JP5061726B2 - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
JP5061726B2
JP5061726B2 JP2007141661A JP2007141661A JP5061726B2 JP 5061726 B2 JP5061726 B2 JP 5061726B2 JP 2007141661 A JP2007141661 A JP 2007141661A JP 2007141661 A JP2007141661 A JP 2007141661A JP 5061726 B2 JP5061726 B2 JP 5061726B2
Authority
JP
Japan
Prior art keywords
magnetic flux
magnetic
winding
filter circuit
flux filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007141661A
Other languages
Japanese (ja)
Other versions
JP2008301551A (en
Inventor
勉 谷本
崇 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007141661A priority Critical patent/JP5061726B2/en
Publication of JP2008301551A publication Critical patent/JP2008301551A/en
Application granted granted Critical
Publication of JP5061726B2 publication Critical patent/JP5061726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Windings For Motors And Generators (AREA)

Description

本発明は、インバータ制御により運転周波数が変化する電動機に関し、特に、固定子および可動子を構成する磁性体における鉄損を低減させる技術に関する。   The present invention relates to an electric motor whose operating frequency is changed by inverter control, and more particularly to a technique for reducing iron loss in a magnetic body constituting a stator and a mover.

電動機の鉄損は、固定子や可動子を構成する磁性体(コア材)を磁化したときに失われる電気エネルギであり、巻線の抵抗によって失われるエネルギ(銅損)と合わせて、電動機の効率低下の要因となることが知られている。鉄損は、ヒステリシス損失と渦電流損失の和として表されるが、特に渦電流損失は磁性体を通過する磁束の周波数が高くなるほど損失の比率が大きくなる。また、鉄損は磁性体の熱エネルギとして消費されるため、鉄損が大きくなると磁性体の発熱量が大きくなり、例えば永久磁石を備えた電動機では永久磁石の減磁による性能低下につながる。   The iron loss of an electric motor is the electric energy lost when magnetizing a magnetic body (core material) that constitutes a stator or mover, and together with the energy lost by the resistance of the winding (copper loss), It is known to cause a decrease in efficiency. Iron loss is expressed as the sum of hysteresis loss and eddy current loss. In particular, eddy current loss has a higher loss ratio as the frequency of magnetic flux passing through the magnetic body increases. Further, since iron loss is consumed as heat energy of the magnetic material, when the iron loss increases, the amount of heat generated by the magnetic material increases. For example, in an electric motor equipped with a permanent magnet, the performance deteriorates due to demagnetization of the permanent magnet.

そこで、磁性体を通過する磁束の高調波成分による鉄損を低減させる技術が種々検討されており、例えば特許文献1においては、集中巻の巻線を備えた回転電機において、固定子の突極部(ステータティース)の半径方向に沿って、例えばギャップを介在させる、或いは透磁率の低い部材を設置するなどの手法で磁気抵抗障壁を設けることで、ひとつの突極内で短絡してトルクに寄与しない磁束成分を低減させ、鉄損を低減させるという技術が提案されている。
特表2003−518904号公報
Therefore, various techniques for reducing the iron loss due to the harmonic component of the magnetic flux passing through the magnetic body have been studied. For example, in Patent Document 1, in a rotating electrical machine having concentrated windings, salient poles of a stator By providing a magnetoresistive barrier along the radial direction of the part (stator teeth), for example, by interposing a gap or by installing a member with low magnetic permeability, a short circuit occurs in one salient pole to reduce torque. Techniques have been proposed for reducing magnetic flux components that do not contribute and reducing iron loss.
Special table 2003-518904 gazette

しかしながら、特許文献1に記載されている技術では、磁気抵抗を増大させる磁気抵抗障壁を磁路中に設けるようにしているため、磁路を通過する磁束のトルクに寄与する基本波磁束成分までも低下させてしまい、トルクの低下を招くという問題点があった。   However, in the technique described in Patent Document 1, a magnetic resistance barrier that increases the magnetic resistance is provided in the magnetic path. Therefore, even the fundamental wave magnetic flux component that contributes to the torque of the magnetic flux that passes through the magnetic path. There has been a problem that the torque is reduced.

本発明は、以上のような従来の実情に鑑みて創案されたものであって、トルクの低下を招くことなく、磁性体を通過する周波数の高い磁束の高調波成分による鉄損を効果的に低減させることができる電動機を提供することを目的としている。   The present invention was devised in view of the conventional situation as described above, and effectively eliminates iron loss due to harmonic components of high-frequency magnetic flux passing through a magnetic body without causing a reduction in torque. It aims at providing the electric motor which can be reduced.

本発明に係る電動機は、固定子や回転子などの磁性体を通過する磁束と鎖交し、磁性体の一部を内包するように巻回された磁束フィルタ用巻線を有する磁束フィルタ回路を設ける。そして磁束フィルタ回路の遮断周波数を電動機の運転状態に応じて可変としている。この磁束フィルタ回路により遮断周波数以上の磁束の高調波成分を減衰させることによって前記課題を解決する。このような磁束フィルタ回路を備える電動機では、磁性体を通過する磁束の高調波成分のエネルギが磁束フィルタ用巻線に蓄えられ、その一部は磁束フィルタ用巻線のジュール損失として消費される。 An electric motor according to the present invention includes a magnetic flux filter circuit having a magnetic flux filter winding wound so as to interlink with a magnetic flux passing through a magnetic body such as a stator and a rotor and to include a part of the magnetic body. provided Ru. The cutoff frequency of the magnetic flux filter circuit is variable according to the operating state of the motor. This problem is solved by attenuating the harmonic component of the magnetic flux above the cutoff frequency by this magnetic flux filter circuit. In an electric motor provided with such a magnetic flux filter circuit, the energy of harmonic components of the magnetic flux passing through the magnetic material is stored in the magnetic flux filter winding, and part of it is consumed as Joule loss in the magnetic flux filter winding.

本発明によれば、磁性体を通過する磁束のトルクに寄与する基本波成分を低下させることなく高調波成分のみを低下させることができるので、トルクの低下を招くことなく磁性体における鉄損を効果的に低減させることができる。また、磁束の高調波成分によるエネルギが磁束フィルタ用巻線に蓄えられるので、磁性体の発熱を磁束フィルタ用巻線の発熱として集約することができ、磁性体の熱を放熱するための機構を簡素化することが可能となり、また、永久磁石を備えた電動機では永久磁石の減磁抑制の効果が期待できる。   According to the present invention, since only the harmonic component can be reduced without reducing the fundamental wave component that contributes to the torque of the magnetic flux passing through the magnetic body, the iron loss in the magnetic body can be reduced without causing a reduction in torque. It can be effectively reduced. In addition, since the energy due to the harmonic component of the magnetic flux is stored in the magnetic flux filter winding, the heat generation of the magnetic body can be concentrated as the heat generation of the magnetic flux filter winding, and a mechanism for radiating the heat of the magnetic body is provided. In addition, the electric motor including the permanent magnet can be expected to suppress the demagnetization of the permanent magnet.

以下、本発明の具体的な実施形態について、図面を参照しながら詳細に説明する。なお、ここでは永久磁石型同期電動機に本発明を適用した例について説明するが、本発明は、永久磁石型同期電動機に限らず、巻線と、磁性体で構成される固定子および可動子とを備え、巻線の電流がインバータにより制御される構成のあらゆるタイプの電動機に対して広く適用可能である。   Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. In addition, although the example which applied this invention to the permanent magnet type | mold synchronous motor is demonstrated here, this invention is not restricted to a permanent magnet type | mold synchronous motor, A winding, the stator and movable element which are comprised with a magnetic body, And is widely applicable to all types of electric motors having a configuration in which the winding current is controlled by an inverter.

[第1の実施形態]
図1は、本発明を適用した永久磁石型同期電動機の一例を示す図であり、同永久磁石型同期電動機の回転軸方向に対して垂直な方向の断面図である。
[First Embodiment]
FIG. 1 is a diagram illustrating an example of a permanent magnet type synchronous motor to which the present invention is applied, and is a cross-sectional view in a direction perpendicular to the rotation axis direction of the permanent magnet type synchronous motor.

この図1に示す永久磁石型同期電動機1は、磁性体の電磁鋼板を積層して構成された固定子2と、固定子2を格納するケース3と、磁性体の電磁鋼板を積層して内部に永久磁石5を埋め込んで構成された回転子4と、固定子2の回転子4側に突出する複数の突極部(ステータティース)2aに各々巻回され、インバータ制御により通電して磁束を発生させる固定子巻線6とを備える。そして、特に本発明を適用した永久磁石型同期電動機1に特徴的な構成として、固定子2の複数の突極部2aをその基端側で連結するバックヨーク部2bに、図2に示す磁束フィルタ回路7を構成する磁束フィルタ用巻線8が巻回されている。   A permanent magnet type synchronous motor 1 shown in FIG. 1 includes a stator 2 formed by stacking magnetic electromagnetic steel plates, a case 3 for storing the stator 2, and a magnetic electromagnetic steel plate stacked inside. Are wound around a rotor 4 formed by embedding permanent magnets 5 and a plurality of salient poles (stator teeth) 2a projecting toward the rotor 4 of the stator 2, and energized by inverter control to generate magnetic flux. And a stator winding 6 to be generated. As a characteristic configuration of the permanent magnet type synchronous motor 1 to which the present invention is applied, the magnetic flux shown in FIG. 2 is connected to the back yoke portion 2b that connects the plurality of salient pole portions 2a of the stator 2 on the base end side. A magnetic flux filter winding 8 constituting the filter circuit 7 is wound.

磁束フィルタ回路7は、磁気回路を形成する固定子2や回転子4の磁性体を通過する磁束の高調波成分を減衰させるためのものであり、図2に示すように、固定子2のバックヨーク部2bに巻回された磁束フィルタ用巻線8と、この磁束フィルタ用巻線8を含む回路全体の導体抵抗9とから構成されている。   The magnetic flux filter circuit 7 is for attenuating the harmonic component of the magnetic flux passing through the magnetic body of the stator 2 and the rotor 4 forming the magnetic circuit. As shown in FIG. The magnetic flux filter winding 8 is wound around the yoke portion 2b, and the conductor resistance 9 of the entire circuit including the magnetic flux filter winding 8 is formed.

図3は、固定子2や回転子4の磁性体により形成される磁気回路と磁束フィルタ回路7との関係を模式的に示す図である。以下、この図3を用いて、磁束フィルタ回路7の作用を説明する。   FIG. 3 is a diagram schematically showing the relationship between the magnetic circuit formed by the magnetic bodies of the stator 2 and the rotor 4 and the magnetic flux filter circuit 7. Hereinafter, the operation of the magnetic flux filter circuit 7 will be described with reference to FIG.

固定子巻線6及び永久磁石5によって発生した磁束をΦとし、固定子2内の磁束の変化によって磁束フィルタ用巻線8に発生した誘起電圧に基づいて生じた磁束をΦとすると、固定子2内を通過する磁束Φは、下記式(1)により表される。
Φ=Φ−Φ ・・・(1)
また、各パラメータは下記式(2)〜(4)で表される。
Φ=Li ・・・(2)
(L:磁束フィルタ用巻線8のインダクタンス、i:磁束フィルタ用回路7の電流)
=dΦ/dt ・・・(3)
=Ri ・・・(4)
(v:磁束フィルタ用巻線8の誘起電圧、R:導体抵抗9)
The magnetic flux generated by the stator windings 6 and the permanent magnet 5 and [Phi e, when the magnetic flux generated on the basis of the induced voltage generated in the flux filter winding 8 by a change in magnetic flux in the stator 2 and [Phi L, The magnetic flux Φ passing through the stator 2 is represented by the following formula (1).
Φ = Φ e −Φ L (1)
Each parameter is expressed by the following formulas (2) to (4).
Φ L = Li (2)
(L: inductance of the magnetic flux filter winding 8, i: current of the magnetic flux filter circuit 7)
v L = dΦ / dt (3)
v L = Ri (4)
(V L : induced voltage of magnetic flux filter winding 8, R: conductor resistance 9)

式(2)〜(4)より、固定子2内を通過する磁束Φは、下記式(5)のようになる。

Figure 0005061726
From the equations (2) to (4), the magnetic flux Φ passing through the stator 2 is represented by the following equation (5).
Figure 0005061726

式(5)より、磁束フィルタ回路7を設けた場合の、固定子巻線6及び永久磁石5によって発生した磁束をΦeに対する、固定子2内を通過する磁束Φのゲイン特性gは、下記式(6)のように表される。

Figure 0005061726
From the equation (5), the gain characteristic g of the magnetic flux Φ passing through the stator 2 with respect to the magnetic flux generated by the stator winding 6 and the permanent magnet 5 when the magnetic flux filter circuit 7 is provided is It is expressed as (6).
Figure 0005061726

ゲイン特性gの一例を図4に示す。このようにゲイン特性gは1次遅れ要素のゲイン特性となるため、遮断周波数ωc付近より高い周波数で磁束Φが減衰する。この特性を利用し、遮断周波数ωcが永久磁石型同期電動機1のトルクに寄与する基本周波数よりも高く、且つ、インバータのスイッチング周波数等の高周波より低くなるように、磁束フィルタ回路7によるゲイン特性gを設定する。これにより、トルクを維持したまま磁束Φの高調波成分のみを減衰させることができ、固定子2や回転子4の磁性体部分における鉄損を低減することが可能となる。また、永久磁石5を内蔵する回転子4での鉄損が低減すれば、この回転子4の発熱に伴う永久磁石5の温度上昇も抑制することができ、永久磁石5の温度上昇による減磁を抑制する効果も期待できる。   An example of the gain characteristic g is shown in FIG. Thus, since the gain characteristic g is a gain characteristic of a first-order lag element, the magnetic flux Φ is attenuated at a frequency higher than the vicinity of the cutoff frequency ωc. Using this characteristic, the gain characteristic g by the magnetic flux filter circuit 7 is set so that the cutoff frequency ωc is higher than the fundamental frequency contributing to the torque of the permanent magnet type synchronous motor 1 and lower than a high frequency such as the switching frequency of the inverter. Set. Thereby, only the harmonic component of magnetic flux (PHI) can be attenuated, maintaining a torque, and it becomes possible to reduce the iron loss in the magnetic body part of the stator 2 or the rotor 4. FIG. Further, if the iron loss in the rotor 4 incorporating the permanent magnet 5 is reduced, the temperature rise of the permanent magnet 5 due to the heat generation of the rotor 4 can be suppressed, and the demagnetization due to the temperature rise of the permanent magnet 5 can be suppressed. The effect which suppresses can also be expected.

磁束フィルタ回路7で吸収した磁束Φの高調波成分によるエネルギは、磁束フィルタ用巻線8に蓄えられ、一部は磁束フィルタ用巻線8のジュール損失として消費される。つまり、磁束フィルタ回路7は、これまで固定子2や回転子4の磁性体部分に分布していた鉄損による熱エネルギを磁束フィルタ用巻線8に集約する機能を有している。したがって、例えば図1に示すように、固定子2を格納するケース3に冷媒流路10を設け、この冷媒流路10内を流れる冷媒との熱交換により磁束フィルタ用巻線8の熱を放熱できるようにすれば、永久磁石型同期電動機1の運転に伴う熱を効率よく放熱することが可能となり、放熱機構の構造を簡素化することが可能となる。   Energy due to the harmonic component of the magnetic flux Φ absorbed by the magnetic flux filter circuit 7 is stored in the magnetic flux filter winding 8, and part of it is consumed as Joule loss in the magnetic flux filter winding 8. That is, the magnetic flux filter circuit 7 has a function of consolidating the thermal energy due to iron loss, which has been distributed in the magnetic parts of the stator 2 and the rotor 4, into the magnetic flux filter winding 8. Therefore, for example, as shown in FIG. 1, the refrigerant flow path 10 is provided in the case 3 in which the stator 2 is stored, and the heat of the magnetic flux filter winding 8 is radiated by heat exchange with the refrigerant flowing in the refrigerant flow path 10. If it is made possible, it becomes possible to efficiently dissipate heat accompanying the operation of the permanent magnet type synchronous motor 1, and the structure of the heat dissipation mechanism can be simplified.

なお、図1に示した例では、磁束フィルタ回路7の磁束フィルタ用巻線8を固定子2のバックヨーク部2bに巻回しているが、磁束フィルタ用巻線8は、磁気回路を形成する固定子2や回転子4の磁性体を通過する磁束Φと鎖交し、磁性体の一部を内包するように巻回されていればよく、様々な配置のバリエーションが考えられる。例えば図5に示すように、固定子2の突極部2aの先端に磁束フィルタ用巻線8を巻回するようにしてもよいし、図6に示すように、固定子2の突極部2aとバックヨーク部2bとの境界部分に磁束フィルタ用巻線8を巻回するようにしてもよい。また、図7に示すように、回転子4側に磁束フィルタ用巻線8を巻回することもできる。これら図5乃至図7の例のように、磁性体を内包するように磁束フィルタ用巻線8を巻回することで、図1に示した例と同様に、磁束Φの高調波成分を減衰させて、磁性体部分における鉄損を低減させることができる。   In the example shown in FIG. 1, the magnetic flux filter winding 8 of the magnetic flux filter circuit 7 is wound around the back yoke portion 2b of the stator 2, but the magnetic flux filter winding 8 forms a magnetic circuit. It only has to be wound so as to interlink with the magnetic flux Φ passing through the magnetic body of the stator 2 or the rotor 4 so as to include a part of the magnetic body, and various arrangement variations are conceivable. For example, as shown in FIG. 5, a magnetic flux filter winding 8 may be wound around the tip of the salient pole portion 2 a of the stator 2, or as shown in FIG. 6, the salient pole portion of the stator 2. You may make it wind the coil | winding 8 for magnetic flux filters in the boundary part of 2a and the back yoke part 2b. Further, as shown in FIG. 7, a magnetic flux filter winding 8 can be wound around the rotor 4. As in the examples of FIGS. 5 to 7, by winding the magnetic flux filter winding 8 so as to contain the magnetic material, the harmonic component of the magnetic flux Φ is attenuated as in the example shown in FIG. Thus, iron loss in the magnetic part can be reduced.

また、図5や図6の例のように、固定子2側に磁束フィルタ用巻線8を巻回した場合には、磁束Φの高調波成分による熱エネルギが固定子2側の磁束フィルタ用巻線8に集約されるので、図1に示した例と同様、固定子2を格納するケース3に冷媒が流通する冷媒流路10を設けて磁束フィルタ用巻線8の熱を放熱できるようにすれば、永久磁石型同期電動機1の運転に伴う熱を効率よく放熱することが可能となり、放熱機構の構造を簡素化することが可能となる。   When the magnetic flux filter winding 8 is wound around the stator 2 as in the examples of FIGS. 5 and 6, the thermal energy due to the harmonic component of the magnetic flux Φ is increased for the magnetic flux filter on the stator 2 side. Since it is concentrated in the winding 8, as in the example shown in FIG. 1, it is possible to dissipate heat from the magnetic flux filter winding 8 by providing the refrigerant flow path 10 through which the refrigerant flows in the case 3 that houses the stator 2. By doing so, it becomes possible to efficiently dissipate the heat associated with the operation of the permanent magnet type synchronous motor 1, and the structure of the heat dissipation mechanism can be simplified.

一方、図7に示す例のように、回転子4側に磁束フィルタ用巻線8を巻回した場合には、磁束Φの高調波成分による熱エネルギが回転子4側の磁束フィルタ用巻線8に集約されるので、例えば、回転子4の中央に連結されたシャフト11内などに冷媒流路12を設けて、この冷媒流路12内を流れる冷媒との熱交換により磁束フィルタ用巻線8の熱を放熱できるようにすれば、上述した例と同様に、永久磁石型同期電動機1の運転に伴う熱を効率よく放熱することが可能となり、放熱機構の構造を簡素化することが可能となる。   On the other hand, when the magnetic flux filter winding 8 is wound on the rotor 4 side as in the example shown in FIG. 7, the heat energy due to the harmonic component of the magnetic flux Φ is reflected on the magnetic flux filter winding on the rotor 4 side. 8, for example, a refrigerant flow path 12 is provided in the shaft 11 connected to the center of the rotor 4, and the magnetic flux filter winding is exchanged by heat exchange with the refrigerant flowing in the refrigerant flow path 12. If the heat of 8 can be dissipated, the heat associated with the operation of the permanent magnet type synchronous motor 1 can be efficiently dissipated and the structure of the heat dissipating mechanism can be simplified as in the above example. It becomes.

[第2の実施形態]
次に、本発明の第2の実施形態について説明する。図8は、本実施形態の磁束フィルタ回路7を示す簡易回路図であり、図9は、固定子2や回転子4の磁性体により形成される磁気回路と本実施形態の磁束フィルタ回路7との関係を模式的に示す図である。これら図8及び図9に示すように、本実施形態では、上述した第1の実施形態で説明した磁束フィルタ回路7に、抵抗値に温度依存性がある抵抗体20を追加して、回路全体の導体抵抗9を抵抗体20に置き換えている。なお、永久磁石型同期電動機1の基本構成は第1の実施形態で説明した構成(図1、図5乃至図7参照)と同様であるので、ここでは詳細な説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 8 is a simplified circuit diagram showing the magnetic flux filter circuit 7 of the present embodiment, and FIG. 9 shows a magnetic circuit formed by the magnetic bodies of the stator 2 and the rotor 4 and the magnetic flux filter circuit 7 of the present embodiment. It is a figure which shows typically the relationship. As shown in FIGS. 8 and 9, in this embodiment, a resistor 20 having a temperature dependency on the resistance value is added to the magnetic flux filter circuit 7 described in the first embodiment, so that the entire circuit is obtained. The conductor resistance 9 is replaced with a resistor 20. Since the basic configuration of the permanent magnet type synchronous motor 1 is the same as the configuration described in the first embodiment (see FIGS. 1 and 5 to 7), detailed description is omitted here.

永久磁石型同期電動機1のトルクに寄与する基本周波数は、永久磁石型同期電動機1の運転状態(回転速度)に応じて変化するので、永久磁石型同期電動機1の広い運転範囲で磁束フィルタ回路7による鉄損低減の効果を適切に発揮させるためには、磁束フィルタ回路7によるゲイン特性gを永久磁石型同期電動機1の運転状態に合わせて変化させて、遮断周波数ωcを最適な値に設定できるようにすることが望ましい。   Since the fundamental frequency that contributes to the torque of the permanent magnet type synchronous motor 1 changes according to the operating state (rotational speed) of the permanent magnet type synchronous motor 1, the magnetic flux filter circuit 7 can be used over a wide operating range of the permanent magnet type synchronous motor 1. In order to properly exhibit the effect of reducing the iron loss due to the magnetic flux, the gain characteristic g by the magnetic flux filter circuit 7 can be changed in accordance with the operating state of the permanent magnet type synchronous motor 1, and the cutoff frequency ωc can be set to an optimum value. It is desirable to do so.

ここで、磁束フィルタ回路7のゲイン特性gを永久磁石型同期電動機1の運転状態に合わせて変化させるには、例えば磁束フィルタ用巻線8自体の抵抗値を変化させることで、磁束フィルタ用巻線8のインダクタンスLと抵抗値Rとの比率を調整してゲイン特性gを変化させることが考えられるが、磁束フィルタ用巻線8自体の抵抗値を変化させることは実際には困難である。そこで、本実施形態では、図8及び図9に示すように、温度によって抵抗値が変化する抵抗体20を磁束フィルタ回路7の磁束フィルタ用巻線8に直列に接続して、この抵抗体20の温度を温度調整機構によって調整することで抵抗値Rを変化させて、磁束フィルタ回路7によるゲイン特性gを永久磁石型同期電動機1の運転状態に合わせて変化させるようにしている。   Here, in order to change the gain characteristic g of the magnetic flux filter circuit 7 in accordance with the operation state of the permanent magnet type synchronous motor 1, for example, by changing the resistance value of the magnetic flux filter winding 8 itself, the magnetic flux filter winding is changed. Although it is conceivable to change the gain characteristic g by adjusting the ratio between the inductance L and the resistance value R of the wire 8, it is actually difficult to change the resistance value of the magnetic flux filter winding 8 itself. Therefore, in the present embodiment, as shown in FIGS. 8 and 9, a resistor 20 whose resistance value varies with temperature is connected in series to the magnetic flux filter winding 8 of the magnetic flux filter circuit 7, and this resistor 20. The resistance value R is changed by adjusting the temperature of the magnetic flux by the temperature adjustment mechanism, and the gain characteristic g by the magnetic flux filter circuit 7 is changed in accordance with the operating state of the permanent magnet type synchronous motor 1.

図10(a)及び図10(b)は、抵抗体20の抵抗値Rに応じた磁束フィルタ回路7によるゲイン特性gの変化を示したものである。これら図10(a)と図10(b)とを対比すると分かるように、抵抗体20の抵抗値Rが大きいと遮断周波数ωcが高くなり、抵抗体20の抵抗値Rが小さくなれば遮断周波数ωcは低くなる。これを利用して、永久磁石型同期電動機1の運転状態に応じて抵抗体20の温度を調整し、低速回転時には抵抗体20の抵抗値Rを小さくして遮断周波数ωcを低く設定し、高速回転時には抵抗体20の抵抗値Rを大きくして遮断周波数ωcを高く設定することにより、トルクに寄与する基本周波数の磁束を維持したまま、広い運転範囲で磁性体内の高調波成分のみを減衰させることが可能となる。   FIGS. 10A and 10B show changes in the gain characteristic g due to the magnetic flux filter circuit 7 in accordance with the resistance value R of the resistor 20. 10A and 10B, the cutoff frequency ωc increases when the resistance value R of the resistor 20 is large, and the cutoff frequency when the resistance value R of the resistor 20 decreases. ωc becomes low. By utilizing this, the temperature of the resistor 20 is adjusted according to the operating state of the permanent magnet type synchronous motor 1, and the resistance value R of the resistor 20 is reduced during low speed rotation to set the cut-off frequency ωc to be low. By increasing the resistance value R of the resistor 20 and setting the cut-off frequency ωc to be high at the time of rotation, only the harmonic components in the magnetic body are attenuated in a wide operating range while maintaining the magnetic flux of the fundamental frequency contributing to the torque. It becomes possible.

図11は、抵抗体20を含む磁束フィルタ回路7の具体的な配置例を示す図であり、図12は、抵抗体20の温度調整を行うための温度調整機構を含む制御系のブロック図である。これら図11及び図12に示す例では、ケース3に設けられた冷媒流路10を流れる冷媒との熱交換により、抵抗体20の温度調整を行うようにしている。なお、抵抗体20の温度調整を行う機構は、これら図11及び図12に示す例に限らず、適宜変更が可能である。また、これら図11及び図12に示す例では、磁束フィルタ回路7の抵抗体20としてサーミスタを用いているが、抵抗体20としては、抵抗値が温度依存性を持つものであれば、サーミスタ以外のものも利用可能である。   FIG. 11 is a diagram illustrating a specific arrangement example of the magnetic flux filter circuit 7 including the resistor 20, and FIG. 12 is a block diagram of a control system including a temperature adjustment mechanism for adjusting the temperature of the resistor 20. is there. In the examples shown in FIGS. 11 and 12, the temperature of the resistor 20 is adjusted by heat exchange with the refrigerant flowing through the refrigerant flow path 10 provided in the case 3. The mechanism for adjusting the temperature of the resistor 20 is not limited to the examples shown in FIGS. 11 and 12, and can be changed as appropriate. Further, in the examples shown in FIGS. 11 and 12, a thermistor is used as the resistor 20 of the magnetic flux filter circuit 7. However, the resistor 20 may be other than the thermistor as long as the resistance value has temperature dependence. Are also available.

図11に示すように、ケース3には、冷媒流路10の近傍の位置にサーミスタ埋め込み用の溝21が設けられている。そして、磁束フィルタ回路7の配線がこのサーミスタ埋め込み用の溝21まで引き伸ばされて、この溝21内にサーミスタ(抵抗体)20が収容されている。この溝21内に収容されたサーミスタ(抵抗体)20の温度は随時モニタリングされ、図12に示すヒータ温度制御部22に入力される。   As shown in FIG. 11, the case 3 is provided with a thermistor embedding groove 21 at a position near the refrigerant flow path 10. The wiring of the magnetic flux filter circuit 7 is extended to the groove 21 for embedding the thermistor, and the thermistor (resistor) 20 is accommodated in the groove 21. The temperature of the thermistor (resistor) 20 accommodated in the groove 21 is monitored as needed and is input to the heater temperature control unit 22 shown in FIG.

冷媒流路10の経路中には、図12に示すように、ヒータ23及びラジエータ24が配置されており、ヒータ23で加熱された冷媒でサーミスタ(抵抗体)20の温度を上昇させ、或いはラジエータ24で冷却された冷媒でサーミスタ(抵抗体)20の温度を低下させる構成となっている。   As shown in FIG. 12, a heater 23 and a radiator 24 are disposed in the refrigerant flow path 10, and the temperature of the thermistor (resistor) 20 is increased by the refrigerant heated by the heater 23, or the radiator. The temperature of the thermistor (resistor) 20 is lowered by the refrigerant cooled at 24.

永久磁石型同期電動機1は、モータ制御部25からのスイッチング素子駆動信号に応じて、インバータ26により電源27から固定子巻線6へと通電される通電電流が制御されることで、運転状態が制御される。モータ制御部25は、固定子巻線6の電流値や回転子角度検出部28で検出された回転子4の回転角度をモニタリングして、永久磁石型同期電動機1の運転状態を常時把握しており、所望の運転状態が維持されるようにフィードバック制御を行う。   The permanent magnet type synchronous motor 1 is operated in accordance with the switching element drive signal from the motor control unit 25 by controlling the energization current supplied from the power source 27 to the stator winding 6 by the inverter 26. Be controlled. The motor control unit 25 monitors the current value of the stator winding 6 and the rotation angle of the rotor 4 detected by the rotor angle detection unit 28 to constantly grasp the operating state of the permanent magnet type synchronous motor 1. Therefore, feedback control is performed so that a desired operation state is maintained.

また、ヒータ温度制御部22は、モータ制御部25から回転子回転速度を示す信号及び巻線電流指令値を示す信号を入力し、これらの信号をもとに永久磁石型同期電動機1の運転状態を把握し、それに基づいてサーミスタ(抵抗体)20の温度を決定する。そして、ヒータ温度制御部22は、サーミスタ(抵抗体)20の温度をモニタリングしながら、決定した温度になるように、ヒータ電源29に対してヒータ電流指令値を出力し、ヒータ23による冷媒の加熱量を制御する。   In addition, the heater temperature control unit 22 receives a signal indicating the rotor rotation speed and a signal indicating the winding current command value from the motor control unit 25, and the operation state of the permanent magnet type synchronous motor 1 based on these signals. And the temperature of the thermistor (resistor) 20 is determined based on this. The heater temperature control unit 22 outputs a heater current command value to the heater power supply 29 so that the determined temperature is obtained while monitoring the temperature of the thermistor (resistor) 20, and heats the refrigerant by the heater 23. Control the amount.

以上のような温度調整機構を備えることで、永久磁石型同期電動機1の運転状態に応じて、磁束フィルタ回路7のサーミスタ(抵抗体)20の温度を調整して遮断周波数ωcを最適な値に設定することができ、永久磁石型同期電動機1の広い運転範囲で、トルクに寄与する基本周波数の磁束を維持したまま高調波成分のみを減衰させて、磁性体部分における鉄損を効果的に低減させることができる。また、本実施形態では、磁束フィルタ回路7の磁束フィルタ用巻線8で吸収した磁束の高調波成分によるエネルギがサーミスタ(抵抗体)20に伝達され、一部がサーミスタ(抵抗体)20においてジュール損失として消費されるので、上述した温度調整機構がそのまま放熱機構として機能することになり、永久磁石型同期電動機1の運転に伴う熱を効率よく放熱することが可能となる。   By providing the temperature adjusting mechanism as described above, the temperature of the thermistor (resistor) 20 of the magnetic flux filter circuit 7 is adjusted according to the operating state of the permanent magnet type synchronous motor 1 so that the cutoff frequency ωc is set to an optimum value. It can be set, and in the wide operating range of the permanent magnet type synchronous motor 1, only the harmonic component is attenuated while maintaining the magnetic flux of the fundamental frequency contributing to the torque, and the iron loss in the magnetic body portion is effectively reduced. Can be made. Further, in the present embodiment, energy due to the harmonic component of the magnetic flux absorbed by the magnetic flux filter winding 8 of the magnetic flux filter circuit 7 is transmitted to the thermistor (resistor) 20, and part of the energy is joule in the thermistor (resistor) 20. Since it is consumed as a loss, the temperature adjusting mechanism described above functions as a heat dissipation mechanism as it is, and it becomes possible to efficiently dissipate heat accompanying the operation of the permanent magnet type synchronous motor 1.

[第3の実施形態]
次に、本発明の第3の実施形態について説明する。図13は、本実施形態の磁束フィルタ回路7を示す簡易回路図であり、図14は、固定子2や回転子4の磁性体により形成される磁気回路と本実施形態の磁束フィルタ回路7との関係を模式的に示す図である。これら図13及び図14に示すように、本実施形態では、上述した第2の実施形態で説明した磁束フィルタ回路7に対して、磁束フィルタ用巻線8や抵抗体20と並列に接続されたコンデンサ素子30を追加している。なお、永久磁石型同期電動機1の基本構成は第1の実施形態で説明した構成(図1、図5乃至図7参照)と同様であるので、ここでは詳細な説明を省略する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. FIG. 13 is a simplified circuit diagram showing the magnetic flux filter circuit 7 of the present embodiment. FIG. 14 shows a magnetic circuit formed by the magnetic bodies of the stator 2 and the rotor 4 and the magnetic flux filter circuit 7 of the present embodiment. It is a figure which shows typically the relationship. As shown in FIGS. 13 and 14, in this embodiment, the magnetic flux filter circuit 7 described in the second embodiment is connected in parallel with the magnetic flux filter winding 8 and the resistor 20. A capacitor element 30 is added. Since the basic configuration of the permanent magnet type synchronous motor 1 is the same as the configuration described in the first embodiment (see FIGS. 1 and 5 to 7), detailed description is omitted here.

磁束フィルタ回路7に対してコンデンサ素子30を追加した場合のゲイン特性gを上述した第1の実施形態と同様の手法で算出したものを図15に示す。この図15に示すように、磁束フィルタ回路7によるゲイン特性gは、磁束フィルタ用巻線8や抵抗体20に対してコンデンサ素子30を並列接続することで2次遅れ系の周波数特性となるため、第1の実施形態で説明したゲイン特性g(図4参照)と比べて、遮断周波数ωcより高い周波数での減衰が強く、磁束の高調波成分の抑制により効果的であることが分かる。したがって、このような磁束フィルタ回路7を設けることによって、永久磁石型同期電動機1のトルクに寄与する基本周波数の磁束を維持したまま高調波成分のみをより効果的に減衰させて、固定子2や回転子4の磁性体部分における鉄損をさらに効果的に低減させることができる。   FIG. 15 shows the gain characteristic g obtained by adding the capacitor element 30 to the magnetic flux filter circuit 7 calculated by the same method as in the first embodiment. As shown in FIG. 15, the gain characteristic g by the magnetic flux filter circuit 7 becomes a frequency characteristic of a second-order lag system by connecting a capacitor element 30 to the magnetic flux filter winding 8 and the resistor 20 in parallel. Compared with the gain characteristic g described in the first embodiment (see FIG. 4), the attenuation at a frequency higher than the cut-off frequency ωc is strong, and it can be seen that it is effective by suppressing the harmonic component of the magnetic flux. Therefore, by providing such a magnetic flux filter circuit 7, only the harmonic component is more effectively attenuated while maintaining the magnetic flux of the fundamental frequency that contributes to the torque of the permanent magnet type synchronous motor 1. The iron loss in the magnetic part of the rotor 4 can be further effectively reduced.

また、磁束フィルタ回路7のコンデンサ素子30として、静電容量に温度依存性があるものを使用し、第2の実施形態で説明したような温度調整機構によってコンデンサ素子30の温度調整を行うようにすれば、抵抗体20の場合と同様に、永久磁石型同期電動機1の運転状態に応じて磁束フィルタ回路7によるゲイン特性gを最適な状態に可変させることもできる。   Further, as the capacitor element 30 of the magnetic flux filter circuit 7, a capacitor whose temperature is dependent on temperature is used, and the temperature of the capacitor element 30 is adjusted by the temperature adjusting mechanism as described in the second embodiment. Then, similarly to the case of the resistor 20, the gain characteristic g by the magnetic flux filter circuit 7 can be varied to an optimum state according to the operation state of the permanent magnet type synchronous motor 1.

以上、本発明の具体的な適用例として第1乃至第3の実施形態を例示したが、本発明の技術的範囲は、以上の各実施形態の説明で開示した内容に限定されるものではなく、これらの開示から容易に導き得る様々な代替技術も含まれることは勿論である。例えば、以上の各実施形態は永久磁石型同期電動機に対して本発明を適用した例であるが、本発明は様々なタイプの電動機に対して有効に適用可能であり、磁束フィルタ回路7の構成や磁束フィルタ用巻線8、抵抗体20の配置などの詳細については、適用対象となる電動機の構造の違いなどに応じて適宜変更することが可能である。   The first to third embodiments have been illustrated as specific application examples of the present invention, but the technical scope of the present invention is not limited to the contents disclosed in the description of each of the above embodiments. Of course, various alternative techniques that can be easily derived from these disclosures are also included. For example, each of the above embodiments is an example in which the present invention is applied to a permanent magnet type synchronous motor. However, the present invention can be effectively applied to various types of motors, and the configuration of the magnetic flux filter circuit 7 is described. Further, details such as the arrangement of the magnetic flux filter winding 8 and the resistor 20 can be appropriately changed according to the difference in the structure of the electric motor to be applied.

本発明を適用した永久磁石型同期電動機の一例を示す図であり、同永久磁石型同期電動機の回転軸方向に対して垂直な方向の断面図である。It is a figure which shows an example of the permanent magnet type | mold synchronous motor to which this invention is applied, and is sectional drawing of a direction perpendicular | vertical with respect to the rotating shaft direction of the permanent magnet type | mold synchronous motor. 第1の実施形態における磁束フィルタ回路を示す簡易回路図である。It is a simple circuit diagram which shows the magnetic flux filter circuit in 1st Embodiment. 固定子や回転子の磁性体により形成される磁気回路と第1の実施形態における磁束フィルタ回路との関係を模式的に示す図である。It is a figure which shows typically the relationship between the magnetic circuit formed of the magnetic body of a stator and a rotor, and the magnetic flux filter circuit in 1st Embodiment. 第1の実施形態における磁束フィルタ回路によるゲイン特性の一例を示す図である。It is a figure which shows an example of the gain characteristic by the magnetic flux filter circuit in 1st Embodiment. 磁束フィルタ用巻線の配置のバリエーションを示す図である。It is a figure which shows the variation of arrangement | positioning of the coil | winding for magnetic flux filters. 磁束フィルタ用巻線の配置のバリエーションを示す図である。It is a figure which shows the variation of arrangement | positioning of the coil | winding for magnetic flux filters. 磁束フィルタ用巻線の配置のバリエーションを示す図である。It is a figure which shows the variation of arrangement | positioning of the coil | winding for magnetic flux filters. 第2の実施形態における磁束フィルタ回路を示す簡易回路図である。It is a simple circuit diagram which shows the magnetic flux filter circuit in 2nd Embodiment. 固定子や回転子の磁性体により形成される磁気回路と第2の実施形態における磁束フィルタ回路との関係を模式的に示す図である。It is a figure which shows typically the relationship between the magnetic circuit formed with the magnetic body of a stator or a rotor, and the magnetic flux filter circuit in 2nd Embodiment. 抵抗体の抵抗値に応じた磁束フィルタ回路によるゲイン特性の変化を示す図であり、(a)は抵抗体の抵抗値が大きいときのゲイン特性、(b)は抵抗体の抵抗値が小さいときのゲイン特性を示す図である。It is a figure which shows the change of the gain characteristic by the magnetic flux filter circuit according to the resistance value of a resistor, (a) is a gain characteristic when the resistance value of a resistor is large, (b) is when the resistance value of a resistor is small. It is a figure which shows the gain characteristic. 抵抗体を含む磁束フィルタ回路の具体的な配置例を示す図である。It is a figure which shows the specific example of arrangement | positioning of the magnetic flux filter circuit containing a resistor. 抵抗体の温度調整を行うための温度調整機構を含む制御系のブロック図である。It is a block diagram of a control system including a temperature adjustment mechanism for adjusting the temperature of the resistor. 第3の実施形態における磁束フィルタ回路を示す簡易回路図である。It is a simple circuit diagram which shows the magnetic flux filter circuit in 3rd Embodiment. 固定子や回転子の磁性体により形成される磁気回路と第3の実施形態における磁束フィルタ回路との関係を模式的に示す図である。It is a figure which shows typically the relationship between the magnetic circuit formed with the magnetic body of a stator or a rotor, and the magnetic flux filter circuit in 3rd Embodiment. 第3の実施形態における磁束フィルタ回路によるゲイン特性の一例を示す図である。It is a figure which shows an example of the gain characteristic by the magnetic flux filter circuit in 3rd Embodiment.

符号の説明Explanation of symbols

1 永久磁石型同期電動機
2 固定子
3 ケース
4 回転子
5 永久磁石
6 固定子巻線
7 磁束フィルタ回路
8 磁束フィルタ用巻線
9 導体抵抗
10,12 冷媒流路
20 サーミスタ(抵抗体)
22 ヒータ制御部
23 ヒータ
30 コンデンサ素子
DESCRIPTION OF SYMBOLS 1 Permanent magnet type synchronous motor 2 Stator 3 Case 4 Rotor 5 Permanent magnet 6 Stator winding 7 Magnetic flux filter circuit 8 Magnetic flux filter winding 9 Conductor resistance 10, 12 Refrigerant flow path 20 Thermistor (resistor)
22 Heater control unit 23 Heater 30 Capacitor element

Claims (5)

巻線と、磁性体で構成される固定子および可動子とを備え、前記巻線の電流がインバータにより制御される電動機において、
前記磁性体を通過する磁束と鎖交し、前記磁性体の一部を内包するように巻回された磁束フィルタ用巻線を有する磁束フィルタ回路を備え、当該磁束フィルタ回路は、前記遮断周波数が電動機の運転状態に応じて可変とされ、当該磁束フィルタ回路により、前記磁性体を通過する磁束のうち所定の遮断周波数以上の高調波成分を減衰させることを特徴とする電動機。
In an electric motor comprising a winding, a stator and a mover made of a magnetic material, and the current of the winding is controlled by an inverter,
A magnetic flux filter circuit having a magnetic flux filter winding that is interlaced with the magnetic flux passing through the magnetic material and wound so as to contain a part of the magnetic material, the magnetic flux filter circuit having the cutoff frequency An electric motor that is variable according to an operating state of the electric motor, and attenuates a harmonic component of a magnetic flux passing through the magnetic body at a predetermined cutoff frequency or higher by the magnetic flux filter circuit.
前記磁束フィルタ回路は、前記フィルタ用巻線と直列に接続された抵抗体を有し、
前記抵抗体の抵抗値が変化することにより、前記遮断周波数が可変とされていることを特徴とする請求項に記載の電動機。
The magnetic flux filter circuit has a resistor connected in series with the filter winding,
The electric motor according to claim 1, the resistance value of the resistor by changing, characterized in that the cut-off frequency is variable.
前記抵抗体がサーミスタで構成されていることを特徴とする請求項に記載の電動機。 The electric motor according to claim 2 , wherein the resistor is a thermistor. 前記抵抗体の温度を調整する温度調整機構を備えることを特徴とする請求項2又は3に記載の電動機。 The electric motor according to claim 2, further comprising a temperature adjusting mechanism that adjusts a temperature of the resistor. 前記磁束フィルタ回路は、前記磁束フィルタ用巻線又は前記抵抗体と並列に接続されたコンデンサ素子を有することを特徴とする請求項乃至の何れか1項に記載の電動機。 The flux filter circuit motor according to any one of claims 2 to 4, characterized in that it has a capacitor connected elements in parallel to the flux filter winding or the resistor.
JP2007141661A 2007-05-29 2007-05-29 Electric motor Active JP5061726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007141661A JP5061726B2 (en) 2007-05-29 2007-05-29 Electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007141661A JP5061726B2 (en) 2007-05-29 2007-05-29 Electric motor

Publications (2)

Publication Number Publication Date
JP2008301551A JP2008301551A (en) 2008-12-11
JP5061726B2 true JP5061726B2 (en) 2012-10-31

Family

ID=40174533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007141661A Active JP5061726B2 (en) 2007-05-29 2007-05-29 Electric motor

Country Status (1)

Country Link
JP (1) JP5061726B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5412922B2 (en) * 2009-03-31 2014-02-12 日産自動車株式会社 Electric motor
JP6428519B2 (en) * 2015-07-17 2018-11-28 日産自動車株式会社 Magnet temperature estimation system, motor, and magnet temperature estimation method
JP6608711B2 (en) 2016-01-15 2019-11-20 株式会社Soken Rotating electric machine and stator
CN106357054B (en) * 2016-10-19 2020-11-10 清华大学 Motor without external filter inductor and capable of suppressing high-frequency vibration noise
JP2019213370A (en) * 2018-06-06 2019-12-12 三菱電機株式会社 Rotary electric machine
JP6987023B2 (en) * 2018-06-06 2021-12-22 三菱電機株式会社 Rotating machine
GB2612055A (en) * 2021-10-20 2023-04-26 Dyson Technology Ltd Electric motor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185153A (en) * 1983-04-05 1984-10-20 Shinko Electric Co Ltd Pulse motor
JPH08222456A (en) * 1995-02-09 1996-08-30 Kyoshin Denki Kogyo Kk Harmonic current suppressor
JP2001211690A (en) * 2000-01-24 2001-08-03 Denso Corp Inverter drive type ac rotating machine

Also Published As

Publication number Publication date
JP2008301551A (en) 2008-12-11

Similar Documents

Publication Publication Date Title
JP5061726B2 (en) Electric motor
JP5931213B2 (en) Permanent magnet embedded motor and refrigeration air conditioner equipped with the same
CN101523694B (en) Efficient high-speed electric device using low-loss materials
US8987967B2 (en) Claw-pole motor with permanent magnet and electrically exciting parts
Zhu et al. Design and analysis of a new flux memory doubly salient motor capable of online flux control
JP5040441B2 (en) Electric motor
US20130249340A1 (en) Permanent-magnet-excited electric motor with heating device, and operating method
JPWO2006092924A1 (en) Magnetic body, rotor, electric motor, compressor, blower, air conditioner and in-vehicle air conditioner
JP6668844B2 (en) Rotating electric machine
Ding et al. Maximum ratio of torque to copper loss control for hybrid excited flux-switching machine in whole speed range
JP2006296120A (en) Driver and method for reluctance motor
Villani et al. PM brushless motors comparison for a Fenestron® type helicopter tail rotor
WO2011049980A1 (en) Parallel magnetic circuit motor
JP7095550B2 (en) Rotating electric machine control device and rotating electric machine control method
Cavagnino et al. Towards an IE4 efficiency class for induction motors with minimal manufacturer impact
JP5011719B2 (en) Rotating electric machine and control method thereof, compressor, blower, and air conditioner
JP2010158095A (en) Electric motor
JP5750987B2 (en) Permanent magnet rotating electric machine
JP4303579B2 (en) Three-dimensional stator structure rotating machine
JP2007166796A (en) Dynamo-electric machine and its control method, and compressor, blower, and air conditioner
Seo et al. Design method on induction motor of electric vehicle for maintaining torque performance at field weakening region
JP4130914B2 (en) Electric motor
Lindner et al. Simulation of a toroidal wound flux-switching permanent magnet machine
JP5487622B2 (en) Electric motor control device
JP2005176598A (en) Magnetic flux change arrangement for permanent magnet brush type motor using winding field coil combined with permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

R150 Certificate of patent or registration of utility model

Ref document number: 5061726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3