JP5062592B2 - Zinc oxide nanoparticles for ultraviolet light emitters and solutions in which the nanoparticles are dispersed - Google Patents

Zinc oxide nanoparticles for ultraviolet light emitters and solutions in which the nanoparticles are dispersed Download PDF

Info

Publication number
JP5062592B2
JP5062592B2 JP2008177567A JP2008177567A JP5062592B2 JP 5062592 B2 JP5062592 B2 JP 5062592B2 JP 2008177567 A JP2008177567 A JP 2008177567A JP 2008177567 A JP2008177567 A JP 2008177567A JP 5062592 B2 JP5062592 B2 JP 5062592B2
Authority
JP
Japan
Prior art keywords
zinc oxide
nanoparticles
surfactant
ultraviolet light
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008177567A
Other languages
Japanese (ja)
Other versions
JP2008297551A (en
Inventor
毅 佐々木
洋行 薄井
禎樹 清水
直人 越崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008177567A priority Critical patent/JP5062592B2/en
Publication of JP2008297551A publication Critical patent/JP2008297551A/en
Application granted granted Critical
Publication of JP5062592B2 publication Critical patent/JP5062592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

本発明は、紫外線光源や紫外線レーザーなどに応用できる紫外線発光体用酸化亜鉛ナノ微粒子及び該ナノ微粒子が分散した溶液に関するものである。 The present invention relates to zinc oxide nanoparticles for ultraviolet light emitters that can be applied to an ultraviolet light source, an ultraviolet laser, and the like, and a solution in which the nanoparticles are dispersed.

酸化亜鉛は紫外線吸収材料や光触媒材料や蛍光管用の蛍光体として利用されてきた。中でもこれまで古くから蛍光体として利用されてきた酸化亜鉛は緑色発光の蛍光体として利用されており、これらの粉末はZnO粉末を還元性雰囲気中で焼成し、酸化亜鉛格子内に過剰Zn及び酸素欠陥を導入することによって調製されてきた(非特許文献1参照)。   Zinc oxide has been used as an ultraviolet absorbing material, a photocatalytic material, and a fluorescent material for a fluorescent tube. Among them, zinc oxide, which has been used as a phosphor for a long time, has been used as a phosphor emitting green light, and these powders are obtained by firing ZnO powder in a reducing atmosphere and adding excess Zn and oxygen in the zinc oxide lattice. It has been prepared by introducing defects (see Non-Patent Document 1).

また、酸化亜鉛はそのバンドギャップエネルギーが3.3eVであり、室温で60meVもの高い励起子結合エネルギーを有することから、室温で紫外域の短波長光を放出する材料として期待されている。このような紫外光発光素子は、紫外光の光源のみならず、高密度光メモリ、バイオ応用、環境応用などに利用が可能であることからその材料開発が進められてきた。
近年、レーザーMBE(Molecular Beam Epitaxy)法によって室温のもとで作成された、ナノメートルオーダーの六角柱から構成される酸化亜鉛薄膜より紫外線領域の発光並びにレーザー発振が観測された。
Zinc oxide has a band gap energy of 3.3 eV and has an exciton binding energy as high as 60 meV at room temperature. Therefore, zinc oxide is expected as a material that emits short wavelength light in the ultraviolet region at room temperature. Such ultraviolet light-emitting elements have been developed because they can be used not only for ultraviolet light sources but also for high-density optical memories, bio-applications, and environmental applications.
In recent years, light emission in the ultraviolet region and laser oscillation have been observed from a zinc oxide thin film composed of hexagonal columns of nanometer order, which is prepared at room temperature by a laser MBE (Molecular Beam Epitaxy) method.

これらを契機に紫外光光源としての酸化亜鉛粒子の開発が盛んに進められるようになってきた。このような紫外線発光用酸化亜鉛粒子の場合、その粒子サイズがナノメートルオーダーになると、粒子表面上には通常欠陥が多数存在するようになり、この欠陥に基づく電子準位が関与した緑色の発光強度が強くなると共に、バンド間遷移に基づく紫外発光の強度が低下する問題があった。
このようなことから、紫外発光の強度を増加させるために、欠陥準位が関与した緑色の発光を完全に無くした紫外線発光用酸化亜鉛ナノ微粒子及びその製造方法が求められてきた。
As a result, development of zinc oxide particles as an ultraviolet light source has been actively promoted. In the case of such zinc oxide particles for ultraviolet light emission, when the particle size is on the order of nanometers, a large number of defects usually exist on the particle surface, and green light emission in which electron levels based on these defects are involved. There has been a problem that the intensity of ultraviolet light emission based on the transition between bands decreases as the intensity increases.
For these reasons, in order to increase the intensity of ultraviolet light emission, there has been a demand for zinc oxide nanoparticles for ultraviolet light emission that completely eliminate green light emission involving defect levels and a method for producing the same.

従来技術として、例えば酸化亜鉛微粒子の製造方法には、原料酸化亜鉛を含む水スラリー中に二酸化炭素ガスを導入し、塩基性炭酸亜鉛を生成する工程、これにより得られた塩基性炭酸亜鉛を乾燥する工程、及び当該乾燥された塩基性炭酸亜鉛を粉砕しながら加熱分解し酸化亜鉛とする工程からなる酸化亜鉛微粒子の製造方法がある(特許文献1参照)。
また、混合終了時点でのpHが11〜13となる亜鉛含有液の所定量と、アルカリ水溶液の所定量とを、0.1秒〜600秒の間で攪拌しながら混合し、次いで混合液中の酸化亜鉛微粉末を熟成することを特徴とする製造方法がある(特許文献2参照)。さらには、カルボン酸亜鉛塩とアルコールとを含む混合物を加熱することにより、酸化亜鉛結晶の生成反応を行わせる製造方法等がある(特許文献3参照)。
As a conventional technique, for example, in a method of producing zinc oxide fine particles, a step of introducing basic carbon carbonate by introducing carbon dioxide gas into a water slurry containing raw material zinc oxide, and drying the basic zinc carbonate obtained thereby And a method of producing fine zinc oxide particles comprising a step of thermally decomposing the dried basic zinc carbonate while pulverizing it into zinc oxide (see Patent Document 1).
Further, a predetermined amount of the zinc-containing liquid having a pH of 11 to 13 at the end of mixing and a predetermined amount of the alkaline aqueous solution are mixed with stirring for 0.1 second to 600 seconds, and then in the mixed liquid There is a production method characterized by aging a zinc oxide fine powder (see Patent Document 2). Furthermore, there is a production method in which a zinc oxide crystal production reaction is performed by heating a mixture containing a carboxylic acid zinc salt and an alcohol (see Patent Document 3).

特許文献3については、アルカリ金属元素及び/又はハロゲン元素を含まない紫外線発光酸化亜鉛微粒子の製造が可能であり、これらの粒子は波長0.4〜0.6μm域に発光スペクトルのピークトップを有しない紫外線発光酸化亜鉛微粒子が製造できるとされているので、有効であると考えられる。
しかしながら、これらの従来の方法は全て化学的な湿式合成法であり、工程が多段階にわたると共に非常に複雑で、pHの精密な制御あるいは熱処理等が必要であった。すなわち、熱処理等を必要とせずに極めて単純な工程で結晶性の高い、緑色の発光を完全に排除した紫外線発光用酸化亜鉛ナノ微粒子を製造できる技術はなく、従来技術はいずれも製造コストがかかり非能率的という問題があった。
蛍光体同学会 編、オーム社1987刊、蛍光体ハンドブック、157頁 特開2001−342021 特開2002−284527 特開2003−268368
With respect to Patent Document 3, ultraviolet light emitting zinc oxide fine particles containing no alkali metal element and / or halogen element can be produced, and these particles have a peak top of the emission spectrum in the wavelength range of 0.4 to 0.6 μm. It is thought that it is effective because it is said that it can produce ultra-violet light emitting zinc oxide fine particles.
However, all of these conventional methods are chemical wet synthesis methods, and the process is multi-stage and very complicated, requiring precise pH control or heat treatment. In other words, there is no technology capable of producing zinc oxide nanoparticles for ultraviolet light emission that eliminates green light emission, which has high crystallinity and eliminates green light emission, in a very simple process without requiring heat treatment or the like. There was a problem of inefficiency.
Fluorescent Material Society, edited by Ohmsha 1987, phosphor handbook, 157 pages JP 2001-342021 A JP 2002-284527 A JP2003-268368

本発明の目的は、上記従来技術の問題点を解消し、非常に単純な工程で結晶性の高い、緑色の発光を消失させた紫外線光源や紫外線レーザーなどに応用できる紫外線発光体用酸化亜鉛ナノ微粒子及び該ナノ微粒子が分散した溶液を提供することにある。 The object of the present invention is to solve the above-mentioned problems of the prior art, and to apply a zinc oxide nanoparticle for an ultraviolet light emitter that can be applied to an ultraviolet light source, an ultraviolet laser, or the like having a high crystallinity and disappearing green light emission by a very simple process. It is to provide a solution in which fine particles and the nano fine particles are dispersed.

本発明の目的を達成するために鋭意研究を進めたところ、陰イオン界面活性剤を除くさまざまなイオン性を有する界面活性剤水溶液中で金属亜鉛表面に強いエネルギーを印加して、亜鉛を水溶液中に原子、イオン、クラスターとして放出させ、界面活性剤と水との存在下で反応させることにより、酸化亜鉛ナノ微粒子の熱処理等を必要とせずに、非常に簡単な工程で得ることができるとの知見を得た。特に、金属亜鉛ターゲットに両イオン性界面活性剤水溶液中でパルスレーザー光の集光照射によりエネルギーを印加してパルスレーザーアブレーションを行うと緑色の発光を完全になくした紫外線発光用酸化亜鉛ナノ微粒子及びその分散溶液が高効率で得られることを見出した。 As a result of diligent research to achieve the object of the present invention, a strong energy was applied to the surface of zinc metal in a surfactant aqueous solution having various ionic properties excluding an anionic surfactant, so that zinc was contained in the aqueous solution. By releasing them as atoms, ions, and clusters and reacting them in the presence of a surfactant and water, they can be obtained in a very simple process without the need for heat treatment of zinc oxide nanoparticles. Obtained knowledge. In particular, zinc oxide nanoparticles for ultraviolet light emission that completely eliminate green light emission when pulse laser ablation is performed by applying energy by focused irradiation of pulsed laser light in a zwitterionic surfactant aqueous solution to a zinc metal target and It has been found that the dispersion can be obtained with high efficiency.

本発明は、この知見に基づいて、
1.無加熱の陰イオン界面活性剤を除く界面活性剤水溶液中で金属亜鉛のレーザーアブレーションによって形成された酸化亜鉛ナノ微粒子が2nm〜100nmの平均粒径を有していることを特徴とする紫外線発光体用結晶性酸化亜鉛ナノ微粒子又は該ナノ微粒子が分散した溶液。
2.酸化亜鉛ナノ微粒子が2nm〜15nmの平均粒径を有していることを特徴とする上記1記載の紫外線発光体用結晶性酸化亜鉛ナノ微粒子又は該ナノ微粒子が分散した溶液、を提供する。
The present invention is based on this finding.
1. An ultraviolet light emitter characterized in that zinc oxide nanoparticles formed by laser ablation of metallic zinc in an aqueous surfactant solution excluding an unheated anionic surfactant have an average particle diameter of 2 nm to 100 nm Crystalline zinc oxide nanoparticles for use or a solution in which the nanoparticles are dispersed.
2. 2. The crystalline zinc oxide nanoparticle for ultraviolet light emitters according to 1 above, wherein the zinc oxide nanoparticle has an average particle diameter of 2 nm to 15 nm, or a solution in which the nanoparticle is dispersed.

また、さらに本発明は、
3.金属亜鉛の純度が98%以上であることを特徴とする上記1又は2記載の紫外線発光体用結晶性酸化亜鉛ナノ微粒子又は該ナノ微粒子が分散した溶液。
4.界面活性剤が、陽イオン性、両イオン性又は非イオン性界面活性剤であることを特徴とする上記1〜3のいずれかに記載の紫外線発光体用結晶性酸化亜鉛ナノ微粒子又は該ナノ微粒子が分散した溶液。
5.界面活性剤が両イオン性界面活性剤であるアルキルベタイン(C2n+1(CH)CHCOO)であることを特徴とする上記1〜4のいずれかに記載の紫外線発光体用結晶性酸化亜鉛ナノ微粒子又は該ナノ微粒子が分散した溶液、を提供する。
Furthermore, the present invention provides
3. 3. The crystalline zinc oxide nanoparticles for ultraviolet light emitters according to 1 or 2 above, wherein the purity of metallic zinc is 98% or more, or a solution in which the nanoparticles are dispersed.
4). 4. The crystalline zinc oxide nanoparticle for ultraviolet light emitters or the nanoparticle according to any one of 1 to 3 above, wherein the surfactant is a cationic, amphoteric or nonionic surfactant Is a dispersed solution.
5. Ultraviolet light emitting according to any one of the above 1 to 4, characterized in that a - surfactant alkylbetaines a zwitterionic surfactant (C n H 2n + 1 N + (CH 3) 2 CH 2 COO) A crystalline zinc oxide nanoparticle for body use or a solution in which the nanoparticle is dispersed is provided.

本発明は、結晶性が高く、緑色の発光を消失させた紫外線光源あるいは紫外線レーザーなどに応用できる紫外線発光体用酸化亜鉛ナノ微粒子及び該ナノ微粒子が分散した溶液が得られ、さらに非常に簡単な工程で、紫外線発光体用酸化亜鉛ナノ微粒子を製造できるという優れた効果を有する。   The present invention provides a zinc oxide nanoparticle for ultraviolet light emitters and a solution in which the nanoparticle is dispersed, which can be applied to an ultraviolet light source or an ultraviolet laser that has high crystallinity and eliminates green light emission. In the process, it has an excellent effect that zinc oxide nanoparticles for ultraviolet light emitters can be produced.

次に、本発明を図に基づいて説明する。図1に酸化亜鉛ナノ微粒子及びその分散溶液の製造装置(縦型セル方式製造装置(図1−1)及び横型セル方式製造装置(図1−2))を示す。これらの装置を使用して、レーザー装置2からレーザー光反射ミラー3、集光レンズ4を介して、石英ガラスセル5に装入した亜鉛金属板ターゲット7にレーザーを照射する。
亜鉛金属板ターゲット7には98%以上の純度の亜鉛金属板を使用し、この亜鉛金属板ターゲット7を石英ガラスセル5の底部又は軸10に固定する。石英ガラスセル5中には界面活性剤水溶液、例えば両イオン性界面活性剤水溶液8を適量加える。符号9は台、符号11はギアボックス、符号12はターゲット回転駆動用モーターである。
Next, the present invention will be described with reference to the drawings. FIG. 1 shows a device for producing zinc oxide nanoparticles and a dispersion thereof (vertical cell manufacturing device (FIG. 1-1) and horizontal cell manufacturing device (FIG. 1-2)). Using these devices, the laser beam is irradiated from the laser device 2 to the zinc metal plate target 7 inserted in the quartz glass cell 5 through the laser light reflecting mirror 3 and the condenser lens 4.
A zinc metal plate having a purity of 98% or more is used for the zinc metal plate target 7, and the zinc metal plate target 7 is fixed to the bottom or the shaft 10 of the quartz glass cell 5. An appropriate amount of a surfactant aqueous solution, for example, an amphoteric surfactant aqueous solution 8 is added to the quartz glass cell 5. Reference numeral 9 denotes a table, reference numeral 11 denotes a gear box, and reference numeral 12 denotes a target rotation driving motor.

界面活性剤としては、使用するレーザー光の波長に対して強い光吸収が無ければ、陰イオン性界面活性剤以外の、陽イオン性、両イオン性、非イオン性界面活性剤など、どのようなものでも酸化亜鉛ナノ微粒子の製造に使用出来る。
例えば、陽イオン性の界面活性剤であるアルキルトリメチルアンモニウムクロライドやアルキルトリメチルアンモニウムブロマイド、両イオン性界面活性剤であるアルキルベタインやアミドベタイン、非イオン性界面活性剤であるポリオキシエチレンアルキルエーテルやポリオオキシエチレンアルキルアリルエーテルなどが挙げられる。
Any surfactant other than anionic surfactants, such as cationic, amphoteric, and nonionic surfactants, can be used as long as there is no strong light absorption with respect to the wavelength of the laser beam used. Can be used to produce zinc oxide nanoparticles.
For example, cationic surfactants such as alkyltrimethylammonium chloride and alkyltrimethylammonium bromide, amphoteric surfactants such as alkylbetaine and amidebetaine, and nonionic surfactants such as polyoxyethylene alkyl ether and polyol. Examples thereof include oxyethylene alkyl allyl ether.

これらの界面活性剤の中でも、特に両イオン性界面活性剤が酸化亜鉛ナノ微粒子の製造に好適である。この中でも、アルキルベタイン(C2n+1(CH)CHCOO)が特に有効である。また、アルキルベタイン中のアルキル鎖中の炭素数nは6から22が良く、特にn=12が望ましい。
両イオン性界面活性剤の濃度は0.0001 mol/L以上あれば良く、望ましくは界面活性剤の25°Cにおける臨界ミセル濃度以上で、さらに望ましくは臨界ミセル濃度の5倍以上界面活性剤の飽和濃度以下である。
Among these surfactants, amphoteric surfactants are particularly suitable for producing zinc oxide nanoparticles. Among these, alkyl betaines (C n H 2n + 1 N + (CH 3) 2 CH 2 COO -) is particularly effective. In addition, the number n of carbon atoms in the alkyl chain in the alkylbetaine is preferably 6 to 22, particularly preferably n = 12.
The concentration of the zwitterionic surfactant may be 0.0001 mol / L or more, preferably at least the critical micelle concentration at 25 ° C. of the surfactant, more preferably at least 5 times the critical micelle concentration. Below the saturation concentration.

使用可能なレーザー装置のレーザー光波長は使用する界面活性剤に対して強い吸収が無ければ良く、例えばパルスNd:YAGレーザーの基本波(波長:1064nm)、第二高調波(波長:532nm)、第三高調波(波長:355nm)などが利用できる。
レーザー光のエネルギーとしては、ターゲットの亜鉛金属が水溶液中で原子、イオン、クラスターとして放出されるエネルギーがあれば良く、エネルギー源としてパルスレーザーを用いる場合には亜鉛金属のレーザーアブレーション現象が発現するに十分に足りるエネルギーがあればよい。
The laser beam wavelength of the usable laser device only needs to have no strong absorption with respect to the surfactant to be used. Third harmonics (wavelength: 355 nm) can be used.
As the energy of the laser beam, it is sufficient that the target zinc metal is released in the form of atoms, ions, and clusters in an aqueous solution. When a pulse laser is used as an energy source, the laser ablation phenomenon of zinc metal appears. It is enough if there is enough energy.

1パルスあたりのエネルギーとしては50mJ/pulse以上あれば十分である。ターゲット表面上でのレーザー光のエネルギー密度は1J/cm以上あれば良く、望ましくは2J/cmである。
このようにして得られる酸化亜鉛ナノ微粒子の大きさは平均粒径が2nmから100nmのものが得られ、さらに平均粒径2nmから15nmの微細な酸化亜鉛ナノ微粒子を得ることができる。また、このようにして得られた酸化亜鉛ナノ微粒子は結晶性の高いナノ微粒子であり、熱処理を施さなくても結晶化していることが本発明の大きな特徴の一つである。このように、熱処理工程を必要としないので、製造が容易であるという著しい効果を有する。
As energy per pulse, 50 mJ / pulse or more is sufficient. The energy density of the laser beam on the target surface may be 1 J / cm 2 or more, preferably 2 J / cm 2 .
The size of the zinc oxide nanoparticles obtained in this way is obtained with an average particle size of 2 nm to 100 nm, and fine zinc oxide nanoparticles with an average particle size of 2 nm to 15 nm can be obtained. In addition, the zinc oxide nanoparticle obtained in this way is a nanoparticle with high crystallinity, and it is one of the major features of the present invention that it is crystallized without being subjected to heat treatment. Thus, since a heat treatment process is not required, it has the remarkable effect that manufacture is easy.

次に実際に製造した例について説明する。図2には調製及び分析手順を示した。表1に使用した代表的な界面活性剤名称、化学式、イオン性の種別、25°Cにおける臨界ミセル濃度を示した。
以降、陽イオン性界面活性剤であるセチルトリメリルアンモニウムブロマイドをCTABと、両イオン性界面活性剤であるラウリルジメチルアミノ酢酸ベタインをLDAと、非イオン性界面活性剤であるオクタエチレングリーコールモノデシルエーテルをOGMと表記する。
また、使用した界面活性剤は表に記載のものに限られることは無く、陰イオン界面活性剤を除く様々な陽イオン性、両イオン性、非イオン性界面活性剤が使用できることはいうまでもない。
Next, an actually manufactured example will be described. FIG. 2 shows the preparation and analysis procedure. Table 1 shows representative surfactant names, chemical formulas, ionic types, and critical micelle concentrations at 25 ° C. used.
Thereafter, cetyltrimeryl ammonium bromide, a cationic surfactant, CTAB, lauryl dimethylaminoacetic acid betaine, an amphoteric surfactant, LDA, and octaethylene glycol monodecyl, a nonionic surfactant. Ether is denoted as OGM.
Further, the surfactants used are not limited to those listed in the table, and it goes without saying that various cationic, amphoteric and nonionic surfactants can be used except for anionic surfactants. Absent.

界面活性剤の水溶液を調製し、界面活性剤の濃度は臨界ミセル濃度が使用する水溶液の濃度の範囲内に入るように0.0001 mol/Lから0.1 mol/Lの範囲で変化させた。
純度99.9%の亜鉛板(サイズ20mm×20mm、厚さ5mm)を図1の装置に装着し、パルスNd:YAGレーザーの第三高調波(波長:355nm)で10Hzの繰り返し周波数を使用した。
100mJ/pulseのパルスエネルギーでターゲット上のレーザー光のスポットサイズが直径1.4mmとなるようにレンズの位置を調製した後、界面活性剤水溶液中でターゲット回転駆動用モーターを介してターゲットを回転させながらパルスレーザー光を1時間照射した。
A surfactant aqueous solution was prepared, and the surfactant concentration was changed in the range of 0.0001 mol / L to 0.1 mol / L so that the critical micelle concentration was within the range of the aqueous solution used. .
A zinc plate of 99.9% purity (size 20 mm × 20 mm, thickness 5 mm) was mounted on the apparatus of FIG. 1, and a repetition frequency of 10 Hz was used with the third harmonic (wavelength: 355 nm) of a pulsed Nd: YAG laser. .
After adjusting the lens position so that the laser beam spot size on the target has a diameter of 1.4 mm with a pulse energy of 100 mJ / pulse, the target is rotated in the surfactant aqueous solution via the target rotation drive motor. The pulse laser beam was irradiated for 1 hour.

これにより亜鉛が水溶液中に原子、イオン、クラスターとして放出され、界面活性剤と水の存在下で直ちに反応し水溶液中で結晶性酸化亜鉛ナノ微粒子が形成され、酸化亜鉛ナノ微粒子が分散した溶液が熱処理等の工程を必要とせずに、極めて簡単に得られた。
得られた酸化亜鉛ナノ微粒子が分散した溶液は特別な処理をすることなく、そのままの状態で蛍光スペクトルを測定した。また、得られた固形物を遠心分離の後洗浄し、さらに洗浄と遠心分離を数回繰返して酸化亜鉛ナノ微粒子を回収した。
得られた酸化亜鉛ナノ微粒子は乾燥空気中常温で乾燥させた後にX線回折分析、走査型電子顕微鏡観察による構造解析を行った。
As a result, zinc is released into the aqueous solution as atoms, ions, and clusters, and immediately reacts in the presence of the surfactant and water to form crystalline zinc oxide nanoparticles in the aqueous solution. It was obtained very easily without the need for heat treatment and other steps.
The solution in which the obtained zinc oxide nanoparticles were dispersed was measured for the fluorescence spectrum as it was without any special treatment. Further, the obtained solid was washed after centrifugation, and washing and centrifugation were repeated several times to collect zinc oxide nanoparticles.
The obtained zinc oxide nanoparticles were dried at room temperature in dry air, and then subjected to structural analysis by X-ray diffraction analysis and scanning electron microscope observation.

図3に、表1に示した界面活性剤の、それぞれの臨界ミセル濃度の水溶液中及びイオン交換水中で調製した酸化亜鉛ナノ微粒子のX線回折パターンを示した。
図3に示す通り、どの試料とも酸化亜鉛に基づく回折線が観察され、酸化亜鉛が形成されていることがわかった。
図4に表1に示した界面活性剤の、それぞれの臨界ミセル濃度の水溶液中及びイオン交換水中で調製した酸化亜鉛ナノ微粒子の走査型電子顕微鏡写真を示した。両イオン性界面活性剤であるLDA水溶液中で作成した酸化亜鉛ナノ微粒子の粒子サイズが最も小さく、2nmから15nmの範囲にあった。
FIG. 3 shows the X-ray diffraction patterns of the zinc oxide nanoparticles prepared in the aqueous solutions having the critical micelle concentrations and the ion-exchanged water of the surfactants shown in Table 1.
As shown in FIG. 3, a diffraction line based on zinc oxide was observed in any sample, and it was found that zinc oxide was formed.
FIG. 4 shows scanning electron micrographs of the zinc oxide nanoparticles prepared in the aqueous solutions having the critical micelle concentrations and the ion-exchanged water of the surfactants shown in Table 1. The particle size of the zinc oxide nanoparticle prepared in the LDA aqueous solution which is an amphoteric surfactant was the smallest and was in the range of 2 nm to 15 nm.

このように両イオン性界面活性剤の25°Cにおける臨界ミセル濃度以上の濃度の水溶液中で調製した酸化亜鉛微粒子の粒子サイズは他の界面活性剤に比較して小さいことが明らかとなった。
図5に0.01 mol/Lの濃度のLDA水溶液中及びイオン交換水中で調製した酸化亜鉛ナノ微粒子が分散した水溶液の蛍光スペクトルを示した。
ここでは励起光には340nmの光を使用した。界面活性剤水溶液及びイオン交換水のみからはまったく発光が無いことを確認しており、発光は全て酸化亜鉛ナノ微粒子の分散溶液中に含まれる酸化亜鉛ナノ微粒子からの蛍光発光である。
Thus, it became clear that the particle size of the zinc oxide fine particles prepared in an aqueous solution having a concentration equal to or higher than the critical micelle concentration at 25 ° C. of the amphoteric surfactant was smaller than that of other surfactants.
FIG. 5 shows the fluorescence spectrum of an aqueous solution in which zinc oxide nanoparticles prepared in an LDA aqueous solution having a concentration of 0.01 mol / L and ion-exchanged water are dispersed.
Here, 340 nm light was used as excitation light. It has been confirmed that there is no light emission from only the aqueous surfactant solution and ion-exchanged water, and all light emission is fluorescence emission from the zinc oxide nanoparticles contained in the dispersion of zinc oxide nanoparticles.

イオン交換水並びに陰イオン性界面活性剤を除く様々な界面活性剤水溶液を用いて調製した酸化亜鉛ナノ微粒子の分散溶液の蛍光スペクトルでは、特徴的な以下のピークが観測された。
1)363nmの紫外光線の発光ピーク、2)385nmに観察される溶媒である水分子からのラマン散乱ピーク、3)540nmにピークをもつブロードな緑色光蛍光ピークの以上3つのピークである。
In the fluorescence spectra of the dispersions of zinc oxide nanoparticles prepared using various aqueous surfactant solutions excluding ion-exchanged water and anionic surfactants, the following characteristic peaks were observed.
1) an emission peak of ultraviolet light at 363 nm, 2) a Raman scattering peak from water molecules as a solvent observed at 385 nm, and 3) at least three peaks of a broad green light fluorescence peak having a peak at 540 nm.

363nmの紫外光の発光ピーク強度及び540nmにピークをもつブロードな緑色光の蛍光ピーク強度は界面活性剤の種類や濃度によって強い影響を受けるとともに、その絶対強度は酸化亜鉛粒子の量によっても影響を受ける。
そこで、これらのピーク強度を酸化亜鉛ナノ微粒子中に含まれる酸化亜鉛の量によって規格化し、界面活性剤の種類や濃度に対して363nmの紫外光発光強度及び540nmの緑色光発光強度のプロットを行った。
The emission peak intensity of ultraviolet light at 363 nm and the fluorescence peak intensity of broad green light having a peak at 540 nm are strongly influenced by the type and concentration of the surfactant, and the absolute intensity is also influenced by the amount of zinc oxide particles. receive.
Therefore, these peak intensities are normalized by the amount of zinc oxide contained in the zinc oxide nanoparticles, and the ultraviolet light emission intensity at 363 nm and the green light emission intensity at 540 nm are plotted against the type and concentration of the surfactant. It was.

図6にこの結果を示した。両イオン性界面活性剤であるLDAの場合、その濃度が増加するに従い緑色光発光強度が減少すると共に紫外光発光強度が増加しており、LDA濃度が0.01 mol/Lに達すると、完全に緑色光発が消失して、紫外光発光だけとなった。
この現象は0.01 mol/L以上の界面活性剤濃度で観察されると共に、その他の両イオン性界面活性剤でも同様の現象が観察された。
FIG. 6 shows the result. In the case of LDA which is an amphoteric surfactant, the green light emission intensity decreases and the ultraviolet light emission intensity increases as the concentration increases, and when the LDA concentration reaches 0.01 mol / L, The emission of green light disappeared, and only ultraviolet light was emitted.
This phenomenon was observed at a surfactant concentration of 0.01 mol / L or more, and the same phenomenon was observed with other amphoteric surfactants.

このように、界面活性剤として両イオン性界面活性剤水溶液中で金属亜鉛板をレーザーアブレーションすると、2〜15nmの結晶性酸化亜鉛ナノ微粒子を熱処理等の工程を必要とせずに、極めて簡単に調製でき、臨界ミセル濃度以上の濃度の水溶液を用いれば微粒子からの緑色蛍光発光強度を低下させることができる。さらに臨界ミセル濃度の5倍以上の界面活性剤水溶液を用いればの緑色蛍光発光の無い紫外光発光用酸化亜鉛ナノ微粒子が調製できることが明らかとなった。   Thus, when a metal zinc plate is laser ablated in an aqueous solution of a zwitterionic surfactant as a surfactant, 2-15 nm crystalline zinc oxide nanoparticles can be prepared very easily without the need for a heat treatment step or the like. If an aqueous solution having a concentration equal to or higher than the critical micelle concentration is used, the intensity of green fluorescence emitted from the fine particles can be reduced. Furthermore, it was revealed that zinc oxide nanoparticles for ultraviolet light emission without green fluorescence can be prepared by using a surfactant aqueous solution having a critical micelle concentration of 5 times or more.

以上に記載するように、陽イオン性、両イオン性又は非イオン性界面活性剤水溶液中、特に両イオン性界面活性剤水溶液中での液相レーザーアブレーションを用いることにより、緑色発光のない紫外光発光用酸化亜鉛ナノ微粒子が極めて簡単な工程で製造及び調製できる。このような酸化亜鉛ナノ微粒子は室温で紫外域の短波長光を放出する事が可能で、紫外光の光源のみならず、高密度光メモリ、バイオ応用、環境応用などに利用が可能である。
また、アブレーション後に得られる酸化亜鉛ナノ微粒子が分散した溶液についても同様に紫外光の光源に応用できるが、特に生体分子との相互作用を利用した細胞内マーカーなどのバイオ応用などには極めて容易に利用が可能である。
さらに、分散した溶液を原料としてコーティング剤やポリマーとのナノコンポジット原料等にも利用が可能であり、その産業応用範囲は極めて広いと期待される。
As described above, by using liquid phase laser ablation in a cationic, amphoteric or nonionic surfactant aqueous solution, particularly in an aqueous solution of a zwitterionic surfactant, ultraviolet light without green light emission Zinc oxide nanoparticles for light emission can be produced and prepared in a very simple process. Such zinc oxide nanoparticles can emit ultraviolet short-wavelength light at room temperature, and can be used not only for ultraviolet light sources but also for high-density optical memory, biotechnology, and environmental applications.
Similarly, a solution in which zinc oxide nanoparticles obtained after ablation are dispersed can be applied to an ultraviolet light source, but it is extremely easy to apply to biomarkers such as intracellular markers using interactions with biomolecules. It can be used.
Furthermore, the dispersed solution can be used as a raw material for a nanocomposite material with a coating agent or a polymer, and its industrial application range is expected to be extremely wide.

酸化亜鉛ナノ微粒子およびその分散溶液の製造装置の概略説明図である(1−1は縦型セル方式の製造装置、1−2は横型セル方式の製造装置)。It is a schematic explanatory drawing of the manufacturing apparatus of a zinc oxide nanoparticle and its dispersion solution (1-1 is a manufacturing apparatus of a vertical cell system, 1-2 is a manufacturing apparatus of a horizontal cell system). 酸化亜鉛ナノ微粒子の調製および分析工程を示す図である。It is a figure which shows the preparation and analysis process of a zinc oxide nanoparticle. 酸化亜鉛ナノ微粒子のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of a zinc oxide nanoparticle. 酸化亜鉛ナノ微粒子の走査型電子顕微鏡写真を示す図である。It is a figure which shows the scanning electron micrograph of a zinc oxide nanoparticle. 0.01 mol/Lの濃度のLDA水溶液中及びイオン交換水中で調製した酸化亜鉛ナノ微粒子が分散した水溶液の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of the aqueous solution in which the zinc oxide nanoparticle prepared in the LDA aqueous solution of the density | concentration of 0.01 mol / L was disperse | distributed. 界面活性剤の種類と濃度が変化した場合の363nmの紫外光発光強度及び540nmの緑色光発光強度の変化を示す図である。It is a figure which shows the change of the ultraviolet light emission intensity of 363 nm and the green light emission intensity of 540 nm when the kind and density | concentration of surfactant change.

符号の説明Explanation of symbols

1−1 縦型セル方式製造装置
1−2 横型セル方式製造装置
2 レーザー装置
3 レーザー光反射ミラー
4 集光レンズ
5 石英ガラスセル
6 レーザー光
7 亜鉛金属板ターゲット
8 界面活性剤水溶液
9 台
10 軸
11 ギアボックス
12 ターゲット回転駆動用モーター
1-1 Vertical Cell System Manufacturing Device 1-2 Horizontal Cell System Manufacturing Device 2 Laser Device 3 Laser Light Reflecting Mirror 4 Condensing Lens 5 Quartz Glass Cell 6 Laser Light 7 Zinc Metal Plate Target 8 Surfactant Aqueous Solution 9 Unit 10 Axis 11 Gearbox 12 Target rotation drive motor

Claims (5)

無加熱の陰イオン界面活性剤を除く界面活性剤水溶液中で金属亜鉛のレーザーアブレーションによって形成された酸化亜鉛ナノ微粒子が2nm〜100nmの平均粒径を有していることを特徴とする紫外線発光体用結晶性酸化亜鉛ナノ微粒子又は該ナノ微粒子が分散した溶液。 An ultraviolet light emitter characterized in that zinc oxide nanoparticles formed by laser ablation of metallic zinc in an aqueous surfactant solution excluding an unheated anionic surfactant have an average particle diameter of 2 nm to 100 nm Crystalline zinc oxide nanoparticles for use or a solution in which the nanoparticles are dispersed. 酸化亜鉛ナノ微粒子が2nm〜15nmの平均粒径を有していることを特徴とする請求項1記載の紫外線発光体用結晶性酸化亜鉛ナノ微粒子又は該ナノ微粒子が分散した溶液。   The crystalline zinc oxide nanoparticles for ultraviolet light emitters or a solution in which the nanoparticles are dispersed, wherein the zinc oxide nanoparticles have an average particle diameter of 2 nm to 15 nm. 金属亜鉛の純度が98%以上であることを特徴とする請求項1又は2記載の紫外線発光体用結晶性酸化亜鉛ナノ微粒子又は該ナノ微粒子が分散した溶液。   The crystalline zinc oxide nanoparticles for ultraviolet light emitters or a solution in which the nanoparticles are dispersed according to claim 1 or 2, wherein the purity of metallic zinc is 98% or more. 界面活性剤が、陽イオン性、両イオン性又は非イオン性界面活性剤であることを特徴とする請求項1〜3のいずれかに記載の紫外線発光体用結晶性酸化亜鉛ナノ微粒子又は該ナノ微粒子が分散した溶液。   The crystalline zinc oxide nanoparticle for ultraviolet light emitters according to any one of claims 1 to 3, wherein the surfactant is a cationic, amphoteric or nonionic surfactant. A solution in which fine particles are dispersed. 界面活性剤が両イオン性界面活性剤であるアルキルベタイン(C2n+1(CH)CHCOO)であることを特徴とする請求項1〜4のいずれかに記載の紫外線発光体用結晶性酸化亜鉛ナノ微粒子又は該ナノ微粒子が分散した溶液。 UV according to any one of claims 1 to 4, characterized in that a - surfactant alkylbetaines a zwitterionic surfactant (C n H 2n + 1 N + (CH 3) 2 CH 2 COO) Crystalline zinc oxide nanoparticles for luminous bodies or a solution in which the nanoparticles are dispersed.
JP2008177567A 2008-07-08 2008-07-08 Zinc oxide nanoparticles for ultraviolet light emitters and solutions in which the nanoparticles are dispersed Expired - Fee Related JP5062592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008177567A JP5062592B2 (en) 2008-07-08 2008-07-08 Zinc oxide nanoparticles for ultraviolet light emitters and solutions in which the nanoparticles are dispersed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008177567A JP5062592B2 (en) 2008-07-08 2008-07-08 Zinc oxide nanoparticles for ultraviolet light emitters and solutions in which the nanoparticles are dispersed

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004082024A Division JP4843779B2 (en) 2004-03-22 2004-03-22 Method for producing zinc oxide nanoparticles for ultraviolet light emitters

Publications (2)

Publication Number Publication Date
JP2008297551A JP2008297551A (en) 2008-12-11
JP5062592B2 true JP5062592B2 (en) 2012-10-31

Family

ID=40171340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008177567A Expired - Fee Related JP5062592B2 (en) 2008-07-08 2008-07-08 Zinc oxide nanoparticles for ultraviolet light emitters and solutions in which the nanoparticles are dispersed

Country Status (1)

Country Link
JP (1) JP5062592B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ2009747A3 (en) * 2009-11-11 2011-05-18 Ceské vysoké ucení technické v Praze Fakulta jaderná a fyzikálne inženýrská Process for preparing nanoparticulate scintillator based on zinc oxide with high intensity luminescence

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2996928B2 (en) * 1997-03-07 2000-01-11 科学技術振興事業団 Optical semiconductor device and method for manufacturing the same
JP4056272B2 (en) * 2002-03-19 2008-03-05 株式会社日本触媒 Ultraviolet light emitter and zinc oxide particles for ultraviolet light emitter

Also Published As

Publication number Publication date
JP2008297551A (en) 2008-12-11

Similar Documents

Publication Publication Date Title
JP4843779B2 (en) Method for producing zinc oxide nanoparticles for ultraviolet light emitters
JP5306181B2 (en) Method for producing tungsten trioxide powder for photocatalyst, tungsten trioxide powder for photocatalyst and photocatalyst product
Chandrappa et al. Electrochemical synthesis and photocatalytic property of zinc oxide nanoparticles
Dorranian et al. Photoluminescence of ZnO nanoparticles generated by laser ablation in deionized water
Yogesh et al. Photoluminescence properties of carbon nanoparticles synthesized from activated carbon powder (4% ash) by laser ablation in solution
JP5030108B2 (en) Method for producing zinc oxide nanoparticles for ultraviolet light emitters
Gao et al. BaTiF 6: Mn 4+ bifunctional microstructures with photoluminescence and photocatalysis: hydrothermal synthesis and controlled morphology
JP5589168B2 (en) Gold nanoparticle and dispersion thereof, gold nanoparticle production method, nanoparticle production system
Bharat et al. Polyol mediated solvothermal synthesis and characterization of spindle shaped La2 (MoO4) 3: Eu3+ phosphors
Nakamura et al. Micronization of red-emitting K2SiF6: Mn4+ phosphor by pulsed laser irradiation in liquid
Taniguchi et al. NIR-excited NIR and visible luminescent properties of amphipathic YVO 4: Er 3+/Yb 3+ nanoparticles
Pan et al. Regulating mid-infrared to visible fluorescence in monodispersed Er3+-doped La2O2S (La2O2SO4) nanocrystals by phase modulation
JP2009280479A (en) Dendritic substance and structure containing the same
JP5062592B2 (en) Zinc oxide nanoparticles for ultraviolet light emitters and solutions in which the nanoparticles are dispersed
JP4524405B2 (en) Tin-containing indium oxide nanoparticles and method for producing a dispersion thereof
JP2009215342A (en) Method for producing fluorescent particle
Aneesh et al. Highly luminescent undoped and Mn-doped ZnS nanoparticles by liquid phase pulsed laser ablation
Xu et al. Large-scale fabrication of porous YBO3 hollow microspheres with tunable photoluminescence
CN107759941B (en) Preparation method of quasi-waveguide structure dye/polymer film doped with silver cube-silicon dioxide core-shell material
JP4106432B2 (en) Organic-inorganic nanocomposite and method for producing the same
de Azevedo et al. Laser ablation in liquid: an unconventional, fast, clean and straightforward technique for material preparation
Zamiri et al. Upconversion properties of the Er-doped Y2O3, Bi2O3 and Sb2O3 nanoparticles fabricated by pulsed laser ablation in liquid media
JP5131824B2 (en) Method for producing sol
JP2011162628A (en) Fluorescent nanoparticle and method for producing the same
KR101309664B1 (en) Method of manufacturing a nano structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees