JP5064619B2 - Optical transmission equipment - Google Patents

Optical transmission equipment Download PDF

Info

Publication number
JP5064619B2
JP5064619B2 JP2001243466A JP2001243466A JP5064619B2 JP 5064619 B2 JP5064619 B2 JP 5064619B2 JP 2001243466 A JP2001243466 A JP 2001243466A JP 2001243466 A JP2001243466 A JP 2001243466A JP 5064619 B2 JP5064619 B2 JP 5064619B2
Authority
JP
Japan
Prior art keywords
optical
fixed signal
edfa
wavelength
optical transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001243466A
Other languages
Japanese (ja)
Other versions
JP2003060273A (en
Inventor
幹哉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2001243466A priority Critical patent/JP5064619B2/en
Publication of JP2003060273A publication Critical patent/JP2003060273A/en
Application granted granted Critical
Publication of JP5064619B2 publication Critical patent/JP5064619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)
  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は送信装置と受信装置の間の伝送路に光アンプを設けた光伝送装置に関する。
【0002】
【従来の技術】
EDFA(Erbium Doped Fiber Amplifier)は、伝送路ファイバの損失が少ない帯域である1.55μmで高出力、低雑音といった特性が得られることから、光ファイバ通信に於ける損失補償用の1R(Regeneration)リピータとしてこれまで広く使われてきている。また、最近は伝送容量拡大に対する要求から、信号光を複数の波長帯域で多重して伝送する波長多重(WDM)伝送技術が一般的であり、伝送路に配置されたEDFAに波長多重信号が伝送される事が多い。
【0003】
Point to Pointのシステムを想定した場合、両Point間にEDFAを配置して信号を伝送する際、通常、伝送路及びEDFAを通過する信号は、数(信号数)と波長帯域への配置(波長配置)が一定である。その為、通常、EDFAは伝送路を通過する全信号に対して最適な設計がなされ、出力、NF(Noise Figure)、増幅特性(利得偏差)などが、システムの要求に応じた範囲内におさまる動作となるようにしてある。
【0004】
【発明が解決しようとする課題】
上述した様に、Point to Pointのシステムで、両Point間にEDFAを配置して信号を伝送する際、通常、伝送路及びEDFAを通過する信号は信号数及び波長配置が一定である。然しながら、何らかの障害により信号帯域内のいくつかの信号が遮断した場合、又は、将来、XC(クロスコネクト)を用いたシステムのように、波長によって自由に経路が選択されるシステムが実現した場合、伝送路やEDFAを通過する信号数や波長配置は一定ではなくなる。特にXCにおいては信号の波長配置は時々刻々と変化する。
【0005】
EDFAは入力される信号数や波長配置により反転分布の形成状態が異なり、それによって出力、利得偏差、NF、増幅特性(利得偏差)などが著しく変化する。伝送する信号数が伝送路を通過する信号数の総和に対して、全波長域に渡って平均的に僅かに減少する場合は増幅特性に影響はないが、伝送路を通過する総和に対して半数以下の場合や、ある波長に偏在した場合、利得平坦性が維持できず、光伝送システムとして成立し得る利得偏差が許容範囲を超えて増加する。最悪の場合、信号パワーの超過する方は、伝送路ファイバの非線形光学効果が生じるパワーまで達し、逆に低下する方はSN劣化のために受信できなくなるなど、伝送品質に多大なる影響を生じさせる可能性がある。従来のEDFAや光通信システムは、前記のような事態の発生に対応していないため、その様な事態の発生時に憂慮される。
【0006】
【課題を解決するための手段】
光アンプ、特にEDFAでは、増媒体であるEDF内の反転分布形成状態によって増幅動作が決定付けられるため、反転分布状態をある所望範囲内に一定に保つことができれば、一定の増福特性を得ることが可能である。本発明はこの原理に基づいて、光アンプの動作状態を、反転分布固定信号によってある範囲内にロックし、信号数や波長配置の変化に対して増幅特性(利得偏差)を一定の状態に保って、それら変化に対して柔軟な対応が可能な光伝送装置を提供することにある。
【0007】
本発明の光伝送装置は、波長の異なる複数の信号を送信する送信装置と受信装置の間の伝送路にEDFAを備えた光伝送装置のいずれかの機器や箇所に、EDFAの反転分布状態を固定するための反転分布固定信号を発生する反転分布固定信号光源を備えた光伝送装置であって、前記反転分布固定信号光源は、光増幅部を通過する信号帯域付近で且つEDFAの励起波長以外の複数波長であり、1530nm±3nm、1555nm+5/-10nmのそれぞれに1波長の反転分布固定信号を発生するものであり、それら反転分布固定信号のパワーを制御することによってEDFAの反転分布状態を固定できるものである。
【0008】
本発明の光伝送装置は、前記光伝送装置であって、反転分布固定信号の波長をEDFの利得係数のピーク付近に設定したものでもよい。
【0009】
本発明の光伝送装置は、前記光伝送装置であって、転分布固定信号除去手段を有するものである。
【0010】
本発明の一例を次に記す。波長1528nm〜1563nm付近の領域を増幅するC-bandEDFAでは、例えば1530nm±3nm、1555nm+5/-10nmのいずれかに1ch、又は同時に2ch、及び、それぞれNch(N>1)の反転分布固定信号で、反転分布形成状態を固定することができる。この波長の反転分布固定信号を発生する反転分布固定信号光源をアンプ内、又は送信装置内、若しくは両者に備えることで、入力される信号数や波長配置が変化しても一定の増幅特性(利得偏差)を得ることが可能である。
【0011】
光アンプ、特にEDFAでは、上述した通り、反転分布の形成状態によってその増幅特性が決定付けられる。EDFAの場合、増幅媒体であるEDF内の反転分布の形成はEDF長、信号光パワー、励起光パワーによって定まる。また、増幅特性はアンプに入力する信号数や波長配置によって異なる。これはEDF固有の吸収断面積、放出断面積の波長依存性に起因するものである。図3に吸収断面積、放出断面積の一例を、図4にEDFのある微小断面に於ける利得係数を示す。
【0012】
一般に吸収断面積・放出断面積、及び反転分布形成状態から、以下の(1)式で算出される利得係数が大きい波長域に予め信号を入力すると、利得係数の少ない波長域に信号を入力した場合とか、これ以外の波長域に信号を追加した場合に比して、相対的に変化が少ないのは周知の事実である。
g(λ,z,T)=Γ[σe(λ,T)・N2(z)−σa(λ,T)・N1(z)] (1)
σe(λ,T):emission cross sections
σa(λ,T):absorption cross sections
atomic population densities N1(ground level)and N2(excited level)
【0013】
本発明の光伝送装置は、利得係数の大きい波長の反転分布固定信号を発生する反転分布固定信号光源を、光アンプや光通信システムに備えたシステムであるため、光アンプは反転分布が固定された(又はある範囲内におさめられた)状態となり、その後に増減する信号は、信号数や波長配置に拘らず所望の範囲に限定された動作をすることとなる。従って、信号数や波長配置が如何に変化しても、変化前に比べて利得偏差や出力に大差のない特性が得られる。
【0014】
上記説明では C-band を使用する場合を例としてあるが、L-bandに関しても同様な観点から反転分布固定信号の波長を選択し、その信号を発生する反転分布固定信号光源をアンプ内に設ければ同様の効果が期待できる。また、この反転分布固定信号光源は、必ずしもアンプ内に搭載する必要はなく、例えば、送信装置に設けて、それから光アンプに供給する構成としても動作上の差はない。
【0015】
【発明の実施の形態】
(実施例1)
図1に本発明の第一の実施例を示す。この実施例は伝送路中の2ステージEDFAに光アンプの入力側から反転分布固定信号光源を入力する例である。信号光の入力側から光合波手段1、前段増幅部2、後段増幅部3、反転分布固定信号除去手段4が設けられ、光合波手段1に反転分布固定信号光源5が接続されている。前段増幅部2には例えば前方励起EDFAなどが使用される。後段増幅部3には例えば双方向励起EDFAなどが使用される。前段増幅部2、後段増幅部3のブロック内にはEDFAの構成要素である、アイソレータ、TAPカプラ、WDM、EDF、PD、励起LD等が含まれる。反転分布固定信号除去手段4にはカプラなどが使用される。反転分布固定信号光源5には例えば、DFB−LDとLD駆動回路などが使用される。このブロック内には、温度安定化回路、駆動電流調整回路、これらのモニタ回路など、LDを駆動するための機能を備えた各種回路が含まれる。
【0016】
反転分布固定信号は光合波手段1後に接統される増幅部の増幅波長帯域によって波長が選択される。その波長は、通常は、当該増幅部を通過する信号帯域付近で、且つアンプの励起波長以外の波長である。例えばC-band用アンプでは1530nm±3nm、1555nm+5/-10nmのいずれかに1ch、又は同時に2ch、及びそれぞれNch(N>1)信号を備えた構成である。
【0017】
反転分布固定信号を光アンプへ導くための手段には、例えば、光カプラなどの光合波手段1を用いることができる。本実施例では2ステージEDFAの構成を示したが、本発明では、光アンプの構成はシングルスーテジはもとより、2ステージだけに限定されない。また、本発明は図1のように、光アンプの段間に光学部品が含まれた構成にも適用できる。この場合、前段増幅部2と後段増幅部3との間に、利得等化フィルタ、光アッテネータ、DCF、OADM、SMF等の光学部品6が挿入される。更に、本実施例では、反転分布固定信号をアンプの入力側から導いているが、反転分布固定信号はアンプの段間とか、アンプ内部から導くこともできる。
【0018】
(実施例2)
図2に本発明の第2の実施例を示す。これは送信装置内の第2の光合波手段1から反転分布固定信号を入力する例であり、波長の異なる複数の信号を送信する送信装置7、第1の光合波手段8、第2の光合波手段1の順に接続されている。通常、この先にはプリアンプまたは伝送路ファイバが接続されるが、図2ではこれらを示していない。送信装置7から送信される信号は、例えば、1550nm帯の信号や1580nm帯の信号、シリカ系ファイバの損失特性において比較的少ないロスを呈する波長の信号である。送信装置7のブロックには変調器、LD駆動回路など、一般的に送信機に必要な機能が含まれる。
【0019】
図2の第2の光合波手段1には反転分布固定信号光源5が接続される。反転分布固定信号の波長選択は実施例1と同様とし、反転分布固定信号を光アンプへ導くための手段(第2の光合波手段)には、例えば光カプラなどの光合波器を用いるが、第1の光合波手段8と同じもの若しくは、第1の光合波手段8の入力の一端に反転分布固定信号を接続したものを利用しても良い。第1の光合波手段8には、通常は、AWG、カプラなどが使用される。方式によっては温度調整機能も含まれる。反転分布固定信号は伝送路を通じて光アンプ内に導かれる。図2では第2の光合波手段1に反転分布固定信号を加えるようにしてあるが、反転分布固定信号を加える位置はこの位置に限定されることなく、伝送路に設けられた光アンプに反転分布固定信号を導入することができれば、構成は問わない。
【0020】
(実施例3)
実施例1、2では、光アンプの一例がEDFAの場合であるが、本発明の光アンプはEDFAに限定されず、EDFAと同様の光増幅をするか、同様の光増幅原理を備えた全ての光アンプを使用することができる。
【0021】
【発明の効果】
本発明の光伝送装置は、光アンプの反転分布を固定するか、ある範囲内におさめるための反転分布固定信号を発生する反転分布固定信号光源を、光アンプや光通信システムに備えているため、光アンプは信号数や波長配置に拘らず所望範囲に限定された動作が行われ、信号数や波長配置がいかに変化しても、変化前に比べて利得偏差や出力に大差のない特性が得られる。
【図面の簡単な説明】
【図1】 本発明の光通信システムの第1の実施例を示す説明図。
【図2】 本発明の光通信システムの第2の実施例を示す説明図。
【図3】 (a)はEDFの吸収断面積の一例を示した説明図、(b)はEDFの放出断面積の一例を示した説明図。
【図4】 EDFのある微小断面に於ける利得係数を示す説明図。
【符号の説明】
1 光合波手段
2 前段増幅部
3 後段増幅部
4 反転分布固定信号除去手段
5 反転分布固定信号光源
6 光学部品
7 送信装置
8 光合波手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical transmission equipment provided with optical amplifiers in the transmission path between the transmitter and receiver.
[0002]
[Prior art]
EDFA (Erbium Doped Fiber Amplifier) is a 1R (Regeneration) repeater for loss compensation in optical fiber communications because it has high output and low noise characteristics at 1.55μm, which is a low loss of transmission line fiber. Has been widely used so far. Recently, due to the demand for transmission capacity expansion, wavelength division multiplexing (WDM) transmission technology that multiplexes and transmits signal light in a plurality of wavelength bands is generally used, and wavelength multiplexed signals are transmitted to EDFAs arranged in the transmission line. Often done.
[0003]
Assuming a point-to-point system, when an EDFA is placed between both points and signals are transmitted, the number of signals passing through the transmission path and EDFA is usually the number (number of signals) and the arrangement (wavelength) Arrangement) is constant. For this reason, the EDFA is usually designed optimally for all signals passing through the transmission line, and the output, NF (Noise Figure), amplification characteristics (gain deviation), etc. fall within the range according to the system requirements. It is designed to work.
[0004]
[Problems to be solved by the invention]
As described above, in a point-to-point system, when signals are transmitted with an EDFA placed between both points, the number of signals and the wavelength arrangement of signals passing through the transmission line and the EDFA are usually constant. However, when some signal in the signal band is cut off due to some trouble, or when a system in which a path is freely selected according to wavelength, such as a system using XC (cross connect) in the future, is realized. The number of signals passing through the transmission line and the EDFA and the wavelength arrangement are not constant. Particularly in XC, the wavelength arrangement of signals changes from moment to moment.
[0005]
In the EDFA, the inversion distribution is formed differently depending on the number of input signals and the wavelength arrangement, and the output, gain deviation, NF, amplification characteristic (gain deviation), and the like change remarkably. If the number of signals to be transmitted is slightly decreased on average over the entire wavelength range with respect to the total number of signals passing through the transmission line, there is no effect on the amplification characteristics. If it is less than half or unevenly distributed at a certain wavelength, the gain flatness cannot be maintained, and the gain deviation that can be established as an optical transmission system increases beyond the allowable range. In the worst case, the signal power excess exceeds the power at which the nonlinear optical effect of the transmission line fiber is generated, and conversely, the decrease causes a great influence on the transmission quality such that the signal cannot be received due to SN degradation. there is a possibility. Since conventional EDFAs and optical communication systems do not cope with the occurrence of the above situation, there is a concern when such a situation occurs.
[0006]
[Means for Solving the Problems]
An optical amplifier, in particular in the EDFA, since the amplifying operation dictated by the inversion state of formation of the EDF is amplified medium, if it is possible to maintain a constant within a desired range in a state of population inversion, a constant increase Fu properties It is possible to obtain. Based on this principle, the present invention locks the operational state of the optical amplifier within a certain range by the inverted distribution fixed signal, and keeps the amplification characteristic (gain deviation) constant with respect to changes in the number of signals and wavelength arrangement. An object of the present invention is to provide an optical transmission apparatus that can flexibly cope with such changes.
[0007]
The optical transmission device of the present invention has an inversion distribution state of an EDFA in any device or part of an optical transmission device including an EDFA in a transmission path between a transmission device and a reception device that transmits a plurality of signals having different wavelengths. An optical transmission apparatus comprising an inverted distribution fixed signal light source for generating an inverted distribution fixed signal for fixing, wherein the inverted distribution fixed signal light source is in the vicinity of a signal band passing through an optical amplifier and other than the excitation wavelength of EDFA of a plurality of wavelengths, 1530nm ± 3nm, 1555nm + 5 / der which generates a population inversion fixed signal of one wavelength in each of -10nm is, the population inversion of the EDFA by controlling the power of their inversion fixed signal It can be fixed .
[0008]
The optical transmission device of the present invention is the optical transmission device described above , wherein the wavelength of the inverted distribution fixed signal is set near the peak of the gain coefficient of the EDF.
[0009]
The optical transmission device of the present invention is the above optical transmission apparatus, and has a inverted distribution fixed signal removing means.
[0010]
An example of the present invention will be described below. In the C-band EDFA that amplifies the region near the wavelength of 1528 nm to 1563 nm, for example, 1ch in any of 1530nm ± 3nm, 1555nm + 5 / -10nm, or 2ch at the same time, and Nch (N> 1), respectively. The inverted distribution formation state can be fixed. By providing an inverted distribution fixed signal light source that generates an inverted distribution fixed signal of this wavelength in the amplifier, the transmitter, or both, a constant amplification characteristic (gain) even if the number of input signals or wavelength arrangement changes Deviation).
[0011]
In an optical amplifier, in particular, an EDFA, as described above, the amplification characteristic is determined by the formation state of the inversion distribution. In the case of the EDFA, the formation of the inversion distribution in the EDF that is the amplification medium is determined by the EDF length, the signal light power, and the excitation light power. Further, the amplification characteristics vary depending on the number of signals input to the amplifier and the wavelength arrangement. This is due to the wavelength dependence of the absorption cross section and emission cross section inherent to EDF. FIG. 3 shows an example of the absorption cross section and the emission cross section, and FIG. 4 shows the gain coefficient in a micro cross section with EDF.
[0012]
In general, when a signal is input in advance to a wavelength region with a large gain coefficient calculated by the following equation (1) from the absorption cross-section area, emission cross-section area, and inverted distribution formation state, the signal is input to a wavelength region with a small gain coefficient. It is a well-known fact that there is relatively little change compared to cases where signals are added to other wavelength ranges.
g (λ, z, T) = Γ [σ e (λ, T) · N2 (z) −σ a (λ, T) · N1 (z)] (1)
σ e (λ, T): emission cross sections
σ a (λ, T): absorption cross sections
atomic population ranges N1 (ground level) and N2 (excited level)
[0013]
Since the optical transmission apparatus of the present invention is a system equipped with an inverted distribution fixed signal light source that generates an inverted distribution fixed signal having a large gain coefficient in an optical amplifier or an optical communication system, the optical amplifier has an inverted distribution fixed. A signal that is in a state of being (or within a certain range) and subsequently increasing or decreasing operates in a limited range regardless of the number of signals or wavelength arrangement. Therefore, regardless of how the number of signals and the wavelength arrangement change, characteristics with little difference in gain deviation and output compared to before the change can be obtained.
[0014]
In the above explanation, the case of using C-band is taken as an example, but for L-band, the wavelength of the inverted distribution fixed signal is selected from the same point of view, and an inverted distribution fixed signal light source for generating the signal is provided in the amplifier. If this is the case, the same effect can be expected. Further, the inverted distribution fixed signal light source does not necessarily need to be mounted in the amplifier. For example, there is no difference in operation even when the inverted distribution fixed signal light source is provided in the transmission device and then supplied to the optical amplifier.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
FIG. 1 shows a first embodiment of the present invention. In this embodiment, an inverted distribution fixed signal light source is input from the input side of an optical amplifier to a two-stage EDFA in a transmission line. An optical multiplexing unit 1, a pre-stage amplification unit 2, a post-stage amplification unit 3, and an inverted distribution fixed signal removal unit 4 are provided from the signal light input side, and an inverted distribution fixed signal light source 5 is connected to the optical multiplexing unit 1. For example, a forward excitation EDFA is used for the pre-amplifier 2. For example, a bidirectional excitation EDFA is used for the post-amplifier 3. The blocks of the pre-amplifier 2 and the post-amplifier 3 include EDFA components such as an isolator, a TAP coupler, WDM, EDF, PD, and excitation LD. A coupler or the like is used for the inverted distribution fixed signal removing means 4. For the inverted distribution fixed signal light source 5, for example, a DFB-LD and an LD driving circuit are used. This block includes various circuits having a function for driving the LD, such as a temperature stabilization circuit, a drive current adjustment circuit, and a monitor circuit thereof.
[0016]
The wavelength of the inverted distribution fixed signal is selected according to the amplification wavelength band of the amplification unit connected after the optical multiplexing means 1. The wavelength is usually near the signal band that passes through the amplifying unit and other than the excitation wavelength of the amplifier. For example, the C-band amplifier is configured to include one channel at 1530 nm ± 3 nm, 1555 nm + 5 / −10 nm, or two channels at the same time, and Nch (N> 1) signals, respectively.
[0017]
As means for guiding the inverted distribution fixed signal to the optical amplifier, for example, optical multiplexing means 1 such as an optical coupler can be used. In this embodiment, the configuration of the two-stage EDFA is shown. However, in the present invention, the configuration of the optical amplifier is not limited to only two stages as well as a single stage. The present invention can also be applied to a configuration in which an optical component is included between optical amplifier stages as shown in FIG. In this case, an optical component 6 such as a gain equalization filter, an optical attenuator, DCF, OADM, or SMF is inserted between the pre-amplifier 2 and the post-amplifier 3. Furthermore, in this embodiment, the inverted distribution fixed signal is guided from the input side of the amplifier. However, the inverted distribution fixed signal can also be guided between amplifier stages or from inside the amplifier.
[0018]
(Example 2)
FIG. 2 shows a second embodiment of the present invention. This is an example in which an inverted distribution fixed signal is input from the second optical multiplexing means 1 in the transmission apparatus. The transmission apparatus 7, the first optical multiplexing means 8, the second optical multiplexing, which transmit a plurality of signals having different wavelengths. The wave means 1 are connected in this order. Usually, a preamplifier or a transmission line fiber is connected to this point, but these are not shown in FIG. The signal transmitted from the transmission device 7 is, for example, a signal having a wavelength exhibiting a relatively small loss in the loss characteristics of a 1550 nm band signal, a 1580 nm band signal, or a silica-based fiber. The block of the transmission device 7 generally includes functions necessary for the transmitter, such as a modulator and an LD drive circuit.
[0019]
An inverted distribution fixed signal light source 5 is connected to the second optical multiplexing means 1 in FIG. The wavelength selection of the inverted distribution fixed signal is the same as that of the first embodiment, and an optical multiplexer such as an optical coupler is used as the means (second optical multiplexing means) for guiding the inverted distribution fixed signal to the optical amplifier. The same one as that of the first optical multiplexing unit 8 or one having an inverted distribution fixed signal connected to one end of the input of the first optical multiplexing unit 8 may be used. For the first optical multiplexing means 8, an AWG, a coupler or the like is usually used. Depending on the system, a temperature adjustment function is also included. The inverted distribution fixed signal is guided into the optical amplifier through the transmission line. In FIG. 2, the inverted distribution fixed signal is added to the second optical multiplexing means 1, but the position where the inverted distribution fixed signal is added is not limited to this position, but is inverted to the optical amplifier provided in the transmission line. Any configuration can be used as long as a fixed distribution signal can be introduced.
[0020]
(Example 3)
In the first and second embodiments, an example of the optical amplifier is an EDFA. However, the optical amplifier of the present invention is not limited to the EDFA, and all optical amplifiers that perform optical amplification similar to the EDFA or have the same optical amplification principle. An optical amplifier can be used.
[0021]
【Effect of the invention】
The optical transmission apparatus of the present invention includes an inverted distribution fixed signal light source that generates an inverted distribution fixed signal for fixing an inverted distribution of an optical amplifier or keeping it within a certain range in an optical amplifier and an optical communication system. The optical amplifier operates within a desired range regardless of the number of signals and wavelength arrangement, and no matter how much the number of signals or wavelength arrangement changes, there is no significant difference in gain deviation or output compared to before the change. can get.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a first embodiment of an optical communication system according to the present invention.
FIG. 2 is an explanatory view showing a second embodiment of the optical communication system of the present invention.
3A is an explanatory view showing an example of an absorption cross-sectional area of EDF, and FIG. 3B is an explanatory view showing an example of an emission cross-sectional area of EDF.
FIG. 4 is an explanatory diagram showing a gain coefficient in a micro cross section with an EDF.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Optical multiplexing means 2 Preamplifier 3 Subsequent amplifier 4 Inversion distribution fixed signal removal means 5 Inversion distribution fixed signal light source 6 Optical component 7 Transmitter 8 Optical multiplexing means

Claims (3)

波長の異なる複数の信号を送信する送信装置と受信装置の間の伝送路にEDFAを備えた光伝送装置のいずれかの機器や箇所に、EDFAの反転分布状態を固定するための反転分布固定信号を発生する反転分布固定信号光源を備えた光伝送装置であって、
前記反転分布固定信号光源は、光増幅部を通過する信号帯域付近で且つEDFAの励起波長以外の複数波長であり、1530nm±3nm、1555nm+5/-10nmのそれぞれに1波長の反転分布固定信号を発生するものであり、それら反転分布固定信号のパワーを制御することによってEDFAの反転分布状態を固定できるものであることを特徴とする光伝送装置。
Inversion distribution fixed signal for fixing the inversion distribution state of the EDFA in any device or part of the optical transmission apparatus having an EDFA in the transmission path between the transmission apparatus and the reception apparatus for transmitting a plurality of signals having different wavelengths. An optical transmission device equipped with an inverted distribution fixed signal light source that generates
The inverted distribution fixed signal light source has a plurality of wavelengths other than the excitation wavelength of the EDFA in the vicinity of the signal band passing through the optical amplifying unit, and generates an inverted distribution fixed signal of one wavelength for each of 1530 nm ± 3 nm and 1555 nm + 5 / −10 nm. der which is, an optical transmission device, characterized in that as it can fix the state of population inversion of the EDFA by controlling the power of their inversion fixed signal.
請求項1記載の光伝送装置であって、
反転分布固定信号の波長をEDFの利得係数のピーク付近に設定したことを特徴とする光伝送装置。
An optical transmission apparatus according to claim 1 Symbol placement,
An optical transmission apparatus characterized in that the wavelength of the inverted distribution fixed signal is set near the peak of the gain coefficient of the EDF.
請求項1又は請求項のいずれかに記載の光伝送装置であって、
転分布固定信号除去手段を有することを特徴とする光伝送装置。
The optical transmission device according to claim 1 or 2 ,
The optical transmission apparatus characterized by having inverted distribution fixed signal removing means.
JP2001243466A 2001-08-10 2001-08-10 Optical transmission equipment Expired - Fee Related JP5064619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001243466A JP5064619B2 (en) 2001-08-10 2001-08-10 Optical transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001243466A JP5064619B2 (en) 2001-08-10 2001-08-10 Optical transmission equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011219295A Division JP2012039136A (en) 2011-10-03 2011-10-03 Optical transmission apparatus

Publications (2)

Publication Number Publication Date
JP2003060273A JP2003060273A (en) 2003-02-28
JP5064619B2 true JP5064619B2 (en) 2012-10-31

Family

ID=19073556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001243466A Expired - Fee Related JP5064619B2 (en) 2001-08-10 2001-08-10 Optical transmission equipment

Country Status (1)

Country Link
JP (1) JP5064619B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3164870B2 (en) * 1992-02-12 2001-05-14 住友大阪セメント株式会社 Optical fiber amplifier gain controller
JP2751789B2 (en) * 1993-07-14 1998-05-18 日本電気株式会社 Optical fiber amplifier
JPH08304856A (en) * 1995-05-01 1996-11-22 Ando Electric Co Ltd Optical fiber amplifier
JPH09321373A (en) * 1996-05-31 1997-12-12 Nec Corp Optical signal monitor circuit and optical amplifier
JPH1022556A (en) * 1996-07-03 1998-01-23 Nippon Telegr & Teleph Corp <Ntt> Light gain control type of optical amplifier
JP3821920B2 (en) * 1996-09-17 2006-09-13 富士通株式会社 Optical communication system
JP4240551B2 (en) * 1997-03-19 2009-03-18 富士通株式会社 Optical amplifier
JPH11145533A (en) * 1997-11-12 1999-05-28 Furukawa Electric Co Ltd:The Light-amplifying device
JP3991418B2 (en) * 1998-02-03 2007-10-17 三菱電機株式会社 Optical amplifier with gain control function
JP2000261079A (en) * 1999-03-10 2000-09-22 Hitachi Cable Ltd Optical amplifier

Also Published As

Publication number Publication date
JP2003060273A (en) 2003-02-28

Similar Documents

Publication Publication Date Title
JP3527671B2 (en) Method of controlling wavelength characteristics of optical transmission power by Raman amplification, wavelength division multiplexing optical communication system and optical amplifier using the same
US6292289B1 (en) Method, device, and system for transmitting a supervisory optical signal
JP2834376B2 (en) Signal processing device
US6510000B1 (en) Optical amplifier for wide band raman amplification of wavelength division multiplexed (WDM) signal lights
US7119950B2 (en) Amplification method and optical amplifier for wavelength division multiplexed signal light
US8774624B2 (en) Optical transmission apparatus and optical communication system
EP1033834A2 (en) Wavelength division multiplexing optical amplifier and optical communication system
US6741389B2 (en) Optical transmission system and optical transmission method utilizing Raman amplification
JP2001102666A (en) Optical amplifier
JP2003035919A (en) Optical amplification apparatus and optical transmission system
KR100462029B1 (en) A Fiber Amplifier and A Controlling Method of the same
US6671083B2 (en) Raman amplifier and optical transmission system
KR20030068578A (en) Control scheme for long wavelength channels in wideband wdm optical fiber transmission system
JP4549591B2 (en) apparatus
JP3799266B2 (en) Noise light removal method, noise light removal apparatus and optical transmission system using stimulated Brillouin scattering
JP2002344054A (en) Optical amplifier and optical transmission system
JP2001168841A (en) Wavelength multiplex optical amplifier
US20090185261A1 (en) Optical amplification module, optical amplifier, optical communication system, and white light source
JP5064619B2 (en) Optical transmission equipment
JP2009164565A (en) Gain equalizer, optical amplifier, and optical amplification method
JP3609968B2 (en) Optical amplifier
JP4145684B2 (en) Optical amplification module, optical amplifier, optical communication system, and white light source
JP4083942B2 (en) Optical amplifier
JP2012039136A (en) Optical transmission apparatus
JP4568247B2 (en) Optical amplification module and optical amplifier including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120809

R151 Written notification of patent or utility model registration

Ref document number: 5064619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees