JP5062604B2 - Manufacturing method of flux for continuous casting - Google Patents

Manufacturing method of flux for continuous casting Download PDF

Info

Publication number
JP5062604B2
JP5062604B2 JP2001079862A JP2001079862A JP5062604B2 JP 5062604 B2 JP5062604 B2 JP 5062604B2 JP 2001079862 A JP2001079862 A JP 2001079862A JP 2001079862 A JP2001079862 A JP 2001079862A JP 5062604 B2 JP5062604 B2 JP 5062604B2
Authority
JP
Japan
Prior art keywords
flux
particles
low
melting
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001079862A
Other languages
Japanese (ja)
Other versions
JP2002273553A (en
Inventor
晶 松尾
浩次 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Metal Products Co Ltd
Original Assignee
Nippon Steel Metal Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Metal Products Co Ltd filed Critical Nippon Steel Metal Products Co Ltd
Priority to JP2001079862A priority Critical patent/JP5062604B2/en
Publication of JP2002273553A publication Critical patent/JP2002273553A/en
Application granted granted Critical
Publication of JP5062604B2 publication Critical patent/JP5062604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼の連続鋳造の際に発生する鋳型内での焼結塊生成またはスラグベアの発生を防止し、安定な鋳造を確保するとともに、鋳片の表面欠陥発生を防止するために、適切な溶融特性を有する鋼の連続鋳造用フラックスに関するものである。
【0002】
【従来の技術】
鋼の連続鋳造時に鋳型内に添加するフラックスは、種々の役割を担い下記の働きが課せられている。すなわち、
▲1▼ 溶鋼上面を溶鋼の熱により溶融したフラックス層と、その上の未溶融フラックス層とで完全に被覆して、大気による溶鋼の酸化を防止するとともに、保温効果を持たせること。
▲2▼ 溶融したフラックスは溶鋼中より浮上した非金属酸化物を溶解、吸収することにより、非金属酸化物が鋳片の表面ノロカミ、表皮下介在物、内部介在物となることを防止すること。
▲3▼ 鋳型と鋳片間に流入したフラックスフィルムは、鋳型、鋳片間の潤滑作用を行うとともに、フィルムを通して鋳片から鋳型への抜熱を均一化し、緩冷却化することにより鋳片の凝固シェルを均一に発達せしめ、表面欠陥のない鋳片を得ること。
などである。
【0003】
フラックスのこれらの作用によって鋳片の表面欠陥をなくし、美麗な鋳肌を形成できる効果を有し、特に連続鋳造操業の鋳込作業の安定性の確保と鋳片鋳造歩留り向上を図るためには必要不可欠なものである。
【0004】
フラックスは、通常粉体あるいは顆粒状であり、その成分は一般にCaO、SiO2 を主成分とし、他にAl23 、アルカリ土類金属およびアルカリ金属の化合物(酸化物、炭酸塩、弗化物等)を加えてなるものであり、溶融温度、粘度等を調整し、さらに、溶融速度を調整するためにカーボンを添加してフラックス組成が構成されており、顆粒状の場合は、有機、無機質のバインダー等が用いられ一定の形状を保持している。
【0005】
近年、生産性の向上が要望されてきており、その要望に対処するため連続鋳造速度を早める方策が執られ、単位時間当たりの鋳造量の増大が図られている。
鋼の高速鋳造においては、フラックスの溶融過程での焼結性を防止することは重要な事項である。
【0006】
従来、骨材(カーボン)添加量の増加または、添加法の改良(外面コートの採用)さらには、有機物質物の添加等によりその対策が講じられ、焼結性を極力回避していたが、特に、小断面サイズの高速鋳造および/あるいは高塩基度、高凝固温度フラックス使用時にはその対応が充分でなく、フラックスが有する焼結性により鋳型上部内面に焼結塊による溶融不良現象が発生し、スラグベアの異常発達を惹起し、また、火炎の発生等により鋳造操業に支障をきたしていた。
【0007】
しかして、高速鋳造を実施した場合には、フラックスの使用量が鋳造速度に比例して増していかなければならないが、従来の高速鋳造用フラックスでは、溶融速度が遅いため溶鋼の湯面に溶融フラックス層を必要量確保することができず、鋳片と鋳型との間に適量の溶融フラックスが供給されないためフラックスフィルムが薄く、また不均一流入となり、したがって、鋳片からの抜熱度が非常に大きくなっていたため、上記現象の発生を増長し、鋳片の表面品位については、種々の表面割れが発生し、圧延時に表面疵の原因となり、品質の劣化となっていた。
【0008】
このように、鋳片の表面品位については、充分に満足する成品を得るには多くの困難を伴っていた。また、溶融フラックスの流入が不足して潤滑不良を起こしブレークアウトに至ることもあった。
このような現象を克服するためには、前記したようにフラックスの溶融速度を調整している骨材のカーボン量を少なくし、フラックスの溶融速度を早め、鋳造速度に見合ったフラックスフィルムの膜厚を保持するための溶融フラックス量を湯面上に確保してやればよいが、この骨材を減少させるとフラックスの溶融過程で焼結性が増加し、前記現象を誘発する結果、これが原因となってフラックスの溶融速度が逆に遅くなり、前記したフラックスフィルムの膜厚が薄くなることを助長することになる。
【0009】
従来からフラックス中におけるカーボン質原料は、滓化溶融速度調整材としての役割を果たすだけでなく、未溶融のフラックス層内においては、前述した如く種々の原料相互の焼結抑制材として寄与し、低熱伝導層を維持するとともに、酸化時の発熱反応により溶鋼の保温性に果たす役割が大きく、したがって、湯面保護材においては骨材としてのカーボンは必要不可欠の組成であるとの認識が一般化されている。
【0010】
このような観点から、溶融速度調整剤としてカーボンを用いた発明は多数あるが、例えば特公平2−11346号ではその技術として「金属酸化物を主としてなり、このほかにアルカリ金属およびアルカリ土類金属の弗化物、アルカリ金属の酸化物および炭酸塩のうち1種以上を含有してなる鋼の連続鋳造用鋳型添加剤の基材に、溶融速度調整剤として100メッシュ以下の炭素質粉0.5〜5wt%と100メッシュ以下の有機質繊維物質0.1〜4wt%を配合してなることを特徴とする鋼の連続鋳造用鋳型添加剤」が開示されいる。
【0011】
【発明が解決しようとする課題】
従来、低速鋳造においては、フラックスの焼結性スラグベアを防止する手段として、大サイズ鋳片を鋳造するに当たって、低凝固温度を有するフラックスを用い、骨材量の増加、有機質物質の添加等が適用されていたが、特に大きな問題は起こらなかった。
しかし、小サイズ鋳片を高速鋳造する場合および/あるいは、高凝固温度を有するフラックスの使用では、▲1▼スラグベア異常発達による操業トラブルの発生、▲2▼鋳造速度アップにより浸漬ノズルからの溶鋼流速が速くなるため、鋳型内湯面変動が大きくなり、未溶融フラックスの焼結塊発生、▲3▼フラックス中の有機物分解による火炎の発生により、湯面状態の確認不能という欠点が発生していた。
【0012】
このような状況下で、湯面保護材中におけるカーボン量を減少せしめることは、連続鋳造操業において鋳造される鋳片の表面および内部欠陥の発生を惹起せしめることに繋がるため、湯面保護材中のカーボン量を通常の範囲に維持したうえで、湯面保護材の溶融速度を早めなければならない課題が残されていた。
【0013】
しかして、上記した特公平2−11346号の発明ではフラックス溶融時にフラックス中の粒子同士の融着が起こり、その結果、スラグベアの発生が起こり、前記した種々の欠陥を惹起することを避けることはできなかった。
本発明はこのような従来の課題の解決を図るために創案されたものでそのための適切な手段を提供することを目的とするものである。
【0014】
【課題を解決するための手段】
本発明は上記課題を解決するためになされたもので、下記手段をとるものである。
(1)連続鋳造用フラックスの製造方法において、フラックス原料のうちで、NaF、Na AlF 、Li CO 、Na のいずれかである低融点物質のうち、フラックス原料の15mass%以下を後添加用低融点物質とし、前記の後添加低融点物質は粒子の平均粒径を基材の粒子の平均粒径より大きくして基材の粒子と共に水に懸濁させ、熱風雰囲気中にスプレー噴出させて中空顆粒状フラックスとすることにより、低融点物質を中空顆粒体の表層部よりも内部に多く分布させることを特徴とする連続鋳造用フラックスの製造方法。
基材の粒子と後添加用低融点物質の粒子に酸処理黒鉛を加える場合には、酸処理黒鉛の粒子径として基材の平均粒子径よりも小さな粒子径の粒子を含み、かつ粒子径150μm以下が70mass%以上の酸処理黒鉛をフラックス原料の0.5〜5mass%添加して一緒に水に懸濁させることにより、酸処理黒鉛をフラックスの中空顆粒体の表層に集積させることを特徴とする請求項1に記載の連続鋳造用フラックスの製造方法。
【0015】
【発明の実施の形態】
通常、鋳造鋳片サイズが小さいビレット等は、大きなサイズを有する扁平鋳片(スラブ)に比し、断面積に対する表面積の比が大きいため、鋳片からの抜熱量が大きく、小サイズ鋳片の鋳造に使用するフラックスにとっては、スラブの鋳造に比較して極めて厳しい条件が要求されており、かつ高速鋳造の普及によってさらに苛酷な条件が課せられてきている。
【0016】
このことは前述したような鋳型内での焼結塊の発生、スラグベアの異常発達を増長する結果となって表れ、安定した連続鋳造作業を続行するのを困難にしていた。そこで、本発明は上記のような問題点の多い小サイズ鋳片の連続鋳造に適用しても、優れた効果を有するフラックスの開発を試みたものである。
【0017】
本発明者らは骨材のカーボン量を減じても、フラックスの焼結性を防止することについて種々の実験研究を重ねた結果、フラックス中の低融点物質の配合量を変えることなく、低融点物質を中空顆粒体において表層部より内部に多く集積せしめることによって、フラックス粒子間の融着を防止することができ、さらに、微粒化した酸処理黒鉛を用いることにより、フラックス粒子表層に酸処理黒鉛が集積し、スラグベアの発生をみることなしに、より適正な溶融速度が得られ、その結果、均一な厚みのフラックス溶融層を保つことができ、鋳型と鋳片間への溶融フラックスの流入が絶えず一定量供給され、鋳片の表面欠陥の発生やブレークアウトの惹起することを防止できるとの結論を得たものである。
【0018】
すなわち、中空顆粒フラックス製造時のフラックス原材料中に、低融点物質を基材平均粒子径よりできるだけ粗粒化して添加すると共に、必要に応じて酸処理黒鉛を微粒化して添加し、噴霧乾燥法による中空顆粒状フラックス製造過程において、フラックス製造・乾燥工程でフラックス懸濁水を粒子状にスプレー噴出させ、熱風雰囲気中に曝す。その結果、フラックス粒子中の水分が蒸発するために、粒子内部から表層部へ水分が移動する時、そのエネルギーによって微粒子部分は、中空顆粒状フラックス粒子の表層部に移動するが、これとは逆に粗粒子部分は内部層に残留集積することに着目したものである。
【0019】
このようにして製造されたフラックス粒子は、鋳型内湯面上に添加されたときに、低融点物質が多い内部から軟化溶融が進み、中空形状を保持しつつ粒子同士の焼結を防止することができる。
このため、フラックス粒子同志の融着が原因となって発生していたスラグベアの成長が起こらず、フラックスとしての本来の役割を十二分に果たすことができる。
【0020】
なお、フラックスを構成する物質中低融点物質としては種々あり、例えばNaF,Na2 CO3 ,Na2 AlF6 ,Li2 CO3 ,LiF,Na247 などがそれに該当する。ただし、Na2 CO3 は水に対する溶解度が大きいため、スラリー製造時に固体粒子の形状を保持しないため本発明の対象外とする。
【0021】
また、本発明において前記のように基材平均粒子径より粗粒化して添加する低融点物質、すなわち後添加用低融点物質は、その好ましい添加量をフラックス原料の15mass%以下とする。低融点物質が15mass%を超えると溶解過程で基材と融着しやすくなり、焼結性が増加しその結果、スラグベアが生成しやすくなるからである。なお上記のように後添加用低融点物質として仕分けられた残りの低融点物質については他のフラックス原料と混合して溶融、冷却、粉砕されて基材となる。そして基材の粒子と後添加用低融点物質の粒子とを一緒に水に懸濁させて熱風雰囲気中にスプレー噴出させて中空顆粒状フラックスとする。
さらに、後添加用低融点物質の平均粒子径を基材平均粒子径より大きくしたもので、その差が大きい程好ましい。実施に際してには基材の平均粒子径によって左右されるが、その好ましい平均粒子径は凡そ25〜150μm程度である。その理由は平均粒子径が25μm未満になると中空顆粒体において内部に集積せず、表層部近くに集積し粒子同士が融着しやすくなり、また150μmを超えると粗大粒の低融点物質を含むことになり、中空顆粒造粒時にノズル詰まりなどの操業トラブルが発生しやすくなるからである。
【0022】
本発明はかくのごとき構成を採るので、基材中の低融点物質は中空顆粒体において表層部より内部に多く集積するため、粒子同士の融着現象を生ずることなく、適正な溶融速度を維持することができる。
したがって、このフラックスは湯面変動等により加熱および冷却を繰り返し受けても粒子同士の融着が起こり難いので、大きな焼結体を形成することがない。
【0023】
このような構成による本発明フラックスでの低融点物質の分布状況の概要について、図1に従来例と共に示した。図1は凡その傾向を表したもので、従来のフラックスよりも低融点物質が中空顆粒体において内部側に集積位置していることが判る。
【0024】
酸処理黒鉛の添加によりさらに粒子同士の融着を抑えることが可能になる。この場合は、溶融基材の粒度を250μm以下にコントロールするとともに150μm以下が全体の70mass%以上の酸処理黒鉛を0.5〜5mass%基材の粒子と後添加用低融点物質の粒子に加えて添加すると、熱風雰囲気中にスプレー噴出させて中空顆粒体としたとき表層に酸処理黒鉛が集積する。このようにして製造されたフラックス粒子は、鋳型内湯面上に添加された時に、フラックス粒子表層部に存在する微粒子の酸処理黒鉛が、該酸処理黒鉛の持つ特性により、溶鋼の熱により急激に膨張し、粒子表面層から膨出した酸処理黒鉛が粒子表面の大部分に断片的に固着した状態を形成し、その結果、フラックスの粒子間の融着を防止する。
【0025】
なお、本発明において本発明の目的と類似の効果を有する有機繊維の3mass%以下の配合は差し支えない。
本発明のフラックスは、使用条件の厳しい小サイズ鋳片の連続鋳造に適用して充分効果を有するものであるから、大サイズのスラブの連続鋳造に適用することは、勿論何らの問題もなく使用できる。
【0026】
【実施例】
以下、本発明の効果を実施例に基づいて詳細に説明する。
本発明の実施例に用いたフラックスの化学組成を表1に示し、そのフラックスの物性値を表2に示した。また、該フラックスを用いて鋳片の鋳造を行った操業条件と、それによって得られた鋳片の品質状況を表3に示した。なお、比較のために比較例としてフラックスの化学組成、鋳造操業条件、鋳片品質状況も併せてそれぞれ表1〜3に併記した。
【0027】
【表1】

Figure 0005062604
【0028】
【表2】
Figure 0005062604
【0029】
【表3】
Figure 0005062604
【0030】
表3から明らかなように、本発明フラックスを使用して鋳造した実施番号1〜は、鋳造でのスラグベアの発生もなく、また火炎の発生も少なく、その結果鋳片での割れ疵等の発生も殆どなく、鋳片品質については何れにおいても問題がなかった。中でも実施番号3〜5においては、基材の平均粒子径よりも小さな粒子径の粒子を含み、かつ粒子径150μm以下が70mass%以上の酸処理黒鉛がフラックス原料の0.5〜5mass%添加されているため、表3に見るようにフラックス焼結性が特に良好(焼結し難い)となっている。
【0031】
これに対し、本発明範囲を逸脱したフラックスを用いた実施番号6〜9では鋳造中にスラグベアを発生するものもあり、また鋳片での割れ疵等についても良好な結果は得られず、不良品の発生がみられた。実施番号においては、後添加低融点物質の添加量は本発明の範囲であるが、後添加低融点物質の粒径が細かいため、低融点物質が中空表層に集積し、粒子同士が融着しやすくなったものである。
【0032】
また、実施番号は、フラックスの形態が実球顆粒のため、各粒径の差が効果的に分布せず、鋳造時に焼結塊およびスラグベアの生成が見られた。実施番号8,9は後添加低融点物質の添加量が多いため安定した鋳造性および良好な鋳片品質が得られなかった。
【0033】
【発明の効果】
本発明によれば下記のごとき効果が期待できる。
▲1▼ 特に高塩基度・高凝固温度からなるフラックスの焼結性(溶融過程での製品粒子の融着)が完全に防止可能となり、その結果、実施例で示したように従来のフラックスに比較すると小断面・高速鋳造時において焼結塊およびスラグベアの発生がなく、操業トラブルも皆無となる。
▲2▼ 小断面・高速鋳造時において、問題となる発炎もなく、適正な溶融フラックス層厚を確保して鋳造性の安定化が図れ、多連鋳が可能となる。
【図面の簡単な説明】
【図1】中空顆粒フラックス粒子内での低融点物質の分布状況の概要を示す図[0001]
BACKGROUND OF THE INVENTION
The present invention is suitable for preventing the formation of sintered ingots or the generation of slag bears in the mold that occurs during continuous casting of steel, ensuring stable casting, and preventing the occurrence of surface defects on the slab. The present invention relates to a flux for continuous casting of steel having good melting characteristics.
[0002]
[Prior art]
The flux added to the mold during continuous casting of steel plays various roles and has the following functions. That is,
(1) The upper surface of the molten steel should be completely covered with the flux layer melted by the heat of the molten steel and the unmelted flux layer thereon to prevent oxidation of the molten steel by the atmosphere and to have a heat retaining effect.
(2) The melted flux dissolves and absorbs the non-metallic oxide that has floated from the molten steel, thereby preventing the non-metallic oxide from becoming surface slosh, subepidermal inclusions and internal inclusions in the slab. .
(3) The flux film that has flowed between the mold and the slab performs lubrication between the mold and the slab, uniformizes the heat removal from the slab to the mold through the film, and slowly cools the slab. To obtain a slab free from surface defects by developing a solidified shell uniformly.
Etc.
[0003]
These effects of flux eliminate the surface defects of the slab and have the effect of forming a beautiful casting surface, especially for ensuring the stability of casting operations in continuous casting operations and improving the slab casting yield. It is indispensable.
[0004]
The flux is usually in the form of powder or granules, and its components are generally composed mainly of CaO and SiO 2 , and in addition, Al 2 O 3 , alkaline earth metal and alkali metal compounds (oxides, carbonates, fluorides) Etc.), and the flux composition is adjusted by adding carbon to adjust the melting temperature, viscosity, etc., and to adjust the melting rate. In the case of granules, organic and inorganic The binder is used to maintain a certain shape.
[0005]
In recent years, improvement in productivity has been demanded, and measures to increase the continuous casting speed have been taken in order to cope with the demand, and the casting amount per unit time has been increased.
In high-speed casting of steel, it is an important matter to prevent sinterability during the flux melting process.
[0006]
Conventionally, countermeasures have been taken by increasing the amount of aggregate (carbon) added, improving the addition method (adopting outer surface coating), adding organic substances, etc., and avoiding sinterability as much as possible. In particular, high-speed casting with a small cross-sectional size and / or high basicity, high solidification temperature flux is not enough to cope with it, due to the sinterability that the flux has, the melting failure phenomenon due to the sintered ingot on the inner surface of the mold, The abnormal development of slag bears was caused, and the casting operation was hindered by the occurrence of flames.
[0007]
However, when high-speed casting is performed, the amount of flux used must increase in proportion to the casting speed, but with conventional high-speed casting flux, the melting speed is slow, so it melts on the molten steel surface. The required amount of flux layer cannot be ensured, and since an appropriate amount of molten flux is not supplied between the slab and the mold, the flux film is thin and non-uniform inflow, so the degree of heat removal from the slab is very high Since it was large, the occurrence of the above phenomenon was increased, and various surface cracks occurred on the surface quality of the slab, causing surface defects during rolling, resulting in deterioration of quality.
[0008]
As described above, the surface quality of the slab has been accompanied by many difficulties in obtaining a sufficiently satisfactory product. In addition, the inflow of molten flux was insufficient, causing poor lubrication and sometimes causing breakout.
In order to overcome such a phenomenon, as described above, the amount of carbon in the aggregate that adjusts the flux melting rate is reduced, the flux melting rate is increased, and the film thickness of the flux film commensurate with the casting speed. It is sufficient to ensure the amount of molten flux on the surface of the hot metal to maintain the heat, but if this aggregate is reduced, the sinterability increases in the melting process of the flux, and the above phenomenon is induced. On the contrary, the melting rate of the flux is slowed, which helps to reduce the thickness of the flux film.
[0009]
Conventionally, the carbonaceous raw material in the flux not only serves as a hatching and melting rate adjusting material, but also contributes as a sintering inhibitor between various raw materials in the unmelted flux layer as described above. While maintaining a low heat conduction layer, it plays a major role in the heat retention of molten steel due to the exothermic reaction during oxidation. Therefore, the recognition that carbon as an aggregate is an indispensable composition in molten metal surface protection materials. Has been.
[0010]
From this point of view, there are many inventions that use carbon as a melting rate adjusting agent. For example, in Japanese Patent Publication No. 2-11346, the technology is “mainly metal oxides, in addition to alkali metals and alkaline earth metals. Carbonaceous powder of 100 mesh or less as a melting rate modifier is added to a base material of a mold additive for continuous casting of steel containing at least one of fluoride, alkali metal oxide and carbonate of A mold additive for continuous casting of steel characterized by blending ˜5 wt% and organic fiber material of 0.1 to 4 wt% of 100 mesh or less ”is disclosed.
[0011]
[Problems to be solved by the invention]
Conventionally, in low speed casting, as a means to prevent sinter slag bearer of flux, when casting large size slabs, flux with low solidification temperature is used, increasing the amount of aggregate, adding organic substances, etc. However, no major problems occurred.
However, when casting a small slab at high speed and / or using a flux with a high solidification temperature, (1) the occurrence of operational troubles due to abnormal development of slag bear, and (2) the flow rate of molten steel from the immersion nozzle due to increased casting speed. As a result, the molten metal surface fluctuation in the mold became large, and the disadvantage was that the molten metal surface state could not be confirmed due to the generation of a sintered mass of unmelted flux and the generation of flame due to decomposition of organic matter in the flux.
[0012]
Under such circumstances, reducing the amount of carbon in the molten metal surface protective material leads to the occurrence of surface defects and internal defects in the cast slab cast in the continuous casting operation. However, there was a problem that the melting rate of the hot water surface protective material had to be increased while maintaining the amount of carbon in the normal range.
[0013]
Therefore, in the above-mentioned invention of Japanese Patent Publication No. 2-11346, the fusion of particles in the flux occurs at the time of flux melting, and as a result, the generation of slag bears and avoiding various defects described above are avoided. could not.
The present invention has been developed to solve the above-described conventional problems, and an object thereof is to provide an appropriate means for that purpose.
[0014]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problems, and takes the following means.
(1) In the method for producing a flux for continuous casting, among the flux raw materials, among the low melting point materials which are any of NaF, Na 2 AlF 6 , Li 2 CO 3 , and Na 2 B 4 O 7 , a low melting point material for post-added below 15 mass%, low melting point material for post addition of the was suspended in water with particles having an average particle diameter larger than to substrate particles of the base material average particle diameter of the particles, A method for producing a continuous casting flux , characterized in that a low melting point material is distributed more in the interior than in the surface layer portion of the hollow granule by spraying into a hot air atmosphere to form a hollow granule flux .
( 2 ) When acid-treated graphite is added to the base material particles and the low-melting-point substance particles for post-addition, the acid-treated graphite includes particles having a particle size smaller than the average particle size of the base material, and by the particle diameter 150μm or less 70 mass% or more of the acid-treated graphite suspended in water together with the addition 0.5~5Mass% of flux material, it is integrated an acid-treated graphite in a surface layer of the hollow granules flux The manufacturing method of the flux for continuous casting of Claim 1 characterized by the above-mentioned .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Usually, billets with a small cast slab size have a large surface area to cross-sectional area compared to flat slabs (slabs) having a large size, so the amount of heat removed from the slab is large, For the flux used for casting, extremely severe conditions are required as compared with slab casting, and more severe conditions have been imposed by the widespread use of high-speed casting.
[0016]
This appears to result in the generation of sintered ingots in the mold and the abnormal development of slag bear as described above, making it difficult to continue a stable continuous casting operation. Therefore, the present invention is an attempt to develop a flux having an excellent effect even when applied to continuous casting of small slabs having many problems as described above.
[0017]
As a result of repeating various experimental studies on preventing the sinterability of the flux even when the carbon content of the aggregate is reduced, the present inventors have achieved a low melting point without changing the blending amount of the low melting point substance in the flux. It is possible to prevent fusion between the flux particles by accumulating more substances in the hollow granule than in the surface layer portion, and furthermore, by using atomized acid-treated graphite, acid-treated graphite is formed on the flux particle surface layer. As a result, a more appropriate melting rate can be obtained without seeing the generation of slag bear, and as a result, a uniform thickness of the flux melt layer can be maintained, and the flow of the melt flux between the mold and the slab is prevented. It was concluded that a constant amount was constantly supplied, and it was possible to prevent the occurrence of surface defects and breakout of the slab.
[0018]
That is, the low melting point material is added as coarsely as possible to the average particle size of the base material in the flux raw material during the production of the hollow granule flux, and the acid-treated graphite is atomized as necessary. In the hollow granular flux production process, the flux suspension water is sprayed into particles in the flux production / drying process and exposed to a hot air atmosphere. As a result, the moisture in the flux particles evaporates, so when the moisture moves from the inside of the particles to the surface layer, the energy moves the fine particles to the surface of the hollow granular flux particles. In particular, the coarse particle portion remains focused on the inner layer.
[0019]
When the flux particles produced in this way are added onto the mold surface, softening and melting progresses from the inside with a large amount of low-melting-point material, and it is possible to prevent sintering of the particles while maintaining a hollow shape. it can.
For this reason, the growth of the slag bear which has occurred due to the fusion of the flux particles does not occur, and the original role as the flux can be fully achieved.
[0020]
Incidentally, there variety of such materials in a low-melting substance constituting the flux, for example NaF, Na 2 CO 3, Na 2 AlF 6, Li 2 CO 3, LiF, and Na 2 B 4 O 7 corresponds to it. However, since Na 2 CO 3 has a high solubility in water, it does not retain the shape of solid particles during slurry production, and is therefore excluded from the scope of the present invention.
[0021]
In the present invention, the low-melting substance added after coarsening the average particle diameter of the base material as described above , that is, the low-melting substance for post-addition , is preferably added in an amount of 15 mass% or less of the flux raw material . This is because if the low melting point substance exceeds 15 mass%, it is easy to fuse with the base material in the melting process, the sinterability increases, and as a result, slag bear is easily generated. The remaining low melting point materials classified as post-addition low melting point materials as described above are mixed with other flux materials, melted, cooled, and pulverized to form a base material. Then, the base particles and the post-addition low-melting substance particles are suspended together in water and sprayed into a hot air atmosphere to form a hollow granular flux.
Further, the average particle size of the low-melting substance for post-addition is larger than the average particle size of the base material, and the larger the difference, the better. In practice, it depends on the average particle diameter of the substrate, but the preferable average particle diameter is about 25 to 150 μm. The reason is that when the average particle size is less than 25 μm, it does not accumulate inside the hollow granule, but accumulates near the surface layer and the particles tend to fuse together, and when it exceeds 150 μm, it contains coarse low-melting substance. This is because operational troubles such as nozzle clogging tend to occur during hollow granulation.
[0022]
Since the present invention adopts such a configuration, the low melting point substance in the base material accumulates more in the hollow granule than in the surface layer part, so that an appropriate melting rate can be maintained without causing the phenomenon of fusion between particles. can do.
Therefore, even if this flux is repeatedly heated and cooled due to fluctuations in the molten metal surface, it is difficult for the particles to fuse with each other, so that a large sintered body is not formed.
[0023]
An outline of the distribution of low melting point substances in the flux of the present invention having such a configuration is shown in FIG. 1 together with the conventional example. FIG. 1 shows a general tendency, and it can be seen that substances having a low melting point than the conventional flux are accumulated on the inner side in the hollow granule.
[0024]
By adding acid-treated graphite, it becomes possible to further suppress the fusion of particles. In this case, the particle size of the molten base material is controlled to 250 μm or less, and 150 μm or less of the total 70 mass % or more of the acid-treated graphite is 0.5 to 5 mass % of the base particle and the low-melting substance particle for post-addition In addition , acid-treated graphite accumulates on the surface when sprayed into a hot air atmosphere to form hollow granules. When the flux particles produced in this way are added onto the mold surface, the acid-treated graphite of the fine particles present on the surface of the flux particle is abruptly heated by the heat of the molten steel due to the properties of the acid-treated graphite. The acid-treated graphite that swells and swells from the particle surface layer forms a state where it is fragmentally fixed to most of the surface of the particle, and as a result, fusion between the particles of the flux is prevented.
[0025]
In the present invention, the organic fiber having an effect similar to the object of the present invention may be blended in an amount of 3 mass% or less.
Since the flux of the present invention is sufficiently effective when applied to continuous casting of small-size slabs with severe use conditions, it can be used without any problem when applied to continuous casting of large-size slabs. it can.
[0026]
【Example】
Hereinafter, the effects of the present invention will be described in detail based on examples.
The chemical composition of the flux used in the examples of the present invention is shown in Table 1, and the physical properties of the flux are shown in Table 2. Table 3 shows the operating conditions under which the slab was cast using the flux and the quality of the slab obtained thereby. For comparison, the chemical composition of the flux, the casting operation conditions, and the slab quality are also shown in Tables 1 to 3 as comparative examples.
[0027]
[Table 1]
Figure 0005062604
[0028]
[Table 2]
Figure 0005062604
[0029]
[Table 3]
Figure 0005062604
[0030]
As apparent from Table 3, the run numbers 1 to 5 cast using the flux of the present invention produced no slag bear in casting and little flame, resulting in cracks in the slab. There was almost no occurrence, and there was no problem in any slab quality. In particular, in the run numbers 3 to 5, acid-treated graphite containing particles having a particle size smaller than the average particle size of the base material and having a particle size of 150 μm or less is 70 mass% or more is added in an amount of 0.5 to 5 mass% of the flux material. Therefore, as shown in Table 3, the flux sinterability is particularly good (hard to sinter).
[0031]
On the other hand, in execution numbers 6 to 9 using fluxes that deviate from the scope of the present invention, some slag bears are generated during casting, and good results are not obtained with respect to cracks and the like in the slab. Generation of non-defective products was observed. In Run No. 6 , the amount of the post-added low melting point substance is within the range of the present invention. However, since the particle size of the post-added low melting point substance is fine, the low melting point substance accumulates in the hollow surface layer and the particles are fused. It has become easier to do.
[0032]
Moreover, since the form of the flux of the execution number 7 is a real spherical granule, the difference of each particle size was not distributed effectively, and the production | generation of the sintered lump and the slag bear was seen at the time of casting. In Run Nos. 8 and 9, the amount of the post-added low melting point material was large, so that stable castability and good slab quality could not be obtained.
[0033]
【Effect of the invention】
According to the present invention, the following effects can be expected.
(1) In particular, it is possible to completely prevent the sinterability of the flux having a high basicity and a high solidification temperature (the fusion of the product particles in the melting process). In comparison, there is no generation of sintered ingots or slag bears at the time of small cross section / high speed casting, and there is no operation trouble.
{Circle around (2)} In the case of a small cross-section and high speed casting, there is no problem flame, and an appropriate melt flux layer thickness can be secured to stabilize the castability, thereby enabling multiple casting.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overview of the distribution of low-melting-point substances in hollow granule flux particles

Claims (2)

連続鋳造用フラックスの製造方法において、フラックス原料のうちで、NaF、Na AlF 、Li CO 、Na のいずれかである低融点物質のうち、フラックス原料の15mass%以下を後添加用低融点物質とし、前記の後添加低融点物質は粒子の平均粒径を基材の粒子の平均粒径より大きくして基材の粒子と共に水に懸濁させ、熱風雰囲気中にスプレー噴出させて中空顆粒状フラックスとすることにより、低融点物質を中空顆粒体の表層部よりも内部に多く分布させることを特徴とする連続鋳造用フラックスの製造方法。 In the flux production method for continuous casting, among the flux raw materials, 15 mass% or less of the flux raw materials among the low melting point materials which are any of NaF, Na 2 AlF 6 , Li 2 CO 3 , and Na 2 B 4 O 7. was a low-melting material for post-addition, the low-melting material for post addition of the was suspended in water with particles having an average particle diameter larger than to substrate particles of the base material average particle diameter of the particles in a hot air atmosphere A process for producing a flux for continuous casting, characterized in that a low melting point substance is distributed more in the interior than in the surface layer portion of the hollow granule body by spraying into a hollow granule flux . 基材の粒子と後添加用低融点物質の粒子に酸処理黒鉛を加える場合には、酸処理黒鉛の粒子径として基材の平均粒子径よりも小さな粒子径の粒子を含み、かつ粒子径150μm以下が70mass%以上の酸処理黒鉛をフラックス原料の0.5〜5mass%添加して一緒に水に懸濁させることにより、酸処理黒鉛をフラックスの中空顆粒体の表層に集積させることを特徴とする請求項1に記載の連続鋳造用フラックスの製造方法。 When acid-treated graphite is added to the base material particles and the low-melting-point material particles for post-addition, the acid-treated graphite contains particles having a particle size smaller than the average particle size of the base material and a particle size of 150 μm. by following suspended 70 mass% or more of the acid-treated graphite in water together with the addition 0.5~5Mass% of flux material, characterized in that to integrate the acid-treated graphite in a surface layer of the hollow granules flux The manufacturing method of the flux for continuous casting of Claim 1 .
JP2001079862A 2001-03-21 2001-03-21 Manufacturing method of flux for continuous casting Expired - Fee Related JP5062604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001079862A JP5062604B2 (en) 2001-03-21 2001-03-21 Manufacturing method of flux for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001079862A JP5062604B2 (en) 2001-03-21 2001-03-21 Manufacturing method of flux for continuous casting

Publications (2)

Publication Number Publication Date
JP2002273553A JP2002273553A (en) 2002-09-25
JP5062604B2 true JP5062604B2 (en) 2012-10-31

Family

ID=18936232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001079862A Expired - Fee Related JP5062604B2 (en) 2001-03-21 2001-03-21 Manufacturing method of flux for continuous casting

Country Status (1)

Country Link
JP (1) JP5062604B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028003A (en) * 2006-07-19 2008-02-07 Alps Electric Co Ltd Rotating electrical component

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3519992B2 (en) * 1999-07-05 2004-04-19 日鐵建材工業株式会社 Continuous casting flux

Also Published As

Publication number Publication date
JP2002273553A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
JP2000158107A (en) Mold powder for open casting
JP4337748B2 (en) Mold powder for continuous casting of steel
JP4650452B2 (en) Steel continuous casting method
JP3997963B2 (en) Mold powder for continuous casting of steel
JPH0673730B2 (en) Exothermic mold powder for continuous casting
JP5062604B2 (en) Manufacturing method of flux for continuous casting
JP4560228B2 (en) Continuous casting flux
JP3519992B2 (en) Continuous casting flux
JP3717049B2 (en) Mold powder for continuous casting of steel and continuous casting method of steel
JP3876917B2 (en) Steel continuous casting method
WO1995005911A1 (en) Mould fluxes and their use in the continuous casting of steel
JP2994718B2 (en) Flux for continuous casting
KR100490986B1 (en) Mold flux for manufacturing electromagnetic steel sheets and method thereof
JP5811878B2 (en) Spherical granule mold powder for continuous casting of steel
JP2855070B2 (en) Mold powder for continuous casting of steel
JP4697092B2 (en) Mold powder for continuous casting of molten metal
JPH04138858A (en) Flux for continuous casting
JP2004001017A (en) Mold powder for continuous casting of steel
JP2020142262A (en) Method for producing mold powder for continuous casting and continuous casting method for steel
JPS63174767A (en) Powder for casting dead soft carbon steel
KR101471505B1 (en) Starch solution containing mold flux and the manufacturing method thereof
JP3238073B2 (en) Front powder for continuous casting of steel
JPS6096350A (en) Floating flask for continuous casting
JP4121635B2 (en) Steel continuous casting method
KR20020024064A (en) Synthetic sodium calcium silicate composite for mold flux and mold flux manufactured therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

R150 Certificate of patent or registration of utility model

Ref document number: 5062604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees