JP5063002B2 - Electron emitter - Google Patents

Electron emitter Download PDF

Info

Publication number
JP5063002B2
JP5063002B2 JP2006001231A JP2006001231A JP5063002B2 JP 5063002 B2 JP5063002 B2 JP 5063002B2 JP 2006001231 A JP2006001231 A JP 2006001231A JP 2006001231 A JP2006001231 A JP 2006001231A JP 5063002 B2 JP5063002 B2 JP 5063002B2
Authority
JP
Japan
Prior art keywords
film
electron emitter
carbon film
tip
field emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006001231A
Other languages
Japanese (ja)
Other versions
JP2007184152A (en
Inventor
方紀 羽場
昭夫 平木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Life Technology Research Institute Inc
Original Assignee
Life Technology Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Life Technology Research Institute Inc filed Critical Life Technology Research Institute Inc
Priority to JP2006001231A priority Critical patent/JP5063002B2/en
Priority to US11/500,988 priority patent/US7839067B2/en
Priority to KR1020060075193A priority patent/KR101242382B1/en
Priority to TW095129159A priority patent/TWI435358B/en
Publication of JP2007184152A publication Critical patent/JP2007184152A/en
Priority to US12/912,303 priority patent/US8421330B2/en
Application granted granted Critical
Publication of JP5063002B2 publication Critical patent/JP5063002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Description

本発明は、電界放射により電子放出する、電界放射型の電子エミッタに関する。この電子エミッタは、電界放射型ディスプレイ、電界放射型ランプ、液晶表示装置用バックライト、電子ビーム露光機、マイクロ波進行波管、撮像素子、電子顕微鏡、等の様々な電子エミッタ内蔵装置に利用することができる。   The present invention relates to a field emission type electron emitter that emits electrons by field emission. This electron emitter is used in various electron emitter built-in devices such as a field emission display, a field emission lamp, a backlight for a liquid crystal display device, an electron beam exposure machine, a microwave traveling wave tube, an image sensor, an electron microscope, and the like. be able to.

上記電界放射型の電子エミッタには、いわゆるスピント型と呼ばれるタイプの電子エミッタがある(特許文献1参照)。スピント型の電子エミッタは、通常、微小な円錐状のティップ(エミッタ)を備えたものであり、その形状により優れた電界放射特性を提供することができる。スピント型の電子エミッタにあっては、先端に微小な円錐状のティップを備える必要があり、繁雑な微細加工技術が要求されるなどして製造コストが高くつという課題があることで知られる。しかし、スピント型の電子エミッタでのより大きな課題は、動作圧力に敏感なことである。すなわち、ティップの酸化等の変質を極力防止するために電子エミッタの配置空間である真空容器内を10-8ないし10-9torrといった超高真空とする必要があり、それ以下に配置空間の真空度が例えば10-5torrの中高真空に低下すると空気中のガス分子等が付着して例えばティップ表面の仕事関数が急激に大きく変わるなどして電界放射しなくなり、そのことが製造の困難さ、製造コストの高騰を招いている。例えば、電子エミッタの配置空間であるガラス等からなる真空容器の内部を超高真空に長期に安定して密封するには、製造設備、製造工程が煩雑化するなど製造が困難である。特に真空容器内を超高真空に排気するために高価な真空ポンプ例えばターボ分子ポンプ等を用いる必要があるなどにより製造価格が高くつく。
特開2005−332735
The field emission type electron emitter includes a so-called Spindt type electron emitter (see Patent Document 1). The Spindt-type electron emitter is usually provided with a minute conical tip (emitter) and can provide excellent field emission characteristics due to its shape. A Spindt-type electron emitter is known to have a problem that the manufacturing cost is high because it is necessary to provide a minute conical tip at the tip, and a complicated fine processing technique is required. However, a greater challenge with Spindt-type electron emitters is sensitivity to operating pressure. That is, in order to prevent alteration such as tip oxidation as much as possible, it is necessary to make the inside of the vacuum chamber, which is the electron emitter placement space, an ultra-high vacuum of 10 −8 to 10 −9 torr, and below that the vacuum of the placement space When the degree is lowered to, for example, 10 −5 torr, the gas molecules in the air adhere and the work function of the tip surface changes drastically, for example, and the electric field does not radiate, which is difficult to manufacture. The manufacturing cost is soaring. For example, in order to stably seal the inside of a vacuum vessel made of glass or the like, which is an electron emitter placement space, in an ultra-high vacuum for a long period of time, it is difficult to manufacture such as complicated manufacturing equipment and manufacturing processes. In particular, it is necessary to use an expensive vacuum pump such as a turbo molecular pump in order to evacuate the inside of the vacuum vessel to an ultra-high vacuum.
JP-A-2005-332735

本発明により解決すべき課題は、超高真空の配置空間が要求されるスピント型の電子エミッタとは全く相違し、電子エミッタの配置空間における真空度が中高真空ないしこれ以下の低真空の環境でも優れた性能を安定して発揮することが可能な電子エミッタを得ることである。   The problem to be solved by the present invention is completely different from the Spindt-type electron emitter that requires an ultra-high vacuum arrangement space, and even in an environment where the degree of vacuum in the electron emitter arrangement space is medium to high vacuum or lower. The object is to obtain an electron emitter capable of stably exhibiting excellent performance.

本発明により解決すべき他の課題は、このことにより、電子エミッタの配置空間の真空引きでは拡散ポンプ等の安価なポンプの使用が可能といった安価な製造設備により製造しても電界放射特性が劣化せず高性能で安定動作することが可能な電子エミッタを提供することである。   Another problem to be solved by the present invention is that the field emission characteristic is deteriorated even if it is manufactured by an inexpensive manufacturing facility such that a vacuum pump such as a diffusion pump can be used for evacuating the electron emitter arrangement space. It is an object to provide an electron emitter capable of high performance and stable operation.

(1)本発明による電界放射型の電子エミッタは、電界放射型の電子エミッタにおいて、基板面上に一定の台高さの成膜用台を設け、この台上に、先端に向けて細くなる針形状の針状炭素膜が形成されていることを特徴とするものである。   (1) A field emission type electron emitter according to the present invention is a field emission type electron emitter, in which a film formation table having a fixed height is provided on a substrate surface, and the film emission type becomes narrower toward the tip. A needle-like acicular carbon film is formed.

上記針状炭素膜にはその膜下部から膜中途に至りまとわりつく形態の壁状炭素膜が成膜されていることが好ましい。   It is preferable that the acicular carbon film is formed with a wall-like carbon film in a form that clings to the middle of the film from the lower part of the film.

上記「基板」はその形状に限定されるものではなく、板状、ワイヤ状等の形状を含むことができる。板状やワイヤ状の断面形状は何でも良い。例えば、板状では平板状を含み、ワイヤ状は断面円形、半円形、楕円形、半楕円形、等を含む。   The “substrate” is not limited to the shape, and may include a plate shape, a wire shape, or the like. Any plate-like or wire-like cross-sectional shape may be used. For example, the plate shape includes a flat plate shape, and the wire shape includes a circular cross-section, a semicircular shape, an elliptical shape, a semielliptical shape, and the like.

この「先端に向けて細くなる針形状」とは、その基部から先端のすべてにわたって細くなるに限定する意味ではなく、炭素膜の任意の途中部分から先端に向けて細くなる針形状でよい。   The “needle shape that narrows toward the tip” does not mean that the needle shape is thinned from the base to the entire tip, but may be a needle shape that narrows from an arbitrary middle portion of the carbon film toward the tip.

上記「成膜用台」はその材料に限定されず、金属材でも半導体材でもよい。   The “film formation table” is not limited to the material, and may be a metal material or a semiconductor material.

上記「成膜用台」はその製法や構造に限定されず、例えば実施の形態のように基板自体から例えばエッチング等により作ることや、あるいは、基板表面に設けたμm厚の蒸着金属薄膜から作ることができる。あるいは成膜用台の金型を用いて基板上に転写することにより作ることもできる。   The above-mentioned “film formation stage” is not limited to its manufacturing method and structure, and is made, for example, from the substrate itself by, for example, etching as in the embodiment, or from a vapor deposited metal thin film with a thickness of μm provided on the substrate surface. be able to. Alternatively, it can be made by transferring onto a substrate using a mold for film formation.

本発明において、第1の特徴は、基板面上に一定の台高さの成膜用台を設けたこと、第2の特徴は、この台上に、先端に向けて細くなる針形状の針状炭素膜が形成されていること、にある。そして、これら2つの特徴が不離一体となって、従来のスピント型では実現が不可能であった、真空度が中高真空ないしこれ以下の低真空の環境でも優れた性能を安定して発揮することが可能な電子エミッタを得ることができるようになったことである。   In the present invention, the first feature is that a film-forming stand having a fixed height is provided on the substrate surface, and the second feature is a needle-shaped needle that narrows toward the tip on this stand. A carbon film is formed. And these two features are inseparably integrated, and stable performance can be achieved even in an environment with a vacuum level of medium to high vacuum or lower, which was impossible to realize with the conventional Spindt type. It is now possible to obtain an electron emitter capable of.

すなわち、本発明の電子エミッタでは、電界放射する先端が従来のスピント型の金属ティップやシリコンティップではなく、成膜用台上に成膜された針状炭素膜がティップとなって電界放射するようにしたから、その配置環境が10-8ないし10-9torrといった超高真空ではなく中高真空等の真空で若干の残留ガス分子等が付着しても安定した電界放射が可能となっている。その結果、従来のスピント型の電子エミッタとは異なって、電子エミッタを内蔵させる真空容器内を価格が安い拡散ポンプ等により真空引きして電子エミッタ内蔵装置を製造することが可能であり、また、電子エミッタを内蔵するガラス等からなる真空容器の耐圧も低く済むなどにより、電子エミッタ内蔵装置の安価な量産化を促進することができ、その製造コストを大幅に低減させることができる。 That is, in the electron emitter of the present invention, the tip that radiates the electric field is not a conventional Spindt-type metal tip or silicon tip, but the needle-like carbon film formed on the film-forming base is used as a tip to emit the electric field. Therefore, stable electric field emission is possible even if some residual gas molecules adhere in a vacuum such as a medium or high vacuum, not an ultra high vacuum such as 10 −8 to 10 −9 torr. As a result, unlike a conventional Spindt-type electron emitter, it is possible to produce a device with a built-in electron emitter by evacuating the inside of a vacuum vessel in which the electron emitter is built with a cheap diffusion pump or the like, Since the pressure resistance of the vacuum container made of glass or the like with a built-in electron emitter can be lowered, the mass production of the device with a built-in electron emitter can be promoted, and the manufacturing cost can be greatly reduced.

また、本発明の電子エミッタでは、電子エミッタを内蔵させるガラス等の真空容器の内圧を超高真空に維持する必要がないから、内圧の低下により電界放射の安定性が急激に劣化することもなく、電界放射を長期にわたり安定して確保することができる。   In addition, in the electron emitter of the present invention, it is not necessary to maintain the internal pressure of a vacuum container such as glass in which the electron emitter is built in an ultra-high vacuum, so that the stability of field emission does not deteriorate rapidly due to a decrease in internal pressure. The field radiation can be secured stably over a long period of time.

また、本発明の電子エミッタにおいては特に、針状炭素膜を用いるとともに、壁状炭素膜を備えた場合では、針状炭素膜を成膜用台上に高い機械強度で電気的に接続させることができる結果、長期にわたり安定した電界放射特性を維持することができるものとなる。   In the electron emitter of the present invention, in particular, in the case where a needle-like carbon film is used and a wall-like carbon film is provided, the needle-like carbon film is electrically connected to the film formation base with high mechanical strength. As a result, stable field emission characteristics can be maintained over a long period of time.

また、本発明の電子エミッタにおいては特に、先端に向けて直径が変化しないカーボンナノチューブ等の炭素膜とは異なり、先端に向けて細くなる形状を有する針状炭素膜を用いるので、基板側を陰極としこれと対向する陽極との間の印加電圧が上昇しても電界放射が飽和しにくく、効率的な電界放射特性を長期に維持することができる。   Further, in the electron emitter of the present invention, in particular, unlike a carbon nanotube or other carbon film whose diameter does not change toward the tip, a needle-like carbon film having a shape narrowing toward the tip is used. Even when the applied voltage between the anode and the anode increases, the field emission is not easily saturated, and the efficient field emission characteristic can be maintained for a long time.

また、本発明の電子エミッタにおいては、成膜用台上に針状炭素膜を配置したから、他の成膜用台上に成膜された炭素膜や、成膜用台上ではなく基板面上に直接成膜された他の炭素膜に対して、互いに電界放射を阻害しないように容易に制御することができる。   In the electron emitter of the present invention, since the acicular carbon film is disposed on the film formation table, the carbon film formed on the other film formation table or the substrate surface instead of the film formation table is used. It is possible to easily control the other carbon films directly formed thereon so as not to interfere with each other.

また、本発明の電子エミッタにおいては、成膜用台上に針状炭素膜を成膜するから、針状炭素膜の先端における基板面からの高さを成膜用台の高さ調整で任意に調整することができるようになる。   In the electron emitter of the present invention, since the acicular carbon film is formed on the film formation table, the height from the substrate surface at the tip of the acicular carbon film can be arbitrarily adjusted by adjusting the height of the film formation table. To be able to adjust.

以上の本発明の電子エミッタにおいては、成膜用台の台高さが、針状炭素膜の先端に対する閾値電界で当該成膜用台が電界放射しない高さ以下に設定されていることが好ましい。閾値電界とは電界放射が起こり始める電界のことである。この設定により、成膜用台が電界放射することがなくて好ましい。   In the electron emitter of the present invention described above, it is preferable that the height of the film formation table is set to a height at which the film formation table does not emit an electric field with a threshold electric field with respect to the tip of the acicular carbon film. . The threshold electric field is an electric field at which field emission starts to occur. This setting is preferable because the film forming stage does not emit electric field.

本発明の電子エミッタにおいては、上記成膜用台が一定間隔で複数配置されていることが好ましい。   In the electron emitter of the present invention, it is preferable that a plurality of the film-formation stands are arranged at regular intervals.

本発明の電子エミッタにおいては、成膜用台の配置間隔が、各成膜用台それぞれの針状炭素膜の先端における電界放射を互いに阻害しない値以上に設定されていることが好ましい。   In the electron emitter of the present invention, it is preferable that the arrangement interval of the film forming tables is set to a value that does not interfere with the field emission at the tips of the acicular carbon films of the film forming tables.

本発明の電子エミッタにおいては、上記成膜用台の側面形状が概ね台形形状であることが好ましい。   In the electron emitter of the present invention, it is preferable that the side surface shape of the film forming platform is substantially trapezoidal.

本発明の電子エミッタにおいては、上記針状炭素膜が、ファウラノルドハイムの式における電界集中係数βが、当該炭素膜の途中任意の部分から先端までの高さをhx、その任意の部分の半径をrxとして、hx/rxの式で表される形状を有することが好ましい。   In the electron emitter of the present invention, the acicular carbon film has an electric field concentration factor β in the Fowler-Nordheim equation, a height from an arbitrary part to the tip of the carbon film is hx, and a radius of the arbitrary part Is preferably a shape represented by the formula hx / rx.

(2)本発明による電子エミッタは、基板へのエッチングにより複数の成膜用台が一定間隔で形成され、これら成膜用台上に先端に向けて細くなる高アスペクト比の針状炭素膜が成膜されていることを別の特徴とするものである。   (2) In the electron emitter according to the present invention, a plurality of film forming stands are formed at regular intervals by etching on the substrate, and a high aspect ratio acicular carbon film that narrows toward the tip is formed on these film forming stands. Another feature is that the film is formed.

本発明の電子エミッタにおいて、大きな特徴は、
第1に、成膜用台の配置数を制御することにより電子放出点(発光サイト)の数を任意に制御することができること、
第2に、成膜用台の配置間隔の大きさを制御することにより発光サイトの密度を任意に制御することができること、
第3に、成膜用台の配置位置を制御することにより発光サイトの位置を任意の位置に設定することができることである。
In the electron emitter of the present invention, a major feature is
First, it is possible to arbitrarily control the number of electron emission points (light emitting sites) by controlling the number of arrangement of the film forming stands,
Second, it is possible to arbitrarily control the density of the light emitting sites by controlling the size of the arrangement interval of the film forming tables,
Thirdly, the position of the light emitting site can be set to an arbitrary position by controlling the position of the film formation platform.

以上の第1ないし第3の特徴に加えて、
第4として、上記(1)で説明したように、配置環境の圧力を中高真空に設定しても優れた電界放射特性を安定して発揮することができる電子エミッタを安価に製造することができること、である。
In addition to the above first to third features,
Fourth, as described in (1) above, an electron emitter that can stably exhibit excellent field emission characteristics even when the pressure of the arrangement environment is set to medium to high vacuum can be manufactured at low cost. .

上記の場合、上記針状炭素膜にはその膜下部から膜中途に至りまとわりつく形態の壁状炭素膜が成膜されていることが好ましい。上記針状炭素膜は、ファウラノルドハイムの式における電界集中係数βが、当該炭素膜の任意の部分から先端までの高さをhx、その任意の部分の半径をrxとして、hx/rxの式で表されて、当該任意の部分から先端になるほど細くなる形状を有することが好ましい。   In the above case, it is preferable that the acicular carbon film is formed with a wall-like carbon film that clings to the middle from the lower part of the film. In the acicular carbon film, the electric field concentration factor β in the Fowler-Nordheim equation is hx / rx, where hx is the height from an arbitrary portion to the tip of the carbon film, and rx is the radius of the arbitrary portion. It is preferable to have a shape that is thinned toward the tip from the arbitrary portion.

(3)本発明による電子エミッタは、基板上に一定の台高さの成膜用台を複数設け、これら成膜用台上に、針状に延びる針状炭素膜と、針状炭素膜の膜下部から膜中途に至りまとわりつく壁状炭素膜とが成膜され、針状炭素膜は、先端に向けて細くなる形状を有し、かつ、各成膜用台それぞれは、各成膜用台それぞれの針状炭素膜の電界放射が他の針状炭素膜の電界放射を阻害しない一定の間隔で配置されていることをさらに別の特徴とするものである。   (3) An electron emitter according to the present invention is provided with a plurality of film formation tables having a certain height on a substrate, and a needle-like carbon film extending in a needle shape and a needle-like carbon film on the film formation table. A wall-like carbon film that clings to the middle of the film from the lower part of the film is formed, and the acicular carbon film has a shape that becomes narrower toward the tip, and each film-forming base is a film-forming base. Another feature is that the field emission of each acicular carbon film is arranged at a constant interval that does not interfere with the field emission of other acicular carbon films.

本発明の電子エミッタでは、各成膜用台それぞれに配置した針状炭素膜が他の成膜用台上の針状炭素膜や、あるいは成膜用台上ではなく、成膜に際して基板上に成膜された針状炭素膜等に影響されずに、安定した電界放射を行うことができるので、上記(1)(2)の作用効果をより効果的に発揮することができるようになる。   In the electron emitter of the present invention, the acicular carbon film disposed on each film formation stage is not on the other carbon film formation stage or on the substrate during film formation. Since stable electric field radiation can be performed without being affected by the formed acicular carbon film or the like, the effects (1) and (2) can be exhibited more effectively.

本発明の電子エミッタによれば、安価に製造することができる構造でありながら、その配置空間の圧力が中高真空以下でも長期にわたり安定良好に電界放射を行うことができる電子エミッタを提供することができる。   According to the electron emitter of the present invention, it is possible to provide an electron emitter that can stably and satisfactorily radiate electric field over a long period of time even when the pressure in the arrangement space is not higher than medium-high vacuum even though the structure can be manufactured at low cost. it can.

以下、添付した図面を参照して本発明の実施の形態に係る電子エミッタを詳細に説明する。   Hereinafter, an electron emitter according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1を参照して、実施の形態の電界放射型の電子エミッタを説明すると、この電子エミッタ10は、基板12上に一定の台高さの成膜用台14を複数備える。これら成膜用台14上に、針状に延びる針状炭素膜16と、針状炭素膜16の膜下部から膜中途に至りまとわりつく壁状炭素膜18とが成膜されている。なお、基板12上にもこれら炭素膜16,18が成膜されている場合があるが、図解の都合で図示を略している。   Referring to FIG. 1, the field emission type electron emitter according to the embodiment will be described. The electron emitter 10 includes a plurality of film formation tables 14 having a certain height on a substrate 12. On these film formation bases 14, a needle-like carbon film 16 extending in a needle shape and a wall-like carbon film 18 that clings from the lower part of the needle-like carbon film 16 to the middle of the film are formed. Although the carbon films 16 and 18 may be formed on the substrate 12 as well, the illustration thereof is omitted for the sake of illustration.

針状炭素膜16は、ファウラノルドハイム(Fowler−Nordheim)の式における電界集中係数βが、当該炭素膜16の途中任意の部分から先端までの高さをhx、その任意の部分の半径をrxとして、hx/rxの式で表されて、当該任意の部分から先端になるほど細くなる形状を有している。ファウラノルドハイムの式は、I=sAF2/φexp(−B3/2/F)、F=βVで与えられる。ただし、Iは電界放射電流、sは電界放射面積、Aは定数、Fは電界強度、φは仕事関数、Bは定数、βは電界集中係数、Vは印加電圧である。電界集中係数βは、印加電圧Vを、先端の形状や素子の幾何学的形状により電界強度F(V/cm)を変換する係数である。電界放射電流Iは、仕事関数φが小さい材料ほど、また、電界集中係数βが大きいほど、強くなり、電界放射電流Iが増大する。電子は仕事関数φであるポテンシャル障壁により固体中に閉じ込められている。固体表面に電界が強く集中し、ポテンシャル障壁が1nm以下程度にまで薄くなると、電子はトンネリング現象により固体から真空に放射される確率が急増する。電界集中により電子が真空に放射される現象を電界放射という。ファウラノルドハイムの式は、電界放射電流Iを、ポテンシャル障壁に衝突する電子の入射密度と、ポテンシャル障壁をトンネリングする確率との積を全エネルギー領域で積分することにより求めることができることを表している。 The acicular carbon film 16 has an electric field concentration factor β in the Fowler-Nordheim equation such that the height from an arbitrary part to the tip of the carbon film 16 is hx, and the radius of the arbitrary part is rx. As shown by the equation of hx / rx, it has a shape that becomes thinner from the arbitrary part to the tip. The Fowler-Nordheim equation is given by I = sAF 2 / φexp (−B 3/2 / F), F = βV. Where I is a field emission current, s is a field emission area, A is a constant, F is an electric field strength, φ is a work function, B is a constant, β is an electric field concentration factor, and V is an applied voltage. The electric field concentration coefficient β is a coefficient for converting the applied voltage V into electric field strength F (V / cm) according to the shape of the tip or the geometric shape of the element. The field emission current I becomes stronger as the work function φ is smaller and the field concentration factor β is larger, and the field emission current I increases. Electrons are confined in the solid by a potential barrier having a work function φ. When the electric field is strongly concentrated on the surface of the solid and the potential barrier is reduced to about 1 nm or less, the probability that electrons are radiated from the solid to the vacuum increases due to the tunneling phenomenon. The phenomenon in which electrons are radiated to vacuum due to electric field concentration is called field emission. The Fowler-Nordheim equation indicates that the field emission current I can be obtained by integrating the product of the incident density of electrons colliding with the potential barrier and the probability of tunneling the potential barrier in the entire energy region. .

各成膜用台14それぞれの配置間隔(D)は、各成膜用台14それぞれの針状炭素膜16の先端での電界放射が他の成膜用台14の針状炭素膜16の先端での電界放射を阻害しないようになっていることが好ましい。   The arrangement interval (D) of each film forming table 14 is such that the field emission at the tip of the acicular carbon film 16 of each film forming table 14 is the tip of the needle carbon film 16 of the other film forming table 14. It is preferable not to inhibit the field emission at 1.

成膜用台14の基板面12aからの高さ(H)は、針状炭素膜16の先端に対する閾値電界で当該成膜用台14が電界放射しない高さ以下に設定されている。成膜用台14の高さ(H)は数μm、例えば、2ないし3μmとすることができる。また、成膜用台14の配置間隔(D)は数μm、例えば、1ないし5μmとすることができる。   The height (H) of the film formation base 14 from the substrate surface 12 a is set to be equal to or lower than the height at which the film formation base 14 does not emit an electric field by a threshold electric field with respect to the tip of the acicular carbon film 16. The height (H) of the film formation table 14 can be several μm, for example, 2 to 3 μm. Further, the arrangement interval (D) of the film formation table 14 can be several μm, for example, 1 to 5 μm.

成膜用台14は側面視台形形状の切頭円錐形状になっている。成膜用台14はこの形状だけに限定されず、円柱形状でもよく、あるいは切頭角錐形状でも実施することができる。成膜用台14は基板12と同一材から形成されたものであり、例えば、モリブデン、鉄、ニッケル、等の金属材で構成されている。成膜用台14が基板12と同一材で無い場合、基板12は、金属材以外でもよく、例えば、ガラス、シリコン、セラミック等の絶縁材でもよい。   The film formation table 14 has a truncated cone shape with a trapezoidal shape when viewed from the side. The film formation table 14 is not limited to this shape, and may be a cylindrical shape or a truncated pyramid shape. The film formation base 14 is made of the same material as the substrate 12 and is made of, for example, a metal material such as molybdenum, iron, or nickel. When the film formation base 14 is not the same material as the substrate 12, the substrate 12 may be other than a metal material, and may be an insulating material such as glass, silicon, or ceramic.

針状炭素膜16は、アスペクト比が100〜数万程度であり、直径が2〜200nm、長さが数十〜数万nmである。   The acicular carbon film 16 has an aspect ratio of about 100 to tens of thousands, a diameter of 2 to 200 nm, and a length of tens to tens of thousands of nm.

壁状炭素膜18は、針状炭素膜16の成膜用台14の台表面14a上での姿勢の安定化に貢献し、これによって安定した電界放射を行うことができ、また、成膜用台14の台表面14a上に機械的に強固に支持され、電子エミッタとしての安定性が向上し、また、針状炭素膜16を成膜用台14の台表面14aと良好な電気的コンタクトを可能とする。   The wall-like carbon film 18 contributes to stabilization of the posture of the needle-like carbon film 16 on the table surface 14a of the film-formation table 14, whereby stable field emission can be performed. It is supported mechanically and firmly on the table surface 14a of the table 14, and the stability as an electron emitter is improved. Also, the acicular carbon film 16 is in good electrical contact with the table surface 14a of the film formation table 14. Make it possible.

図2に、図1の電子エミッタ10を陰極とし、これと図上で上方に位置する陽極との間に電圧(陽陰極間電圧V)を印加したときの針状炭素膜16の先端の周りの等電位面20の変化を示す。この等電位面20の変化に示すように、針状炭素膜16の先端に電界が強く集中し、その先端から電界放射することができるようになっている。   FIG. 2 shows the periphery of the tip of the acicular carbon film 16 when a voltage (positive-cathode voltage V) is applied between the electron emitter 10 of FIG. 1 as a cathode and an anode positioned above in the figure. The change of the equipotential surface 20 is shown. As shown in the change of the equipotential surface 20, the electric field is strongly concentrated on the tip of the acicular carbon film 16, and the electric field can be emitted from the tip.

なお、説明の理解のために、図3、図4に電子エミッタの一部の斜視図、平面図を示す。成膜用台14の配置間隔をD1,D2で示している。これら配置間隔はD1=D2でもD1≠D2でもよい。なお、図4に成膜用台14の台表面14aの面積Sが示されているが、この面積Sの大きさを制御することにより針状炭素膜16の成膜数を制御することが可能である。   In order to understand the explanation, FIGS. 3 and 4 show a perspective view and a plan view of a part of the electron emitter. The arrangement intervals of the film formation table 14 are indicated by D1 and D2. These arrangement intervals may be D1 = D2 or D1 ≠ D2. FIG. 4 shows the area S of the surface 14a of the film formation table 14. By controlling the size of the area S, the number of acicular carbon films 16 formed can be controlled. It is.

図5に以上の構成を備えた電子エミッタ10を陰極として、これに対向配置された陽極との間で電圧を印加した場合のエミッション特性を示す。横軸は電圧(V/μm)、縦軸はエミッション電流(mA/cm2)である。実施の形態の電子エミッタ10においては、図5で示すように、電圧2.0V/μmでエミッション電流は50ないし100mA/cm2の電界放射特性を有する電子エミッタを得ることができた。 FIG. 5 shows emission characteristics when a voltage is applied between the electron emitter 10 having the above-described configuration as a cathode and an anode disposed opposite thereto. The horizontal axis represents voltage (V / μm), and the vertical axis represents emission current (mA / cm 2 ). In the electron emitter 10 of the embodiment, as shown in FIG. 5, an electron emitter having a field emission characteristic of a voltage of 2.0 V / μm and an emission current of 50 to 100 mA / cm 2 could be obtained.

図6を参照して実施の形態の針状炭素膜16の電界放射特性をカーボンナノチューブと比較して説明する。   With reference to FIG. 6, the field emission characteristics of the acicular carbon film 16 of the embodiment will be described in comparison with carbon nanotubes.

実施の形態の針状炭素膜16では、図6(a)で示すように、電界集中係数βが、上記hx/rxの式で表され、かつ、基部から先端16aに向けて半径rxが小さくなる形状を有するから、図6(b)で示す(実線曲線は実施の形態の針状炭素膜により、二点鎖線曲線はカーボンナノチューブによる)ように、印加電圧Vが増大するにつれ先端16aから図6(a)の矢印Aのように電界放射し、さらに印加電圧Vが増大すると、先端16aから遠くなる部分16bからも図6(a)の矢印Bのように電界放射が起こり、さらに印加電圧Vが増大すると、先端16aからさらに遠くなる部分16cからも図6(a)の矢印Cのように電界放射が起こる。   In the acicular carbon film 16 of the embodiment, as shown in FIG. 6A, the electric field concentration coefficient β is expressed by the above equation hx / rx, and the radius rx decreases from the base toward the tip 16a. As shown in FIG. 6B (the solid line curve is the needle-like carbon film of the embodiment, and the two-dot chain line curve is the carbon nanotube), as the applied voltage V increases, the figure from the tip 16a is shown. When the electric field is radiated as indicated by the arrow A in FIG. 6A and the applied voltage V is further increased, the electric field is emitted from the portion 16b far from the tip 16a as indicated by the arrow B in FIG. When V increases, field emission also occurs from a portion 16c further away from the tip 16a as shown by an arrow C in FIG.

このようにして実施の形態の針状炭素膜16では、印加電圧Vの増大により、電界放射電流Iが従来のように印加電圧VがV0を超えても、電界放射電流Iがカーボンナノチューブのように電流I0で飽和せず、それ以上に増大することができる炭素膜である。 In this manner, in the acicular carbon film 16 of the embodiment, the applied voltage V increases, so that even if the applied voltage V exceeds V 0 as in the prior art, the applied field voltage I is less than that of the carbon nanotube. Thus, it is a carbon film that does not saturate at the current I 0 and can be increased further.

図7ないし図9を参照して実施の形態の電子エミッタの製造方法を説明する。図7は成膜用台の製造工程、図8は、炭素膜の製造工程を示す。図9は図8の炭素膜の製造に用いる直流プラズマCVD装置を示す。   A method of manufacturing the electron emitter according to the embodiment will be described with reference to FIGS. FIG. 7 shows a manufacturing process of the film forming table, and FIG. 8 shows a manufacturing process of the carbon film. FIG. 9 shows a DC plasma CVD apparatus used for producing the carbon film of FIG.

(成膜用台の製造工程)
図7(a)で示す基板12上に図7(b)で示すようにフォトレジスト22を塗布する。次いで図7(c)で示すようにフォトマスクのパターンを露光によりフォトレジスト22に転写し、次いで、図7(d)で示すように現像によりパターン以外のフォトレジスト22を除去し、図7(e)で示すようにエッチングし、最後にフォトレジスト22を除去することにより、図7(f)で示すように基板12に一体化された成膜用台14を形成する。以上のフォトリソグラフィー技術により基板12に成膜用台14を成形した後、次の炭素膜の製造工程に移行する。
(Manufacturing process of film forming table)
A photoresist 22 is applied on the substrate 12 shown in FIG. 7A as shown in FIG. Next, as shown in FIG. 7C, the pattern of the photomask is transferred to the photoresist 22 by exposure, and then the photoresist 22 other than the pattern is removed by development as shown in FIG. 7D. Etching is performed as shown in e), and finally, the photoresist 22 is removed, thereby forming a film formation base 14 integrated with the substrate 12 as shown in FIG. After forming the film formation table 14 on the substrate 12 by the above photolithography technique, the process proceeds to the next carbon film manufacturing process.

(炭素膜の製造工程)
この炭素膜の成膜には図9で示す直流プラズマCVD装置を用いる。この直流プラズマCVD装置24は、真空チャンバ26と、この真空チャンバ26の内部に平行に対向配置した一対の第1、第2平板電極28,30とを備える。真空チャンバ26はガス導入口26aとガス排気口26bとを備える。直流電源32の負極側を上側の第1平板電極28に接続し、直流電源32の正極側を接地する。下側の第2平板電極30を接地する。
(Manufacturing process of carbon film)
A DC plasma CVD apparatus shown in FIG. 9 is used for forming the carbon film. The direct-current plasma CVD apparatus 24 includes a vacuum chamber 26 and a pair of first and second flat plate electrodes 28 and 30 that are disposed opposite to each other in parallel inside the vacuum chamber 26. The vacuum chamber 26 includes a gas inlet 26a and a gas exhaust 26b. The negative electrode side of the DC power source 32 is connected to the upper first plate electrode 28, and the positive electrode side of the DC power source 32 is grounded. The lower second plate electrode 30 is grounded.

図8を参照して真空チャンバ26内にガス導入口26aから水素ガスを導入しその内圧を徐々に減圧し、真空チャンバ26の内圧を30torrにする。真空チャンバ26の内圧が30torrになると、その圧力を5ないし25分程度維持する。この場合、直流電源32の印加により、プラズマ34を発生させ、電流を2.5A程度にまで徐々に増加させ、チャンバ内圧が30torrになるときには電流を2.5Aに維持する。こうして基板12上の成膜用台14(図8では図示されず)の表面酸化物を除去する。   Referring to FIG. 8, hydrogen gas is introduced into the vacuum chamber 26 from the gas inlet 26a, the internal pressure thereof is gradually reduced, and the internal pressure of the vacuum chamber 26 is set to 30 torr. When the internal pressure of the vacuum chamber 26 reaches 30 torr, the pressure is maintained for about 5 to 25 minutes. In this case, the plasma 34 is generated by applying the DC power source 32, the current is gradually increased to about 2.5A, and the current is maintained at 2.5A when the chamber internal pressure reaches 30 torr. In this way, the surface oxide of the film formation table 14 (not shown in FIG. 8) on the substrate 12 is removed.

次いで、真空チャンバ26内に水素ガスとメタンガスとの混合ガスを導入し内圧を75torr程度にまで徐々に増大し、内圧が75torrになると、この内圧を2時間程度維持する。   Next, a mixed gas of hydrogen gas and methane gas is introduced into the vacuum chamber 26, and the internal pressure is gradually increased to about 75 torr. When the internal pressure reaches 75 torr, the internal pressure is maintained for about 2 hours.

なお、圧力としてはこれに限定されず、10ないし100torrでも実施することができる。このとき、同時に直流電源32により電流を2.5Aから6A程度にまで徐々に増加させ、6Aに到達すると、その電流を2時間維持する。   Note that the pressure is not limited to this, and the pressure may be 10 to 100 torr. At this time, the current is gradually increased from 2.5 A to about 6 A by the DC power source 32, and when 6 A is reached, the current is maintained for 2 hours.

なお、メタンガスに代えて他の炭素を含むガス、例えば、アセチレン、エチレン、プロパン、プロピレン等のガス、等を用いることができる。   Note that a gas containing other carbon, for example, a gas such as acetylene, ethylene, propane, propylene, or the like can be used instead of methane gas.

その結果、基板12上に発生するプラズマ34により、成膜用台の表面温度が900℃ないし1150℃程度となって、メタンガスが分解され、この成膜用台上に実施の形態の炭素膜が成膜される。   As a result, the plasma 34 generated on the substrate 12 brings the surface temperature of the film formation table to about 900 ° C. to 1150 ° C., and methane gas is decomposed. The carbon film of the embodiment is formed on this film formation table. A film is formed.

図10は、印加電圧3.0kV、倍率×4300のSEM写真である。このSEM写真には針状炭素膜16と、この針状炭素膜16にその膜下部から膜中途に至りまとわる形態で広がるように壁状炭素膜18が成膜されている状態が示されている。   FIG. 10 is an SEM photograph with an applied voltage of 3.0 kV and a magnification of 4300. This SEM photograph shows a needle-like carbon film 16 and a state in which a wall-like carbon film 18 is formed on the needle-like carbon film 16 so as to spread from the lower part of the film to the middle of the film. Yes.

図11は、実施の形態の電子エミッタをパイプ状の電界放射型の照明ランプに適用した例を示す。図11において、パイプ状の管体42は、ガラス好ましくはソーダライムガラスからなり内部が真空状態とされている。管体42は、直管形状ではなく、U字管形状でもよい。   FIG. 11 shows an example in which the electron emitter of the embodiment is applied to a pipe-shaped field emission illumination lamp. In FIG. 11, a pipe-shaped tube body 42 is made of glass, preferably soda lime glass, and the inside thereof is in a vacuum state. The tubular body 42 may have a U-shaped tube shape instead of a straight tube shape.

管体42の内面には、蛍光体付き陽極44が形成されている。蛍光体付き陽極44は、電子線励起により白色に発光する蛍光体粉末から構成された層状の蛍光膜44aと、導電性に優れた金属好ましくはアルミニウムを蒸着して構成された層状の陽極膜44bとから構成されている。   On the inner surface of the tube body 42, an anode 44 with a phosphor is formed. The anode with phosphor 44 includes a layered phosphor film 44a composed of phosphor powder that emits white light by electron beam excitation, and a layered anode film 44b composed of a metal having excellent conductivity, preferably aluminum. It consists of and.

管体42内にはその中央を長手方向にワイヤ状陰極46が配置されている。ワイヤ状陰極46は、蛍光体付き陽極44と上記長手方向で対向している。   Inside the tube body 42, a wire-like cathode 46 is arranged in the center in the longitudinal direction. The wire-like cathode 46 faces the anode 44 with phosphor in the longitudinal direction.

ワイヤ状陰極46は、導電性のワイヤ46aとその表面に成膜された実施の形態の炭素膜(針状炭素膜16、壁状炭素膜18)46bとから構成されている。このワイヤ46aの材料は特には限定されないが、例えば、グラファイト、Ni、Fe、Co、等がある。   The wire-like cathode 46 is composed of a conductive wire 46a and the carbon film (needle-like carbon film 16, wall-like carbon film 18) 46b of the embodiment formed on the surface thereof. The material of the wire 46a is not particularly limited, and examples thereof include graphite, Ni, Fe, Co, and the like.

図12は、実施の形態の炭素膜をフラットパネル状の電界放射型の照明ランプに適用した例を示す。この電界放射型の照明ランプは、内部が真空とされたフラットパネル58,50と、一方のフラットパネル58の内面に設けられた蛍光体付き陽極54と、他方のフラットパネル50上に間隔を隔てて配置された複数のワイヤ状陰極56とを備える。ワイヤ状陰極56は、導電性ワイヤ56aと、その導電性ワイヤ56aの表面に形成された実施の形態の炭素膜(針状炭素膜16、壁状炭素膜18)56bとを含む。なお、本発明は、上述の実施の形態に限定されず、種々な変形が考えられる。   FIG. 12 shows an example in which the carbon film of the embodiment is applied to a flat panel field emission illumination lamp. This field emission type illumination lamp has flat panels 58 and 50 whose inside is evacuated, an anode 54 with a phosphor provided on the inner surface of one flat panel 58, and a space on the other flat panel 50. And a plurality of wire-like cathodes 56 arranged in a row. The wire-like cathode 56 includes a conductive wire 56a and the carbon film (the needle-like carbon film 16, the wall-like carbon film 18) 56b of the embodiment formed on the surface of the conductive wire 56a. In addition, this invention is not limited to the above-mentioned embodiment, Various deformation | transformation can be considered.

図1は本発明の実施の形態に係る電子エミッタの構成を示す図である。FIG. 1 is a diagram showing a configuration of an electron emitter according to an embodiment of the present invention. 図2は図1の電子エミッタにおいて等電位面を示す図である。FIG. 2 is a diagram showing an equipotential surface in the electron emitter of FIG. 図3は図1の電子エミッタの一部の斜視図である。FIG. 3 is a perspective view of a part of the electron emitter of FIG. 図4は図1の電子エミッタの一部の平面図である。FIG. 4 is a plan view of a part of the electron emitter of FIG. 図5は図1の電子エミッタのエミッション特性を示す図である。FIG. 5 is a diagram showing the emission characteristics of the electron emitter of FIG. 図6は図1の電子エミッタが備える針状炭素膜の電界放射特性をカーボンナノチューブと比較して説明するための図である。FIG. 6 is a diagram for explaining the field emission characteristics of the acicular carbon film provided in the electron emitter of FIG. 1 in comparison with carbon nanotubes. 図7は図1の電子エミッタが備える成膜用台の製造工程図である。FIG. 7 is a manufacturing process diagram of a film forming table provided in the electron emitter of FIG. 図8は図1の電子エミッタが備える炭素膜の製造工程図である。FIG. 8 is a manufacturing process diagram of a carbon film provided in the electron emitter of FIG. 図9は図8の炭素膜の製造に用いる直流プラズマCVD装置を示す図である。FIG. 9 is a diagram showing a DC plasma CVD apparatus used for manufacturing the carbon film of FIG. 図10は図1の電子エミッタが備える炭素膜において倍率×4300でのSEM写真である。FIG. 10 is an SEM photograph at a magnification of 4300 in the carbon film provided in the electron emitter of FIG. 図11は図1の電子エミッタをパイプ状の電界放射型の照明ランプに適用した例を示す図である。FIG. 11 is a diagram showing an example in which the electron emitter of FIG. 1 is applied to a pipe-shaped field emission type illumination lamp. 図12は図1の電子エミッタをフラットパネル状の電界放射型の照明ランプに適用した例を示す図である。FIG. 12 is a diagram showing an example in which the electron emitter of FIG. 1 is applied to a flat panel field emission type illumination lamp.

符号の説明Explanation of symbols

10 電子エミッタ
12 基板
14 成膜用台
16 針状炭素膜
18 壁状炭素膜
DESCRIPTION OF SYMBOLS 10 Electron emitter 12 Substrate 14 Deposition stand 16 Needle-like carbon film 18 Wall-like carbon film

Claims (8)

電界放射型の電子エミッタにおいて、基板面上に一定の台高さの成膜用台を設け、この台上に、基部から先端に向けて半径が小さくなりアスペクト比が100以上で直径が2〜200nmの針形状の針状炭素膜が形成され、更にこの針状炭素膜にはその膜下部から膜中途に至りまとわりつく形態の壁状炭素膜が成膜されている、ことを特徴とする電子エミッタ。 In a field emission type electron emitter, a film formation table having a fixed height is provided on a substrate surface. On this table, a radius is reduced from a base portion to a tip, an aspect ratio is 100 or more, and a diameter of 2 to 2. An electron emitter characterized in that a needle-like acicular carbon film having a thickness of 200 nm is formed, and further, a wall- like carbon film is formed on the acicular carbon film so as to reach the middle of the film from the lower part of the film. . 上記成膜用台の台高さは、針状炭素膜の先端に対する閾値電界で当該台が電界放射しない高さ以下であることを特徴とする請求項1に記載の電子エミッタ。 2. The electron emitter according to claim 1, wherein the height of the film forming table is equal to or less than a height at which the table does not radiate an electric field by a threshold electric field with respect to a tip of the acicular carbon film. 上記成膜用台が一定間隔で複数配置されている、ことを特徴とする請求項1または2に記載の電子エミッタ。 The electron emitter according to claim 1, wherein a plurality of the film-formation tables are arranged at regular intervals. 上記成膜用台の配置間隔は、各成膜用台それぞれの針状炭素膜の電界放射を互いに阻害しない値以上に設定されている、ことを特徴とする請求項3に記載の電子エミッタ。 4. The electron emitter according to claim 3, wherein the arrangement interval of the film forming tables is set to a value that does not inhibit field emission of the acicular carbon film of each film forming table. 上記成膜用台が、概ね切頭円錐形状である、ことを特徴とする請求項1ないし4のいずれかに記載の電子エミッタ。 The electron emitter according to any one of claims 1 to 4, wherein the film forming platform has a substantially truncated cone shape. 上記成膜用台は、基板から作られたものである、ことを特徴とする請求項1ないし5のいずれかに記載の電子エミッタ。 6. The electron emitter according to claim 1, wherein the film forming stage is made of a substrate. 上記成膜用台は、基板とは別材から作られたものである、ことを特徴とする請求項1ないし5のいずれかに記載の電子エミッタ。 6. The electron emitter according to claim 1, wherein the film forming stage is made of a material different from the substrate. 電界放射型の電子エミッタにおいて、基板へのエッチングにより複数の成膜用台が一定間隔で形成され、これら成膜用台上に基部から先端に向けて半径が小さくなりアスペクト比が100以上で直径が2〜200nmの針状炭素膜が成膜され、更にこの針状炭素膜にはその膜下部から膜中途に至りまとわりつく形態の壁状炭素膜が成膜されている、ことを特徴とする電子エミッタ。
In a field emission electron emitter, a plurality of film forming stands are formed at regular intervals by etching on a substrate, and the radius decreases from the base to the tip on these film forming stands, and the aspect ratio is 100 or more in diameter. An acicular carbon film having a thickness of 2 to 200 nm is formed, and a wall-like carbon film is formed on the acicular carbon film so as to reach the middle of the film from the bottom of the film. Emitter.
JP2006001231A 2005-08-10 2006-01-06 Electron emitter Active JP5063002B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006001231A JP5063002B2 (en) 2006-01-06 2006-01-06 Electron emitter
US11/500,988 US7839067B2 (en) 2005-08-10 2006-08-09 Carbon film having shape suitable for field emission
KR1020060075193A KR101242382B1 (en) 2005-08-10 2006-08-09 Carbon film having shape suitable for field emission
TW095129159A TWI435358B (en) 2005-08-10 2006-08-09 A carbon film having a shape suitable for the emission of electric field, a carbon film structure, and an electron emitter
US12/912,303 US8421330B2 (en) 2005-08-10 2010-10-26 Carbon film having shape suitable for field emission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006001231A JP5063002B2 (en) 2006-01-06 2006-01-06 Electron emitter

Publications (2)

Publication Number Publication Date
JP2007184152A JP2007184152A (en) 2007-07-19
JP5063002B2 true JP5063002B2 (en) 2012-10-31

Family

ID=38340060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006001231A Active JP5063002B2 (en) 2005-08-10 2006-01-06 Electron emitter

Country Status (1)

Country Link
JP (1) JP5063002B2 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118916A (en) * 1990-04-20 1992-04-20 Hitachi Ltd Semiconductor device and its manufacture
JP3506017B2 (en) * 1998-09-18 2004-03-15 松下電器産業株式会社 Electron emitting device, method of manufacturing the same, and image display device
JP2000285795A (en) * 1999-03-31 2000-10-13 Sony Corp Electron emission source, its manufacture, and display device
US6538367B1 (en) * 1999-07-15 2003-03-25 Agere Systems Inc. Field emitting device comprising field-concentrating nanoconductor assembly and method for making the same
JP3481578B2 (en) * 1999-10-12 2003-12-22 松下電器産業株式会社 Electron-emitting device, electron source using the same, field-emission-type image display device, fluorescent lamp, and manufacturing method thereof
JP2002146533A (en) * 2000-11-06 2002-05-22 Mitsubishi Electric Corp Carbon thin body, method for forming carbon thin body, and field-emission-type electron source
JP3935414B2 (en) * 2002-09-26 2007-06-20 株式会社東芝 Discharge lamp
JP4161191B2 (en) * 2003-01-09 2008-10-08 ソニー株式会社 Method for manufacturing field electron emission device
JP4423496B2 (en) * 2003-09-30 2010-03-03 高知県 Electron emission electrode
JP4297770B2 (en) * 2003-11-18 2009-07-15 シャープ株式会社 ION GENERATOR AND ION GENERATOR HAVING THE SAME
JP4229849B2 (en) * 2004-01-20 2009-02-25 日本碍子株式会社 Acicular carbon film manufacturing method, acicular carbon film and field emission structure
JP2007055856A (en) * 2005-08-25 2007-03-08 Dialight Japan Co Ltd Carbon film, electron releasing source, and electric field emission type illumination lamp
JP4578350B2 (en) * 2005-08-10 2010-11-10 株式会社ピュアロンジャパン Carbon film, electron emission source and field emission type lighting lamp

Also Published As

Publication number Publication date
JP2007184152A (en) 2007-07-19

Similar Documents

Publication Publication Date Title
US7465210B2 (en) Method of fabricating carbide and nitride nano electron emitters
US7811149B2 (en) Method for fabricating carbon nanotube-based field emission device
US7652418B2 (en) Electronic emission device, electron emission display device having the same, and method of manufacturing the electron emission device
US8421330B2 (en) Carbon film having shape suitable for field emission
JP4390847B1 (en) Electron emitter and field emission device having electron emitter
KR101281168B1 (en) Field emission electrode, method for preparing the same and field emission device comprising the same
US20090098671A1 (en) Nanotube assembly including protective layer and method for making the same
JP2001180920A (en) Method of machining nano tube and method of producing field emission-type cold cathode and indicator
JP4408891B2 (en) Carbon film and carbon film structure
JP4565089B2 (en) Carbon film and field emission electron emission source
US20100045212A1 (en) Devices having laterally arranged nanotubes
JP2006294387A (en) Nanocarbon emitter and its manufacturing method
JP2007055856A (en) Carbon film, electron releasing source, and electric field emission type illumination lamp
JP5063002B2 (en) Electron emitter
Minh et al. Selective growth of carbon nanotubes on Si microfabricated tips and application for electron field emitters
KR100668332B1 (en) Fabrication method of device comprising carbide and nitride nano electron emitters
WO2005022578A1 (en) sp3 BONDING BORON NITRIDE THIN FILM HAVING SELF-FORMING SURFACE SHAPE BEING ADVANTAGEOUS IN EXHIBITING PROPERTY OF EMITTING ELECTRIC FIELD ELECTRONS, METHOD FOR PREPARATION THEREOF AND USE THEREOF
US7138759B2 (en) Electron-emitting device, electron source, and image display apparatus
KR101121639B1 (en) Cathode structure of electron emitting device
JP4578350B2 (en) Carbon film, electron emission source and field emission type lighting lamp
Wisitsora-At et al. High current diamond field emission diode
KR101227258B1 (en) Triode cold cathode electron source for x-ray generation using array of multiple carbon nano-tube tips
Li et al. Fabrication and characterization of individually ballasted carbon nanotube field emitter arrays using doped silicon resistor
KR100372168B1 (en) A method for manufacturing gated carbon-nanotube field emission displays
TWI466595B (en) A plasma generating device and a film forming method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090106

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090402

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5063002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S804 Written request for registration of cancellation of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350