JP5059841B2 - Dechlorination method for aromatic chlorine compounds - Google Patents

Dechlorination method for aromatic chlorine compounds Download PDF

Info

Publication number
JP5059841B2
JP5059841B2 JP2009284232A JP2009284232A JP5059841B2 JP 5059841 B2 JP5059841 B2 JP 5059841B2 JP 2009284232 A JP2009284232 A JP 2009284232A JP 2009284232 A JP2009284232 A JP 2009284232A JP 5059841 B2 JP5059841 B2 JP 5059841B2
Authority
JP
Japan
Prior art keywords
reaction
dechlorination
aromatic chlorine
pcb
hydrodechlorination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009284232A
Other languages
Japanese (ja)
Other versions
JP2010059209A (en
Inventor
耕作 広田
弘尚 佐治木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Industrial Science Research Institute
Original Assignee
Nagoya Industrial Science Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Industrial Science Research Institute filed Critical Nagoya Industrial Science Research Institute
Priority to JP2009284232A priority Critical patent/JP5059841B2/en
Publication of JP2010059209A publication Critical patent/JP2010059209A/en
Application granted granted Critical
Publication of JP5059841B2 publication Critical patent/JP5059841B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、世界的な環境汚染物質とされているPCB等の芳香族塩素化合物から塩素を除去する方法に関し、詳しくは、簡便で危険性が少なく、経済的で、かつ、穏和な条件下でも反応が完結する芳香族塩素化合物の脱塩素化法に関する。   The present invention relates to a method for removing chlorine from aromatic chlorinated compounds such as PCBs, which are regarded as a global environmental pollutant, and more particularly, simple, less dangerous, economical and even under mild conditions. The present invention relates to a method for dechlorination of aromatic chlorine compounds in which the reaction is completed.

ポリ塩化ビフェニル(PCB)は、難分解性、高蓄積性、猛毒性を示す環境汚染物質である。そのPCBの処理法としては、1100℃以上の高温で焼却処理する方法が国内で認められているが、焼却場周辺の住民の合意が得られないためあまり実施されていない。1972年に使用が制限されて以来、国内の関連企業には膨大な量のPCBが保管されているため、事故等によって廃PCBが流出して重大な環境汚染を招く危険性が指摘されている。   Polychlorinated biphenyl (PCB) is an environmental pollutant that is hardly degradable, highly accumulative, and extremely toxic. As a method of treating the PCB, a method of incineration at a high temperature of 1100 ° C. or higher is recognized in Japan, but it has not been implemented so much because the consent of residents around the incineration site cannot be obtained. Since enormous amounts of PCBs have been stored in domestic affiliated companies since their use was restricted in 1972, it has been pointed out that waste PCBs may flow out due to accidents, etc., leading to serious environmental pollution. .

そこで、近年、上記高温焼却処理法以外にもPCBを分解する方法として、(1)アルカリ接触分解法、(2)化学抽出分解法(DMI/NaOH法)、(3)t−BuOK法、(4)接触水素脱塩素化法、(5)超臨界水酸化法、(6)金属ナトリウム法、等の各種方法が提案されている。   Therefore, in recent years, as a method for decomposing PCB other than the high temperature incineration treatment method, (1) alkali catalytic decomposition method, (2) chemical extraction decomposition method (DMI / NaOH method), (3) t-BuOK method, ( Various methods such as 4) catalytic hydrogen dechlorination, (5) supercritical water oxidation, and (6) sodium metal method have been proposed.

しかしながら、上記(4)以外の方法は、高温、高圧、または強アルカリ等の反応条件を必要とするため、装置にコストがかかる。また、(4)の接触水素脱塩素化法では、脱塩素化の反応が不完全なため、他の(1)〜(5)の方法を併用する必要が生じる。   However, methods other than the above (4) require reaction conditions such as high temperature, high pressure, or strong alkali, so that the apparatus is expensive. Further, in the catalytic hydrogen dechlorination method of (4), since the dechlorination reaction is incomplete, it is necessary to use other methods (1) to (5) in combination.

すなわち、接触水素脱塩素化法は、PCBをパラフィン系溶剤で希釈し、パラジウム・カーボン(Pd/C)触媒の存在下、水素ガスとの接触による水素化脱塩素反応を行うことにより、PCBの塩素を塩化水素として除去する方法である。この方法では、常温常圧でもある程度の脱塩素化が進行するが、その反応は途中で停止してしまい、反応は完結しない。この原因としては種々考えられるが、脱塩素化によって生成される塩化水素が、Pdを腐食するなどして反応を阻害することが原因の一つと考えられる。このように、PCBはいずれの方法によっても経済的にかつ充分に分解することができなかった。   That is, in the catalytic hydrodechlorination method, PCB is diluted with a paraffinic solvent and subjected to hydrodechlorination reaction by contact with hydrogen gas in the presence of a palladium-carbon (Pd / C) catalyst. This is a method of removing chlorine as hydrogen chloride. In this method, a certain amount of dechlorination proceeds even at room temperature and normal pressure, but the reaction stops halfway and the reaction is not completed. There are various causes for this, but it is considered that one of the causes is that hydrogen chloride produced by dechlorination inhibits the reaction by corroding Pd. Thus, PCB could not be decomposed economically and sufficiently by any method.

そこで、本発明は、簡便で危険性が少なく、経済的で、かつ、穏和な条件下でも反応が完結する芳香族塩素化合物の脱塩素化法の提供を目的としてなされた。   Accordingly, an object of the present invention is to provide a method for dechlorinating an aromatic chlorine compound that is simple, less dangerous, economical, and complete even under mild conditions.

上記目的を達するためになされた請求項1記載の発明は、芳香族塩素化合物を、鎖式アルコール(メタノールを除く)で希釈し、金属触媒の存在下、水素ガスとの接触による水素化脱塩素反応を行うことにより、上記芳香族塩素化合物から塩素を除去する芳香族塩素化合物の脱塩素化法であって、
上記芳香族塩素化合物がPCB、ダイオキシン、またはDDTであり、
上記金属触媒がPd/Cであり、
上記水素化脱塩素反応を、アンモニアまたはアミンを添加物として添加した上で常温常圧で行うことを特徴としている。
In order to achieve the above object, the invention according to claim 1 is the hydrodechlorination by diluting an aromatic chlorine compound with a chain alcohol (excluding methanol) and contacting with hydrogen gas in the presence of a metal catalyst. An aromatic chlorine compound dechlorination method for removing chlorine from the aromatic chlorine compound by performing a reaction,
The aromatic chlorine compound is PCB, dioxin, or DDT,
The metal catalyst is Pd / C;
The hydrodechlorination reaction is characterized in that it is carried out at room temperature and normal pressure after adding ammonia or amine as an additive.

本願出願人は、Pd/Cを用いた接触還元系にアンモニアまたはアミンを添加すると、PCB、ダイオキシン、またはDDTといった芳香族塩素化合物の水素化脱塩素反応が促進されることを見出した。このメカニズムは未だ不明であるが、前述の接触水素脱塩素化法で塩化水素の生成が問題となることから、アンモニアまたはアミンが塩化水素を反応系から隔離、もしくは塩化水素を中和するものと考えられる。   The present applicant has found that the addition of ammonia or amine to the catalytic reduction system using Pd / C promotes the hydrodechlorination reaction of aromatic chlorine compounds such as PCB, dioxin, or DDT. Although this mechanism is still unclear, the formation of hydrogen chloride is a problem in the above-mentioned catalytic hydrogen dechlorination method. Therefore, ammonia or amine isolates hydrogen chloride from the reaction system or neutralizes hydrogen chloride. Conceivable.

本発明では、芳香族塩素化合物の水素化脱塩素反応を、アンモニアまたはアミンを添加した上で常温常圧で行っているので、その水素化脱塩素反応を良好に促進し、常温常圧といった穏和な条件下でも脱塩素化を完結させることができる。しかも、上記添加物としては日常生活にありふれたものを使用することができ、強アルカリでもない。このため、本発明の方法を実施するための装置としても特別な装置は必要なく、例えば、一般的な反応釜と水素ボンベを用意するだけでよい。従って、本発明の芳香族塩素化合物の脱塩素化法は、簡便で危険性が少なく、経済的で、かつ、穏和な条件下でも脱塩素化の反応を完結させることができる。また、上記溶媒として鎖式アルコールを溶媒として使用した場合、水素化脱塩素反応が特に良好に推進される。これは、上記添加物の塩酸塩は鎖式アルコール中には析出しないので、上記塩酸塩が金属触媒に析出・付着することも防止できるためと考えられる。本発明では、上記溶媒として鎖式アルコールを使用しているので、上記効果に加えて、脱塩素化の反応を一層良好に完結させることができるといった効果が生じる。また、上記金属触媒としてPdのような高価な物質を使用した場合、上記塩酸塩が金属触媒に付着しないためその回収が容易となって、経済性を一層向上させることができる。
せることができる。
In the present invention, the hydrodechlorination reaction of the aromatic chlorine compound is carried out at room temperature and normal pressure after addition of ammonia or amine, so that the hydrodechlorination reaction is favorably promoted and mild such as normal temperature and normal pressure. Dechlorination can be completed even under mild conditions. Moreover, as the above-mentioned additives, those that are common in daily life can be used, and they are not strong alkalis. For this reason, a special apparatus is not required as an apparatus for carrying out the method of the present invention. For example, a general reaction kettle and a hydrogen cylinder need only be prepared. Therefore, the dechlorination method of the aromatic chlorine compound of the present invention is simple, less dangerous, economical, and can complete the dechlorination reaction even under mild conditions. In addition, when a chain alcohol is used as the solvent, the hydrodechlorination reaction is promoted particularly well. This is presumably because the hydrochloride of the additive does not precipitate in the chain alcohol, so that the hydrochloride can be prevented from precipitating and adhering to the metal catalyst. In the present invention, since the chain alcohol is used as the solvent, in addition to the above effects, the dechlorination reaction can be completed more satisfactorily. In addition, when an expensive substance such as Pd is used as the metal catalyst, the hydrochloride does not adhere to the metal catalyst, so that it can be easily recovered and the economy can be further improved.
Can be made.

請求項2記載の発明は、請求項1記載の構成に加え、上記添加物がトリエチルアミンであることを特徴としている。
本発明では、上記添加物としてトリエチルアミンを使用している。トリエチルアミンは、PCBに対する水素化脱塩素反応を特に良好に推進する。また、トリエチルアミンは、日常生活に極めてありふれた物質で、安価で入手し易い。従って、本発明では、請求項1記載の発明の効果に加えて、一層経済的で、かつ、脱塩素化の反応を一層良好に完結させることができるといった効果が生じる。また、本発明は、PCBという極めて処理が困難な汚染物質に対しても適用されているので、その発明の効果が一層顕著に表れる。
The invention described in claim 2 is characterized in that, in addition to the structure described in claim 1, the additive is triethylamine.
In the present invention, triethylamine is used as the additive. Triethylamine promotes the hydrodechlorination reaction on PCBs particularly well. Triethylamine is a substance that is extremely common in daily life, and is inexpensive and readily available. Therefore, in the present invention, in addition to the effect of the invention described in claim 1, there is an effect that it is more economical and the dechlorination reaction can be completed more satisfactorily. In addition, since the present invention is also applied to a pollutant such as PCB, which is extremely difficult to treat, the effect of the present invention becomes more prominent.

3重量%のPd/C使用時のGC−Massの変化を表すチャートである。It is a chart showing the change of GC-Mass at the time of Pd / C use of 3 weight%. 10重量%のPd/C使用時のGC−Massの変化を表すチャートである。It is a chart showing the change of GC-Mass at the time of 10 weight% Pd / C use. Pd/C不使用時のGC−Massの変化を表すチャートである。It is a chart showing the change of GC-Mass when Pd / C is not used.

次に、本発明の実施の形態を、具体的な実施例を挙げて説明する。なお、以下の実施例では、PCBとしてのアクロール1254及びアクロール1248に対して実験を施しているが、それ以外のPCBや、ダイオキシン、DDT等の他の芳香族塩素化合物に対しても同様に脱塩素化できるものと考えられる。   Next, the embodiment of the present invention will be described with reference to specific examples. In the following examples, an experiment was conducted on ACROL 1254 and ACROL 1248 as PCBs, but other PCBs, other aromatic chlorine compounds such as dioxin and DDT were similarly removed. It can be chlorinated.

100mlのナス型フラスコの中で、アクロール1254(5.00g,15.32mmol)及びトリエチルアミン(9.23g=12.70ml,91.21mmol)をメタノール(50ml)に溶解し、金属触媒としての10%Pd/C(0.15g,3重量%)を加える。溶液を撹拌しながら、反応容器をアスピレータで脱気し、水素を満たした接触還元装置を装着する。室温下で6時間撹拌を続けた後、金属触媒をセライトを用いて濾去する。濾液を減圧濃縮し、残渣に水(50ml)を加え、エーテル(80ml)で抽出する。エーテル層を水(50ml)及び飽和食塩水(50ml)で洗浄し、MgSO4 で乾燥後減圧濃縮すると、純粋なビフェニルが2.27g(96.1%)得られる。また、水層を合わせて減圧濃縮すると、トリエチルアミンの塩酸塩が10.17g(97.2%)得られる。以上の反応の反応式を下記に示す。 In a 100 ml eggplant-shaped flask, Akrol 1254 (5.00 g, 15.32 mmol) and triethylamine (9.23 g = 12.70 ml, 91.21 mmol) were dissolved in methanol (50 ml) to obtain 10% as a metal catalyst. Add Pd / C (0.15 g, 3 wt%). While stirring the solution, the reaction vessel is deaerated with an aspirator, and a catalytic reduction device filled with hydrogen is attached. After stirring at room temperature for 6 hours, the metal catalyst is filtered off using celite. The filtrate is concentrated under reduced pressure, water (50 ml) is added to the residue and extracted with ether (80 ml). The ether layer is washed with water (50 ml) and saturated brine (50 ml), dried over MgSO 4 and concentrated in vacuo to give 2.27 g (96.1%) of pure biphenyl. When the aqueous layers are combined and concentrated under reduced pressure, 10.17 g (97.2%) of triethylamine hydrochloride is obtained. The reaction formula of the above reaction is shown below.

Figure 0005059841
Figure 0005059841

次に、図1(A)は上記反応前におけるアクロール1254のGC−Massのチャートを表しており、図1(B)は反応後の溶液におけるGC−Massのチャートを表している。図1(B)に示すように、反応後の溶液からは4.8分付近のビフェニルのピーク以外は全く何も確認されない。すなわち、上記水素化脱塩素反応によって、アクロール1254の濃度はGC−Massの検出限界である0.5ppm以下に低下したことが判る。   Next, FIG. 1 (A) represents a GC-Mass chart of the Akrol 1254 before the reaction, and FIG. 1 (B) represents a GC-Mass chart in the solution after the reaction. As shown in FIG. 1 (B), nothing is confirmed from the solution after the reaction except for the biphenyl peak around 4.8 minutes. In other words, it can be seen that the concentration of Acurol 1254 was lowered to 0.5 ppm or less, which is the detection limit of GC-Mass, by the hydrodechlorination reaction.

更に、図2は、Pd/Cの使用量を10重量%に増量してGC−Massの変化を追跡したチャートであり、(A)は開始時を、(B)は15分後を、(C)は30分後を、(D)は60分後を表している。このように、Pd/Cの使用量を基質に対して10重量%とすると、反応は1時間で完全に終了し、アクロール1254の濃度は上記検出限界の0.5ppm以下に低下した。   Further, FIG. 2 is a chart in which the amount of Pd / C used is increased to 10% by weight and the change in GC-Mass is tracked, (A) shows the start time, (B) shows 15 minutes later, C) represents after 30 minutes, and (D) represents after 60 minutes. As described above, when the amount of Pd / C used was 10% by weight with respect to the substrate, the reaction was completed in 1 hour, and the concentration of Acrol 1254 was lowered to 0.5 ppm or less of the detection limit.

また、アクロール1248も全く同様に脱塩素化することができた。なお、下記の反応式に示すように、この実験では水素化脱塩素反応を24時間続けたが、実際の反応は1時間以内に終了しているものと考えられる。   Further, Acryol 1248 could be dechlorinated in exactly the same manner. As shown in the following reaction formula, the hydrodechlorination reaction was continued for 24 hours in this experiment, but the actual reaction is considered to be completed within one hour.

Figure 0005059841
Figure 0005059841

このように、本実施例の脱塩素化法では、PCBの水素化脱塩素反応をトリエチルアミンを添加して行っているので、その水素化脱塩素反応を良好に促進し、常温常圧といった穏和な条件下でも脱塩素化を完結させることができる。このメカニズムは未だ不明であるが、従来の接触水素脱塩素化法では塩化水素の生成が問題となることから、トリエチルアミンが塩化水素を反応系から隔離、もしくは塩化水素を中和するものと考えられる。しかも、トリエチルアミンは日常生活にありふれたものであり、強アルカリでもない。このため、本実施例の脱塩素化法は、前述のような一般的な装置によって実施することができる。   As described above, in the dechlorination method of this example, the hydrodechlorination reaction of PCB is carried out by adding triethylamine. Therefore, the hydrodechlorination reaction is favorably promoted, and a mild temperature such as normal temperature and normal pressure is obtained. Dechlorination can be completed even under conditions. Although this mechanism is still unclear, it is thought that triethylamine sequesters hydrogen chloride from the reaction system or neutralizes hydrogen chloride because the formation of hydrogen chloride becomes a problem in the conventional catalytic hydrogen dechlorination method. . Moreover, triethylamine is common in daily life and is not a strong alkali. For this reason, the dechlorination method of a present Example can be implemented with the above general apparatuses.

また、本実施例の脱塩素化法を工業的に実施する場合は、例えば、1kgのPCBを処理するのであれば、15〜20lの一般的な反応釜と、周知の撹拌装置と、水素供給装置としての水素ボンベと、7〜10lのメタノールと、トリエチルアミンとを用意すればよい。従って、本実施例の脱塩素化法では、簡便で危険性が少なく、経済的で、かつ、穏和な条件下でもPCBの脱塩素化を完結させることができる。   Further, when the dechlorination method of this embodiment is industrially implemented, for example, if 1 kg of PCB is processed, a 15 to 20 l general reaction kettle, a well-known stirring device, and a hydrogen supply What is necessary is just to prepare the hydrogen cylinder as a device, 7-10 l of methanol, and triethylamine. Therefore, in the dechlorination method of the present example, dechlorination of PCB can be completed even under mild conditions that are simple, less dangerous, economical and mild.

本願出願人の実験では、鉱油混じりのPCBも同様に脱塩素化できることが判明した。また、次の表1に示すコンデンサに実際に用いられているPCBも脱塩素化できることが判明し、直ぐにも実用化が可能となっている。すなわち、本実施例の脱塩素化法では、純品のPCBのみならず、実際に使用されている状態のPCBも脱塩素化が可能である。   In the experiments conducted by the present applicant, it has been found that PCBs containing mineral oil can be similarly dechlorinated. Further, it has been found that PCBs actually used in the capacitors shown in Table 1 can also be dechlorinated, and can be put into practical use immediately. That is, in the dechlorination method of this embodiment, not only a pure PCB but also a PCB actually used can be dechlorinated.

Figure 0005059841
Figure 0005059841

次に、実験の条件を種々に変更して効果の相違を考察した。なお、以下の考察では、本発明の権利範囲に含まれないものでも一応の効果があることが検証されているが、本発明は、前述の特許請求の範囲内のものに限定され、かつ、その範囲を逸脱しない限り種々の形態で実施できることは言うまでもない。   Next, the experimental conditions were variously changed and the difference in effect was considered. In the following discussion, it has been verified that even if it is not included in the scope of rights of the present invention, there is a temporary effect, but the present invention is limited to those within the scope of the above claims, and It goes without saying that various forms can be implemented without departing from the scope.

(1)溶媒に関する考察
上記水素化脱塩素反応には、使用する溶媒の影響が大きく反映される。アルコール系の溶媒(MeOH,EtOH,i−PrOH等)を用いた場合には特に良好な結果が得られた。これは、トリエチルアミン等の添加物の塩酸塩は鎖式アルコール中には析出しないので、その塩酸塩が金属触媒に析出・付着することも防止できるためと考えられる。また、金属触媒としてPdのような高価な物質を使用した場合、アルコール系の溶媒を使用すれば、上記塩酸塩が金属触媒に付着しないためその回収が容易となって経済性を一層向上させることができる。
(1) Consideration about solvent The influence of the solvent to be used is largely reflected in the hydrodechlorination reaction. Particularly good results were obtained when alcohol-based solvents (MeOH, EtOH, i-PrOH, etc.) were used. This is presumably because the hydrochloride salt of an additive such as triethylamine does not precipitate in the chain alcohol, so that the hydrochloride salt can be prevented from precipitating and adhering to the metal catalyst. In addition, when an expensive substance such as Pd is used as a metal catalyst, if an alcohol solvent is used, the hydrochloride does not adhere to the metal catalyst, so that the recovery is facilitated and the economy is further improved. Can do.

(2)添加物に関する考察
添加物として、トリエチルアミンの代わりにアンモニア、メチルアミン、アニリン、ジメチルアニリン、DBU、トリメチルアミン、ジイソプロピルエチルアミン、NaOH等を使用しても反応は完結した。但し、添加物なしでは、発明が解決しようとする課題の中で説明したように、ある程度の脱塩素化が進行するが反応は完結しない。図3は、添加物なしで10%Pd/Cを用いて水素化脱塩素反応を行った場合の、24時間後のCG−Massのチャートである。図3に示すように、この反応ではある程度の脱塩素化が進行してピークが若干左側にずれているが、PCBを除去するには到っていない。また、添加物としてピリジンやキノリンを使用すると、脱塩素化を進行するどころか逆に阻害して、全く反応は進行しなかった。従って、芳香族塩基は添加物として適していないものと考えられる。
(2) Consideration regarding additives The reaction was completed even when ammonia, methylamine, aniline, dimethylaniline, DBU, trimethylamine, diisopropylethylamine, NaOH or the like was used as an additive instead of triethylamine. However, without the additive, as described in the problem to be solved by the invention, a certain amount of dechlorination proceeds, but the reaction is not completed. FIG. 3 is a CG-Mass chart after 24 hours when hydrodechlorination reaction is performed using 10% Pd / C without additives. As shown in FIG. 3, in this reaction, a certain amount of dechlorination proceeds and the peak is slightly shifted to the left side, but PCB has not been removed. Further, when pyridine or quinoline was used as an additive, dechlorination was inhibited rather than proceeding, and the reaction did not proceed at all. Therefore, it is considered that aromatic bases are not suitable as additives.

本願出願人は、上記各添加物の効果の相違を更に詳しく比較検討するため、PCBの代わりに4−クロルジフェニルを用いてその脱塩素化の進行状況を観察した。反応式及び生成物の割合を以下に示す。   The applicant of the present application observed the progress of dechlorination using 4-chlorodiphenyl instead of PCB in order to compare and examine the difference in the effect of each additive in more detail. The reaction formula and the ratio of products are shown below.

Figure 0005059841
Figure 0005059841

Figure 0005059841
Figure 0005059841

なお、実験は4−クロルジフェニル(100mg)に対して1.2当量の塩基(或いはacceptor)、及び、10%Pd/Cを添加し、MeOH(10ml)中常温・常圧(balloon)で接触還元を行った。一定時間後、反応懸濁液1mlをシリンジで抜き取り、触媒を濾過してヘキサン(残留農薬試験用)10mlと水とで分液した。ヘキサン層をbrineで洗浄し、乾燥した後、ここから更に1mlをピペットで抜き取り、20mlにメスアップしてCG−Massにより反応の進行状況を確認した。また、H−NMRによる解析も行い、反応の進行状況をダブルチェックした。   In the experiment, 1.2 equivalents of base (or acceptor) and 10% Pd / C were added to 4-chlorodiphenyl (100 mg), and contacted at room temperature and normal pressure (balloon) in MeOH (10 ml). Reduction was performed. After a certain period of time, 1 ml of the reaction suspension was extracted with a syringe, the catalyst was filtered, and the mixture was separated with 10 ml of hexane (for residual agricultural chemical test) and water. After the hexane layer was washed with brine and dried, another 1 ml was extracted from this with a pipette, made up to 20 ml, and the progress of the reaction was confirmed by CG-Mass. In addition, analysis by H-NMR was also performed to double check the progress of the reaction.

上記実験結果から、トリエチルアミンの他、メチルアミン、アニリン、DBU、トリメチルアミン、N,N−ジイソプロピルエチルアミンも上記水素化脱塩素反応を極めて良好に推進することが判った。この傾向は、アクロール1254,アクロール1248等のPCBに対しても同様に見られるものと考えられる。   From the above experimental results, it was found that, in addition to triethylamine, methylamine, aniline, DBU, trimethylamine, and N, N-diisopropylethylamine also promote the hydrodechlorination reaction very well. It is considered that this tendency is similarly observed for PCBs such as ACROL 1254 and ACROL 1248.

(3)反応温度に関する考察
室温以外に、メタノール中環流加熱の条件下と、−20℃の条件下とで、PCBに関する上記と同様の実験を行った。メタノール中環流加熱の条件下では全く反応が進行しなかった。−20℃では反応の進行が極めて遅かった。
(3) Consideration about reaction temperature The experiment similar to the above regarding PCB was performed on the conditions of reflux heating in methanol, and -20 degreeC conditions other than room temperature. The reaction did not proceed at all under conditions of reflux heating in methanol. At −20 ° C., the reaction proceeded very slowly.

(4)触媒量に関する考察
金属触媒としての10%Pd/Cは、基質に対して3〜10重量%使用すると良好な結果が得られる。前述のように、3重量%使用すると反応終了まで5〜6時間を要し、10重量%使用すると反応終了まで1時間を要する。Pdは高価な物質であるので、その使用量を節約すべきか反応時間を短縮すべきかに応じて適切な使用量を選択すればよい。
(4) Consideration regarding catalyst amount When using 10% Pd / C as a metal catalyst in an amount of 3 to 10% by weight based on the substrate, good results are obtained. As described above, when 3% by weight is used, it takes 5 to 6 hours to complete the reaction, and when 10% by weight is used, 1 hour is required to complete the reaction. Since Pd is an expensive substance, an appropriate use amount may be selected depending on whether the use amount should be saved or the reaction time should be shortened.

(5)金属触媒に関する考察
10%Pd/C以外には実験を行っていないが、1%〜30%のPd/Cは全て使用できると考えられる。
(5) Consideration about metal catalyst Although experiment was not carried out other than 10% Pd / C, it is considered that 1% to 30% of Pd / C can be used.

(6)芳香族塩素化合物に関する考察
一般にいうPCBは多数の誘導体の混合物であるが、アクロール1254及びアクロール1248が速やかに脱塩素化できたということは、殆ど全ての異性体が同様に脱塩素化できるものと考えられる。
(6) Consideration regarding aromatic chlorine compounds Generally speaking, PCB is a mixture of many derivatives, but the fact that Acryol 1254 and Acryol 1248 could be rapidly dechlorinated is that almost all isomers are similarly dechlorinated. It is considered possible.

(7)アクロール濃度に関する考察
上記実験は、主として10%前後(MeOHに対して)のアクロール濃度で行ったが、最大40%の濃度でも反応が進行することが判明した。このため、本発明の脱塩素化法は、高濃度のPCBの処理にも充分に適用できることが判った。
(7) Consideration on the concentration of acrole The above experiment was mainly carried out at an acrole concentration of about 10% (relative to MeOH), but it was found that the reaction proceeds even at a maximum concentration of 40%. For this reason, it has been found that the dechlorination method of the present invention can be sufficiently applied to the treatment of high-concentration PCBs.

Claims (2)

芳香族塩素化合物を、鎖式アルコール(メタノールを除く)で希釈し、金属触媒の存在下、水素ガスとの接触による水素化脱塩素反応を行うことにより、上記芳香族塩素化合物から塩素を除去する芳香族塩素化合物の脱塩素化法であって、
上記芳香族塩素化合物がPCB、ダイオキシン、またはDDTであり、
上記金属触媒がPd/Cであり、
上記水素化脱塩素反応を、アンモニアまたはアミンを添加物として添加した上で常温常圧で行うことを特徴とする芳香族塩素化合物の脱塩素化法。
Aromatic chlorine compounds are diluted with chain alcohols (excluding methanol) and subjected to hydrodechlorination by contact with hydrogen gas in the presence of a metal catalyst to remove chlorine from the aromatic chlorine compounds. A method for dechlorination of aromatic chlorine compounds,
The aromatic chlorine compound is PCB, dioxin, or DDT,
The metal catalyst is Pd / C;
A method for dechlorination of an aromatic chlorine compound, wherein the hydrodechlorination reaction is carried out at room temperature and pressure after adding ammonia or an amine as an additive.
上記添加物がトリエチルアミンであることを特徴とする請求項1記載の芳香族塩素化合物の脱塩素化法。   2. The method for dechlorination of an aromatic chlorine compound according to claim 1, wherein the additive is triethylamine.
JP2009284232A 2009-12-15 2009-12-15 Dechlorination method for aromatic chlorine compounds Expired - Lifetime JP5059841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009284232A JP5059841B2 (en) 2009-12-15 2009-12-15 Dechlorination method for aromatic chlorine compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009284232A JP5059841B2 (en) 2009-12-15 2009-12-15 Dechlorination method for aromatic chlorine compounds

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000014845A Division JP4510972B2 (en) 2000-01-24 2000-01-24 Dechlorination method for aromatic chlorine compounds

Publications (2)

Publication Number Publication Date
JP2010059209A JP2010059209A (en) 2010-03-18
JP5059841B2 true JP5059841B2 (en) 2012-10-31

Family

ID=42186399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009284232A Expired - Lifetime JP5059841B2 (en) 2009-12-15 2009-12-15 Dechlorination method for aromatic chlorine compounds

Country Status (1)

Country Link
JP (1) JP5059841B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608297A (en) * 2019-01-07 2019-04-12 大连理工大学 A kind of method of nano porous metal selective catalysis aryl C-Br key hydrogenolysis

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913155A (en) * 1972-05-22 1974-02-05
JPS4945043A (en) * 1972-09-07 1974-04-27
JPS4961143A (en) * 1972-10-12 1974-06-13
JP3110667B2 (en) * 1996-01-19 2000-11-20 株式会社関西テック Treatment of polychlorinated aromatic compounds by hydrodechlorination
JPH1087519A (en) * 1996-09-11 1998-04-07 Kansai Tec:Kk Dechlorination treatment of polychlorinated aromatic compound
JP4510972B2 (en) * 2000-01-24 2010-07-28 弘尚 佐治木 Dechlorination method for aromatic chlorine compounds

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608297A (en) * 2019-01-07 2019-04-12 大连理工大学 A kind of method of nano porous metal selective catalysis aryl C-Br key hydrogenolysis
CN109608297B (en) * 2019-01-07 2021-04-20 大连理工大学 Method for selectively catalyzing hydrogenolysis of aryl C-Br bond by nano porous metal

Also Published As

Publication number Publication date
JP2010059209A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
WO2009087994A1 (en) Method for dehalogenating aromatic halide
JP2013031839A (en) Filtration membrane washing agent and method for washing filtration membrane
JP4510972B2 (en) Dechlorination method for aromatic chlorine compounds
JP5059841B2 (en) Dechlorination method for aromatic chlorine compounds
JP6498270B2 (en) Purification of used oil
Liu et al. Reductive degradation of tetrabromobisphenol A (TBBPA) in aqueous medium
KR20090078377A (en) The method of dechlorination of polychlorinated biphenyls(pcbs)
JP4084073B2 (en) Detoxification method for organic halogen compounds
JP4244043B2 (en) Recycling method for waste containing organochlorine compounds
JP3247543B2 (en) Alkali decomposition method for halogenated aromatic compounds
JP2810978B2 (en) Dechlorination of aromatic chlorides with formate using palladium and phase transfer catalyst.
KR100749898B1 (en) Method for removing polychlorinated biphenyls by catalyst
JP2007111661A (en) Regenerating method for dechlorinating catalyst
JP2014117647A (en) Method for decomposing 1,4-dioxane
JP2000246002A (en) Method for cleaning solid material contaminated with organic halide and device therefor
JPH07313620A (en) Alkali decomposition of halogenated aromatic compounds
JP4350821B2 (en) Treatment method for organochlorine compounds
RU2351691C1 (en) Method for making steel corrosion inhibitor in hydrochloric medium and steel corrosion medium inhibitor
JP5425718B2 (en) Sludge removal method
US8067661B2 (en) Method for decomposing water-soluble fluorinated organic compound
WO1997026217A1 (en) Dearomatisation of aromatic organo-halogenated and/or organo-oxygenated compounds in the presence of a ruthenium catalyst
JP3408390B2 (en) Decomposition method of aromatic halogen compound
JPH08141107A (en) Decomposing method for organic compound halide
JP2004283819A5 (en)
JP2006117533A (en) Decomposition method for hexachlorocyclohexane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5059841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term