JP5066212B2 - Drilling tool - Google Patents
Drilling tool Download PDFInfo
- Publication number
- JP5066212B2 JP5066212B2 JP2010069816A JP2010069816A JP5066212B2 JP 5066212 B2 JP5066212 B2 JP 5066212B2 JP 2010069816 A JP2010069816 A JP 2010069816A JP 2010069816 A JP2010069816 A JP 2010069816A JP 5066212 B2 JP5066212 B2 JP 5066212B2
- Authority
- JP
- Japan
- Prior art keywords
- diameter
- tool
- shank
- drilling tool
- end side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005553 drilling Methods 0.000 title claims description 80
- 230000005484 gravity Effects 0.000 claims description 36
- 239000010935 stainless steel Substances 0.000 claims description 27
- 229910001220 stainless steel Inorganic materials 0.000 claims description 27
- 238000012545 processing Methods 0.000 claims description 13
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 3
- 239000002131 composite material Substances 0.000 description 24
- 238000005452 bending Methods 0.000 description 16
- 239000000463 material Substances 0.000 description 14
- 238000005304 joining Methods 0.000 description 13
- 239000007787 solid Substances 0.000 description 8
- 238000005520 cutting process Methods 0.000 description 5
- 238000003754 machining Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 241000023320 Luma <angiosperm> Species 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0011—Working of insulating substrates or insulating layers
- H05K3/0044—Mechanical working of the substrate, e.g. drilling or punching
- H05K3/0047—Drilling of holes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26F—PERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
- B26F1/00—Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
- B26F1/16—Perforating by tool or tools of the drill type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2251/00—Details of tools for drilling machines
- B23B2251/24—Overall form of drilling tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26F—PERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
- B26F2210/00—Perforating, punching, cutting-out, stamping-out, severing by means other than cutting of specific products
- B26F2210/08—Perforating, punching, cutting-out, stamping-out, severing by means other than cutting of specific products of ceramic green sheets, printed circuit boards and the like
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Forests & Forestry (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Drilling Tools (AREA)
Description
本発明は、穴明け工具に関するものである。 The present invention relates to a drilling tool.
近年の電子機器の著しい進化に伴い、プリント配線板への高密度実装の要求が高まっている。そのため、例えば特許文献1に開示されるようなプリント配線板(PCB)加工用の穴明け工具も年々小径化が進んでおり、現在では刃部の直径が0.4mm未満の小径穴明け工具の量産化が進んでいる。 Along with the remarkable evolution of electronic devices in recent years, there is an increasing demand for high-density mounting on printed wiring boards. For this reason, for example, a drilling tool for processing a printed wiring board (PCB) as disclosed in Patent Document 1 has been reduced in diameter year by year. Currently, a small-diameter drilling tool having a blade portion diameter of less than 0.4 mm is used. Mass production is progressing.
ところで、このような穴明け工具において十分な周速での加工が行われない場合には、工具折損等の不具合が生じることが知られている。特に、極小径穴明け工具の場合には、より高回転で回転させることにより十分な周速を得る必要があるが、当該穴明け工具を高回転で回転させると、その遠心力で工具が撓んで振れ回る所謂動的振れが生じる。 By the way, it is known that when such a drilling tool is not processed at a sufficient peripheral speed, problems such as tool breakage occur. In particular, in the case of a very small diameter drilling tool, it is necessary to obtain a sufficient peripheral speed by rotating at a higher rotation speed. However, when the drilling tool is rotated at a higher speed, the tool is bent by the centrifugal force. This causes a so-called dynamic shake that swings around.
また、超硬合金製の刃部を有するボデー部とステンレス鋼製等のシャンク部とを溶接接合(例えばろう接)して成る複合材接合タイプは、シャンク部の素材の縦弾性係数が超硬合金よりも小さいことから、1つの超硬合金材に刃部(ボデー部)とシャンク部とが一体に形成されるソリッドタイプに比し、動的振れが大きくなる傾向がある。 In addition, the composite joint type, in which the body part having a blade part made of cemented carbide and the shank part made of stainless steel or the like are welded (for example, brazed), has a longitudinal elastic modulus of the material of the shank part made of carbide. Since it is smaller than an alloy, dynamic runout tends to be larger than that of a solid type in which a blade part (body part) and a shank part are integrally formed on one cemented carbide material.
即ち、図1(1)に示すように、一般に複合材接合タイプにおいてステンレス鋼などの鋼材をシャンク部に使用した場合、縦弾性係数が超硬合金材よりも小さいことが原因で工具の動的振れが大きくなる傾向が確認されている。動的振れが大きい場合、穴明け工具先端の振れ回りが位置決め精度を悪化させ、結果として穴位置精度を低下させる。 That is, as shown in FIG. 1 (1), in general, when a steel material such as stainless steel is used for the shank portion in the composite material joining type, the dynamics of the tool is reduced because the longitudinal elastic modulus is smaller than that of the cemented carbide material. A tendency to increase the runout has been confirmed. When the dynamic runout is large, the runout around the drilling tool tip deteriorates the positioning accuracy, and as a result, the hole position accuracy is lowered.
図1(1)の(a),(b)は穴位置精度を表す図を例示したものであって、設定された穴明け位置に対する実際に加工された穴の位置のずれ量をグラフ上にプロットしたものであり((a),(b)夫々、6,000ヒット分のデータがプロットされている。)、縦軸(Y軸)と横軸(X軸)の交点(グラフ中心)がずれ量0μmを示すものである。グラフ中心にプロットが集まるほど穴位置精度が良いことになり、一般に、通常の回転領域での穴明け加工ではソリッドタイプ、複合材接合タイプのいずれの場合でも(a)に図示したように比較的グラフ中心にプロットが集まったものとなる。一方、動的振れが大きい場合には、(b)に図示したようにプロットが中心に集まらずに極端に穴位置精度が悪い場合は略ドーナツ状のグラフとなる。また、図1(1)(c)に図示したように、動的振れが大きいほど、工具が折損するまでの寿命(ヒット数(加工穴数))が短くなることが知られている。 (A) and (b) of FIG. 1 (1) are diagrams showing hole position accuracy, and the amount of deviation of the position of the actually processed hole with respect to the set drilling position is shown on the graph. It is plotted (data of 6,000 hits are plotted respectively for (a) and (b)), and the intersection (graph center) of the vertical axis (Y axis) and the horizontal axis (X axis) is The deviation amount is 0 μm. As the plot is gathered at the center of the graph, the hole position accuracy becomes better. Generally, in the drilling process in the normal rotation region, as shown in FIG. A plot is collected at the center of the graph. On the other hand, when the dynamic shake is large, the plot is not concentrated at the center as shown in (b), and when the hole position accuracy is extremely low, a substantially donut-shaped graph is obtained. Further, as illustrated in FIGS. 1A and 1C, it is known that the longer the dynamic deflection, the shorter the life until the tool breaks (the number of hits (the number of processed holes)).
穴明け加工時において動的振れがある場合には、穴明け設定位置からずれた位置で工具の刃先が被削材に食い付き、穴明けが進行するほど刃部が撓み、設定した深さまで穴明け加工が終了すると工具が被削材から引き抜かれるため、穴明けと引き抜きが行われるたびに刃部根元に繰り返し応力が付加されることになり、よって疲労破壊を招く。動的振れが大きい場合には位置ずれが大きいために刃部の撓みが大きく、よって上記の応力が増大することにより折損寿命が短くなる。 If there is dynamic runout during drilling, the cutting edge of the tool bites the work material at a position deviated from the drilling setting position, and the blade part bends as drilling progresses, and the hole reaches the set depth. When the drilling is completed, the tool is pulled out from the work material. Therefore, every time drilling and pulling are performed, stress is repeatedly applied to the base of the blade portion, thereby causing fatigue failure. When the dynamic runout is large, the displacement is large and the blade portion is greatly bent. Therefore, the above-mentioned stress is increased and the breakage life is shortened.
従って、高回転領域で使用される穴明け工具は現状では動的振れが小さいソリッドタイプが主流である。 Therefore, the drilling tool used in the high rotation region is currently a solid type with a small dynamic deflection.
しかしながら、ソリッドタイプはレアメタルであるタングステンの使用量が多く、環境面、コスト面においては複合材接合タイプの使用が望ましい。 However, the solid type uses a large amount of rare metal tungsten, and it is desirable to use the composite material joining type in terms of environment and cost.
また、PCB加工用等の小径穴明け工具においては、上述の遠心力による撓みだけでなく、加工時に生じる横方向(工具軸直角方向)の負荷による撓みも穴位置精度に影響を与えるため、できるだけ剛性を高めた形状を採用するのが一般的である。 In addition, in small-diameter drilling tools for PCB processing and the like, not only the above-described bending due to centrifugal force but also the bending due to the load in the lateral direction (perpendicular to the tool axis) that occurs during processing affects the hole position accuracy. It is common to adopt a shape with increased rigidity.
具体的には、加工自体は工具軸方向で行われるため、横方向の負荷はエンドミル等と比べると小さく、工具先端に横方向からの荷重を加えた場合においても、径が比較的小さい刃部の根元に応力集中が起こることから、穴位置精度を向上させるためには、一般的には刃部の心厚を大きくする等の設計が行われている。 Specifically, since the machining itself is performed in the tool axis direction, the load in the horizontal direction is small compared to an end mill or the like, and even when a load from the horizontal direction is applied to the tip of the tool, the blade portion having a relatively small diameter In order to improve the hole position accuracy, in general, a design such as increasing the core thickness of the blade portion is performed.
しかし、心厚を大きくした場合、穴位置精度は向上する傾向にあるが、溝体積が小さくなることから、切り屑詰まりや加工穴内壁粗さの悪化を引き起こし、工具折損や十分な穴品質が得られないという問題が発生する。溝体積を保ちつつ十分な剛性を保つ為には工具径自体を大きくする手段があるが、加工される穴径も大きくなることから本来の目的である高密度実装を達成できなくなる。高回転加工が求められる極小径工具において、工具径を変えずに遠心力による撓み、加工負荷による撓みを同時に抑制する為には、刃部のみに着目した設計では、工具全体の剛性と動的振れのバランスを取ることが難しく、従来の複合材接合タイプでは、工具先端の動的振れを改善することは困難であった。 However, when the core thickness is increased, the hole position accuracy tends to improve, but the groove volume becomes smaller, which causes chip clogging and deterioration of the inner wall roughness of the processed hole, resulting in tool breakage and sufficient hole quality. The problem that it cannot be obtained occurs. In order to maintain sufficient rigidity while maintaining the groove volume, there is a means for increasing the tool diameter itself. However, since the hole diameter to be processed becomes large, the original high-density mounting cannot be achieved. In a very small diameter tool that requires high rotation machining, in order to suppress bending due to centrifugal force and bending due to machining load at the same time without changing the tool diameter, the design that focuses only on the blade part can be used for rigidity and dynamics of the entire tool. It is difficult to balance the runout, and it has been difficult to improve the dynamic runout of the tool tip with the conventional composite material joining type.
尚、図2は従来のPCB加工用のドリルの外形を図示したものである。図中符号1’はボデー部、2’は刃部、3’はシャンク部、4’はステップ部、5’はボデーテーパ部、6’はシャンクテーパ部、15’はシャンク本体であり、図2(a)は外径が一定のステップ部4’を設けたタイプ、図2(b)はステップ部4’を設けないタイプ(所謂ルーマタイプ)である。 FIG. 2 shows the external shape of a conventional drill for PCB processing. In FIG. 2, reference numeral 1 'denotes a body portion, 2' denotes a blade portion, 3 'denotes a shank portion, 4' denotes a step portion, 5 'denotes a body taper portion, 6' denotes a shank taper portion, and 15 'denotes a shank body. FIG. 2A shows a type in which a step portion 4 ′ having a constant outer diameter is provided, and FIG. 2B shows a type in which the step portion 4 ′ is not provided (so-called luma type).
図2(a)は具体的には、刃部2’の基端部に基端側ほど径大となるテーパ状のボデーテーパ部5’が設けられ、このボデーテーパ部5’の基端に外径が一定のステップ部4’が連設されてボデー部1’が構成され、前記ステップ部4’の基端にシャンク部3’が連設されている。シャンク部3’にはシャンク本体15’の先端に先端側ほど径小となるテーパ状のシャンクテーパ部6’が設けられており、このシャンクテーパ部6’が前記ステップ部4’に連設されている。 Specifically, in FIG. 2A, a tapered body taper portion 5 ′ having a diameter that increases toward the base end side is provided at the base end portion of the blade portion 2 ′, and an outer diameter is provided at the base end of the body taper portion 5 ′. A step portion 4 'having a constant width is connected to form a body portion 1', and a shank portion 3 'is connected to the base end of the step portion 4'. The shank portion 3 ′ is provided with a tapered shank taper portion 6 ′ having a diameter that decreases toward the tip end of the shank body 15 ′. The shank taper portion 6 ′ is connected to the step portion 4 ′. ing.
図2(b)はステップ部4’を設けないタイプで具体的には、略同一径の刃部2’の基端にシャンク部3’が連設されている。シャンク部3’にはシャンク本体15’の先端に先端側ほど径小となるシャンクテーパ部6’が設けられており、このシャンクテーパ部6’が前記刃部2’に連設されている。つまり図2(b)はステップ部4’だけでなくボデーテーパ部5’も存在しない形状である。 FIG. 2B shows a type in which the step portion 4 ′ is not provided. Specifically, the shank portion 3 ′ is continuously provided at the base end of the blade portion 2 ′ having substantially the same diameter. The shank portion 3 ′ is provided with a shank taper portion 6 ′ whose diameter decreases toward the tip end of the shank main body 15 ′. The shank taper portion 6 ′ is connected to the blade portion 2 ′. That is, FIG. 2B shows a shape in which not only the step portion 4 ′ but also the body taper portion 5 ′ does not exist.
従来の複合材接合タイプは一般に、接合境界がシャンクテーパ部6’の領域内に位置するように設計されており、また、ボデーテーパ部5’のボデーテーパ角α’は15°以上、シャンクテーパ部6’のシャンクテーパ角β’は20°以上に設定されるのが一般的である。特に、ボデーテーパ角α’とシャンクテーパ角β’は共に30°〜90°に設定されるのが一般的である。これらの角度は後述する本発明についての技術的思想に基づく設定値ではなく、例えば当該穴明け工具が取り付けられる穴明け加工機のスピンドルチャック(コレットチャック)径に適用できるように穴明け工具のシャンク径を設定し、そのシャンク径から、穴明け加工機側のその他の仕様や規格に応じて、シャンク径より小径の刃部の直径まで縮径させて連設させるためだけに設定された角度にすぎない。 The conventional composite material joining type is generally designed so that the joining boundary is located in the region of the shank taper portion 6 ′. The body taper angle α ′ of the body taper portion 5 ′ is 15 ° or more, and the shank taper portion 6 The “shank taper angle β” is generally set to 20 ° or more. In particular, the body taper angle α ′ and the shank taper angle β ′ are generally set to 30 ° to 90 °. These angles are not set values based on the technical concept of the present invention to be described later. For example, the shank of the drilling tool can be applied to the diameter of the spindle chuck (collet chuck) of the drilling machine to which the drilling tool is attached. Set the diameter, and from that shank diameter to the angle set only to reduce the diameter from the shank diameter to the diameter of the blade part smaller than the shank diameter according to other specifications and standards on the drilling machine side. Only.
本発明は、上述のような現状に鑑み、刃部とシャンク部との間のステップ部に着目し、ステップ部の形状等を工夫することで複合材接合タイプであっても高回転時の動的振れを可及的に抑制することが可能となることを見出し完成したもので、環境性及びコスト性に秀れた極めて実用的な穴明け工具を提供するものである。 In view of the current situation as described above, the present invention focuses on the step portion between the blade portion and the shank portion, and devise the shape of the step portion, etc. The present invention has been completed by finding out that it is possible to suppress the wobbling as much as possible, and provides an extremely practical drilling tool excellent in environmental performance and cost.
添付図面を参照して本発明の要旨を説明する。 The gist of the present invention will be described with reference to the accompanying drawings.
工具本体の外周に工具先端から基端側に向かう螺旋状の切り屑排出溝が一若しくは複数形成された刃部2を有するボデー部1と、基端側に前記刃部2より径大なシャンク本体15を有するシャンク部3とから成り、前記刃部2は炭化タングステン及びコバルトを主成分とする超硬合金部材、一方、前記シャンク部3はステンレス鋼部材で形成されており、また、この超硬合金部材及びステンレス鋼部材は溶接接合され、前記刃部2と前記シャンク本体15との間には、その途中部の外径が前記刃部2より大きく且つ前記シャンク本体15より小さいステップ部4が設けられた穴明け工具であって、前記ステップ部4の外径は基端側ほど段階的若しくは連続的に径大となるように設定されており、前記ステップ部4の先端側所定位置の直径D1と基端側所定位置の直径D2の差を当該2点間の距離Lcで除した値が、超硬合金部材で形成される部分が、工具先端から9mm未満の場合は下記式(1)、9mm以上12mm以下の場合は下記式(2)で表されることを特徴とする穴明け工具に係るものである。
記
0.03≦(D2−D1)/Lc≦0.26 (5)
0.01≦(D2−D1)/Lc≦0.15 (6)
A body portion 1 having a blade portion 2 in which one or a plurality of spiral chip discharge grooves extending from the tool tip toward the base end side are formed on the outer periphery of the tool body, and a shank having a diameter larger than that of the blade portion 2 on the base end side The blade portion 2 is formed of a cemented carbide member mainly composed of tungsten carbide and cobalt, while the shank portion 3 is formed of a stainless steel member. The hard alloy member and the stainless steel member are welded and joined, and a step portion 4 between the blade portion 2 and the shank body 15 has an outer diameter larger than that of the blade portion 2 and smaller than the shank body 15. The outer diameter of the step portion 4 is set so that the outer diameter of the step portion 4 increases stepwise or continuously toward the base end side . Diameter D1 and proximal side When the value obtained by dividing the difference in diameter D2 at the fixed position by the distance Lc between the two points is less than 9 mm from the tip of the tool, the following formula (1): In this case, the drilling tool is represented by the following formula (2) .
Record
0.03 ≦ (D2-D1) /Lc≦0.26 (5)
0.01 ≦ (D2-D1) /Lc≦0.15 (6)
また、請求項1記載の穴明け工具において、前記ステップ部4は前記ボデー部1に設けられていることを特徴とする穴明け工具に係るものである。 The drilling tool according to claim 1, wherein the step portion 4 is provided in the body portion 1.
また、請求項1,2いずれか1項に記載の穴明け工具において、前記ステップ部4には該ステップ部4の先端側の径小部と該ステップ部の基端側の径大部とを連設する段差部7が設けられていることを特徴とする穴明け工具に係るものである。 Further, in the drilling tool according to any one of claims 1 and 2, the step portion 4 includes a small-diameter portion on the distal end side of the step portion 4 and a large-diameter portion on the proximal end side of the step portion. The present invention relates to a drilling tool characterized in that a stepped portion 7 is provided.
また、請求項1,2いずれか1項に記載の穴明け工具において、前記ステップ部4には先端側から基端側に向かって外径が漸増するフロントテーパ部8,25,26が設けられていることを特徴とする穴明け工具に係るものである。 Further, in the drilling tool according to any one of claims 1 and 2, the step portion 4 is provided with front taper portions 8, 25, and 26 whose outer diameter gradually increases from the distal end side toward the proximal end side. The present invention relates to a drilling tool characterized by
また、請求項4記載の穴明け工具において、前記フロントテーパ部8,25,26のテーパ角は前記シャンク部先端に設けられるシャンクテーパ部6のテーパ角より小さい値に設定されていることを特徴とする穴明け工具に係るものである。 Further, in the drilling tool according to claim 4, the taper angle of the front taper part 8, 25, 26 is set to a value smaller than the taper angle of the shank taper part 6 provided at the tip of the shank part. It relates to a drilling tool.
また、請求項1〜5いずれか1項に記載の穴明け工具において、工具先端から4mmの位置での直径が1.5mm以下であることを特徴とする穴明け工具に係るものである。 The drilling tool according to any one of claims 1 to 5 , wherein the diameter at a position 4 mm from the tool tip is 1.5 mm or less.
また、請求項1〜6いずれか1項に記載の穴明け工具において、前記ステップ部4の重心位置が工具基端から工具全長の92.0%以下の位置で、且つ、工具全体の重心位置が工具基端から工具全長の42.5%以下の位置となるように構成されていることを特徴とする穴明け工具に係るものである。 The drilling tool according to any one of claims 1 to 6 , wherein the center of gravity of the step portion 4 is a position that is 92.0% or less of the total length of the tool from the tool base end, and the center of gravity of the entire tool. Is a drilling tool characterized in that it is positioned at a position of 42.5% or less of the total length of the tool from the tool base end.
また、請求項1〜5いずれか1項に記載の穴明け工具において、前記ステップ部4の先端側所定位置の直径D1と基端側所定位置の直径D2の差を当該2点間の距離Lcで除した値が、超硬合金部材で形成される部分が、工具先端から9mm未満の場合は下記式(3)、9mm以上12mm以下の場合は下記式(4)で表されることを特徴とする穴明け工具に係るものである。 The drilling tool according to any one of claims 1 to 5, wherein a difference between a diameter D1 at a predetermined position on the distal end side and a diameter D2 at a predetermined position on the proximal end side of the step portion 4 is a distance Lc between the two points. When the portion formed by the cemented carbide member is less than 9 mm from the tip of the tool, the value divided by (3) is represented by the following formula (3), and when 9 mm or more and 12 mm or less, the following formula (4) is used. It relates to a drilling tool.
記
0.03≦(D2−D1)/Lc≦0.15 (7)
0.01≦(D2−D1)/Lc≦0.1 (8)
Record
0.03 ≦ (D2-D1) /Lc≦0.15 (7)
0.01 ≦ (D2-D1) /Lc≦0.1 (8)
また、請求項8記載の穴明け工具において、工具先端から4mmの位置での直径が0.8mm以下であることを特徴とする穴明け工具に係るものである。 The drilling tool according to claim 8 , wherein the diameter at a position 4 mm from the tip of the tool is 0.8 mm or less.
また、請求項8,9いずれか1項に記載の穴明け工具において、前記ステップ部4の重心位置が工具基端から工具全長の82.5%以下の位置で、且つ、工具全体の重心位置が工具基端から工具全長の37.5%以下の位置となるように構成されていることを特徴とする穴明け工具に係るものである。 The drilling tool according to any one of claims 8 and 9 , wherein the center of gravity of the step portion 4 is a position that is 82.5% or less of the total length of the tool from the tool base end, and the center of gravity of the entire tool. Is a drilling tool characterized in that the position is 37.5% or less of the total length of the tool from the tool base end.
また、請求項1〜10いずれか1項に記載の穴明け工具において、この穴明け工具は、プリント配線板加工用のドリルであることを特徴とする穴明け工具に係るものである。 Further, in the drilling tool according to any one of claims 1-10, the drilling tool is according to drilling tool, which is a drill for a printed wiring board processing.
本発明は上述のように構成したから、複合材接合タイプであっても高回転時の動的振れを可及的に抑制することが可能で、環境性及びコスト性に秀れた極めて実用的な穴明け工具となる。 Since the present invention is configured as described above, even if it is a composite material joining type, it is possible to suppress as much as possible the dynamic vibration at the time of high rotation, and it is extremely practical with excellent environmental performance and cost. It becomes a simple drilling tool.
好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。 An embodiment of the present invention which is considered to be suitable will be briefly described with reference to the drawings showing the operation of the present invention.
穴明け工具を穴明け加工機のスピンドルチャック(コレットチャック)に把持せしめ、当該穴明け工具により回転切削加工を行う。この際、ステップ部4の外径を基端側ほど段階的若しくは連続的に径大とすることで、穴明け工具にしてコレットチャックから突き出す突出し部の質量を小さくしつつ、剛性を高めることができ、遠心力及び横方向の負荷による撓みを軽減できる。しかも、先端側ほど質量が小さくなることで重心位置がコレットチャック側に寄ることになり、遠心力による撓みを十分に軽減できることになる。よって、横方向の負荷及び遠心力による撓み双方を軽減でき、複合材接合タイプであっても高回転時の動的振れを可及的に抑制可能となる。 A drilling tool is held by a spindle chuck (collet chuck) of a drilling machine, and rotary cutting is performed with the drilling tool. At this time, by increasing the outer diameter of the step portion 4 stepwise or continuously toward the proximal end side, the rigidity of the protruding portion protruding from the collet chuck as a drilling tool can be reduced and the rigidity can be increased. It is possible to reduce bending due to centrifugal force and lateral load. In addition, since the mass becomes smaller toward the tip side, the position of the center of gravity approaches the collet chuck side, and the bending due to the centrifugal force can be sufficiently reduced. Therefore, both the lateral load and the bending due to the centrifugal force can be reduced, and the dynamic vibration at the time of high rotation can be suppressed as much as possible even in the composite material joining type.
本発明の具体的な実施例について図面に基づいて説明する。 Specific embodiments of the present invention will be described with reference to the drawings.
本実施例は、工具本体の外周に工具先端から基端側に向かう螺旋状の切り屑排出溝が一若しくは複数形成された刃部2を有するボデー部1と、基端側に前記刃部2より径大なシャンク本体15を有するシャンク部3とから成り、前記刃部2は炭化タングステン及びコバルトを主成分とする超硬合金部材、一方、前記シャンク部3はステンレス鋼部材で形成されており、また、この超硬合金部材及びステンレス鋼部材は溶接接合され、前記刃部2と前記シャンク本体15との間には、その途中部の外径が前記刃部2より大きく且つ前記シャンク本体15より小さいステップ部4が設けられた穴明け工具であって、前記ステップ部4の外径は基端側ほど段階的若しくは連続的に径大となるように設定されているものである。 In the present embodiment, a body portion 1 having a blade portion 2 in which one or a plurality of spiral chip discharge grooves extending from the tool tip toward the base end side are formed on the outer periphery of the tool body, and the blade portion 2 on the base end side. The shank portion 3 is composed of a shank portion 3 having a larger diameter shank body 15, the blade portion 2 is formed of a cemented carbide member mainly composed of tungsten carbide and cobalt, and the shank portion 3 is formed of a stainless steel member. In addition, the cemented carbide member and the stainless steel member are welded and joined, and the outer diameter of the intermediate portion between the blade portion 2 and the shank main body 15 is larger than that of the blade portion 2 and the shank main body 15. It is a drilling tool provided with a smaller step part 4, and the outer diameter of the step part 4 is set so that the diameter increases stepwise or continuously toward the base end side.
具体的には本実施例は、先端に被削物に穴明け加工を施す切れ刃が形成された刃部2を有するボデー部1と穴明け加工機のコレットチャックに把持されるシャンク部3とを備えた刃部2の直径が0.4mm未満のPCB加工用のドリルである。 Specifically, in this embodiment, a body portion 1 having a blade portion 2 formed with a cutting edge for drilling a workpiece at the tip, and a shank portion 3 held by a collet chuck of a drilling machine, Is a drill for PCB processing in which the diameter of the blade portion 2 provided with is less than 0.4 mm.
各部を具体的に説明する。 Each part will be specifically described.
ステップ部4は、ボデー部1の刃部2とシャンク部3のシャンク本体15との間に設けられるものであり、刃部2及びシャンク部3とは別体で、これらに夫々溶接接合(例えばろう接)される構成としても良い。つまり前述したように、従来の複合材接合タイプは一般に、接合境界がシャンクテーパ部6’の領域内に位置するように設計されているが、本実施例では、接合境界は、従来と同様にシャンクテーパ部6’の領域内に位置しても良いし、その他の部位に位置しても良く、特に限定されるものではない。 The step part 4 is provided between the blade part 2 of the body part 1 and the shank body 15 of the shank part 3, and is separate from the blade part 2 and the shank part 3 and is welded to each of them (for example, It may be configured to be brazed. In other words, as described above, the conventional composite material joining type is generally designed so that the joining boundary is located in the region of the shank taper portion 6 '. In this embodiment, the joining boundary is the same as in the conventional case. It may be located in the region of the shank taper portion 6 ′, or may be located in other parts, and is not particularly limited.
具体的には、ボデー部1には、刃部2の基端部に基端側ほど径大となるテーパ状のボデーテーパ部5が設けられ該ボデーテーパ部5の基端にステップ部4が連設され、シャンク部3には、シャンク本体15の先端に先端側ほど径小となるテーパ状のシャンクテーパ部6が設けられており、このシャンクテーパ部6の先端が前記ステップ部4の基端に連設されている構成としても良いし、ボデーテーパ部5若しくはシャンクテーパ部6またはその両者を設けずに刃部2とシャンク本体15との間にステップ部4を設ける構成としても良い。 Specifically, the body portion 1 is provided with a tapered body taper portion 5 whose diameter increases toward the base end side at the base end portion of the blade portion 2, and the step portion 4 is continuously provided at the base end of the body taper portion 5. The shank portion 3 is provided with a tapered shank taper portion 6 having a diameter that is smaller toward the distal end side at the distal end of the shank body 15, and the distal end of the shank tapered portion 6 is at the base end of the step portion 4. It is good also as a structure provided continuously, and it is good also as a structure which provides the step part 4 between the blade part 2 and the shank main body 15 without providing the body taper part 5, the shank taper part 6, or both.
また、(シャンクテーパ部6で超硬合金製部分とステンレス鋼製部分とを溶接接合することで)ステップ部4はボデー部1と同様の超硬合金製としても良いし、(ボデーテーパ部5で超硬合金製部分とステンレス鋼製部分とを溶接接合することで)シャンク部3と同様のステンレス鋼製としても良く、また、ステップ部4の先端側を超硬合金製とし基端側をステンレス鋼製としても良い。また、超硬合金製部分、ステンレス鋼製部分とを夫々形成し、両者を溶接接合する構成としても良い。 Further, the step part 4 may be made of a cemented carbide similar to the body part 1 (by welding the cemented carbide part and the stainless steel part with the shank taper part 6), It may be made of stainless steel similar to the shank part 3 by welding and joining a cemented carbide part and a stainless steel part, and the tip side of the step part 4 is made of cemented carbide and the base side is made of stainless steel. It may be made of steel. Alternatively, a cemented carbide part and a stainless steel part may be formed and welded together.
具体的には、ステップ部4は、工具全長が36〜40mmで、シャンク本体15の径(シャンク径)が2.6〜3.6mm(更に具体的には3.175mm)である場合には、先端側所定位置の直径D1と基端側所定位置の直径D2の差を当該2点間の距離Lcで除した値が、超硬合金部材で形成される部分が、刃部2の先端から9mm未満(超硬合金部材で形成される部分の工具先端からの長さLbが9mm未満)の場合は次式0.03≦(D2−D1)/Lc≦0.26で表され、Lbが9mm以上12mm以下の場合は次式0.01≦(D2−D1)/Lc≦0.15で表されるように設定される。 Specifically, the step portion 4 has a tool full length of 36 to 40 mm and a diameter of the shank body 15 (shank diameter) of 2.6 to 3.6 mm (more specifically, 3.175 mm). The portion formed by the cemented carbide member is obtained by dividing the difference between the diameter D1 at the distal end side predetermined position and the diameter D2 at the proximal end side predetermined position by the distance Lc between the two points. When the length is less than 9 mm (the length Lb from the tool tip of the portion formed of the cemented carbide member is less than 9 mm), it is expressed by the following formula 0.03 ≦ (D2-D1) /Lc≦0.26, where Lb is In the case of 9 mm or more and 12 mm or less, it is set to be expressed by the following formula 0.01 ≦ (D2−D1) /Lc≦0.15.
また、シャンク径が2.6〜3.6mmである場合、工具先端から4mmの位置での直径は1.5mm以下となるように設定される。 When the shank diameter is 2.6 to 3.6 mm, the diameter at a position 4 mm from the tool tip is set to be 1.5 mm or less.
また、シャンク径が2.6〜3.6mmである場合、ステップ部4の重心位置は工具基端から工具全長の92.0%以下の位置で、且つ、工具全体の重心位置は工具基端から工具全長の42.5%以下の位置となるように構成される。 When the shank diameter is 2.6 to 3.6 mm, the center of gravity of the step portion 4 is a position that is 92.0% or less of the total tool length from the tool base end, and the center of gravity of the entire tool is the tool base end. To 42.5% or less of the total tool length.
一方、ステップ部4は、工具全長が22〜34mmで、シャンク径が1.3〜2.5mm(更に具体的には2mm)である場合には、先端側所定位置の直径D1と基端側所定位置の直径D2の差を当該2点間の距離Lcで除した値が、超硬合金部材で形成される部分が、刃部2の先端から9mm未満(超硬合金部材で形成される部分の工具先端からの長さLbが9mm未満)の場合は次式0.03≦(D2−D1)/Lc≦0.15で表され、Lbが9mm以上12mm以下の場合は次式0.01≦(D2−D1)/Lc≦0.1で表されるように設定される。 On the other hand, when the tool total length is 22 to 34 mm and the shank diameter is 1.3 to 2.5 mm (more specifically 2 mm), the step portion 4 has a diameter D1 at a predetermined position on the distal end side and a proximal end side. The value obtained by dividing the difference in diameter D2 at a predetermined position by the distance Lc between the two points is such that the portion formed of the cemented carbide member is less than 9 mm from the tip of the blade portion 2 (the portion formed of the cemented carbide member) In the case where the length Lb from the tool tip is less than 9 mm) is represented by the following formula 0.03 ≦ (D2-D1) /Lc≦0.15, and in the case where Lb is 9 mm or more and 12 mm or less, the following formula 0.01 ≦ (D2−D1) /Lc≦0.1.
また、シャンク径が1.3〜2.5mmである場合、工具先端から4mmの位置での(ステップ部4の)直径は0.8mm以下に設定される。 When the shank diameter is 1.3 to 2.5 mm, the diameter (of the step portion 4) at a position 4 mm from the tool tip is set to 0.8 mm or less.
また、シャンク径が1.3〜2.5mmである場合、ステップ部4の重心位置は工具基端から工具全長の82.5%以下の位置で、且つ、工具全体の重心位置は工具基端から工具全長の37.5%以下の位置となるように構成される。 When the shank diameter is 1.3 to 2.5 mm, the center of gravity of the step portion 4 is 82.5% or less of the total tool length from the tool proximal end, and the center of gravity of the entire tool is the tool proximal end. To 37.5% of the total tool length.
尚、PCB加工用のドリルのコレットチャックからの突出し長は、通常15〜24mm程度であり、超硬合金材が使用される工具先端からの長さは通常12mm以下である。 In addition, the protrusion length from the collet chuck of the drill for PCB processing is usually about 15 to 24 mm, and the length from the tool tip where the cemented carbide material is used is usually 12 mm or less.
ステップ部4の外径を基端側ほど段階的若しくは連続的に径大とする形状は、上記の要件を満たすものであればどのような形状でも良く、例えば、図3に図示したようなステップ部4の先端側の径小部と該ステップ部4の基端側の径大部とを連設する段差部7を設ける構成や、図4,5に図示したような先端側から基端側に向かって外径が漸増するフロントテーパ部8を設ける構成や、図示しないが、先端側から基端側に向かって曲線状に拡径する拡径部を設ける構成、その他、これらを組み合わせた構成により達成できる。 The shape in which the outer diameter of the step part 4 is increased stepwise or continuously toward the proximal end may be any shape as long as it satisfies the above requirements. For example, the step shown in FIG. The structure which provides the level | step-difference part 7 which connects the small diameter part of the front end side of the part 4 and the large diameter part of the base end side of this step part 4, or a base end side from the front end side as illustrated in FIG. A configuration in which a front taper portion 8 whose outer diameter gradually increases toward the end, a configuration in which a diameter-expanding portion that expands in a curved shape from the distal end side to the proximal end side, although not shown, and a combination of these are provided. Can be achieved.
図3は図2(a)に図示した従来形状と同様にボデーテーパ部5とシャンクテーパ部6を設け、また、上記段差部7を設けるタイプを図示したものである。図3(a)は、ボデーテーパ部5とシャンクテーパ部6との間に、ステップ部4として、第一のストレート部9と該第一のストレート部9より径大な第二のストレート部10と、この両者の間に先端側ほど径小となるテーパ状の段差部7とを設けた構成である。また、図3(b)は、ボデーテーパ部5とシャンクテーパ部6との間に設けられる、第一のストレート部9と第二のストレート部10と第三のストレート部11との間に夫々段差部7を設けた構成のステップ部4を有するものである。尚、本実施例においてストレート部とは、径が一定の円筒状部分をいう。 FIG. 3 shows a type in which a body taper portion 5 and a shank taper portion 6 are provided in the same manner as the conventional shape shown in FIG. FIG. 3A shows a step portion 4 between the body taper portion 5 and the shank taper portion 6 as a first straight portion 9 and a second straight portion 10 having a diameter larger than that of the first straight portion 9. The taper-shaped stepped portion 7 having a smaller diameter on the tip side is provided between the two. FIG. 3B shows steps between the first straight portion 9, the second straight portion 10, and the third straight portion 11, which are provided between the body taper portion 5 and the shank taper portion 6. The step portion 4 having the configuration in which the portion 7 is provided is provided. In the present embodiment, the straight portion refers to a cylindrical portion having a constant diameter.
また、図3において、上記先端側所定位置の直径D1はステップ部4の先端位置における径であり、上記基端側所定位置の直径D2はステップ部4の基端位置における径である。尚、ステップ部4の基端位置はボデー部1の基端位置と同じ位置である。具体的には、図3(a)において、上記先端側所定位置の直径D1は、ボデーテーパ部5の基端と第一のストレート部9の先端との連設部における径、上記基端側所定位置の直径D2は、第二のストレート部10の基端とシャンクテーパ部6の先端との連設部における径であり、図3(b)において、上記直径D1は、ボデーテーパ部5の基端と第一のストレート部9の先端との連設部における径、上記直径D2は、第三のストレート部11の基端とシャンクテーパ部6の先端との連設部における径である。但し、上記直径D2については、当該ステップ部4の基端位置(ボデー部1の基端位置)Laが工具先端から8mm以上の位置にある場合には、工具先端から8mmの位置の径である。 In FIG. 3, the diameter D 1 at the distal end side predetermined position is a diameter at the distal end position of the step portion 4, and the diameter D 2 at the proximal end side predetermined position is a diameter at the proximal end position of the step portion 4. Note that the base end position of the step portion 4 is the same position as the base end position of the body portion 1. Specifically, in FIG. 3 (a), the diameter D1 at the predetermined position on the distal end side is the diameter at the connecting portion between the proximal end of the body taper portion 5 and the distal end of the first straight portion 9, The diameter D2 of the position is the diameter at the connecting portion between the proximal end of the second straight portion 10 and the distal end of the shank taper portion 6. In FIG. 3 (b), the diameter D1 is the proximal end of the body taper portion 5. The diameter D2 at the connecting portion between the first straight portion 9 and the tip of the first straight portion 9 is the diameter at the connecting portion between the base end of the third straight portion 11 and the tip of the shank taper portion 6. However, the diameter D2 is a diameter at a position of 8 mm from the tool tip when the base end position of the step part 4 (base end position of the body part 1) La is 8 mm or more from the tool tip. .
図4は図2(a)に図示した従来形状と同様にボデーテーパ部5とシャンクテーパ部6を設け、また、上記フロントテーパ部8を設けるタイプを図示したものである。 FIG. 4 illustrates a type in which a body taper portion 5 and a shank taper portion 6 are provided as in the conventional shape shown in FIG. 2A, and the front taper portion 8 is provided.
図4(a)は、ボデーテーパ部5とシャンクテーパ部6との間に、ステップ部4として、フロントテーパ部8を設けた構成である。また、図4(b)は、ボデーテーパ部5とシャンクテーパ部6との間に、ステップ部4として、先端側ストレート部12と該先端側ストレート部12の基端側に段差部7を介してフロントテーパ部8とを設けた構成であり、図4(c)は、ボデーテーパ部5とシャンクテーパ部6との間に、ステップ部4として、フロントテーパ部8と該フロントテーパ部8の基端側に基端側ストレート部13とを設けた構成であり、図4(d)は、ボデーテーパ部5とシャンクテーパ部6との間に、ステップ部4として、先端側ストレート部12と該先端側ストレート部12の基端側に段差部7を介してフロントテーパ部8を設け、このフロントテーパ部8の基端側に基端側ストレート部13を設けた構成である。尚、図4においては、フロントテーパ部8のテーパ角はシャンクテーパ部6のテーパ角より小さい値に設定される。 FIG. 4A shows a configuration in which a front taper portion 8 is provided as a step portion 4 between the body taper portion 5 and the shank taper portion 6. FIG. 4B shows a step portion 4 between the body taper portion 5 and the shank taper portion 6 as a step portion 4 and a stepped portion 7 on the proximal end side of the tip side straight portion 12. FIG. 4C illustrates a configuration in which a front taper portion 8 and a base end of the front taper portion 8 are provided as a step portion 4 between the body taper portion 5 and the shank taper portion 6. 4 (d) is a step portion 4 between the body taper portion 5 and the shank taper portion 6 as a step portion 4 and the distal end side. The front taper portion 8 is provided on the base end side of the straight portion 12 via the stepped portion 7, and the base end side straight portion 13 is provided on the base end side of the front taper portion 8. In FIG. 4, the taper angle of the front taper portion 8 is set to a value smaller than the taper angle of the shank taper portion 6.
また、図4においては図3と同様に、上記先端側所定位置の直径D1はステップ部4の先端位置における径であり、上記基端側所定位置の直径D2はステップ部4の基端位置における径である。尚、ステップ部4の基端位置はボデー部1の基端位置と同じ位置である。具体的には、図4(a)において、上記直径D1は、ボデーテーパ部5の基端とフロントテーパ部8の先端との連設部における径、上記直径D2は、フロントテーパ部8の基端とシャンクテーパ部6の先端との連設部における径であり、図4(b)において、上記直径D1は、ボデーテーパ部5の基端と先端側ストレート部12の先端との連設部における径、上記直径D2は、フロントテーパ部8の基端とシャンクテーパ部6の先端との連設部における径であり、図4(c)において、上記直径D1は、ボデーテーパ部5の基端とフロントテーパ部8の先端との連設部における径、上記直径D2は、基端側ストレート部13の基端とシャンクテーパ部6の先端との連設部における径であり、図4(d)において、上記直径D1は、ボデーテーパ部5の基端と先端側ストレート部12の先端との連設部における径、上記直径D2は、基端側ストレート部13の基端とシャンクテーパ部6の先端との連設部における径である。但し、上記直径D2については、当該ステップ部4の基端位置(ボデー部1の基端位置)Laが工具先端から8mm以上の位置にある場合には、工具先端から8mmの位置の径である。 In FIG. 4, as in FIG. 3, the diameter D <b> 1 at the distal end side predetermined position is the diameter at the distal end position of the step portion 4, and the diameter D <b> 2 at the proximal end predetermined position is at the proximal end position of the step portion 4. Is the diameter. Note that the base end position of the step portion 4 is the same position as the base end position of the body portion 1. Specifically, in FIG. 4A, the diameter D <b> 1 is the diameter at the connecting portion between the base end of the body taper portion 5 and the front end of the front taper portion 8, and the diameter D <b> 2 is the base end of the front taper portion 8. 4D, the diameter D1 is the diameter at the connecting portion between the base end of the body taper portion 5 and the tip end of the straight end portion 12 on the front end side. The diameter D2 is a diameter at the connecting portion between the base end of the front taper portion 8 and the tip of the shank taper portion 6. In FIG. 4C, the diameter D1 is the same as the base end of the body taper portion 5 and the front end. The diameter D2 at the connecting portion with the tip of the taper portion 8 is the diameter at the connecting portion between the base end of the base side straight portion 13 and the tip of the shank taper portion 6, and in FIG. The diameter D1 is the body taper portion 5 The diameter D2 is the diameter at the connecting portion between the proximal end of the proximal end straight portion 13 and the distal end of the shank taper portion 6. However, the diameter D2 is a diameter at a position of 8 mm from the tool tip when the base end position of the step part 4 (base end position of the body part 1) La is 8 mm or more from the tool tip. .
尚、図3,4において、上記直径D1およびD2の位置は、工具加工時に例えば加工工具である研削砥石の形状ダレなどによる加工誤差のため、厳密にその位置が特定できない場合がある。この場合は上記直径D1は所定位置(ステップ部4の先端位置)よりやや基端側の位置とし、上記直径D2は所定位置(ステップ部4の基端位置)よりやや先端側の位置として加工誤差領域を避けた位置としても良い。 In FIGS. 3 and 4, the positions of the diameters D1 and D2 may not be specified precisely due to processing errors caused by, for example, the shape of a grinding wheel that is a processing tool during tool processing. In this case, the diameter D1 is a position slightly proximal to the predetermined position (tip position of the step portion 4), and the diameter D2 is slightly distal to the predetermined position (base position of the step section 4). It is good also as a position which avoided the area.
また、本発明者等は、後述する見解に基づく種々の実験を行うことで、図3、図4に図示した従来形状にも設けられるような、比較的テーパ角が大きいボデーテーパ部5を設けず、(図5(a)、(b)、(d)に夫々図示したように)刃部2の基端に基端側ほど径大となるテーパ角が15°未満の(刃部連設)フロントテーパ部25を連設したり、直線的なテーパ状とせずに刃部2の基端に基端側ほど径大となる外形が工具軸側(工具中心側)に凸となる曲線状の(刃部連設)曲面部を設けることでステップ部4を構成する部位として本発明の効果が得られることを見出した。また同様に、比較的テーパ角が大きいシャンクテーパ部6を設けず、(図5(b)、(c)、(d)に夫々図示したように)シャンク本体15の先端に先端側ほど径小となるテーパ角が20°未満の(シャンク連設)フロントテーパ部26を連設したり、直線的なテーパ状とせずにシャンク本体15の先端に先端側ほど径小となる外形が工具軸側に凸となる曲線状の(シャンク連設)曲面部を設けることでステップ部4を構成する部位として本発明の効果が得られることを見出した。 Moreover, the present inventors have not provided the body taper portion 5 having a relatively large taper angle as provided in the conventional shape shown in FIGS. 3 and 4 by performing various experiments based on the opinion described later. , (As shown in FIGS. 5A, 5B, and 5D), the taper angle that increases in diameter toward the base end at the base end of the blade portion 2 is less than 15 ° (blade portion continuous connection). The front taper portion 25 is not provided continuously, or the outer shape whose diameter increases toward the base end side of the base portion of the blade portion 2 without a linear taper shape is convex to the tool axis side (tool center side). (Cutting edge portion) It was found that the effect of the present invention can be obtained as a portion constituting the step portion 4 by providing a curved surface portion. Similarly, the shank taper portion 6 having a relatively large taper angle is not provided, and the diameter of the shank main body 15 is smaller toward the front end side (as shown in FIGS. 5B, 5C, and 5D). The front taper part 26 with a taper angle of less than 20 ° (continuous with the shank) is connected continuously, or the outer diameter of the tip end of the shank body 15 becomes smaller toward the tip side without forming a linear taper. It has been found that the effect of the present invention can be obtained as a portion constituting the step portion 4 by providing a curved (shank continuous) curved surface portion that is convex.
図5に基づいて具体的に説明する。 This will be specifically described with reference to FIG.
図5(a)は、刃部2とシャンクテーパ部6との間に、ステップ部4として、(刃部連設)フロントテーパ部25を設けた構成である。また、図5(b)は、刃部2とシャンク本体15との間に、ステップ部4として、刃部2の基端に連設させた(刃部連設)フロントテーパ部25と該(刃部連設)フロントテーパ部25の基端に連設させたストレート部14と、このストレート部14の基端に、シャンク本体15の先端に連設させた(シャンク連設)フロントテーパ部26の先端を連設した構成である。また、図5(c)は、(刃部2の基端部に設けられた)ボデーテーパ部5とシャンク本体15との間に、ステップ部4として、(シャンク連設)フロントテーパ部26を設けた構成である。また、図5(d)は、刃部2とシャンク本体15との間に、ステップ部4として、(刃部連設)フロントテーパ部25と(シャンク連設)フロントテーパ部26とを直接連設した構成である。よって、図5(a)は刃部2とシャンクテーパ部6との間に形成された部位Ldがステップ部4となり、図5(b)〜(d)は刃部2とシャンク本体15との間に形成された部位Ldがステップ部4となる。 FIG. 5A shows a configuration in which a front taper portion 25 (blade portion continuous connection) is provided as a step portion 4 between the blade portion 2 and the shank taper portion 6. Further, FIG. 5B shows a front taper portion 25 connected to the base end of the blade portion 2 as a step portion 4 between the blade portion 2 and the shank body 15 (blade portion connection) and the ( Blade section) Straight section 14 connected to the base end of the front taper section 25, and the base end of this straight section 14 connected to the tip of the shank body 15 (shank connection) Front taper section 26 It is the structure which arranged the front-end | tip of. Further, FIG. 5 (c) shows that a front taper portion 26 is provided as a step portion 4 between the body taper portion 5 (provided at the base end portion of the blade portion 2) and the shank main body 15 as a step portion 4. It is a configuration. Further, FIG. 5D shows that the front taper portion 25 (connected to the blade portion) and the front taper portion 26 (connected to the shank) are directly connected as the step portion 4 between the blade portion 2 and the shank body 15. It is the structure which was set. Therefore, in FIG. 5A, the portion Ld formed between the blade portion 2 and the shank taper portion 6 becomes the step portion 4, and FIGS. 5B to 5D show the relationship between the blade portion 2 and the shank body 15. The part Ld formed between them becomes the step part 4.
また、図5においては図3,4と同様に、上記先端側所定位置の直径D1はステップ部4の先端位置における径であり、上記基端側所定位置の直径D2はステップ部4の基端位置における径である。但し、前記(刃部連設)フロントテーパ部25(テーパ角が15°未満)や前記(刃部連設)曲面部(工具軸側に凸となる曲線状)を設けた工具においては、前述の加工誤差が存在する可能性が高いなどの形状的な理由で上記直径D1の所定位置(ステップ部4の先端位置=刃部2の基端位置)の特定が困難であるため、上記直径D1は、工具先端から刃部2の呼び長さ+1mmの位置における径とする。尚、ステップ部4の基端位置はボデー部1の基端位置と同じ位置である。 5, the diameter D1 at the distal end side predetermined position is the diameter at the distal end position of the step portion 4, and the diameter D2 at the proximal end side predetermined position is the proximal end of the step portion 4, as in FIGS. The diameter at the position. However, in the tool provided with the (taper blade continuous) front taper portion 25 (taper angle is less than 15 °) and the (blade blade continuous) curved surface portion (curved shape protruding toward the tool axis side) It is difficult to specify the predetermined position of the diameter D1 (the tip position of the step portion 4 = the base end position of the blade portion 2) because of a geometrical reason such that there is a high possibility that there is a machining error of the diameter D1. Is the diameter at the position of the nominal length + 1 mm of the blade 2 from the tip of the tool. Note that the base end position of the step portion 4 is the same position as the base end position of the body portion 1.
具体的には、図5(a)において、上記直径D1は、工具先端から刃部2の呼び長さ+1mmの位置における径、上記直径D2は、(刃部連設)フロントテーパ部25の基端とシャンクテーパ部6の先端との連設部における径である。また、図5(b)において、上記直径D1は、工具先端から刃部2の呼び長さ+1mmの位置における径、上記直径D2は、工具先端から8mmの位置の径である(この理由は後述する。)。また、図5(c)において、上記直径D1は、(刃部2の基端部に設けられた)ボデーテーパ部5の基端と(シャンク連設)フロントテーパ部26の先端との連設部における径、上記直径D2は、工具先端から8mmの位置の径である(この理由は後述する。)。また、図5(d)において、上記直径D1は、工具先端から刃部2の呼び長さ+1mmの位置における径、上記直径D2は、工具先端から8mmの位置の径である(この理由は後述する。)。但し、上記直径D2については、当該ステップ部4の基端位置(ボデー部1の基端位置)Laが工具先端から8mm以上の位置にある場合には、工具先端から8mmの位置の径である。このため、図5(b)〜(d)において、上記直径D2の位置が工具先端から8mmの位置の径であるとしたのであって、シャンク本体15の先端に連設させて(シャンク連設)フロントテーパ部26を設けた構成として上記の本発明の要件を満足する形状とさせた場合、当該ステップ部4の基端位置Laは通常8mm以上の位置となるためである。 Specifically, in FIG. 5 (a), the diameter D1 is the diameter at the position of the nominal length of the blade part 2 + 1mm from the tool tip, and the diameter D2 is the base of the front taper part 25 (blade part connection). This is the diameter at the connecting portion between the end and the tip of the shank taper portion 6. In FIG. 5B, the diameter D1 is a diameter at a position where the nominal length of the blade 2 is +1 mm from the tool tip, and the diameter D2 is a diameter at a position 8 mm from the tool tip (the reason will be described later). To do.) In FIG. 5C, the diameter D1 is a connecting portion between the base end of the body taper portion 5 (provided at the base end portion of the blade portion 2) and the tip end of the front taper portion 26 (continuous with the shank). The diameter D2 is the diameter at a position of 8 mm from the tool tip (the reason will be described later). In FIG. 5D, the diameter D1 is a diameter at a position where the nominal length of the blade 2 is +1 mm from the tool tip, and the diameter D2 is a diameter at a position 8 mm from the tool tip (the reason will be described later). To do.) However, the diameter D2 is a diameter at a position of 8 mm from the tool tip when the base end position of the step part 4 (base end position of the body part 1) La is 8 mm or more from the tool tip. . For this reason, in FIGS. 5B to 5D, the position of the diameter D2 is assumed to be a diameter of 8 mm from the tip of the tool. This is because the base end position La of the step part 4 is usually a position of 8 mm or more when the front taper part 26 is provided and the shape satisfies the above-mentioned requirements of the present invention.
尚、図5において、ボデーテーパ部5またはシャンクテーパ部6を有する場合は、図3,4の場合と同様に、上記直径D1およびD2の位置は、前述の加工誤差のため、厳密にその位置が特定できない場合がある。この場合は上記直径D1は所定位置(ステップ部4の先端位置)よりやや基端側の位置とし、上記直径D2は所定位置(ステップ部4の基端位置)よりやや先端側の位置として加工誤差領域を避けた位置としても良い。 In FIG. 5, when the body taper portion 5 or the shank taper portion 6 is provided, the positions of the diameters D1 and D2 are strictly positioned due to the processing errors described above, as in FIGS. It may not be possible to identify. In this case, the diameter D1 is a position slightly proximal to the predetermined position (tip position of the step portion 4), and the diameter D2 is slightly distal to the predetermined position (base position of the step section 4). It is good also as a position which avoided the area.
以上の条件は、図6〜9に示す見解を基に図10,11に示すような実験を行い、その結果をまとめることで得られたものである。 The above conditions were obtained by conducting experiments as shown in FIGS. 10 and 11 based on the views shown in FIGS.
ドリル回転時の動的振れの要因(影響を与える因子)としては、素材の縦弾性係数、質量、重心位置、剛性が挙げられる。 Factors of dynamic deflection during drill rotation (influencing factors) include the longitudinal elastic modulus, mass, center of gravity position, and rigidity of the material.
先ず、図6に基づいて縦弾性係数について説明する。使用される超硬合金の縦弾性係数は一般的に600GPa程度であり、ステンレス鋼の縦弾性係数は200GPa程度であることから、両者には3倍程度の差がある。ドリルの動的振れは遠心力による撓み易さ(縦弾性係数)に影響を受ける。ドリルが回転した際に生じる遠心力により、コレットチャックから突き出す突出し部全体の根元(コレットチャックによる把持部分の先端境界部分)に最大の応力がかかる。同じ形状であれば、質量の軽いコンポジットタイプ(複合材接合タイプ)の方が遠心力が小さく、根元にかかる応力は小さくなるものの、突出し部根元を構成するステンレス鋼の縦弾性係数がそれ以上に劣るため撓み易い。 First, the longitudinal elastic modulus will be described with reference to FIG. Since the longitudinal elastic modulus of the cemented carbide used is generally about 600 GPa and the longitudinal elastic modulus of stainless steel is about 200 GPa, there is a difference of about 3 times between them. The dynamic deflection of the drill is affected by the ease of bending due to centrifugal force (longitudinal elastic modulus). Due to the centrifugal force generated when the drill rotates, the maximum stress is applied to the base of the entire protruding portion protruding from the collet chuck (the tip boundary portion of the gripped portion by the collet chuck). If the shape is the same, the lightweight composite type (composite joint type) has a smaller centrifugal force and less stress on the root, but the longitudinal elastic modulus of the stainless steel that forms the base of the protrusion is higher than that. It is easy to bend because it is inferior.
図6(1)は全体が超硬合金製のソリッドタイプ、(2)は先端からシャンクテーパ部の先端側の一部までが超硬合金製でシャンク部がステンレス鋼製であるコンポジットタイプ、(3)は先端からステップ部の先端側の一部までが超硬合金製で残余がステンレス鋼製であるコンポジットタイプであるが、これらの縦弾性係数に基づく撓み易さをステップ部と突出し部全体とで分けて比較すると、図6(1)はステップ部及び突出し部が共に撓み難く、(2)は超硬合金製であるステップ部のみは撓み難く、(3)はいずれも撓み易いことになる。図6の上部の比較写真は、図6(1)と(3)との比較であり、左側が(1)、右側が(3)であり、右側の工具は突出し部の根元部、ステップ部いずれでも撓みが大きいことが分かる。尚、図6(1)〜(3)の外形状は図2(a)と同様の従来形状である。 Fig. 6 (1) is a solid type made entirely of cemented carbide, (2) is a composite type that is made of cemented carbide from the tip to a part on the tip side of the shank taper and the shank is made of stainless steel. 3) is a composite type from the tip to the tip side of the step part is made of cemented carbide and the remainder is made of stainless steel. The step part and the whole projecting part can be easily bent based on the longitudinal elastic modulus. 6 (1) shows that both the step part and the protruding part are difficult to bend, (2) is difficult to bend only the step part made of cemented carbide, and (3) is easy to bend. Become. 6 is a comparison between FIG. 6 (1) and FIG. 6 (3), the left side is (1), the right side is (3), and the right tool is the root part of the protruding part and the step part. In any case, it can be seen that the deflection is large. 6 (1) to 6 (3) are conventional shapes similar to those in FIG. 2 (a).
図7に基づいて質量、重心位置について説明する。使用される超硬合金の密度は一般的に15×103kg/m3程度であり、ステンレス鋼の密度は7.7×103kg/m3程度であることから、両者には2倍程度の差がある。ドリルが回転時に受ける遠心力は質量に影響を受ける。また、所定の遠心力に対しては、重心位置と応力集中部位との距離(両者が近いほど撓み難い)に影響を受ける。 The mass and the position of the center of gravity will be described based on FIG. The density of the cemented carbide used is generally about 15 × 10 3 kg / m 3 , and the density of stainless steel is about 7.7 × 10 3 kg / m 3. There is a difference in degree. The centrifugal force that the drill receives during rotation is affected by the mass. Further, the predetermined centrifugal force is affected by the distance between the center of gravity position and the stress concentration site (the closer the both are, the more difficult it is to bend).
尚、図6と同様、図7(1)は全体が超硬合金製のソリッドタイプ、(2)は先端からシャンクテーパ部の先端側の一部までが超硬合金製でシャンク部がステンレス鋼製であるコンポジットタイプ、(3)は先端からステップ部の先端側の一部までが超硬合金製で残余がステンレス鋼製であるコンポジットタイプである。 As in FIG. 6, FIG. 7 (1) is a solid type made entirely of cemented carbide, and (2) is made of cemented carbide from the tip to a part on the tip side of the shank taper portion, and the shank portion is stainless steel. The composite type (3) is a composite type from the tip to a part on the tip side of the step part made of cemented carbide and the remainder made of stainless steel.
これらの質量に基づく撓み易さをステップ部と突出し部全体とで分けて比較すると、図7(1)はステップ部及び突出し部が共に撓み易く、(2)はシャンク部がステンレス鋼製であることから突出し部全体としては撓み難く、(3)はいずれも撓み難いことになる。 Comparing the ease of bending based on these masses by dividing the step part and the entire protruding part, the step part and the protruding part are both easily bent in FIG. 7 (1), and the shank part is made of stainless steel in (2). Therefore, the whole protruding portion is difficult to bend, and (3) is difficult to bend in any case.
また、重心位置による撓み易さをステップ部と突出し部全体とで分けて比較すると、図7(1)はステップ部及び突出し部共に重心位置は基端側寄りであり共に撓み難く、(2)は超硬合金製であるステップ部のみが撓み難く、(3)はステップ部は撓み易く、突出し部全体としてはやや撓み難いことになる。 Further, comparing the ease of bending according to the position of the center of gravity by comparing the step part and the whole protruding part, FIG. 7 (1) shows that the center of gravity of the step part and the protruding part is closer to the base end side, and it is difficult to bend both. In step (3), only the step part made of cemented carbide is difficult to bend, and in step (3), the step part is easy to bend, and the whole protruding part is slightly difficult to bend.
具体的には、工具全長を変えずにステップ部を長くした場合、ステップ部の質量が重くなり、ステップ部に発生する遠心力は大きくなる。また、突出し部の質量が軽くなり、突出し部全体に発生する遠心力は小さくなる。一方、ステップ部を短くすると、ステップ部の質量が軽くなり、ステップ部に発生する遠心力は小さくなる。また、突出し部の質量が重くなり、突出し部全体に発生する遠心力は大きくなる。図7(1)〜(3)では工具の形状や突出し部の長さを同じくして比較しているため、質量と重心位置は工具に使用する材質、使用する部位、及びその量に依存する。 Specifically, when the step part is lengthened without changing the overall tool length, the mass of the step part becomes heavy, and the centrifugal force generated in the step part becomes large. Further, the mass of the protruding portion is reduced, and the centrifugal force generated in the entire protruding portion is reduced. On the other hand, when the step portion is shortened, the mass of the step portion is reduced, and the centrifugal force generated in the step portion is reduced. In addition, the mass of the protruding portion is increased, and the centrifugal force generated in the entire protruding portion is increased. 7 (1) to (3), since the shape of the tool and the length of the protruding portion are compared, the mass and the position of the center of gravity depend on the material used for the tool, the part used, and the amount thereof. .
また、コンポジットタイプにおいては、先端側の超硬合金材使用量(工具先端からの使用長さ)が大きいほど、突出し部の重心位置は先端側になり、所定の遠心力に対する撓みは大きくなる。また、ステップ部の重心位置に関しては、ステップ部の途中部で刃部側の超硬合金部材とシャンク部側のステンレス鋼部材とが接合された場合、先端側の超硬合金材使用量が大きいほど重心位置が先端側となり、所定の遠心力に対する撓みは大きくなる。 Further, in the composite type, the larger the usage amount of the cemented carbide material on the front end side (the usage length from the tool front end) is, the more the center of gravity position of the protruding portion is on the front end side, and the bending with respect to a predetermined centrifugal force increases. In addition, regarding the center of gravity of the step part, when the cemented carbide member on the blade part side and the stainless steel member on the shank part side are joined in the middle part of the step part, the amount of cemented carbide material used on the tip side is large. As the position of the center of gravity becomes the tip side, the deflection with respect to a predetermined centrifugal force increases.
即ち、コンポジットタイプでは、重心位置が変わることと質量が変わることとは同義であるため、実際には質量と重心位置とが同時に撓みに影響を与えることとなる。 That is, in the composite type, changing the position of the center of gravity is synonymous with changing the mass, and therefore the mass and the position of the center of gravity actually affect the deflection at the same time.
図8に基づいて剛性について説明する。剛性は、シャンク部の径の影響が大きい。PCB加工用のドリルにおいてはシャンク径は限定されており、材質の縦弾性係数がほぼその剛性に反映される。ステップ部についてはその形状、材質の構成により剛性が変化する。 The rigidity will be described based on FIG. The rigidity is greatly influenced by the diameter of the shank portion. In a drill for PCB processing, the shank diameter is limited, and the longitudinal elastic modulus of the material is substantially reflected in its rigidity. The rigidity of the step portion varies depending on the shape and material configuration.
図8(1)〜(3)は、図6、図7の(1)〜(3)と同様である。図8(4)は先端からステップ部の先端側の一部までが超硬合金製で残余がステンレス鋼製であるコンポジットタイプの(3)においてステップ部の長さを長くしたタイプ、図8(5)は先端からステップ部の先端側の一部までが超硬合金製で残余がステンレス鋼製であるコンポジットタイプの(3)においてステップ部の径を細くしたタイプである。 8 (1) to (3) are the same as (1) to (3) in FIGS. 8 (4) is a composite type (3) in which the length from the tip to a part on the tip side of the step portion is made of cemented carbide and the remainder is made of stainless steel. 5) is a type in which the diameter of the step portion is made thinner in the composite type (3) in which the tip to the tip side of the step portion are made of cemented carbide and the remainder is made of stainless steel.
これらの剛性に基づく撓み易さをステップ部と突出し部全体とで分けて比較すると、図8(1)はステップ部及び突出し部が共に撓み難く、(2)〜(4)はシャンク部がステンレス鋼製であることから突出し部全体としてはいずれも撓み易く、また、(2)はステップ部全体が超硬合金製であることからステップ部は撓み難く、(3)はステップ部が(4),(5)に比し太くまたは短いことからやや撓み難く、(4)はステップ部が長く、(5)はステップ部が細いことから、撓み易いことになる。 Comparing the easiness of bending based on these rigidity separately for the step part and the entire protruding part, FIG. 8 (1) shows that the step part and the protruding part are both difficult to bend, and (2) to (4) show that the shank part is made of stainless steel. Since it is made of steel, it is easy to bend as the whole protruding part, and (2) is difficult to bend because the entire step part is made of cemented carbide, and (3) is the step part (4). , (5) is slightly difficult to bend because it is thicker or shorter than (5), (4) has a long step part, and (5) is thin because the step part is thin.
以上、図9にまとめたように、コンポジットタイプのPCB加工用のドリルにおいては刃部だけでなく、突出し部全体と、ステップ部の双方において撓みが生じるため、全体の質量、重心位置のバランスと、ステップ部の質量、重心位置、剛性(形状)のバランスを取らなければ撓みを抑制することはできない。 As described above, in the composite type PCB machining drill, as shown in FIG. 9, not only the blade part but also the entire protruding part and the step part are bent, so that the balance of the overall mass and the position of the center of gravity The bending cannot be suppressed unless the mass of the step portion, the position of the center of gravity, and the rigidity (shape) are balanced.
そこで、本実施例においては、ステップ部及び突出し部について以下のように考え、従来例(1)及び従来例(3)に対して実施例(2)及び実施例(4)の構成に至った。図9中下部のグラフは、これらの動的振れを超硬合金製のソリッドタイプ(形状は従来例(1),(3)と同じ)と比較したものである。実施例(2),(4)共にソリッドタイプに近い特性が得られることが分かる。 Therefore, in the present embodiment, the step portion and the protruding portion are considered as follows, and the configurations of the embodiment (2) and the embodiment (4) are obtained with respect to the conventional example (1) and the conventional example (3). . The lower graph in FIG. 9 compares these dynamic vibrations with a solid type made of cemented carbide (the shape is the same as the conventional examples (1) and (3)). It can be seen that in Examples (2) and (4), characteristics close to the solid type can be obtained.
即ち、ステップ部については、質量を軽くすることで発生する遠心力を小さくして動的振れを抑制することは出来るが、剛性が弱いと撓み易いので、剛性を持たせるために、外径を基端側ほど段階的若しくは連続的に径大とする形状とし、同時にステップ部の重心位置を基端側とした。また、先端側で使用される縦弾性係数の高い超硬合金部材は細く設計し、縦弾性係数の低いステンレスを太く設計することで、剛性を保ちつつ質量を軽くした。これは、前述した、工具先端から4mmの位置での直径を所定の値(1.5mm以下または0.8mm以下)に設定したことに関連する。 That is, for the step part, the centrifugal force generated by reducing the mass can be reduced to suppress dynamic vibration, but if the rigidity is weak, it is easy to bend. The diameter was increased stepwise or continuously toward the base end side, and at the same time, the center of gravity of the step portion was set to the base end side. In addition, the cemented carbide member having a high longitudinal elastic modulus used on the tip side is designed to be thin, and the stainless steel having a low longitudinal elastic modulus is designed to be thick, thereby reducing the mass while maintaining rigidity. This relates to the above-described setting of the diameter at a position 4 mm from the tool tip to a predetermined value (1.5 mm or less or 0.8 mm or less).
また、突出し部については、ステップ部を長めにし、ステップ径を細くする等、突出し部全体を軽量化することで発生する遠心力を小さくし且つ重心位置を基端側に設定することを可能とした。ステップ部の重心位置が基端側に設定されているほど動的振れを抑制するには有利となる。これは、前述した、ステップ部4の基端位置(ボデー部1の基端位置)Laが工具先端から8mm以上の位置にある場合には、上記直径D2を工具先端から8mmの位置の径としたことに関連し、また、ステップ部4の重心位置と工具全体の重心位置とを工具基端から工具全長に対する比で表した所定の位置に設定したことに関連する。 In addition, for the protruding part, it is possible to reduce the centrifugal force generated by reducing the weight of the entire protruding part, such as making the step part longer and reducing the step diameter, and setting the center of gravity position to the proximal end side. did. The more the position of the center of gravity of the step portion is set on the base end side, the more advantageous for suppressing dynamic shake. This is because, when the base end position (base end position of the body portion 1) La of the step portion 4 is 8 mm or more from the tool tip, the diameter D2 is set to the diameter at the position of 8 mm from the tool tip. In addition, the center of gravity position of the step portion 4 and the center of gravity of the entire tool are related to being set to a predetermined position expressed by a ratio from the tool base end to the total tool length.
図10はシャンク径が2mmの場合の実験条件及び実験結果を示すものであり、図11はシャンク径が3.175mmの場合の実験条件及び実験結果を示すものである。 FIG. 10 shows experimental conditions and experimental results when the shank diameter is 2 mm, and FIG. 11 shows experimental conditions and experimental results when the shank diameter is 3.175 mm.
工具先端のシャンク部とは色が異なる部位が超硬合金製部分であり、当該超硬合金製部分は一体的に形成されている。この超硬合金製部分の基端とステンレス鋼製部分の先端とが溶接接合されている。 The part different in color from the shank part at the tip of the tool is a cemented carbide part, and the cemented carbide part is integrally formed. The base end of the cemented carbide portion and the tip of the stainless steel portion are welded together.
工具の形状や超硬合金材使用量等は様々であるが、上述した条件を満たす例はいずれも上記条件を満たさない従来例に比し動的振れが抑制されることが確認できた。 Although the shape of the tool, the amount of cemented carbide material used, and the like are various, it has been confirmed that any of the examples satisfying the above-described conditions suppresses the dynamic vibration as compared with the conventional example that does not satisfy the above-described conditions.
また、図10の実施例No.10,11については、ステップ部が基端側ほど径大となっていないが、重心位置を本実施例に係る条件を満たすようにステップ部の形状を設定することで、比較的動的振れを抑制できることが確認できた。即ち、重心位置を上記条件に設定することで動的振れを大きく改善することが可能であることが確認できた。 In addition, Example No. 1 in FIG. 10 and 11, the step portion is not as large as the proximal end side, but by setting the shape of the step portion so that the position of the center of gravity satisfies the conditions according to the present embodiment, relatively dynamic shake is caused. It was confirmed that it could be suppressed. That is, it was confirmed that the dynamic shake can be greatly improved by setting the center of gravity position to the above condition.
尚、動的振れについては、図1(2)に図示したように、穴明け工具を300krpmで回転させた場合の動的振れを測定し比較することで評価を行った。この図1(2)においては、図10の従来例No.2に相当する従来形状の複合材接合タイプ(b)は、従来形状のソリッドタイプ(a)の5倍程度の動的振れを示すが、図10の実施例No.1に相当する本実施例の複合材接合品(c)によれば、従来形状の複合材接合タイプ(b)に比し大幅に動的振れが抑制されることが確認できた。これは図1(2)右側のグラフに示す通り、重心位置がコレットチャック側(工具基端側)に寄ることによる効果が大きいものと考えられる。 The dynamic runout was evaluated by measuring and comparing the dynamic runout when the drilling tool was rotated at 300 krpm as shown in FIG. In FIG. 1 (2), the conventional example No. 1 in FIG. The conventional composite joint type (b) corresponding to 2 shows a dynamic runout of about 5 times that of the conventional solid type (a). According to the composite material bonded article (c) of the present example corresponding to 1, it was confirmed that the dynamic vibration was significantly suppressed as compared with the conventional composite material bonded type (b). As shown in the graph on the right side of FIG. 1 (2), this is considered to be largely effective when the position of the center of gravity approaches the collet chuck side (tool base end side).
本実施例は上述のように構成したから、穴明け工具を穴明け加工機のスピンドルチャック(コレットチャック)に把持せしめ、当該穴明け工具により回転切削加工を行う際、穴明け工具にしてコレットチャックから突き出す突出し部の質量を小さくしつつ、剛性を高めることができ、遠心力及び横方向の負荷による撓みを軽減できる。しかも、先端側ほど質量が小さくなることで重心位置がコレットチャック側に寄ることになり、遠心力による撓みを十分に軽減できることになる。よって、横方向の負荷及び遠心力による撓み双方を軽減でき、複合材接合タイプであっても高回転時の動的振れを可及的に抑制可能となる。 Since the present embodiment is configured as described above, the drilling tool is held by the spindle chuck (collet chuck) of the drilling machine, and when the rotary cutting is performed by the drilling tool, the drilling tool is used as the collet chuck. Rigidity can be increased while reducing the mass of the protruding portion protruding from the substrate, and bending due to centrifugal force and lateral load can be reduced. In addition, since the mass becomes smaller toward the tip side, the position of the center of gravity approaches the collet chuck side, and the bending due to the centrifugal force can be sufficiently reduced. Therefore, both the lateral load and the bending due to the centrifugal force can be reduced, and the dynamic vibration at the time of high rotation can be suppressed as much as possible even in the composite material joining type.
よって、本実施例は、複合材接合タイプであっても高回転時の動的振れを可及的に抑制することが可能で、環境性及びコスト性に秀れた極めて実用的なものとなる。 Therefore, the present embodiment can suppress the dynamic vibration at the time of high rotation as much as possible even in the composite material joining type, and is extremely practical with excellent environmental performance and cost. .
1 ボデー部
2 刃部
3 シャンク部
4 ステップ部
6 シャンクテーパ部
7 段差部
8・25・26 フロントテーパ部
15 シャンク本体
D1 先端側所定位置の直径
D2 基端側所定位置の直径
Lc 2点間の距離
1 Body part 2 Blade part 3 Shank part 4 Step part 6 Shank taper part 7 Step part 8 ・ 25 ・ 26 Front taper part
15 Shank body D1 Diameter at the distal end predetermined position D2 Diameter at the proximal end predetermined position Lc Distance between two points
Claims (11)
記
0.03≦(D2−D1)/Lc≦0.26 (1)
0.01≦(D2−D1)/Lc≦0.15 (2) A body portion having a blade portion in which one or a plurality of spiral chip discharge grooves extending from the tool tip toward the base end side are formed on the outer periphery of the tool main body, and a shank main body having a diameter larger than that of the blade portion on the base end side. A cemented carbide member mainly composed of tungsten carbide and cobalt, while the shank part is formed of a stainless steel member, and the cemented carbide member and the stainless steel member. Is a drilling tool in which a step portion is provided between the blade portion and the shank body, the outer diameter of the intermediate portion being larger than that of the blade portion and smaller than that of the shank body. The outer diameter of the step portion is set so that the diameter increases stepwise or continuously toward the proximal end side, and the difference between the diameter of the predetermined position on the distal end side of the step portion and the diameter of the predetermined position on the proximal end side is determined as 2 Point to point Divided by the distance, a portion formed of cemented carbide member, the following equation when the tool tip is less than 9mm (1), that in the case of 9mm 12mm or more or less represented by the following formula (2) A featured drilling tool.
Record
0.03 ≦ (D2-D1) /Lc≦0.26 (1)
0.01 ≦ (D2-D1) /Lc≦0.15 (2)
記
0.03≦(D2−D1)/Lc≦0.15 (3)
0.01≦(D2−D1)/Lc≦0.1 (4) In the drilling tool according to any one of claims 1 to 5, a value obtained by dividing a difference between a diameter at a distal end side predetermined position and a diameter at a proximal end side predetermined position of the step portion by a distance between the two points, When the part formed with a cemented carbide member is less than 9 mm from the tool tip, it is represented by the following formula (3), and when it is 9 mm or more and 12 mm or less, it is represented by the following formula (4).
Record
0.03 ≦ (D2-D1) /Lc≦0.15 (3)
0.01 ≦ (D2-D1) /Lc≦0.1 (4)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010069816A JP5066212B2 (en) | 2010-03-25 | 2010-03-25 | Drilling tool |
TW099131861A TWI424895B (en) | 2010-03-25 | 2010-09-20 | Drilling tools |
CN2010105341875A CN102198533B (en) | 2010-03-25 | 2010-10-29 | Perforating tool |
KR1020110022916A KR101331752B1 (en) | 2010-03-25 | 2011-03-15 | Drilling tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010069816A JP5066212B2 (en) | 2010-03-25 | 2010-03-25 | Drilling tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011200963A JP2011200963A (en) | 2011-10-13 |
JP5066212B2 true JP5066212B2 (en) | 2012-11-07 |
Family
ID=44659669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010069816A Active JP5066212B2 (en) | 2010-03-25 | 2010-03-25 | Drilling tool |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5066212B2 (en) |
KR (1) | KR101331752B1 (en) |
CN (1) | CN102198533B (en) |
TW (1) | TWI424895B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012114641A1 (en) * | 2011-02-23 | 2012-08-30 | 京セラ株式会社 | Cutting tool and method for manufacturing same |
CN102672245A (en) * | 2012-05-14 | 2012-09-19 | 深圳市金洲精工科技股份有限公司 | Miniature drilling bit and machining method thereof |
CN103071834B (en) * | 2013-01-21 | 2015-05-20 | 深圳市金洲精工科技股份有限公司 | Special ID (Inverse Drill)-type extra-large drill bit for PCB (Printed Circuit Board) and manufacturing method of special ID-type extra-large drill bit |
JP5782497B2 (en) * | 2013-11-11 | 2015-09-24 | ユニオンツール株式会社 | Manufacturing method for drilling tools |
EP3081186B1 (en) * | 2015-04-16 | 2018-05-23 | DENTSPLY SIRONA Inc. | Cutting instrument, in particular a dental cutting instrument |
CN106825692A (en) * | 2016-12-27 | 2017-06-13 | 深圳市金洲精工科技股份有限公司 | The manufacture method of boring bar tool and boring bar tool |
EP3946857A4 (en) * | 2019-04-04 | 2023-01-11 | Miller Dowel Company | Stepped drill bit with alternately sharpened edges to clean-out obscured fastener openings in cross laminated timber joints |
CN113210679B (en) * | 2021-06-29 | 2024-07-09 | 深圳市金洲精工科技股份有限公司 | Drilling tool and design method thereof |
CN113878148B (en) * | 2021-10-28 | 2024-07-26 | 深圳市金洲精工科技股份有限公司 | Drilling tool and drilling tool design method |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100445580C (en) * | 1997-08-27 | 2008-12-24 | 株式会社日立制作所 | Conical package and its securing construction, securing method and connection construction |
JP2001018106A (en) * | 1999-07-06 | 2001-01-23 | Mitsubishi Materials Corp | Boring tool |
JP2002154005A (en) * | 2000-11-16 | 2002-05-28 | Taikomu Japan Kk | Twist drill |
TW529499U (en) * | 2001-09-27 | 2003-04-21 | Fang-Shian Lin | Welding type miniature drill bit specifically for use with circuit board |
TWM243285U (en) * | 2003-07-04 | 2004-09-11 | Topoint Technology Co Ltd | Structure improvement on PCB micro drill bit |
TWM253424U (en) * | 2004-03-04 | 2004-12-21 | Topoint Technology Co Ltd | Micro-scale drill bit for IC sheet material of semiconductor with composite material |
CN1689739A (en) * | 2004-04-21 | 2005-11-02 | 尖点科技股份有限公司 | Micro-bit for semiconductor IC sheet material with composite material quality |
US20070286693A1 (en) * | 2006-06-12 | 2007-12-13 | Samsung Electro-Mechanics Co., Ltd. | Drill bit for PCB |
CN200977570Y (en) * | 2006-11-10 | 2007-11-21 | 尖点科技股份有限公司 | Improvement of drill structure |
KR20080002605U (en) * | 2007-01-10 | 2008-07-15 | 토포인트 테크날러지 코포레이션 리미티드 | Drill |
TWM325180U (en) * | 2007-05-21 | 2008-01-11 | Topoint Technology Co Ltd | Improved structure of drill bit |
TWM325884U (en) * | 2007-08-03 | 2008-01-21 | Topoint Technology Co Ltd | Improved structure of miniature drill |
CN201102089Y (en) * | 2007-08-07 | 2008-08-20 | 尖点科技股份有限公司 | Improved structure of miniature drill |
JP4505007B2 (en) * | 2007-11-08 | 2010-07-14 | ユニオンツール株式会社 | Drilling tool |
JP3139044U (en) * | 2007-11-13 | 2008-01-31 | 株式会社タンガロイ | Small diameter drill |
-
2010
- 2010-03-25 JP JP2010069816A patent/JP5066212B2/en active Active
- 2010-09-20 TW TW099131861A patent/TWI424895B/en active
- 2010-10-29 CN CN2010105341875A patent/CN102198533B/en active Active
-
2011
- 2011-03-15 KR KR1020110022916A patent/KR101331752B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
TWI424895B (en) | 2014-02-01 |
CN102198533B (en) | 2013-06-19 |
CN102198533A (en) | 2011-09-28 |
TW201134580A (en) | 2011-10-16 |
JP2011200963A (en) | 2011-10-13 |
KR101331752B1 (en) | 2013-11-20 |
KR20110107746A (en) | 2011-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5066212B2 (en) | Drilling tool | |
JP4851512B2 (en) | Throw away drill, insert for throw away drill, and cutting method using the same | |
JP4993528B2 (en) | Cutting tools | |
JP6343005B2 (en) | Drill and method of manufacturing cut product using the same | |
WO2014175396A1 (en) | Drill and method for manufacturing cut product using same | |
CN103282149B (en) | Bi-material layers single-piece cutter | |
JP2007307642A (en) | Drill | |
KR101701023B1 (en) | Drilling tool | |
JP4324211B2 (en) | Drilling tool | |
JP2006281407A (en) | Machining drill for nonferrous metal | |
KR101594659B1 (en) | Drilling tool | |
JP2020023051A (en) | Drill | |
JP6371005B1 (en) | Main body of tip exchange type cutting tool and tip exchange type cutting tool | |
JP2010179450A (en) | Boring tool | |
JP5845288B2 (en) | Drill and method of manufacturing cut product using the same | |
JP2008023607A (en) | Gun drill and drill body attached thereto | |
CN210755577U (en) | Reamer with auxiliary support | |
JP2010036295A (en) | Drill and method for manufacturing same | |
JP5593910B2 (en) | drill | |
JPH1158117A (en) | Drill | |
JP4896117B2 (en) | Cutting tools | |
JP2003094220A (en) | Drilling tool | |
JP5593871B2 (en) | Brazing tools | |
JP2006312238A (en) | Throw away type drill | |
JP3158949U (en) | Saddle band mounting drill bit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120719 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120810 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5066212 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150817 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |