JP5056997B2 - Manufacturing method of diffraction grating - Google Patents

Manufacturing method of diffraction grating Download PDF

Info

Publication number
JP5056997B2
JP5056997B2 JP2012102306A JP2012102306A JP5056997B2 JP 5056997 B2 JP5056997 B2 JP 5056997B2 JP 2012102306 A JP2012102306 A JP 2012102306A JP 2012102306 A JP2012102306 A JP 2012102306A JP 5056997 B2 JP5056997 B2 JP 5056997B2
Authority
JP
Japan
Prior art keywords
diffraction grating
concave
groove
blazed
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012102306A
Other languages
Japanese (ja)
Other versions
JP2012141647A (en
Inventor
哲也 長野
裕次 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2012102306A priority Critical patent/JP5056997B2/en
Publication of JP2012141647A publication Critical patent/JP2012141647A/en
Application granted granted Critical
Publication of JP5056997B2 publication Critical patent/JP5056997B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

本発明は回折格子の製造方法に関し、特に、ブレーズド型の回折格子溝を有し、光の分光と集光の双方の機能を有する凹面回折格子の製造方法に関する。 The present invention relates to a method for manufacturing a diffraction grating, and more particularly to a method for manufacturing a concave diffraction grating having a blazed diffraction grating groove and having both functions of light spectroscopy and light collection.

現在市販されている凹面回折格子には、凹面を上から見たときの形状(平面形状)が円形である「丸形」と、正方形又は長方形である「角形」の2種類がある。このうち角形凹面回折格子は、肉眼では確認することができない回折格子溝の方向を、平面形状から容易に確認することができるという利点を有する。 There are two types of concave diffraction gratings currently available on the market: a “round” shape when the concave surface is viewed from above (planar shape) and a “square” shape that is square or rectangular. Among these, the rectangular concave diffraction grating has an advantage that the direction of the diffraction grating groove that cannot be confirmed with the naked eye can be easily confirmed from the planar shape.

また、回折格子溝の形状には、鋸歯状の断面形状を有する「ブレーズド型」と、矩形状の断面形状を有する「ラミナー型」の、大きく分けて2種類がある。ブレーズド型の溝を有する回折格子は主に、波長が約200nm以上である(可視領域に近い)紫外領域から近赤外領域までの波長領域において用いられる。 The diffraction grating grooves can be roughly divided into two types: “blazed type” having a sawtooth cross-sectional shape and “laminar type” having a rectangular cross-sectional shape. A diffraction grating having a blazed groove is mainly used in a wavelength region from the ultraviolet region to the near infrared region (having a wavelength close to the visible region) having a wavelength of about 200 nm or more.

以下に、図1を用いて、ブレーズド型回折格子溝を持つ凹面回折格子の製造方法の一例を説明する。
まず基板11の上面111を機械研磨により凹面に加工し(a)、感光剤を塗布することにより感光層12を形成する(b)。次に、感光層12に2方向からコヒーレント光131、132を照射する(c)。これにより、両コヒーレント光による干渉縞が感光層12上に形成され、干渉縞内の光の強弱に応じて感光層12が感光する。その後、現像液で処理すると、干渉縞15のパターンに応じて基板11が露出する部分と感光剤が残る部分がそれぞれ縞状に形成される(d)。このようにコヒーレント光の干渉縞を用いて感光層に縞状のパターンを形成する方法は一般に「ホログラフィック露光法」と呼ばれている。
Hereinafter, an example of a method for manufacturing a concave diffraction grating having a blazed diffraction grating groove will be described with reference to FIG.
First, the upper surface 111 of the substrate 11 is processed into a concave surface by mechanical polishing (a), and a photosensitive layer 12 is formed by applying a photosensitive agent (b). Next, the photosensitive layer 12 is irradiated with coherent light 131 and 132 from two directions (c). Thereby, interference fringes by both coherent lights are formed on the photosensitive layer 12, and the photosensitive layer 12 is exposed according to the intensity of light in the interference fringes. Thereafter, when processed with a developing solution, a portion where the substrate 11 is exposed and a portion where the photosensitive agent remains are formed in a stripe shape according to the pattern of the interference fringes 15 (d). Such a method of forming a striped pattern on the photosensitive layer using interference fringes of coherent light is generally called “holographic exposure method”.

次に、残された縞状の感光剤をマスク(12A)として、その表面にイオンビームを照射することにより、基板11上面に縞状の凹凸パターンを形成する(e)。その際、イオンビームは、基板11の上面の各点において縞に垂直に、且つ、その接面に対して同一の入射角で入射させる(特許文献1参照)。これにより、全て同じブレーズ角を持つ多数の回折格子溝から成るブレーズド型の凹面回折格子14を形成することができる(f)。   Next, using the remaining striped photosensitive agent as a mask (12A), the surface thereof is irradiated with an ion beam to form a striped uneven pattern on the upper surface of the substrate 11 (e). At that time, the ion beam is incident on each point on the upper surface of the substrate 11 perpendicular to the stripe and at the same incident angle with respect to the contact surface (see Patent Document 1). As a result, a blazed concave diffraction grating 14 comprising a large number of diffraction grating grooves all having the same blaze angle can be formed (f).

特開昭55-131730号公報(第3頁右上欄9行目〜左下欄2行目, 第7図)JP-A-55-131730 (page 3, upper right column, line 9 to lower left column, line 2, Fig. 7)

従来、蛍光分析装置において用いられるブレーズド型凹面回折格子は、400-470nm程度の波長の光に対して最適化、即ち最も回折効率が高くなるように設計されていた。近年、蛍光分析装置においてより短波長側の光に対する分析の要求が高まりつつあるが、このような従来のブレーズド型凹面回折格子では、波長200-250nmでの回折効率が非常に低くなる(例えば、波長200nmの時の回折効率は10%未満)という問題がある。 Conventionally, a blazed concave diffraction grating used in a fluorescence analyzer has been designed to be optimized for light having a wavelength of about 400 to 470 nm, that is, to have the highest diffraction efficiency. In recent years, there is an increasing demand for analysis of light on a shorter wavelength side in a fluorescence analyzer. However, in such a conventional blazed concave diffraction grating, the diffraction efficiency at a wavelength of 200 to 250 nm is very low (for example, The diffraction efficiency at a wavelength of 200 nm is less than 10%).

短波長側まで高い回折効率で使用するためには、一般にブレーズ角を小さくする必要がある。ブレーズ角はイオンビームの入射角等を調整することにより制御することができる。しかし、ブレーズ角を小さくすると、以下の問題が生じる。 In order to use with high diffraction efficiency up to the short wavelength side, it is generally necessary to reduce the blaze angle. The blaze angle can be controlled by adjusting the incident angle of the ion beam. However, if the blaze angle is reduced, the following problems occur.

図2(a)及び(b)に、平面形状が正方形の角形凹面回折格子20と、平面形状が円形であってその円の面積が前記正方形の面積と等しい丸形凹面回折格子25について、それぞれ溝形成面の等高線を示す。丸形凹面回折格子25の溝形成面では外縁は全て同じ高さである。それに対して角形凹面回折格子20の溝形成面では、外縁の各辺は中点において最も低く、各角部231〜234に近づくにつれ高くなると共に勾配も大きくなる。また、角部231〜234の高さは丸形凹面回折格子25の外縁よりも高くなる。
このような角形凹面回折格子20の溝形成面に対して、4辺のうちの1辺に平行なイオンビームを照射して回折格子溝を形成する場合、次のような問題が生じる。図2(c)は、図2(a)のA-A’断面上の点211,212,213に照射されるイオンビーム221,222,223を示している。図2(c)に示すように、イオンビームの上流側の角部231付近であって、角部231までの勾配が大きくなる点212では、従来よりもブレーズ角を小さくする(即ちイオンビームの入射角を大きくする)と、イオンビーム222が角部231付近の基板11に遮られるようになるため、イオンビーム222を入射させることができなくなる。また、イオンビームの下流側の角部232近傍の勾配が大きい部位にある点213では、基板11の下方からイオンビーム223を入射させる必要が生じ、やはり、基板11により遮られてしまう。このため、従来よりもブレーズ角を小さくすると、角形凹面回折格子の溝形成面には、回折格子溝が形成されない部分が生じる、という問題がある。
2 (a) and 2 (b), a square concave diffraction grating 20 having a square planar shape and a round concave diffraction grating 25 having a circular planar shape whose area of the circle is equal to the square area are shown. The contour lines of the groove forming surface are shown. On the groove forming surface of the round concave diffraction grating 25, the outer edges are all the same height. On the other hand, on the groove forming surface of the rectangular concave diffraction grating 20, each side of the outer edge is the lowest at the midpoint, and becomes higher as the corners 231 to 234 are approached, and the gradient becomes larger. Further, the heights of the corner portions 231 to 234 are higher than the outer edge of the round concave diffraction grating 25.
When a diffraction grating groove is formed by irradiating an ion beam parallel to one of the four sides with respect to the groove forming surface of such a square concave diffraction grating 20, the following problem occurs. FIG. 2C shows ion beams 221, 222, and 223 irradiated to the points 211, 212, and 213 on the AA ′ cross section of FIG. As shown in FIG. 2 (c), at the point 212 where the gradient to the corner 231 increases near the corner 231 on the upstream side of the ion beam, the blaze angle is made smaller than before (that is, the ion beam is reduced). When the incident angle is increased), the ion beam 222 is blocked by the substrate 11 in the vicinity of the corner portion 231. Therefore, the ion beam 222 cannot be incident. Further, at a point 213 at a site where the gradient near the corner 232 on the downstream side of the ion beam is large, it is necessary to make the ion beam 223 incident from below the substrate 11, which is also blocked by the substrate 11. For this reason, when the blaze angle is made smaller than before, there is a problem that a portion where the diffraction grating groove is not formed is formed on the groove forming surface of the square concave diffraction grating.

一方、丸形凹面回折格子ではそのような問題は生じないが、その平面形状からは溝の方向を容易に確認することができないという欠点を有する。 On the other hand, the circular concave diffraction grating does not cause such a problem, but has a drawback that the direction of the groove cannot be easily confirmed from its planar shape.

本発明が解決しようとする課題は、溝形成面(上面、凹面)全体に回折格子溝を形成することができ、且つ溝の方向を容易に確認することができるブレーズド型凹面回折格子の製造方法を提供することである。 The problem to be solved by the present invention is that a diffraction grating groove can be formed on the entire groove forming surface (upper surface, concave surface), and a method for manufacturing a blazed concave diffraction grating in which the direction of the groove can be easily confirmed Is to provide.

上記課題を解決するために成された本発明は、ブレーズド型の回折格子溝を有し、溝形成面が凹面であるブレーズド型凹面回折格子を製造する方法において、平面形状が、両端の角部の角度が鈍角である1辺を含む形状であって、表面が凹面である基板を作製し、前記1辺に平行な溝を有するマスクを前記表面上に形成し、前記表面に前記1辺の側から所定の入射角でイオンビームを入射することにより前記回折格子溝を形成することを特徴とする。 In order to solve the above problems, the present invention provides a method for manufacturing a blazed concave diffraction grating having a blazed diffraction grating groove and a groove forming surface being a concave surface. A substrate including one side having an obtuse angle and having a concave surface is formed on the surface, and a mask having grooves parallel to the one side is formed on the surface. The diffraction grating groove is formed by making an ion beam incident at a predetermined incident angle from the side.

本発明に係るブレーズド型凹面回折格子を製造する方法では、回折格子溝に平行な1辺の両端の角部の角度が鈍角であることにより、それらの角部において、従来の角形(四角形)凹面回折格子よりも高さを低くすることができると共に、角部付近での勾配を小さくすることができる。そのため、ブレーズド型の回折格子溝を作製する際に回折格子溝に垂直(即ち上記1辺に垂直)であって、且つ溝形成面に対して大きい入射角(表面の法線からの角度)でイオンビームを溝形成面に入射させたとしても、そのイオンビームがそれらの角部付近の基板により遮られることを防ぐことができる。それにより、ブレーズ角が従来よりも小さくとも回折格子溝を形成することができる。 In the method of manufacturing the blazed concave diffraction grating according to the present invention, the angle of the corners at both ends of one side parallel to the diffraction grating groove is obtuse, and the conventional square (rectangular) concave surface at those corners. The height can be made lower than that of the diffraction grating, and the gradient near the corner can be reduced. Therefore, when producing a blazed diffraction grating groove, it is perpendicular to the diffraction grating groove (that is, perpendicular to the one side) and has a large incident angle (angle from the normal to the surface) with respect to the groove formation surface. Even if the ion beam is incident on the groove forming surface, the ion beam can be prevented from being blocked by the substrate in the vicinity of the corners. Thereby, the diffraction grating groove can be formed even if the blaze angle is smaller than that of the conventional one.

また、本発明のブレーズド型凹面回折格子は、平面形状の1辺が回折格子溝に平行であることにより、作製後の検査時や使用時にその1辺の方向から回折格子溝の方向を容易に確認することができる。   In addition, the blazed concave diffraction grating of the present invention has one side of the planar shape parallel to the diffraction grating groove, so that the direction of the diffraction grating groove can be easily changed from the direction of the one side during inspection after use or during use. Can be confirmed.

即ち、本発明により、イオンビームが遮られることなく回折格子溝を形成することができるという丸形凹面回折格子の利点と、溝方向の確認が容易であるという角形凹面回折格子の利点を併せ持つブレーズド型凹面回折格子を得ることができる。 In other words, according to the present invention, a blazed blade having the advantages of a round concave diffraction grating that can form a diffraction grating groove without being blocked by an ion beam and the advantage of a square concave diffraction grating that allows easy confirmation of the groove direction. A mold concave diffraction grating can be obtained.

従来の四角形の角形平面形状と比較すると、多角形を五角形以上とすることにより本発明の効果を得ることができるが、望ましくは八角形とする。これは、図3に示すように、従来の四角形の各角部を切り落とすだけでその形状を得ることができ、製造が容易であるためである。 The effect of the present invention can be obtained by making the polygon more than a pentagon when compared with a conventional rectangular planar shape, but it is preferably an octagon. This is because, as shown in FIG. 3, the shape can be obtained simply by cutting off each corner of a conventional quadrangle, and the manufacturing is easy.

前記溝に平行な弦を有する円形ブレーズド型凹面回折格子では、平面形状が基本的には円形であるため、イオンビームが遮られることなく回折格子溝を形成することができるという従来の丸形凹面回折格子の利点をそのまま得ることができると共に、その弦により回折格子溝の方向を確認することができるため、溝方向の設定を容易に行うことができる。 In a circular blazed concave diffraction grating having strings parallel to the groove, the planar shape is basically circular, so that a conventional diffraction groove can be formed without blocking the ion beam. The advantage of the diffraction grating can be obtained as it is, and since the direction of the diffraction grating groove can be confirmed by the string, the setting of the groove direction can be easily performed.

ホログラフィック露光法により凹面回折格子を作製する方法の一例を示す縦断面図。The longitudinal cross-sectional view which shows an example of the method of producing a concave diffraction grating by the holographic exposure method. 角形凹面回折格子20(a)及び丸形凹面回折格子25(b)の溝形成面(上面)の等高線を示す上面図、並びにホログラフィック露光法により角形凹面回折格子を作製する際の問題点を示す縦断面図(c)。The top view showing the contour lines of the groove forming surface (upper surface) of the square concave diffraction grating 20 (a) and the round concave diffraction grating 25 (b), and problems in manufacturing the square concave diffraction grating by the holographic exposure method The longitudinal cross-sectional view (c) shown. 八角形凹面回折格子と角形回折格子の平面形状の対応を示す上面図。The top view which shows a response | compatibility of the planar shape of an octagonal concave diffraction grating and a square diffraction grating. 本発明のブレーズド型凹面回折格子の一実施形態である八角形ブレーズド型 凹面回折格子を示す斜視図(a)及び上面図(b)。FIG. 2 is a perspective view (a) and a top view (b) showing an octagonal blazed concave diffraction grating which is an embodiment of the blazed concave diffraction grating of the present invention. 本実施形態の八角形ブレーズド型凹面回折格子の製造方法の一例を示す斜視図及び縦断面図。The perspective view and longitudinal cross-sectional view which show an example of the manufacturing method of the octagon blazed concave diffraction grating of this embodiment. 本実施形態の八角形ブレーズド型凹面回折格子及び比較例の角形凹面回折格子の相対回折効率を測定した結果を示すグラフ。The graph which shows the result of having measured the relative diffraction efficiency of the octagonal blazed concave diffraction grating of this embodiment, and the square concave diffraction grating of a comparative example. 本発明のブレーズド型凹面回折格子の他の実施形態を示す上面図。The top view which shows other embodiment of the blazed concave diffraction grating of this invention. 本発明のブレーズド型凹面回折格子の他の実施形態である、弦を有する丸形凹面回折格子を示す斜視図(a)及び上面図(b)。The perspective view (a) and top view (b) which show the circular concave diffraction grating which has a string which is other embodiment of the blazed concave diffraction grating of this invention.

本発明に係る製造方法で製造されたブレーズド型凹面回折格子を、図4を用いて説明する。
図4は本発明に係る製造方法で製造されたのブレーズド型凹面回折格子30の斜視図(a)及び上面図(b)である。このブレーズド型凹面回折格子30は、平面形状が正八角形であり、その8辺のうち1辺331(及び、辺331に平行な辺332)は、図4(b)中に示した直線(符号32)の方向に延びる回折格子溝に平行である。本実施例の凹面回折格子30では平面形状が正八角形であるため、辺331の両端にある角部341及び342の角度は鈍角(135°)である。
The blazed concave diffraction grating manufactured by the manufacturing method according to the present invention will be described with reference to FIG.
FIG. 4 is a perspective view (a) and a top view (b) of the blazed concave diffraction grating 30 manufactured by the manufacturing method according to the present invention . The blazed concave diffraction grating 30 has a regular octagonal planar shape, and one of the eight sides 331 (and the side 332 parallel to the side 331) is a straight line (reference number) shown in FIG. 32) parallel to the diffraction grating grooves extending in the direction of 32). In the concave diffraction grating 30 of this embodiment, since the planar shape is a regular octagon, the angles of the corner portions 341 and 342 at both ends of the side 331 are obtuse angles (135 °).

図5を用いて、本発明に係る製造方法の一実施形態である八角形ブレーズド型凹面回折格子30の製造方法の一例を示す。まず、従来の角形凹面回折格子に用いられるものと同じ正方形の平板状BK7光学ガラス基板41(縦54mm×横54mm×厚さ10mm)を用意し(a)、平面研削盤を用いてその四隅を切断((a)の斜線)することにより平面形状を正八角形とする((b)、光学ガラス基板41A)。上面の各辺及び各角部の面取りをした後、曲率半径が134.85mmの基準皿42を用いて光学ガラス基板41Aの上面411を研磨(砂かけ研磨及びピッチ研磨)する(c)ことにより、上面411を凹形に成形する((d)、光学ガラス基板41B)。次に、上面411にフォトレジスト43を塗布し、波長441.6nmのレーザ光を用いた球面波ホログラフィック露光法により(e)、フォトレジスト43に900本/mmの間隔で辺331に平行な溝44を形成する(f)。 An example of the manufacturing method of the octagonal blazed concave diffraction grating 30 which is an embodiment of the manufacturing method according to the present invention will be described with reference to FIG. First, prepare the same square flat plate BK7 optical glass substrate 41 (length 54mm x width 54mm x thickness 10mm) as that used for the conventional square concave diffraction grating (a), and use a surface grinder to remove the four corners. By cutting (oblique line (a)), the planar shape is changed to a regular octagon ((b), optical glass substrate 41A). After chamfering each side and each corner of the upper surface, the upper surface 411 of the optical glass substrate 41A is polished (sanding polishing and pitch polishing) using the reference dish 42 having a radius of curvature of 134.85 mm (c), The upper surface 411 is formed into a concave shape ((d), the optical glass substrate 41B). Next, a photoresist 43 is applied on the upper surface 411, and a groove parallel to the side 331 is formed in the photoresist 43 at an interval of 900 lines / mm by a spherical wave holographic exposure method using a laser beam having a wavelength of 441.6 nm. 44 is formed (f).

次に、光学ガラス基板41Bの上面に、辺331側から、フォトレジスト43の溝44に垂直であって80°の入射角でイオンビームを照射し(g)、フォトレジスト43がちょうど消失するまで光学ガラス基板41Bの表面をエッチングする。これによりフォトレジスト43の溝44の部分のみがエッチングされ、光学ガラス基板41Bの表面に7°のブレーズ角を持つ鋸歯状の回折格子溝45が形成される。 Next, an ion beam is irradiated on the upper surface of the optical glass substrate 41B from the side 331 side at an incident angle of 80 ° perpendicular to the groove 44 of the photoresist 43 (g) until the photoresist 43 just disappears. The surface of the optical glass substrate 41B is etched. As a result, only the groove 44 of the photoresist 43 is etched, and a sawtooth diffraction grating groove 45 having a blaze angle of 7 ° is formed on the surface of the optical glass substrate 41B.

この時、平面形状が正八角形であるため、光学ガラス基板41Bの各角部の高さ及び各角部付近の勾配は平面形状が四角形である場合よりも小さくなる(図3)。これにより(特に、イオンビーム入射側の辺の両側の角部341及び342の高さ及びその付近の勾配が小さいことにより)、イオンビームが光学ガラス基板41Bにより遮られることがなく、上面(溝形成面)にイオンビームを入射させることができる。 At this time, since the planar shape is a regular octagon, the height of each corner of the optical glass substrate 41B and the gradient near each corner are smaller than when the planar shape is a quadrangle (FIG. 3). Thereby (particularly because the height of the corners 341 and 342 on both sides of the ion beam incident side and the gradient in the vicinity thereof are small), the ion beam is not blocked by the optical glass substrate 41B, and the upper surface (groove An ion beam can be incident on the (forming surface).

次に、光学ガラス基板41Bの表面に0.2μmの厚さでAl46を蒸着することにより、八角形凹面マスタ回折格子47を得る(i)。その後、基準皿42と同じ曲率半径を持つ凸型のフロートガラス481の上に塗布されたエポキシ樹脂から成る樹脂膜482を八角形凹面マスタ回折格子47の上に押し付け、そのエポキシ樹脂を硬化させたうえで八角形凹面マスタ回折格子47と分離することにより、平面形状が正八角形のネガ回折格子48を得る(j)。 更に、基準皿42と同じ曲率半径を持つ凹型のフロートガラス491の上に塗布されたエポキシ樹脂から成る樹脂膜492をネガ回折格子48の上に押し付け(k)、そのエポキシ樹脂を硬化させたうえで八角形凹面ネガ回折格子48と分離することにより、八角形凹面レプリカ回折格子49を得る(l)。 Next, an octagonal concave master diffraction grating 47 is obtained by depositing Al46 with a thickness of 0.2 μm on the surface of the optical glass substrate 41B (i). Thereafter, a resin film 482 made of an epoxy resin coated on a convex float glass 481 having the same radius of curvature as that of the reference dish 42 was pressed onto the octagonal concave master diffraction grating 47 to cure the epoxy resin. Then, by separating from the octagonal concave master diffraction grating 47, a negative diffraction grating 48 having a regular octagonal planar shape is obtained (j). Further, a resin film 492 made of an epoxy resin applied on a concave float glass 491 having the same radius of curvature as that of the reference dish 42 is pressed onto the negative diffraction grating 48 (k), and the epoxy resin is cured. By separating from the octagonal concave negative diffraction grating 48, an octagonal concave replica diffraction grating 49 is obtained (l).

図6に、上記方法により作製された八角形凹面レプリカ回折格子49の相対回折効率を測定した結果を示す。ここでは、実験の再現性を示すため、同じ方法で作製された2個の八角形凹面マスタ回折格子47からそれぞれ1個ずつ作製した2個の八角形凹面レプリカ回折格子49(「本実施例」、ブレーズ角:7°)について、それぞれ測定を行った。併せて、八角形凹面レプリカ回折格子49と表面積及び凹面の曲率が同じである従来の角形(四角形)凹面回折格子(「比較例」、ブレーズ角:10°)の相対回折効率の測定結果を示す。相対回折効率は、入射光の強度に対するある次数の回折光の強度の比(絶対回折効率)を回折格子の表面の反射率で除した値で定義される。図6(a)の横軸は回折光の波長である。
なお、本実施例と同じ曲率及びブレーズ角で従来の四角形凹面回折格子を作製すると、イオンビームの一部が上面の角部に遮られてしまい、上面に回折格子溝が形成されない部分が生じてしまう。そのため、比較例では上述のようにブレーズ角を本実施例のものよりも大きくすることにより、上面全体に回折格子溝を形成した。
FIG. 6 shows the result of measuring the relative diffraction efficiency of the octagonal concave replica diffraction grating 49 manufactured by the above method. Here, in order to show the reproducibility of the experiment, two octagonal concave replica diffraction gratings 49 (one example) each produced from two octagonal concave master diffraction gratings 47 produced by the same method. , Blaze angle: 7 °). In addition, the measurement results of the relative diffraction efficiency of the conventional square (square) concave diffraction grating ("comparative example", blaze angle: 10 °) having the same surface area and concave curvature as the octagonal concave replica diffraction grating 49 are shown. . The relative diffraction efficiency is defined as a value obtained by dividing the ratio of the intensity of a certain order of diffracted light to the intensity of incident light (absolute diffraction efficiency) by the reflectance of the surface of the diffraction grating. The horizontal axis of FIG. 6A is the wavelength of the diffracted light.
Note that when a conventional rectangular concave diffraction grating is manufactured with the same curvature and blaze angle as in the present embodiment, a part of the ion beam is blocked by the corner of the upper surface, and there is a portion where the diffraction grating groove is not formed on the upper surface. End up. Therefore, in the comparative example, the diffraction grating groove was formed on the entire upper surface by making the blaze angle larger than that of the present example as described above.

図6に示されるように、相対回折効率は、比較例の四角形凹面回折格子では測定範囲(最大360nm)よりも長波長側の波長400nm付近でピークを持つような波長依存性を示すのに対して、本実施例では波長300nm付近でピークを持つ波長依存性を示す。これは、本実施例ではブレーズ角を比較例よりも小さくすることができたことによる。そして、このように本実施例の方が相対回折効率のピークを短波長側にすることができたことにより、波長250nm以下において、本実施例は比較例の2倍以上(波長250nmにおいて約2倍、波長215nmにおいて約3倍)の回折効率を得ることができる。 As shown in FIG. 6, the relative diffraction efficiency of the comparative rectangular concave diffraction grating shows a wavelength dependency that has a peak near a wavelength of 400 nm on the longer wavelength side than the measurement range (maximum 360 nm). In this example, the wavelength dependence has a peak near the wavelength of 300 nm. This is because in this embodiment, the blaze angle can be made smaller than in the comparative example. Since the relative diffraction efficiency peak can be made shorter on the short wavelength side in this example, the present example is more than twice that of the comparative example at a wavelength of 250 nm or less (about 2 at a wavelength of 250 nm). Times, approximately 3 times the diffraction efficiency at a wavelength of 215 nm).

ここまでに述べた八角形ブレーズド型凹面回折格子の他にも、図7に上面図で示すように、平面形状が五角形である凹面回折格子501(図7(a))や六角形である凹面回折格子502(図7(b))等のように、平面形状は五角形以上の種々の多角形を採ることができる。いずれの場合も、多角形の1辺511又は512は溝の方向53(図中に直線の延びる方向で示したもの)に平行とし、1辺の両側の角部の角度は鈍角とする。 In addition to the octagonal blazed concave diffraction grating described so far, as shown in a top view in FIG. 7, a concave diffraction grating 501 (FIG. 7 (a)) having a pentagonal planar shape or a concave surface having a hexagonal shape. As in the diffraction grating 502 (FIG. 7B), etc., the planar shape can take various polygons such as a pentagon or more. In either case, one side 511 or 512 of the polygon is parallel to the groove direction 53 (shown by the direction in which the straight line extends in the figure), and the angle of the corners on both sides of the side is an obtuse angle.

平面形状は正五角形、正六角形、正八角形等の正多角形には限られず、例えば、長方形の4個の角部付近を切り落とした八角形(正八角形ではない)であってもよい。 The planar shape is not limited to a regular polygon such as a regular pentagon, a regular hexagon, and a regular octagon.

また、図7(c)に示すような台形でもよい。この場合、短い方の底辺513の両端の角部5231、5232の角度が鈍角であるため、底辺513の方向からイオンビームを照射することにより、角部5231及び5232でイオンビームが遮られることを防ぐことができる。 Moreover, a trapezoid as shown in FIG. In this case, since the angles of the corners 5231 and 5232 at both ends of the shorter base 513 are obtuse, the ion beam is blocked by the corners 5231 and 5232 by irradiating the ion beam from the direction of the base 513. Can be prevented.

本発明に係る製造方法で製造される回折格子は更に、弦を有する円形であってもよい。その例を図8に示す。本実施例の凹面回折格子60は、円形回折格子に弦(オリエンテーションフラット)61を設けたものである。この弦61は、回折格子溝62に平行に設ける。本実施例の凹面回折格子60は、平面形状が基本的には円形であるため、イオンビームが遮られることを防ぐことができる。また、使用者は弦61により回折格子溝の方向を知ることができるため、溝方向の設定を容易に行うことができる。
なお、ここでは弦61を1つのみ設けた例を示したが、2つ平行に設けてもよい。
The diffraction grating manufactured by the manufacturing method according to the present invention may be a circle having a string. An example is shown in FIG. The concave diffraction grating 60 of this embodiment is a circular diffraction grating provided with a string (orientation flat) 61. The string 61 is provided in parallel to the diffraction grating groove 62. Since the concave diffraction grating 60 of the present embodiment is basically circular, the ion beam can be prevented from being blocked. Further, since the user can know the direction of the diffraction grating groove by the string 61, the groove direction can be easily set.
Although an example in which only one string 61 is provided is shown here, two strings 61 may be provided in parallel.

11…基板
111、31、411…基板の上面(溝形成面)
12…感光層
12A…マスク
131、132…コヒーレント光
14…回折格子
15…干渉縞
20…角形凹面回折格子
221〜223…イオンビーム
231〜234…四角形の角部
25…丸形凹面回折格子
30…八角形凹面回折格子
32、53、62…回折格子溝の方向
331、332、511、512、513…回折格子溝に平行な辺
41…光学ガラス基板
41A…平面形状が八角形に加工された後の光学ガラス基板
41B…凹面加工後の光学ガラス基板
42…基準皿
43…フォトレジスト
44…フォトレジストの溝
45…回折格子溝
46…Al層
47…八角形凹面マスタ回折格子
48…八角形凹面ネガ回折格子
481、491…フロートガラス
482、492…樹脂膜
49…八角形凹面レプリカ回折格子
501…五角形凹面回折格子
502…六角形凹面回折格子
503…台形凹面回折格子
60…弦を有する凹面回折格子
61…弦
11 ... Substrate 111, 31, 411 ... Upper surface of substrate (groove forming surface)
DESCRIPTION OF SYMBOLS 12 ... Photosensitive layer 12A ... Mask 131, 132 ... Coherent light 14 ... Diffraction grating 15 ... Interference fringe 20 ... Square concave diffraction grating 221-223 ... Ion beam 231-234 ... Square corner 25 ... Round concave diffraction grating 30 ... Octagonal concave diffraction gratings 32, 53, 62... Diffraction grating groove directions 331, 332, 511, 512, 513... Sides 41 parallel to the diffraction grating grooves. Optical glass substrate 41A. Optical glass substrate 41B ... Optical glass substrate 42 after concave processing ... Reference plate 43 ... Photoresist 44 ... Photoresist groove 45 ... Diffraction grating groove 46 ... Al layer 47 ... Octagonal concave master diffraction grating 48 ... Octagonal concave negative Diffraction gratings 481, 491 ... Float glass 482, 492 ... Resin film 49 ... Octagonal concave replica diffraction grating 501 ... Pentagonal concave diffraction grating 502 ... Concave diffraction grating 61 ... chords having a rectangular concave diffraction grating 503 ... trapezoidal concave diffraction grating 60 ... chords

Claims (1)

ブレーズド型の回折格子溝を有し、溝形成面が凹面であるブレーズド型凹面回折格子を製造する方法において、
平面形状が、両端の角部の角度が鈍角である1辺を含む形状であって、表面が凹面である基板を作製し、
前記1辺に平行な溝を有するマスクを前記表面上に形成し、
前記表面に前記1辺の側から所定の入射角でイオンビームを入射することにより前記回折格子溝を形成する
ことを特徴とするブレーズド型凹面回折格子の製造方法。
In a method of manufacturing a blazed concave diffraction grating having a blazed diffraction grating groove and having a concave groove forming surface,
A planar shape is a shape including one side where the angle of the corners at both ends is an obtuse angle, and the substrate has a concave surface,
Forming a mask having a groove parallel to the one side on the surface;
The method for producing a blazed concave diffraction grating, wherein the diffraction grating groove is formed by making an ion beam incident on the surface from the one side at a predetermined incident angle .
JP2012102306A 2012-04-27 2012-04-27 Manufacturing method of diffraction grating Active JP5056997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012102306A JP5056997B2 (en) 2012-04-27 2012-04-27 Manufacturing method of diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012102306A JP5056997B2 (en) 2012-04-27 2012-04-27 Manufacturing method of diffraction grating

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006335215A Division JP5082421B2 (en) 2006-12-13 2006-12-13 Diffraction grating

Publications (2)

Publication Number Publication Date
JP2012141647A JP2012141647A (en) 2012-07-26
JP5056997B2 true JP5056997B2 (en) 2012-10-24

Family

ID=46677917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012102306A Active JP5056997B2 (en) 2012-04-27 2012-04-27 Manufacturing method of diffraction grating

Country Status (1)

Country Link
JP (1) JP5056997B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI693378B (en) * 2015-08-24 2020-05-11 台灣超微光學股份有限公司 Spectrometer, monchromater diffraction grating and methods of manufacturing grating and mold

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499851B (en) 2013-09-29 2015-06-10 清华大学深圳研究生院 Glaring concave grating manufacture method
DE102013220190B4 (en) * 2013-10-07 2021-08-12 Dr. Johannes Heidenhain Gmbh Measuring graduation and photoelectric position measuring device with this measuring graduation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55131730A (en) * 1979-03-31 1980-10-13 Rikagaku Kenkyusho Concaved echelette grating and its process
JP3434907B2 (en) * 1994-09-12 2003-08-11 日本分光株式会社 Manufacturing method of concave surface shellet grating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI693378B (en) * 2015-08-24 2020-05-11 台灣超微光學股份有限公司 Spectrometer, monchromater diffraction grating and methods of manufacturing grating and mold

Also Published As

Publication number Publication date
JP2012141647A (en) 2012-07-26

Similar Documents

Publication Publication Date Title
US10422934B2 (en) Diffraction gratings and the manufacture thereof
US10551531B2 (en) Hybrid diffraction grating, mold insert and manufacturing methods thereof
EP2752691A1 (en) Variable-efficiency diffraction grating
US20060039072A1 (en) Polarization-selectively blazed, diffractive optical element
JP4875609B2 (en) Apparatus and method for light beam homogenization
GB2509536A (en) Diffraction grating
JP5056997B2 (en) Manufacturing method of diffraction grating
JP2010169722A (en) Method of manufacturing optical element, and optical element
JPWO2008081555A1 (en) Manufacturing method of blazed diffraction grating
US20200200954A1 (en) Diffraction grating array for wide-angle illumination
JP5082421B2 (en) Diffraction grating
US20120224263A1 (en) Optical Systems Utilizing Diffraction Gratings To Remove Undesirable Light From A Field Of View
WO2020080169A1 (en) Diffractive optical element and illumination optical system
JP7238252B2 (en) Diffractive optical element, light irradiation device
JP6981074B2 (en) Optical element
JPS6034082B2 (en) Manufacturing method of chap grating
CN106482832B (en) Spectrometer, monochromator, diffraction grating, manufacturing method of diffraction grating and manufacturing method of master die
JP2011227481A (en) Diffractive optical element and optical equipment
WO2011111409A1 (en) Method for manufacturing optical element
Choi et al. Practical implementation of broadband diffractive optical elements
JP2018013679A (en) Diffraction optical element, light irradiation device and manufacturing method of diffraction optical element
TWI693378B (en) Spectrometer, monchromater diffraction grating and methods of manufacturing grating and mold
JP2012068406A (en) Diffraction grating and spectroscopic instrument
JP6138621B2 (en) Encoder scale and manufacturing method thereof
JP6946632B2 (en) Diffractive optical element, set member of diffractive optical element and holder, light irradiation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5056997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3