as described in Non-Patent Document 2 or an iron excretion drug as described in Non-Patent Document 3. Can be used as
また、本発明の化合物は、用途に応じて塩の形態とすることができる。例えば、塩酸塩、臭化水素酸塩、硫酸塩、硝酸塩、酢酸塩、メタンスルホン酸塩、トルエンスルホン酸塩、クエン酸塩等が挙げられ、塩の形態を変更することによって水溶性や脂溶性といった溶媒に対する溶解性を改善することができる。
更にまた、本発明の化合物やその塩は、混合して使用することも可能である。
Moreover, the compound of this invention can be made into the form of a salt according to a use. For example, hydrochloride, hydrobromide, sulfate, nitrate, acetate, methanesulfonate, toluenesulfonate, citrate, etc., and water solubility and fat solubility by changing the salt form Thus, the solubility in a solvent can be improved.
Furthermore, the compound of the present invention and a salt thereof can be used as a mixture.
(5)微生物製剤としての使用
前述のごとく、培養法によってシデロフォアを生産する微生物を大量培養し、その培養物からシデロフォア活性を有する化合物を精製することができるが、医薬品以外の用途で当該化合物を使用する場合にあっては、高度な精製をすることなく、微生物そのものもしくは微生物を混合した担体を施用し、適用場において製造させることができる。
(5) Use as a microbial preparation As described above, a microorganism that produces siderophore can be cultured in a large amount by a culture method, and a compound having siderophore activity can be purified from the culture. In the case of use, the microorganism itself or a carrier mixed with the microorganism can be applied and produced at the application site without performing high-level purification.
例えば、シデロフォアを生産する微生物を、前記した培養方法で培養した培養物を得、土壌や腐植土などの担体と混合して微生物製剤を調製することができる。前記培養物と前記担体を混合し、数時間から数日間にわたって、混練もしくは静置して、シデロフォアを生産する微生物を馴致、培養する。培養温度は、増殖を活性化するために25〜37℃が適当であり、乾燥せぬように湿潤状態を保持する。 For example, a microorganism product can be prepared by obtaining a culture obtained by culturing a microorganism that produces siderophore by the above-described culture method and mixing it with a carrier such as soil or humus. The culture and the carrier are mixed, kneaded or allowed to stand for several hours to several days, and the microorganisms producing the siderophore are adapted and cultured. The culture temperature is suitably 25 to 37 ° C. in order to activate the growth, and is kept moist so as not to be dried.
以上のように調製したシデロフォア生産菌を含有した微生物製剤を農地に施用することによってそこに生育する植物の鉄分取り込みを促進することができ、また、当該微生物製剤を沿岸域の水底に埋設もしくは敷設することによって、周辺海域の生物利用性の鉄分の供給が促進し、海藻類の成長が加速させることができる。 By applying a microbial preparation containing siderophore-producing bacteria prepared as described above to agricultural land, it is possible to promote the iron uptake of plants growing there, and the microbial preparation is buried or laid on the bottom of the coastal water By doing so, the supply of bioavailable iron in the surrounding sea area is promoted, and the growth of seaweeds can be accelerated.
(6)海洋環境改質剤としての利用
本発明の化合物もしくはその塩、あるいは、本発明の化合物を含有した粗精製物と、鉄分を含有した担体との混合物を海洋環境改質剤として利用することができる。
(6) Utilization as a marine environment modifier A compound of the present invention or a salt thereof, or a mixture of a crude product containing the compound of the present invention and a carrier containing iron is used as a marine environment modifier. be able to.
本発明の化合物を含有した粗精製物は、本発明の化合物を生産する微生物菌株を適切な培養培地で培養して得た、培養上清、培養ろ液、培養菌体、又は菌体の破砕物などの培養物、または、該培養液から適切な方法でシデロフォアを含む画分を抽出した抽出物をそれぞれ単独で又は2種以上合わせて用いることができる。本発明の化合物もしくはその塩、あるいは、本発明の化合物を含有した粗精製物は乾燥粉末として利用することができるが、後述の担体と混合した方がより均質に混ぜることができるため、溶液として利用したほうが好ましい。 The roughly purified product containing the compound of the present invention is obtained by culturing a microorganism strain producing the compound of the present invention in an appropriate culture medium, culture supernatant, culture filtrate, cultured cells, or disruption of cells. A culture product such as a product, or an extract obtained by extracting a fraction containing a siderophore from the culture solution by an appropriate method can be used alone or in combination of two or more. The compound of the present invention or a salt thereof, or a roughly purified product containing the compound of the present invention can be used as a dry powder, but since it can be mixed more homogeneously with the carrier described below, It is preferable to use it.
鉄分を含有した担体は、鉄粉、鉄片、鉄鋼スラグ、腐葉土、腐植土をそれぞれ単独で又は2種類以上合わせて用いることができる。 As the carrier containing iron, iron powder, iron pieces, steel slag, humus and humus can be used alone or in combination of two or more.
本発明の化合物もしくはその塩、あるいは、本発明の化合物を含有した粗精製物と、鉄分を含有した担体との混合物は、適切な容器に充填して、海洋環境を改善したい海域に沈設もしくは埋設することによって、該混合物から海水中に鉄分とシデロフォアが放出され、周辺の海域のおける鉄濃度、特に生物利用性の鉄濃度が高まるため、海藻類の成長を加速することができる。なお、該混合物を充填する容器は、該混合物を保持でき、かつ、該混合物から溶出する鉄分や本発明の化合物が海水中に放出される機能があれば特に限定されるものではないが、例えば、布製や網製の袋、鋼製の籠、壁面に小孔を有する鋼製やコンクリート製の箱などが挙げられる。 The mixture of the compound of the present invention or a salt thereof, or a roughly purified product containing the compound of the present invention and a carrier containing iron is filled in an appropriate container to be submerged or buried in a sea area where the marine environment is to be improved. By doing so, iron and siderophores are released from the mixture into the seawater, and the iron concentration in the surrounding sea area, particularly the bioavailable iron concentration, is increased, so that the growth of seaweeds can be accelerated. The container filled with the mixture is not particularly limited as long as it can hold the mixture and has a function of releasing the iron content and the compound of the present invention from the mixture into seawater. Cloth bags, net bags, steel rivets, steel or concrete boxes with small holes on the wall.
(実施例1)
北海道沿岸域より採取した藻類およびアマモを滅菌海水中で破砕し、その破砕物をマリンブロス寒天培地に塗布し、7日間培養して約300株の細菌を得た。これらの細菌株について、前記したCASアッセイを実施して、シデロフォア生産能を有する細菌株を1株得た。
Example 1
Algae and sea cucumber collected from the coastal area of Hokkaido were crushed in sterile seawater, and the crushed material was applied to a marine broth agar medium and cultured for 7 days to obtain about 300 bacteria. With respect to these bacterial strains, the aforementioned CAS assay was performed to obtain one bacterial strain having the ability to produce siderophore.
当該菌株(YM5-799株)のDNAを抽出して、16S rDNA塩基配列を解析した。すなわち、インスタジーンDNA精製マトリックスを用いて当該菌株のゲノムDNAを抽出し、16S rDNA断片をPCRにて増幅した。PCRプライマーとして、16S rDNA増幅用のユニバーサルプライマー、27F (5'-GGC TAC CTT GTT ACG ACT T -3’)(配列番号2)および1492R(5'-AGA GTT TGA TCC TGG CTC AG -3’)(配列番号3)を用いた。サンプルあたりの反応液の容量は25 μl、PCR用の酵素は、LA Taq polymerase (TaKaRa Biochem)を用いた。反応液の組成は、DNA 1 μl, 10 x LA buffer 2.5 μl, 25 mM MgCl2 2.5μl, dNTP Mixture 2.0 μl, 25 μM プライマー 0.25 μl, 酵素 0.1 μlで、PCR増幅は、95℃、1分、58℃、1分、72℃、1分30秒のサイクルを30回繰り返して行った。PCR反応には96サンプル用サーマルサイクラー(Techne社製、Genius)を用いた。増幅産物をMontage PCR96 (ミリポア社)を用いて精製し、塩基配列を決定した。16S rDNA断片の部分配列は、16 S rDNA用のユニバーサルプライマー、341F (5'-CTC CTA CGG GAG GCA GCA G -3’) (配列番号4)を用いてPCR反応を行い、キャピラリーシーケンサーPE3730を用いて塩基配列を決定した。得られた塩基配列データは塩基配列編集用ソフトSeqED上で、目視によって確認した。得られた配列は、DDBJデータベースにてBLAST検索を行った。その結果、当該菌株はストレプトマイセス属と推定された。 DNA of the strain (YM5-799 strain) was extracted and analyzed for 16S rDNA base sequence. That is, genomic DNA of the strain was extracted using an instagene DNA purification matrix, and a 16S rDNA fragment was amplified by PCR. As a PCR primer, universal primer for 16S rDNA amplification, 27F (5'-GGC TAC CTT GTT ACG ACT T -3 ') (SEQ ID NO: 2) and 1492R (5'-AGA GTT TGA TCC TGG CTC AG -3') (SEQ ID NO: 3) was used. The reaction volume per sample was 25 μl, and LA Taq polymerase (TaKaRa Biochem) was used as the PCR enzyme. The composition of the reaction mixture was DNA 1 μl, 10 x LA buffer 2.5 μl, 25 mM MgCl 2 2.5 μl, dNTP Mixture 2.0 μl, 25 μM primer 0.25 μl, enzyme 0.1 μl, PCR amplification was performed at 95 ° C. for 1 min. A cycle of 58 ° C., 1 minute, 72 ° C., 1 minute 30 seconds was repeated 30 times. A 96-sample thermal cycler (Techne, Genius) was used for the PCR reaction. The amplified product was purified using Montage PCR96 (Millipore) and the nucleotide sequence was determined. The partial sequence of the 16S rDNA fragment was subjected to PCR using the universal primer for 16S rDNA, 341F (5'-CTC CTA CGG GAG GCA GCA G -3 ') (SEQ ID NO: 4), and the capillary sequencer PE3730 was used. The base sequence was determined. The obtained base sequence data was visually confirmed on the base sequence editing software SeqED. The obtained sequence was subjected to a BLAST search in the DDBJ database. As a result, the strain was estimated to be of the genus Streptomyces.
YM5-799株の培養を以下の様に行った。本菌株を200 mLのマリンブロス培地を入れた1 Lバッフル付き三角フラスコ中で、30 ℃にて5日間回転震盪(100 rpm)培養して種菌とした。2 Lのバッフル付三角フラスコ1本あたり、生産培地(ASG培地:カザミノ酸 5 g/L、グリセリン 3 mL/L、グリセロリン酸 0.1 g/L、塩化ナトリウム 15.5 g/L、塩化カリウム 0.8 g/L、硫酸マグネシウム・七水和物 12.4 g/L、塩化カルシウム・二水和物 2.9 g/L、塩化アンモニウム 1.0 g/L、HEPESナトリウム塩 2.6 g/L、炭酸水素ナトリウム 0.17 g/L、塩化鉄0.01 μM (滅菌前pH 6.8))1 Lを入れ、オートクレーブにて滅菌したフラスコ各々(計10本、10 L)に、あらかじめ培養した種菌を10 mL接種し、30 ℃にて10日間、振盪培養(100 rpm)を行った。培養中、pHは特に制御しなかった。 YM5-799 strain was cultured as follows. This strain was cultured in a 1 L baffled Erlenmeyer flask containing 200 mL of marine broth medium at 30 ° C. for 5 days by rotating and shaking (100 rpm) to obtain an inoculum. Production medium (ASG medium: casamino acid 5 g / L, glycerin 3 mL / L, glycerophosphoric acid 0.1 g / L, sodium chloride 15.5 g / L, potassium chloride 0.8 g / L per 2 L baffled Erlenmeyer flask , Magnesium sulfate heptahydrate 12.4 g / L, Calcium chloride dihydrate 2.9 g / L, Ammonium chloride 1.0 g / L, HEPES sodium salt 2.6 g / L, Sodium bicarbonate 0.17 g / L, Iron chloride 0.01 μM (pH 6.8 before sterilization) 1 L was added, and 10 mL of the precultured inoculum was inoculated into each autoclave-sterilized flask (total of 10 flasks, 10 L), and cultured at 30 ° C for 10 days with shaking. (100 rpm) was performed. During the cultivation, pH was not particularly controlled.
培養物からのシデロフォアの精製は以下の様に行った。精製は、前記したCASアッセイを指標に行った。培養物を遠心分離(6000 xg, 4 ℃, 20 min)により菌体と上清を分離した。分離した上清のpHを塩酸にてpH 3に調整し、芳香族系合成吸着樹脂HP20樹脂(三菱化学社製)を2 L加え、4 ℃に24時間放置した。ガラスフィルター(3G)を用いて樹脂を濾過し、瀘別した樹脂は、塩酸にてpH 3に調整した超純水10 Lで洗浄した。洗浄したHP20樹脂をビーカーに移し、5 Lのメタノールに24時間浸漬した。次に、グラスフィルターを用いて、メタノールと樹脂を濾別し、得られたメタノール溶液をエバポレーターを用いて減圧濃縮し、12 gの褐色固形物を得た。 The siderophore was purified from the culture as follows. Purification was performed using the CAS assay as described above. The cells were separated from the supernatant by centrifugation (6000 × g, 4 ° C., 20 min). The pH of the separated supernatant was adjusted to pH 3 with hydrochloric acid, 2 L of aromatic synthetic adsorption resin HP20 resin (Mitsubishi Chemical Corporation) was added, and the mixture was allowed to stand at 4 ° C. for 24 hours. The resin was filtered using a glass filter (3G), and the separated resin was washed with 10 L of ultrapure water adjusted to pH 3 with hydrochloric acid. The washed HP20 resin was transferred to a beaker and immersed in 5 L of methanol for 24 hours. Next, methanol and the resin were separated by filtration using a glass filter, and the obtained methanol solution was concentrated under reduced pressure using an evaporator to obtain 12 g of a brown solid.
次に、LH-20樹脂を用いたカラムクロマトグラフィーを行った。内径3 cm、長さ80 cmのガラスカラムに、あらかじめ50%メタノール−超純水で膨潤したLH-20樹脂(アマシャム・ファルマシア社製)150 gをつめ、平衡化後、先の褐色固形物12 gを5 mlの50 %メタノール−超純水に溶解したものをロードし、50 %メタノール−超純水にて溶出を行った。20 mLずつ分画をおこない、CASアッセイにて鉄キレーターの存在する画分を検出した。鉄キレーターを含む画分を集め、エバポレーターにて減圧濃縮後、凍結乾燥を行い、淡褐色固形物680 mgを得た。 Next, column chromatography using LH-20 resin was performed. A glass column with an inner diameter of 3 cm and a length of 80 cm is filled with 150 g of LH-20 resin (manufactured by Amersham Pharmacia) previously swollen in 50% methanol-ultra pure water. A solution of g dissolved in 5 ml of 50% methanol-ultra pure water was loaded and eluted with 50% methanol-ultra pure water. Fractionation was performed 20 mL each, and the fraction containing iron chelator was detected by CAS assay. Fractions containing an iron chelator were collected, concentrated under reduced pressure using an evaporator, and lyophilized to obtain 680 mg of a light brown solid.
次に、逆相カラムを用いた高速液体クロマトグラフィー(HPLC)にて精製を行った。カラムにコスモシール5C18-AR-II(内径20 mm、長さ250 mm)を用い、移動相としては、45%メタノール−超純水を用い、10 mL/minの流速で分画を行った。2分(20 mL)ごとに分画をおこない、CASアッセイを行い、シデロフォアを含む画分を集め、エバポレーターにて減圧濃縮後、凍結乾燥を行い、淡黄色固形物130 mgを得た。次に、カラムに、TSK GEL ODS 80Ts(内径7.8 mm、長さ300 mm)を用い、2種類の溶媒(溶媒A:0.1 %トリフルオロ酢酸−超純水、溶媒B:0.1 % トリフルオロ酢酸−アセトニトリル)を用いたグラジエント溶出(初発の溶媒Bの濃度を10 %とし、30分後に40 %にあげる。流速2 mL/min)を行った。波長220nmの紫外吸収のチャートを図1に例示した。それぞれのピークに対応する分画を分離回収し、前述の非特許文献5に記載のCASアッセイによってシデロフォアの活性を測定したところ、図中ピークAおよびピークBについて当該活性があることが確認できた。分離同条件で繰り返し精製を行い、ピークAおよびピークBの画分を回収し、それぞれ乾燥重量にて10 mg、20 mg得た。
Next, purification was performed by high performance liquid chromatography (HPLC) using a reverse phase column. Cosmo seal 5C18-AR-II (inner diameter 20 mm,
それぞれの化合物について高分解能FAB-MSにより組成式を決定し、さらに1H NMR、13C NMR、HSQC、HMBC等のNMRデータの詳細な解析により構造を決定した結果、ピークAから式(I)の化合物を、ピークBから式(II)の化合物をそれぞれ得た。 The composition formula of each compound was determined by high-resolution FAB-MS, and the structure was further determined by detailed analysis of NMR data such as 1 H NMR, 13 C NMR, HSQC, and HMBC. From the peak B, the compound of formula (II) was obtained.
ここで得た二種類の化合物は、前記した理化学的性質(式(I)の化合物、式(II)の化合物の性質)を示した。 The two kinds of compounds obtained here exhibited the above-mentioned physicochemical properties (the properties of the compound of formula (I) and the compound of formula (II)).
(実施例2)
海産緑藻クロロコッカム・リトラーレ(Chlorococcum littorale)NBRC102761を用いて、式(I)の化合物および式(II)の化合物が当該単細胞藻類に対して増殖促進効果を有するかどうかを調べた。
(Example 2)
The marine green alga Chlorococcum littorale (Chlorococcum littorale) NBRC102761 was used to examine whether the compound of formula (I) and the compound of formula (II) have a growth promoting effect on the unicellular algae.
一般に海産の植物プランクトンは海水中の低い鉄濃度のレベル(数nM)では十分な増殖が困難であり、細胞への鉄供給が促進されると増殖も促進されることが知られている。まず基本生育培地(A5培地:硝酸ナトリウム1.5g/L、硫酸マグネシウム・七水和物0.1g/L、リン酸一カリウム35mg/L、リン酸二カリウム45 mg/L、鉄−EDTA 12mg/L、塩化カルシウム・ニ水和物9mg/L、ホウ酸70μg/L、硫酸マンガン・七水和物150 μg/L、硫酸亜鉛・七水和物 300μg/L、硫酸銅・五水和物300μg/L、モリブデン酸ナトリウム 3μg/L、塩化コバルト70μg/L、海水1L)で前培養した後、基本生育培地から鉄−EDTAを欠如させた培地(ただし培地調製に用いた海水由来の微量な鉄は存在する;以下、鉄欠乏培地という)で3日おきに2回継代培養して鉄欠乏状態の細胞(以下、鉄欠乏細胞という)を作成した。次に、鉄欠乏培地、鉄欠乏培地にデフェロキサミンBを0.1mM添加した培地、鉄欠乏培地に式(I)の化合物を0.1mM添加した培地、鉄欠乏培地に式(II)の化合物を0.1mM添加した培地をそれぞれ調製し、前記の鉄欠乏細胞を接種して、温度25℃、光強度50μmoL m-2 s-1のインキュベータ内で静置培養して増殖を調べた。 In general, marine phytoplankton is known to be difficult to proliferate at low iron concentration levels (several nM) in seawater, and it is known that when iron supply to cells is promoted, proliferation is also promoted. First, basic growth medium (A5 medium: sodium nitrate 1.5 g / L, magnesium sulfate heptahydrate 0.1 g / L, monopotassium phosphate 35 mg / L, dipotassium phosphate 45 mg / L, iron-EDTA 12 mg / L , Calcium chloride dihydrate 9 mg / L, boric acid 70 μg / L, manganese sulfate heptahydrate 150 μg / L, zinc sulfate heptahydrate 300 μg / L, copper sulfate pentahydrate 300 μg / L L, sodium molybdate 3μg / L, cobalt chloride 70μg / L, seawater 1L), medium lacking iron-EDTA from basic growth medium (however, the trace amount of iron derived from seawater used for medium preparation Present; hereinafter referred to as iron-deficient medium) and subcultured twice every 3 days to produce iron-deficient cells (hereinafter referred to as iron-deficient cells). Next, an iron-deficient medium, a medium obtained by adding 0.1 mM deferoxamine B to the iron-deficient medium, a medium obtained by adding 0.1 mM of the compound of formula (I) to the iron-deficient medium, and 0.1 mM of the compound of formula (II) to the iron-deficient medium. Each of the added media was prepared, inoculated with the iron-deficient cells, and statically cultured in an incubator at a temperature of 25 ° C. and a light intensity of 50 μmoL m −2 s −1 to examine proliferation.
結果を図2に示す。縦軸は培養開始時と培養44時間後のクロロフィル蛍光強度の差の平均値(n=12)を示しており、当該期間における微細藻の増殖量を意味する。バーは標準誤差(n=12)を示す。クロロフィル蛍光は蛍光分光光度計を用いて励起波長485nmとした時の蛍光波長645nmの強度を測定した。 The results are shown in FIG. The vertical axis indicates the average value (n = 12) of the difference in chlorophyll fluorescence intensity at the start of culture and 44 hours after culture, and means the amount of microalgae grown during the period. Bars indicate standard error (n = 12). Chlorophyll fluorescence was measured using a fluorescence spectrophotometer to measure the intensity at a fluorescence wavelength of 645 nm when the excitation wavelength was 485 nm.
図2において、Aは鉄欠乏培地を用いた場合、Bは鉄欠乏培地にデフェロキサミンBを添加した培地を用いた場合、Cは鉄欠乏培地に式(I)の化合物を添加した培地を用いた場合、Dは鉄欠乏培地に式(II)の化合物を添加した培地を用いた場合におけるクロロコッカム・リトラーレのクロロフィル蛍光量の増加量をそれぞれ表す。 In FIG. 2, A is an iron-deficient medium, B is an iron-deficient medium supplemented with deferoxamine B, and C is an iron-deficient medium supplemented with a compound of formula (I). In this case, D represents the amount of increase in the amount of chlorophyll fluorescence of chlorococcum litorale in the case of using a medium in which the compound of formula (II) is added to the iron-deficient medium.
デフェロキサミンBを添加した培地では鉄欠乏培地で認められた蛍光増加量よりも低かった。つまりデフェロキサミンBを添加すると当該の微細藻は増殖が抑制された。この結果は、デフェロキサミンBが培地中の微量な鉄と結合すると、微細藻はそれを摂取することができず、増殖が抑制されたと考えられる。これに対して、式(I)の化合物もしくは式(II)の化合物を添加すると鉄欠乏培地の場合よりも増殖が促進させた。すなわち、式(I)の化合物および式(II)の化合物はクロロコッカム・リトラーレによる海水からの極微量の鉄の取り込みを促進したと考えられる。つまり、本発明に係る化合物は藻類の増殖を促進する効果があることを確認した。 In the medium supplemented with deferoxamine B, the amount of fluorescence increase observed in the iron-deficient medium was lower. That is, when deferoxamine B was added, the growth of the microalgae was suppressed. From this result, it is considered that when deferoxamine B binds to a small amount of iron in the medium, the microalgae cannot take it, and the growth is suppressed. In contrast, the addition of the compound of formula (I) or the compound of formula (II) promoted growth more than in the case of an iron-deficient medium. That is, it is considered that the compound of the formula (I) and the compound of the formula (II) promoted the uptake of an extremely small amount of iron from seawater by chlorococcum literale. That is, it was confirmed that the compound according to the present invention has an effect of promoting the growth of algae.
(実施例3)
シデロフォアを生産する微生物を混和した担体を海岸線に沿ってその汀線部に幅2m、長さ20mに渡って深さ1〜2mで埋設し、海域の藻場造成に対する効果を確認した。
(Example 3)
A carrier mixed with microorganisms that produce siderophores was buried along the coastline in the shoreline portion at a width of 2 m and a length of 1 to 2 m over a length of 20 m, and the effect on seaweed formation in the sea area was confirmed.
ストレプトマイセス・スピーシーズYM5-799株の培養を以下の様に行った。本菌株を200 mLのマリンブロス培地を入れた1 Lバッフル付き三角フラスコ中で、30 ℃にて5日間回転震盪(100 rpm)培養して種菌とした。2 Lのバッフル付三角フラスコ1本あたり、生産培地(ASG培地:カザミノ酸 5 g/L、グリセリン 3 mL/L、グリセロリン酸 0.1 g/L、塩化ナトリウム 15.5 g/L、塩化カリウム 0.8 g/L、硫酸マグネシウム・七水和物 12.4 g/L、塩化カルシウム・二水和物 2.9 g/L、塩化アンモニウム 1.0 g/L、HEPESナトリウム塩 2.6 g/L、炭酸水素ナトリウム 0.17 g/L、塩化鉄0.01 μM (滅菌前pH 6.8))1 Lを入れ、オートクレーブにて滅菌したフラスコ各々(計10本、10 L)に、あらかじめ培養した種菌を10 mL接種し、30 ℃にて10日間、振盪培養(100 rpm)を行った。 Streptomyces sp. YM5-799 was cultured as follows. This strain was cultured in a 1 L baffled Erlenmeyer flask containing 200 mL of marine broth medium at 30 ° C. for 5 days by rotating and shaking (100 rpm) to obtain an inoculum. Production medium (ASG medium: casamino acid 5 g / L, glycerin 3 mL / L, glycerophosphoric acid 0.1 g / L, sodium chloride 15.5 g / L, potassium chloride 0.8 g / L per 2 L baffled Erlenmeyer flask , Magnesium sulfate heptahydrate 12.4 g / L, Calcium chloride dihydrate 2.9 g / L, Ammonium chloride 1.0 g / L, HEPES sodium salt 2.6 g / L, Sodium bicarbonate 0.17 g / L, Iron chloride 0.01 μM (pH 6.8 before sterilization) 1 L was added, and 10 mL of the precultured inoculum was inoculated into each autoclave sterilized flask (10 tubes, 10 L in total), and cultured at 30 ° C for 10 days with shaking. (100 rpm) was performed.
市販の腐植土100kg当たり前記培養液10Lを添加し、3日間通気攪拌した後に布袋に詰め、試験海域の汀線に埋設した。実施例では約1tの腐植土を用いた。比較例として、市販の腐植土100kg当たりマリンブロス培地10L添加し、3日間通気攪拌した後に布袋に詰め、試験海域の汀線で、実施例の埋設地点から100m離れた地点に埋設した。比較例では約1tの腐植土を用いた。 10 L of the above culture solution was added per 100 kg of commercially available humus soil, aerated and stirred for 3 days, packed in a cloth bag, and embedded in the shoreline of the test sea area. In the examples, about 1 t of humus was used. As a comparative example, 10 L of marine broth medium per 100 kg of commercially available humus soil was added, and after aeration and stirring for 3 days, it was packed in a cloth bag and embedded at a point 100 m away from the embedding point of the example with a shoreline in the test sea area. In the comparative example, about 1 t of humus soil was used.
実施例および比較例の資材を埋設した後、1年後および2年後に、それぞれの埋設地点近傍の海藻類の繁茂の状況と海水中の鉄濃度を調査した。海藻類(例えば、コンブ、ヒラコトジ、マツノリ)の繁茂の状況は、検査地点の海底における1m四方の区画に繁茂した海草を採取し、その質重量を測定した。海水中の鉄濃度は、JIS K0102に準拠してICP発光分析法で分析した。調査結果を表1に示す。海藻繁茂状況の記号は、100g/m2未満を“―”、100g/m2以上1kg/m2未満を“+”、1kg/m2以上を“++”と表記した。 After embedding the materials of Examples and Comparative Examples, one year and two years later, the state of overgrowth of seaweeds and the concentration of iron in seawater in the vicinity of the respective embedding points were investigated. As for the state of overgrowth of seaweeds (for example, kombu, hirakotoji, pine tree), seaweeds proliferated in a 1 m square section on the sea bottom of the inspection point were collected and their mass and weight were measured. The iron concentration in seawater was analyzed by ICP emission spectrometry in accordance with JIS K0102. The survey results are shown in Table 1. Symbol seaweed overgrowth situation, less than 100 g / m 2 "-", less than 100 g / m 2 or more 1 kg / m @ 2 "+", and expressed as 1 kg / m 2 or more "++".
施用前は実施例、比較例ともに海水中の鉄濃度が低く、海藻もほとんど生育していない海域であったが、施用1年後は実施例において海藻の生育が確認され、施用2年後には著しく繁茂した。海水中の鉄濃度は施用前は1.9μg/L程度であったが、施用後は10μg/L以上に増加し、施用2年後においてもその鉄濃度レベルは維持されていた。一方、比較例においては、施用1年後では海藻の生育は確認できなかったが、施用2年後には若干程度の海藻の生育が観察された。これは、海藻が繁茂した海域が、実施例の施用地点を中心にその効果域が拡大してゆき、施用2年後の時点では、実施例の効果域が比較例の施用地点にまで拡大したためである。比較例における海水中の鉄濃度は、施用前は実施例のそれと同程度の1.8μg/Lであり、施用1年後においても施用前とほとんど変わらず2.1μg/L程度であった。施用2年後は若干高まったが、これは前述のように実施例の効果域の拡大と考えられる。 Before application, both the examples and comparative examples were sea areas where the iron concentration in seawater was low and seaweed was hardly grown, but after one year of application, the growth of seaweed was confirmed in the examples, and two years after application Remarkably thrived. The iron concentration in seawater was about 1.9 μg / L before application, but increased to 10 μg / L or more after application, and the iron concentration level was maintained even after 2 years of application. On the other hand, in the comparative example, growth of seaweed could not be confirmed 1 year after application, but some growth of seaweed was observed 2 years after application. This is because the sea area where seaweeds have prospered has expanded its effect area centering on the application point of the example, and the effect area of the example expanded to the application point of the comparative example at the point of 2 years after application. It is. The iron concentration in the seawater in the comparative example was 1.8 μg / L, which was about the same as that in the example before application, and was about 2.1 μg / L almost unchanged from that before application even after one year of application. Although it slightly increased two years after application, this is considered to be an expansion of the effect area of the examples as described above.
以上のように海水中の鉄濃度と海藻の繁茂の状況とは明らかに相関が観察された。鉄イオンは酸性の液中ではイオンとして溶解するが、中性もしくはアルカリ性の液中では水酸化物を形成し、沈殿を生じ、水中に溶解できない性質がある。比較例に比べて実施例においては海水中の鉄濃度が高く保持され、海藻の繁茂が顕著であった。これは、実施例のように鉄分を含んだ腐植土とシデロフォアを生産する微生物を含んだ担体を海域に施用することによって当該担体から鉄分および/または海水中の鉄イオンが、担体から供給されたシデロフォアにキレートされたために海水中に溶存態として存在する、生物利用性の高い鉄分濃度が高まり、その結果として海藻の生育が促進されたと考えられる。
(実施例4)
シデロフォアを含有した抽出物添加した担体を充填した鋼製ユニットを磯焼けした海域の海岸線から沖合い80m地点の水底に沈設し、海域の藻場造成に対する効果を確認した。
Example 4
A steel unit filled with a carrier containing an extract containing siderophore was submerged on the bottom of the sea at 80m offshore from the shoreline of the burnt sea area, and the effect on seaweed bed development in the sea area was confirmed.
シデロフォアは、ストレプトマイセス・スピーシーズYM5-799株の培養物より調製した。すなわち、本菌株を200mLのマリンブロス培地を入れた1Lバッフル付き三角フラスコ中で、30℃にて5日間回転震盪(100rpm)培養して種菌とした。2Lのバッフル付三角フラスコ1本あたり、生産培地(ASG培地:カザミノ酸5g/L、グリセリン3mL/L、グリセロリン酸0.1g/L、塩化ナトリウム15.5g/L、塩化カリウム0.8g/L、硫酸マグネシウム・七水和物12.4g/L、塩化カルシウム・二水和物2.9g/L、塩化アンモニウム1.0g/L、HEPESナトリウム塩2.6g/L、炭酸水素ナトリウム0.17g/L、塩化鉄0.01μM(滅菌前pH6.8))1Lを入れ、オートクレーブにて滅菌したフラスコ各々(計100本、100L)に、あらかじめ培養した種菌を10mL接種し、30℃にて10日間、振盪培養(100rpm)を行った。 Siderophore was prepared from a culture of Streptomyces sp. YM5-799 strain. That is, this strain was cultured in a conical flask with 1 L baffle containing 200 mL of marine broth medium, and cultured at 30 ° C. for 5 days by rotary shaking (100 rpm) to obtain an inoculum. Production medium (ASG medium: casamino acid 5g / L, glycerin 3mL / L, glycerophosphoric acid 0.1g / L, sodium chloride 15.5g / L, potassium chloride 0.8g / L, magnesium sulfate per 1L Erlenmeyer flask with baffle・ Heptahydrate 12.4g / L, Calcium chloride ・ Dihydrate 2.9g / L, Ammonium chloride 1.0g / L, HEPES sodium salt 2.6g / L, Sodium bicarbonate 0.17g / L, Iron chloride 0.01μM ( Pre-sterilization (pH 6.8)) 1L was placed, and each flask (total 100, 100L) sterilized by autoclaving was inoculated with 10mL of the pre-cultured inoculum, followed by shaking culture (100rpm) for 10 days at 30 ° C. It was.
培養物を遠心分離(6000×g,4℃,20分間)により菌体と上清を分離した。分離した上清のpHを塩酸にてpH3に調整し、芳香族系合成吸着樹脂HP20樹脂(三菱化学社製)を20L加え、4℃に24時間放置した。ガラスフィルター(3G)を用いて樹脂を濾過し、瀘別した樹脂は、塩酸にてpH3に調整した超純水50Lで洗浄した。洗浄したHP20樹脂をビーカーに移し、50Lのメタノールに24時間浸漬した。次に、グラスフィルターを用いて、メタノールと樹脂を濾別し、得られたメタノール溶液をエバポレーターを用いて減圧濃縮し、約100gの褐色固形物を得た。当該固形物にシデロフォア活性があることをCASアッセイで確認した。また、当該固形物の一部を純水に溶解して、逆相カラム(コスモシール5C18-AR-II(内径20 mm、長さ250 mm))を用いた高速液体クロマトグラフィー(HPLC)にて、移動相として45%メタノール−超純水を10 mL/minの流速で通液して分析したところ、本発明の化合物(I)および化合物(II)とそれぞれ同じ滞留時間の位置にピークを確認でき、したがって、当該固形物中に本発明の化合物(I)および化合物(II)を含有していた。
The cells were separated from the supernatant by centrifugation (6000 × g, 4 ° C., 20 minutes). The pH of the separated supernatant was adjusted to pH 3 with hydrochloric acid, 20 L of aromatic synthetic adsorption resin HP20 resin (manufactured by Mitsubishi Chemical Corporation) was added, and the mixture was allowed to stand at 4 ° C. for 24 hours. The resin was filtered using a glass filter (3G), and the separated resin was washed with 50 L of ultrapure water adjusted to pH 3 with hydrochloric acid. The washed HP20 resin was transferred to a beaker and immersed in 50 L of methanol for 24 hours. Next, methanol and the resin were separated by filtration using a glass filter, and the resulting methanol solution was concentrated under reduced pressure using an evaporator to obtain about 100 g of a brown solid. It was confirmed by CAS assay that the solid had siderophore activity. In addition, by dissolving a part of the solid in pure water, high performance liquid chromatography (HPLC) using a reverse phase column (Cosmo Seal 5C18-AR-II (inner diameter 20 mm,
当該固形物100gを純水50Lに溶解させ、鉄鋼スラグ3tに噴霧し、よく混練した後、側面に小孔を開けた鋼製箱(W2000×D1000×L500)乃内部に充填して実施例の鋼製ユニットとした。また、比較例として、シデロフォアを含有した溶液を噴霧していない、鉄鋼スラグ3tを実施例と同型の鋼製箱に充填したものを作成した。 100 g of the solid matter was dissolved in 50 L of pure water, sprayed on steel slag 3t, kneaded well, and then filled into a steel box (W2000 × D1000 × L500) with small holes on the sides. A steel unit was used. Moreover, what filled the steel box of the same type as an Example with steel slag 3t which is not spraying the solution containing siderophore was created as a comparative example.
実施例の鋼製ユニットを磯焼けした海域の海岸線から沖合い80m地点の水底に沈設し、その地点から汀線と平行に200m離れた地点の水底に比較例の鋼製ユニットを沈設した。設置から約半年後に調査を行ったところ、比較例の鋼製ユニットの周辺に施工前との同様に海藻類の繁茂が観察されなかったが、実施例の鋼製ユニットの周辺にはホソメコンブが顕著に繁茂していた。 The steel unit of the example was sunk on the bottom of the water at a point 80 m offshore from the coastline of the sea where the steel was burnt. A survey was conducted about half a year after installation, and no seaweeds were observed in the vicinity of the steel unit of the comparative example, as in the case before the construction. It was thriving.
また、実施例および比較例の鋼製ユニット直上の海水を採取し、鉄濃度を測定したところ、比較例では2.3μg/Lであったのに対して実施例では15.8μg/Lと著明に高い濃度であった。なお、鋼製ユニット設置箇所から100m離れた海域の鉄濃度は1.6μg/Lであり、実施例の鋼製ユニットから鉄分が放出されたことがわかる。比較例の鋼製ユニットからも鉄分が放出されたであろうが、海水中で速やかに酸化され水酸化鉄として沈殿したため海藻類の増殖に効果がなかった。これに対して、実施例の鋼製ユニットからは鉄分とともにシデロフォアも放出され、それらが結合して海水中に鉄分が安定して存在することができ、すなわち、海藻類にとって可利用な鉄分が増大したため海藻類が繁茂したと考えられる。つまり、本発明によって、磯焼けした海洋環境を改善することができた。 In addition, when seawater was collected immediately above the steel units of the examples and comparative examples, and the iron concentration was measured, it was 2.3 μg / L in the comparative example, whereas it was markedly 15.8 μg / L in the example. High concentration. The iron concentration in the sea area 100 m away from the place where the steel unit was installed was 1.6 μg / L, indicating that iron was released from the steel unit of the example. Iron was also released from the steel unit of the comparative example, but it was rapidly oxidized in seawater and precipitated as iron hydroxide, which had no effect on the growth of seaweeds. On the other hand, the siderophore is released from the steel unit of the embodiment together with the iron, and they can be combined to stably exist in the seawater, that is, the available iron for seaweed increases. As a result, seaweeds are thought to have flourished. That is, according to the present invention, the burnt marine environment could be improved.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008019493A JP5073518B2 (en) | 2008-01-30 | 2008-01-30 | Siderophore, marine environment modifier containing the siderophore, and marine environment reforming method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008019493A JP5073518B2 (en) | 2008-01-30 | 2008-01-30 | Siderophore, marine environment modifier containing the siderophore, and marine environment reforming method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009179587A JP2009179587A (en) | 2009-08-13 |
JP5073518B2 true JP5073518B2 (en) | 2012-11-14 |
Family
ID=41033829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008019493A Expired - Fee Related JP5073518B2 (en) | 2008-01-30 | 2008-01-30 | Siderophore, marine environment modifier containing the siderophore, and marine environment reforming method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5073518B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5020839B2 (en) * | 2008-01-30 | 2012-09-05 | 新日本製鐵株式会社 | Novel microorganism and method for producing compound using novel microorganism |
EP2468878A1 (en) * | 2010-12-21 | 2012-06-27 | Sanbo International Establishment | A method for increasing the CoQ10 and CoQH2 content in phototrophic microorganisms |
JPWO2014038191A1 (en) | 2012-09-04 | 2016-08-08 | アトナープ株式会社 | System and method for detecting metals in solution |
JP6597055B2 (en) * | 2015-08-26 | 2019-10-30 | 日本製鉄株式会社 | Method for growing brown algae and method for producing hydrated solid with brown algae |
PT115218A (en) * | 2018-12-17 | 2020-06-17 | Inst Superior De Engenharia Do Porto | LYOPHILIZED FERTILIZING COMPOSITION INCLUDING IRON SIDEROPHORE CHELATES, LYOPHILIZED COMPOSITION INCLUDING SIDEROPHORES, THEIR PREPARATION PROCESSES AND THEIR USES FOR TREATING PLANTS |
CN113215068A (en) * | 2021-06-29 | 2021-08-06 | 广东医科大学 | Culture medium for separating mangrove rhizosphere soil actinomycetes and application thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001247556A (en) * | 2000-03-03 | 2001-09-11 | Marine Biotechnol Inst Co Ltd | New siderophore activator produced by marine bacterium and method of producing the same |
JP2004269357A (en) * | 2002-01-25 | 2004-09-30 | Marine Biotechnol Inst Co Ltd | Compound having high binding ability to iron and method for producing the same |
JP5020839B2 (en) * | 2008-01-30 | 2012-09-05 | 新日本製鐵株式会社 | Novel microorganism and method for producing compound using novel microorganism |
-
2008
- 2008-01-30 JP JP2008019493A patent/JP5073518B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009179587A (en) | 2009-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Feling et al. | Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora | |
Jeong et al. | Streptokordin, a new cytotoxic compound of the methylpyridine class from a marine-derived Streptomyces sp. KORDI-3238 | |
JP4395549B2 (en) | Marine actinomycete taxa for the discovery of drugs and fermentation products | |
JP5073518B2 (en) | Siderophore, marine environment modifier containing the siderophore, and marine environment reforming method | |
Arul Jose et al. | Phylogenetic‐affiliation, antimicrobial potential and PKS gene sequence analysis of moderately halophilic Streptomyces sp. inhabiting an Indian saltpan | |
CN101302482B (en) | Marine streptomyces S187 having wide-spectrum antibacterial activity | |
JP2019149945A (en) | Method for producing platensimycin | |
ES2240072T3 (en) | MICROBIAL PROCEDURE FOR THE PREPARATION OF PRAVASTATIN. | |
JP5020839B2 (en) | Novel microorganism and method for producing compound using novel microorganism | |
JP5826406B2 (en) | Streptomyces, antitumor compound Spiro-Indymycin AD, production method and use thereof, and antitumor agent and drug containing spiroindimycin | |
JP5144167B2 (en) | Novel KB-3346-5 substance and production method thereof | |
Balagurunathan et al. | Bioprospecting of mangrove rhizosphere actinomycetes from Pitchavaram with special reference to antibacterial activity | |
KR20200065628A (en) | Novel Streptomyces sp. capable of degrading organochlorine pesticide and use of the same | |
US9206212B2 (en) | Actinomycete strain composition and its use | |
JP4185497B2 (en) | Novel K01-B0171 substance and process for producing the same | |
JP3902530B2 (en) | New antibiotics kigamycins and their uses | |
JP4227861B2 (en) | A novel microorganism with polycyclic aromatic compound resolution | |
WO2014106826A2 (en) | Anthracycline analogue and uses thereof | |
CN112961170B (en) | Sponge source actinomycetes and preparation method and application of sulfur-containing alkaloid produced by sponge source actinomycetes | |
ES2629854T3 (en) | Production of omega-3 fatty acids by myxobacteria | |
JP5578649B2 (en) | A novel microorganism belonging to the genus Actinomadura, a novel compound produced by the microorganism, and a pharmaceutical comprising the compound as an active ingredient | |
Radhika et al. | In vitro antimicrobial activity of marine actinobacteria isolates from Pulicat Lake, Tamil Nadu, India | |
WO2005111055A1 (en) | Novel antibiotic kigamicins and use thereof | |
KUMARI et al. | SCREENING OF ACTINOMYCETES ISOLATED FROM NATURAL ECOSYSTEM (PERIYAR TIGER RESERVE, KERALA) FOR LIPASE INHIBITORY ACTIVITIES | |
JP4865357B2 (en) | New antibiotic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120522 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120709 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120731 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120822 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5073518 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150831 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150831 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150831 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |