JP5056559B2 - Protective gas composition of molten magnesium / magnesium alloy - Google Patents

Protective gas composition of molten magnesium / magnesium alloy Download PDF

Info

Publication number
JP5056559B2
JP5056559B2 JP2008108126A JP2008108126A JP5056559B2 JP 5056559 B2 JP5056559 B2 JP 5056559B2 JP 2008108126 A JP2008108126 A JP 2008108126A JP 2008108126 A JP2008108126 A JP 2008108126A JP 5056559 B2 JP5056559 B2 JP 5056559B2
Authority
JP
Japan
Prior art keywords
magnesium
protective gas
molten
magnesium alloy
gas composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008108126A
Other languages
Japanese (ja)
Other versions
JP2009255136A (en
Inventor
泰雄 日比野
冬彦 佐久
悟 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2008108126A priority Critical patent/JP5056559B2/en
Priority to CNA2009101291056A priority patent/CN101559486A/en
Publication of JP2009255136A publication Critical patent/JP2009255136A/en
Application granted granted Critical
Publication of JP5056559B2 publication Critical patent/JP5056559B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は溶融マグネシウム/マグネシウム合金の急激な酸化、燃焼を防止する保護ガス組成物に関するものである。また、本発明は溶融マグネシウム/マグネシウム合金の急激な酸化、燃焼を防止する方法に関するものである。   The present invention relates to a protective gas composition for preventing rapid oxidation and combustion of molten magnesium / magnesium alloy. The present invention also relates to a method for preventing rapid oxidation and combustion of molten magnesium / magnesium alloy.

溶融マグネシウム、溶融マグネシウム合金(本願では、両者は「溶融マグネシウム/マグネシウム合金」と表現されることがある)は空気中の酸素と激しく反応し酸化物を形成、燃焼することが知られている。溶融マグネシウム/マグネシウム合金の酸化を防止するために、溶融金属上に保護融剤をかける方法、ヘリウム、アルゴンまたは窒素等の不活性ガスで保護する方法、または保護ガス成分を有する保護ガス組成物で覆う方法が採用されている。   It is known that molten magnesium and molten magnesium alloy (in this application, both may be expressed as “molten magnesium / magnesium alloy”) react vigorously with oxygen in the air to form and burn oxides. In order to prevent oxidation of the molten magnesium / magnesium alloy, a method of applying a protective flux on the molten metal, a method of protecting with an inert gas such as helium, argon or nitrogen, or a protective gas composition having a protective gas component The method of covering is adopted.

これまでマグネシウムとマグネシウム合金製造工程における保護ガス成分として、二酸化イオウ(SO)、六フッ化イオウ(SF)等が用いられてきた。前者は安価であるが、臭気とともに毒性が比較的高いため使用に制限があり、また後者は比較的毒性がなく簡便、安全に使用できることから広く用いられてきたが、地球温暖化係数(GWP)が二酸化炭素(CO)の約24,000倍あり、しかも大気寿命が3,200年と非常に長いため京都議定書において排出を規制されている物質である。 So far, sulfur dioxide (SO 2 ), sulfur hexafluoride (SF 6 ) and the like have been used as protective gas components in the magnesium and magnesium alloy production process. Although the former is inexpensive, its use is limited because it is relatively toxic with odor, and the latter has been widely used because it is relatively non-toxic and simple and can be used safely. However, the global warming potential (GWP) Is approximately 24,000 times as much as carbon dioxide (CO 2 ) and has a very long atmospheric life of 3,200 years. Therefore, it is a substance whose emission is regulated by the Kyoto Protocol.

SFに代わる保護ガス成分として、様々なフッ素化合物が提案されている。例えば特許文献1では、ジフルオロメタン(HFC−32)、ペンタフルオロエタン(HFC−125)、1,1,1,2−テトラフルオロエタン(HFC−134a)、ジフルオロエタン(HFC−152a)、ヘプタフルオロプロパン(HFC−227ea)、メトキシ−ノナフルオロエタン(HFE−7100)、エトキシ−ノナフルオロエタン(HFE−7200)、ジヒドロデカフルオロペンタン(HFC−43−10mee)が挙げられ、好ましい保護ガス組成物として、HFC−134aと乾燥空気を有するものが推奨されている。 As protective gas component in place of SF 6, there have been proposed various fluorine compounds. For example, in Patent Document 1, difluoromethane (HFC-32), pentafluoroethane (HFC-125), 1,1,1,2-tetrafluoroethane (HFC-134a), difluoroethane (HFC-152a), heptafluoropropane (HFC-227ea), methoxy-nonafluoroethane (HFE-7100), ethoxy-nonafluoroethane (HFE-7200), dihydrodecafluoropentane (HFC-43-10mee), and preferred protective gas compositions include: One with HFC-134a and dry air is recommended.

また、特許文献2乃至特許文献4は、保護ガス成分としてパーフルオロケトン、水素化ケトンおよびその混合物を挙げ、具体的にはペンタフルオロエチル−ヘプタフルオロプロピルケトン(C(CO)C)を例示している。 Patent Documents 2 to 4 list perfluoroketone, hydrogenated ketone and mixtures thereof as protective gas components. Specifically, pentafluoroethyl-heptafluoropropyl ketone (C 3 F 7 (CO) C 2 F 5 ) is illustrated.

また、特許文献5には、三フッ化ホウ素(BF)、四フッ化ケイ素(SiF)、三フッ化窒素(NF)およびフッ化スルフリル(SO)が挙げられている。 Patent Document 5 includes boron trifluoride (BF 3 ), silicon tetrafluoride (SiF 4 ), nitrogen trifluoride (NF 3 ), and sulfuryl fluoride (SO 2 F 2 ).

これまでSFに代わる保護ガスとして提案されてきた物質は、そのもの自体が高い毒性を有するか、溶融マグネシウムまたはマグネシウム合金との接触により毒性のガスを生成する、または高価である等の問題があり、これらの問題を解決する新規の保護ガス組成物が要望されている。 So far, substances that have been proposed as protective gases to replace SF 6 have problems such as high toxicity per se, generation of toxic gas by contact with molten magnesium or magnesium alloy, or high cost. There is a need for new protective gas compositions that solve these problems.

また、本出願人は、新規な保護ガスとしてフッ素化オレフィン等を含む保護ガス組成物およびそれを用いた溶融マグネシウム/マグネシウム合金の燃焼防止方法を特許文献6にて提案している。
特表2002−541999号公報 米国公開特許2003/0034094号公報 米国公開特許2003/0164068号公報 特開2004−276116号公報 米国特許第1972317号 特開2006−326682号公報
Further, the present applicant has proposed a protective gas composition containing a fluorinated olefin as a novel protective gas and a method for preventing combustion of molten magnesium / magnesium alloy using the protective gas composition.
Special Table 2002-541999 US Published Patent No. 2003/0034094 US Published Patent No. 2003/0164068 JP 2004-276116 A U.S. Pat. No. 1,972,317 JP 2006-326682 A

酸素ガスと溶融マグネシウム/マグネシウム合金との接触を回避させれば、溶融マグネシウム/マグネシウム合金の酸化は防止されるが、SFに代わる保護ガス成分を保護ガス成分とした場合には、単純に酸素との接触を避けるだけでは、マグネシウム、マグネシウム合金の鋳造を長期間安定的に操業できないことがあることがわかった。 If the contact between the oxygen gas and the molten magnesium / magnesium alloy is avoided, the molten magnesium / magnesium alloy is prevented from being oxidized. However, when the protective gas component instead of SF 6 is used as the protective gas component, oxygen is simply used. It was found that the casting of magnesium and magnesium alloy could not be operated stably for a long time only by avoiding contact with the steel.

本発明は、マグネシウムとマグネシウム合金製造における急激な酸化、燃焼を防ぐのに有効な保護ガス組成物として、地球温暖化係数が小さく環境に及ぼす影響が小さく、低毒性で、不燃で、かつマグネシウム、マグネシウム合金の鋳造を長期間安定的に操業せしめる保護ガス組成物の提供およびそれらを用いた方法を提供することを課題とする。   The present invention is a protective gas composition effective for preventing rapid oxidation and combustion in the production of magnesium and magnesium alloys, has a low global warming potential, has a small impact on the environment, has low toxicity, is nonflammable, and magnesium. It is an object of the present invention to provide a protective gas composition that can stably operate casting of a magnesium alloy for a long period of time and a method using the same.

本発明者らは、上記課題を解決するために種々の含フッ素有機化合物、およびキャリアガス成分を検討し、GWPが小さく、比較的低毒性で、不燃で、かつマグネシウム、マグネシウム合金の鋳造を長期間安定的に操業せしめる保護ガス組成物を見出し本発明に到達した。   In order to solve the above-mentioned problems, the present inventors have studied various fluorine-containing organic compounds and carrier gas components, and have long casting of magnesium and magnesium alloys with a small GWP, relatively low toxicity, nonflammability, and the like. The present inventors have found a protective gas composition that can be stably operated for a period of time and have reached the present invention.

すなわち、本発明の保護ガス組成物は、溶融マグネシウム/マグネシウム合金の急激な酸化、燃焼を防止する保護ガス組成物であり、該保護ガス組成物は、キャリアガス成分とフッ素化オレフィンからなる保護ガス成分とを有し、前記キャリアガス成分が0.1〜10.5体積%、好ましくは、0.2〜6.3体積%の酸素を有することを特徴とする。該キャリアガス成分は他には、窒素、ヘリウム、ネオン、アルゴン等の溶融マグネシウム/マグネシウム合金に対して不活性なガスを有することが好ましい。   That is, the protective gas composition of the present invention is a protective gas composition that prevents rapid oxidation and combustion of molten magnesium / magnesium alloy, and the protective gas composition is a protective gas comprising a carrier gas component and a fluorinated olefin. And the carrier gas component has an oxygen content of 0.1 to 10.5% by volume, preferably 0.2 to 6.3% by volume. In addition, the carrier gas component preferably has a gas inert to a molten magnesium / magnesium alloy such as nitrogen, helium, neon, or argon.

本発明の保護ガス組成物は、溶融マグネシウム/マグネシウム合金の急激な酸化、燃焼を防止する保護ガス組成物であり、該保護ガス組成物は、キャリアガス成分とフッ素化オレフィンからなる保護ガス成分とを有し、前記キャリアガス成分が0.5〜50体積%の乾燥空気および50〜99.5体積%の窒素、好ましくは1〜30体積%の乾燥空気および29〜70体積%の窒素からなることを特徴とする。   The protective gas composition of the present invention is a protective gas composition for preventing rapid oxidation and combustion of molten magnesium / magnesium alloy, and the protective gas composition comprises a carrier gas component and a protective gas component comprising a fluorinated olefin. And the carrier gas component consists of 0.5-50% by volume of dry air and 50-99.5% by volume of nitrogen, preferably 1-30% by volume of dry air and 29-70% by volume of nitrogen. It is characterized by that.

前記フッ素化オレフィンは、分子中に少なくとも1個の二重結合を有するものとすることが好ましい。中でも1,1,3,3,3−ペンタフルオロプロペン、1,2,3,3,3−ペンタフルオロプロペン、2,3,3,3−テトラフルオロプロペン、1,3,3,3−テトラフルオロプロペン、3,3,3−トリフルオロプロペン、1,1,2−トリフルオロプロペンおよびそれらの混合物からなる群から選ばれるフッ素化プロペンが好ましい。   The fluorinated olefin preferably has at least one double bond in the molecule. Among them, 1,1,3,3,3-pentafluoropropene, 1,2,3,3,3-pentafluoropropene, 2,3,3,3-tetrafluoropropene, 1,3,3,3-tetra Preferred are fluorinated propenes selected from the group consisting of fluoropropene, 3,3,3-trifluoropropene, 1,1,2-trifluoropropene and mixtures thereof.

また、保護ガス成分の濃度が、保護ガス組成物の全量を100体積%としたときに、0.01〜10体積%、好ましくは0.02〜5体積%、より好ましくは0.02〜1体積%とすることが好ましい。   The concentration of the protective gas component is 0.01 to 10% by volume, preferably 0.02 to 5% by volume, more preferably 0.02 to 1 when the total amount of the protective gas composition is 100% by volume. It is preferable to set it as volume%.

マグネシウムまたはマグネシウム合金製造において、前記保護ガス組成物を用いることで溶融マグネシウム/マグネシウム合金の急激な酸化、燃焼の防止がなされる。   In the production of magnesium or a magnesium alloy, rapid oxidation and combustion of the molten magnesium / magnesium alloy are prevented by using the protective gas composition.

本発明の溶融マグネシウム/マグネシウム合金の保護ガス組成物は、各成分のGWPが相対的に小さく、低毒性でかつ分解性の毒性ガスの生成が少ないので、環境負荷を軽減することに奏功する。加えて、作業時の安全性が高く、マグネシウム、マグネシウム合金鋳造時において、密閉性の高い溶解炉を用いたとしても保護ガス成分の燃焼と溶融金属(融液)の保護がバランス良く達成されるので、マグネシウム、マグネシウム合金の鋳造を長期間安定的に操業せしめることに奏功する。   The protective gas composition of molten magnesium / magnesium alloy of the present invention is effective in reducing the environmental load because the GWP of each component is relatively small, and the production of low-toxic and decomposable toxic gases is small. In addition, the safety during work is high, and even when using a melting furnace with high hermeticity when casting magnesium or magnesium alloy, combustion of protective gas components and protection of molten metal (melt) are achieved in a well-balanced manner. Therefore, it succeeds in operating the casting of magnesium and magnesium alloy stably for a long time.

本発明で用いられるフッ素化オレフィンは、地球環境保護の観点からGWP(100年の期間で二酸化炭素の絶対的な地球温暖化潜在力を基準にして得られる係数)が小さいことが望ましく、100以下、できれば10以下であることが好ましい。このような観点からHFC−125、HFC−134a、HFC−227ea、HFC−152a、HFC−32等は、GWPが相対的に大きく好ましいものとはいいがたい。また、高い保護効果が期待できるものの、作業者の健康面および使用時の安全性からBF、SiF、NFおよびSO等の毒性が高い化合物は必ずしも好適ではない。 The fluorinated olefin used in the present invention desirably has a small GWP (coefficient obtained based on the absolute global warming potential of carbon dioxide over a period of 100 years) from the viewpoint of global environmental protection, and is 100 or less. If possible, it is preferably 10 or less. From such a viewpoint, it is difficult to say that HFC-125, HFC-134a, HFC-227ea, HFC-152a, HFC-32 and the like have a relatively large GWP and are preferable. In addition, although a high protective effect can be expected, highly toxic compounds such as BF 3 , SiF 4 , NF 3, and SO 2 F 2 are not necessarily suitable from the viewpoint of worker health and safety during use.

保護ガス成分としてSFを使用したときの溶融マグネシウム/マグネシウム合金の保護機構は明確ではないが、以下の反応で進むことが提案されている(J.F.King、Magnesium、2003年、32巻、(11)、頁1)。この場合、保護膜は最初酸化マグネシウム(MgO)であるが、さらにSFと反応してフッ化マグネシウム(MgF)となることが示されている。 Although the protection mechanism of molten magnesium / magnesium alloy when SF 6 is used as a protective gas component is not clear, it has been proposed to proceed by the following reaction (JF King, Magnesium, 2003, Vol. 32). (11), page 1). In this case, it is shown that the protective film is initially magnesium oxide (MgO) but further reacts with SF 6 to become magnesium fluoride (MgF 2 ).

すなわち、フッ素(F)は溶融マグネシウム/マグネシウム合金の保護において重要な役割を果たしている。このため保護ガス分子中のF含量が大きい方が保護膜を形成するのに有利と考えられる。   That is, fluorine (F) plays an important role in protecting the molten magnesium / magnesium alloy. For this reason, it is considered that a larger F content in the protective gas molecules is advantageous for forming a protective film.

2Mg(液体)+O→2MgO(固体) (1)
2Mg(液体)+O+SF→2MgF(固体)+SO (2)
2MgO(固体)+SF→2MgF + SO (3)
本発明者は、鋭意検討の結果、SFに代わる保護ガス成分として分子中に少なくとも1個の二重結合を有するため大気寿命が短く、GWPが極めて小さな、かつ分子中にF含量が比較的大きなフッ素化オレフィンを選択した。
2Mg (liquid) + O 2 → 2MgO (solid) (1)
2Mg (liquid) + O 2 + SF 6 → 2MgF 2 (solid) + SO 2 F 2 (2)
2MgO (solid) + SF 6 → 2MgF 2 + SO 2 F 2 (3)
As a result of intensive studies, the present inventor has at least one double bond in the molecule as a protective gas component in place of SF 6 , so that the atmospheric lifetime is short, the GWP is extremely small, and the F content in the molecule is relatively low. A large fluorinated olefin was selected.

保護ガス成分としては比較的沸点が低く常温で気体の化合物が望ましく、この要件を満たす化合物は炭素数が制限されるが、分子中に不飽和結合が含まれることにより沸点の低下、さらにGWPの低下が期待できる。フッ素化オレフィンのうち、F含量が比較的大きなフッ素化プロペンが好ましく、このような化合物として1,1,3,3,3−ペンタフルオロプロペン、1,2,3,3,3−ペンタフルオロプロペン、2,3,3,3−テトラフルオロプロペン、1,3,3,3−テトラフルオロプロペン、3,3,3−トリフルオロプロペン、1,1,2−トリフルオロプロペン等を挙げることができる。   As a protective gas component, a compound having a relatively low boiling point and a gas at normal temperature is desirable. A compound that satisfies this requirement has a limited number of carbon atoms, but the boiling point is lowered due to the presence of an unsaturated bond in the molecule. A decrease can be expected. Of the fluorinated olefins, fluorinated propene having a relatively large F content is preferred, and 1,1,3,3,3-pentafluoropropene and 1,2,3,3,3-pentafluoropropene are preferred as such compounds. 2,3,3,3-tetrafluoropropene, 1,3,3,3-tetrafluoropropene, 3,3,3-trifluoropropene, 1,1,2-trifluoropropene, etc. .

これらのフッ素化プロペンのなかで、1,3,3,3−テトラフルオロプロペンおよび2,3,3,3−テトラフルオロプロペンが沸点、低毒性で取り扱いが容易なため保護ガスとして特に好ましい。   Among these fluorinated propenes, 1,3,3,3-tetrafluoropropene and 2,3,3,3-tetrafluoropropene are particularly preferred as protective gases because of their boiling point, low toxicity and easy handling.

フッ素化プロペンは、入手容易なヘキサフルオロプロペンから水素化、脱HFによって1,2,3,3,3−ペンタフルオロプロペンが得られ、さらに水素化、脱HFにより2,3,3,3−テトラフルオロプロペンが得られることが知られている。また1,3,3,3−テトラフルオロプロペンは工業的に製造され入手が容易な1,1,1,3,3−ペンタフルオロプロパンを脱HFすることによりトランス/シス異性体の混合物として得ることができる。(I.L.Knunyantsら、Izv. Akad. Nauk SSSR、1960、p1312)   Fluorinated propene is obtained by hydrogenation and deHF from readily available hexafluoropropene to obtain 1,2,3,3,3-pentafluoropropene, and further by hydrogenation and deHF, 2,3,3,3- It is known that tetrafluoropropene can be obtained. In addition, 1,3,3,3-tetrafluoropropene is obtained as a mixture of trans / cis isomers by deHFing 1,1,1,3,3-pentafluoropropane which is industrially produced and easily available. be able to. (IL Knunants et al., Izv. Akad. Nauk SSSR, 1960, p1312)

トランス−1,1,1,3,3−ペンタフルオロプロパンは沸点が低く(−19℃)常温でガスとして取り扱うことができるので、シス−1,1,1,3,3−ペンタフルオロプロパン(9℃)よりも使用が容易であり、特に好ましい。   Since trans-1,1,1,3,3-pentafluoropropane has a low boiling point (−19 ° C.) and can be handled as a gas at room temperature, cis-1,1,1,3,3-pentafluoropropane ( It is easier to use than 9 ° C. and is particularly preferable.

キャリアガス成分は、0.5〜50体積%の乾燥空気および50〜99.5体積%の窒素からなるものが使用される。窒素は、溶融金属に対して不活性で、容易に入手でき、安全に使用できるので好ましい。   As the carrier gas component, one composed of 0.5 to 50% by volume of dry air and 50 to 99.5% by volume of nitrogen is used. Nitrogen is preferred because it is inert to the molten metal, is readily available, and can be used safely.

しかしながら、窒素等の不活性なガスを単独でキャリアガス成分として用いる場合、保護ガス成分の燃焼と溶融金属の保護とのバランスが崩れることがある。たとえば、溶融金属表面の保護膜の形成が不十分となる、マグネシウム酸化物等の固形物の塊の除去が難しくなるといったことが生じうる。このような場合、黒煙の発生が認められることがある。   However, when an inert gas such as nitrogen is used alone as a carrier gas component, the balance between the combustion of the protective gas component and the protection of the molten metal may be lost. For example, the formation of a protective film on the surface of the molten metal may be insufficient, and it may be difficult to remove a solid mass such as magnesium oxide. In such cases, generation of black smoke may be observed.

黒煙の発生は、鋳造時の炉内の酸素濃度が低くなると、溶湯表面の保護膜形成に必要なMgO/MgF比を維持することが難しくなり、保護膜の構造が不安定に(破れやすく)なり、破れた部分の活性マグネシウムがフッ素化オレフィンのフッ素原子を引き抜き、酸素不足下で高分子化して炭化すること等によるものと推定される。 Black smoke is generated when the oxygen concentration in the furnace during casting becomes low, it becomes difficult to maintain the MgO / MgF 2 ratio necessary for forming the protective film on the surface of the molten metal, and the structure of the protective film becomes unstable (breaking). It is presumed that the active magnesium in the torn part pulls out the fluorine atom of the fluorinated olefin and polymerizes and carbonizes under oxygen shortage.

鋳造時の炉内の酸素濃度が低くても溶湯上に形成された保護膜が安定に存在しつづければ、フッ素化オレフィンのフッ素は引き抜かれず黒煙は生じない。しかしながら、マグネシウム、マグネシウム合金の成形品が大きい場合や大量生産時には、溶湯にマグネシウム、マグネシウム合金のインゴットが投入され、投入の度に溶湯上の保護膜が常に壊されることになる。   Even if the oxygen concentration in the furnace during casting is low, if the protective film formed on the molten metal continues to exist stably, the fluorine of the fluorinated olefin is not extracted and black smoke is not generated. However, when a molded product of magnesium or a magnesium alloy is large or mass-produced, an ingot of magnesium or a magnesium alloy is introduced into the molten metal, and the protective film on the molten metal is always broken each time it is charged.

インゴット投入時等に炉内外での空気の出入りはあるので、保護膜の形成のための酸素を確保することはできる。従って、キャリアガス成分が、窒素等の不活性ガスのみでも前記した空気の出入りを利用し、保護膜の形成のための酸素を確保すれば保護膜形成は行われることになる。しかしながら、適切な酸素濃度とするために炉の操業条件の管理が難しいものとなることがある。   Since air enters and exits inside and outside the furnace when the ingot is charged, oxygen for forming the protective film can be secured. Therefore, even if the carrier gas component is only an inert gas such as nitrogen, the protective film is formed if the above-described entry / exit of air is used to secure oxygen for forming the protective film. However, in order to obtain an appropriate oxygen concentration, it may be difficult to manage the operating conditions of the furnace.

酸素必要量は、例えばフッ素化オレフィンがテトラフルオロプロペン(CH)の場合、有機物が完全に分解すると仮定すれば、次式(4)〜(8)のように最低4倍当量あればよいが、(5)式の反応等が含まれるため4倍当量以上であることが好ましい。酸素の供給源は、純酸素でもよいが、安全上および経済的に安価な乾燥空気を用いることが好ましく、乾燥空気および窒素からなるキャリガス混合物を用いることが好ましい。 For example, when the fluorinated olefin is tetrafluoropropene (C 3 F 4 H), the required oxygen amount is at least 4 times equivalent as in the following formulas (4) to (8), assuming that the organic matter is completely decomposed. However, since the reaction of the formula (5) and the like is included, it is preferably 4 times equivalent or more. The oxygen supply source may be pure oxygen, but it is preferable to use dry air which is safe and economically inexpensive, and it is preferable to use a carrier gas mixture consisting of dry air and nitrogen.

4Mg+2CH →6C+4MgF+H (4)
2Mg+O → 2MgO (5)
4MgO+2CH → 6C + 4MgF + H (6)
12C + 12O → 12CO(7)
2H + O → 2HO (8)
フッ素化オレフィンのキャリアガス中の濃度は、0.01〜10体積%が好ましく、望ましくは0.02〜5体積%である。含フッ素有機化合物の濃度が過小であれば保護効果が得られ難く、また過剰であれば保護ガス由来の分解物が増加し、マグネシウムまたはマグネシウム合金に悪影響を与え、作業環境においても好ましくない影響が現れることがあり望ましくない。
4Mg + 2C 3 F 4 H → 6C + 4MgF 2 + H 2 (4)
2Mg + O 2 → 2MgO (5)
4MgO + 2C 3 F 4 H → 6C + 4MgF 2 + H 2 (6)
12C + 12O 2 → 12CO 2 (7)
2H 2 + O 2 → 2H 2 O (8)
The concentration of the fluorinated olefin in the carrier gas is preferably 0.01 to 10% by volume, and desirably 0.02 to 5% by volume. If the concentration of the fluorine-containing organic compound is too low, it is difficult to obtain a protective effect, and if it is excessive, decomposition products derived from the protective gas increase, adversely affecting magnesium or a magnesium alloy, and undesirable effects in the work environment. It may appear and is not desirable.

乾燥空気および窒素からなるキャリガス成分中の空気含有量は、好ましくは0.5〜50体積%、さらに好ましくは1〜30体積%である。空気含有量が低過ぎる場合には、マグネシウム合金溶湯表面の酸化マグネシウムの比率が低下するため保護膜形成が不完全となること、酸素不足により黒煙が発生しやすくなること等の問題を生じ、高過ぎる場合には、逆に酸化マグネシウムの比率が高まり被膜の構造が変化すること、可燃性のガスの場合には燃焼の危険が高まること等の問題をともなうので好ましくない。   The air content in the carrier gas component consisting of dry air and nitrogen is preferably 0.5 to 50% by volume, more preferably 1 to 30% by volume. If the air content is too low, the ratio of magnesium oxide on the surface of the magnesium alloy melt will decrease, resulting in incomplete formation of the protective film, and problems such as black smoke is likely to occur due to insufficient oxygen, etc. If it is too high, the ratio of magnesium oxide increases and the structure of the coating changes, and in the case of a flammable gas, there are problems such as an increased risk of combustion, which is not preferable.

本発明の保護ガス組成物は、予め濃度を調整しそのまま、もしくはそれぞれの流量を個別に調整することにより目的の濃度とし、溶融したマグネシウムまたはマグネシウム合金の上部に連続的に流通することで使用することができる。   The protective gas composition of the present invention is used by adjusting the concentration in advance and maintaining the concentration as it is, or by adjusting each flow rate individually to achieve the target concentration, and continuously circulating the molten magnesium or magnesium alloy. be able to.

実施例1
マグネシウム50gを入れたるつぼ炉のマグネシウムの上部に、保護ガス成分として0.2%体積トランス−1,3,3,3−テトラフルオロプロペンと、99.8体積%のキャリアガス成分(95体積%窒素および5体積%乾燥空気からなるもの)からなる保護ガス組成物を、10ml/分で流しながら700℃に加熱し、マグネシウムを溶融した。目視で観察した結果、融液の上部に保護膜が形成され、激しい燃焼は観察されなかった。炉蓋を閉め、溶融環境を密閉し、保護ガスを1時間流し、その後炉蓋を開けたところ黒煙の発生は観察されなかった。
Example 1
On top of magnesium in a crucible furnace containing 50 g of magnesium, 0.2% volume trans-1,3,3,3-tetrafluoropropene as a protective gas component and 99.8% by volume carrier gas component (95% by volume) The protective gas composition consisting of nitrogen and 5% by volume dry air was heated to 700 ° C. while flowing at 10 ml / min to melt the magnesium. As a result of visual observation, a protective film was formed on the upper part of the melt, and vigorous combustion was not observed. When the furnace lid was closed, the molten environment was sealed, the protective gas was allowed to flow for 1 hour, and then the furnace lid was opened, and no black smoke was observed.

比較例1
キャリアガス成分を窒素だけにした以外は、実施例1と同様の手順にて、マグネシウムの溶融を実施した。溶融環境を密閉する前は融液の上部に保護膜が形成され、激しい燃焼は観察されなかったが、炉蓋を閉め溶融環境を密閉し、保護ガスを1時間流し、その後炉蓋を開けたところ黒煙の発生が観察された。
Comparative Example 1
Magnesium was melted in the same procedure as in Example 1 except that nitrogen was used as the carrier gas component. Before the molten environment was sealed, a protective film was formed on the upper part of the melt, and no severe combustion was observed, but the furnace lid was closed, the molten environment was sealed, protective gas was allowed to flow for 1 hour, and then the furnace lid was opened. However, generation of black smoke was observed.

実施例2
キャリアガス成分を90体積%窒素および10体積%乾燥空気からなるものとした以外は、実施例1と同様の手順にて、マグネシウムの溶融を実施した。溶融環境を密閉する前は融液の上部に保護膜が形成され、激しい燃焼は観察されなかった。また、炉蓋を閉め溶融環境を密閉し、保護ガスを1時間流し、その後炉蓋を開けたところ黒煙の発生は観察されなかった。
Example 2
Magnesium was melted in the same procedure as in Example 1 except that the carrier gas component was 90% by volume nitrogen and 10% by volume dry air. Prior to sealing the molten environment, a protective film was formed on top of the melt and no vigorous combustion was observed. Further, when the furnace lid was closed and the melting environment was sealed, the protective gas was allowed to flow for 1 hour, and then the furnace lid was opened, and generation of black smoke was not observed.

実施例3
キャリアガス成分を75体積%窒素および25体積%乾燥空気からなるものとした以外は、実施例1と同様の手順にて、マグネシウムの溶融を実施した。溶融環境を密閉する前は融液の上部に保護膜が形成され、激しい燃焼は観察されなかった。また、炉蓋を閉め溶融環境を密閉し、保護ガスを1時間流し、その後炉蓋を開けたところ黒煙の発生は観察されなかった。
Example 3
Magnesium was melted in the same procedure as in Example 1 except that the carrier gas component was 75% by volume nitrogen and 25% by volume dry air. Prior to sealing the molten environment, a protective film was formed on top of the melt and no vigorous combustion was observed. Further, when the furnace lid was closed and the melting environment was sealed, the protective gas was allowed to flow for 1 hour, and then the furnace lid was opened, and generation of black smoke was not observed.

実施例4
保護ガス成分を1,1,3,3,3−ペンタフルオロプロペンとした以外は、実施例1と同様の手順にて、マグネシウムの溶融を実施した。溶融環境を密閉する前は融液の上部に保護膜が形成され、激しい燃焼は観察されなかった。また、炉蓋を閉め溶融環境を密閉し、保護ガスを1時間流し、その後炉蓋を開けたところ黒煙の発生は観察されなかった。
Example 4
Magnesium was melted in the same procedure as in Example 1 except that the protective gas component was 1,1,3,3,3-pentafluoropropene. Prior to sealing the molten environment, a protective film was formed on top of the melt and no vigorous combustion was observed. Further, when the furnace lid was closed and the melting environment was sealed, the protective gas was allowed to flow for 1 hour, and then the furnace lid was opened, and generation of black smoke was not observed.

実施例5
保護ガス成分を1,2,3,3,3−ペンタフルオロプロペンとした以外は、実施例1と同様の手順にて、マグネシウムの溶融を実施した。溶融環境を密閉する前は融液の上部に保護膜が形成され、激しい燃焼は観察されなかった。また、炉蓋を閉め溶融環境を密閉し、保護ガスを1時間流し、その後炉蓋を開けたところ黒煙の発生は観察されなかった。
Example 5
Magnesium was melted in the same procedure as in Example 1 except that the protective gas component was 1,2,3,3,3-pentafluoropropene. Prior to sealing the molten environment, a protective film was formed on top of the melt and no vigorous combustion was observed. Further, when the furnace lid was closed and the melting environment was sealed, the protective gas was allowed to flow for 1 hour, and then the furnace lid was opened, and generation of black smoke was not observed.

実施例6
保護ガス成分を2,3,3,3−テトラフルオロプロペンとした以外は、実施例1と同様の手順にて、マグネシウムの溶融を実施した。溶融環境を密閉する前は融液の上部に保護膜が形成され、激しい燃焼は観察されなかった。また、炉蓋を閉め溶融環境を密閉し、保護ガスを1時間流し、その後炉蓋を開けたところ黒煙の発生は観察されなかった。
Example 6
Magnesium was melted in the same procedure as in Example 1 except that the protective gas component was 2,3,3,3-tetrafluoropropene. Prior to sealing the molten environment, a protective film was formed on top of the melt and no vigorous combustion was observed. Further, when the furnace lid was closed and the melting environment was sealed, the protective gas was allowed to flow for 1 hour, and then the furnace lid was opened, and generation of black smoke was not observed.

実施例7
保護ガス成分を3,3,3−トリフルオロプロペンとした以外は、実施例1と同様の手順にて、マグネシウムの溶融を実施した。溶融環境を密閉する前は融液の上部に保護膜が形成され、激しい燃焼は観察されなかった。また、炉蓋を閉め溶融環境を密閉し、保護ガスを1時間流し、その後炉蓋を開けたところ黒煙の発生は観察されなかった。
Example 7
Magnesium was melted in the same procedure as in Example 1 except that the protective gas component was 3,3,3-trifluoropropene. Prior to sealing the molten environment, a protective film was formed on top of the melt and no vigorous combustion was observed. Further, when the furnace lid was closed and the melting environment was sealed, the protective gas was allowed to flow for 1 hour, and then the furnace lid was opened, and generation of black smoke was not observed.

実施例8
保護ガス成分を1,1,2−トリフルオロプロペンとした以外は、実施例1と同様の手順にて、マグネシウムの溶融を実施した。溶融環境を密閉する前は融液の上部に保護膜が形成され、激しい燃焼は観察されなかった。また、炉蓋を閉め溶融環境を密閉し、保護ガスを1時間流し、その後炉蓋を開けたところ黒煙の発生は観察されなかった。
Example 8
Magnesium was melted in the same procedure as in Example 1 except that the protective gas component was 1,1,2-trifluoropropene. Prior to sealing the molten environment, a protective film was formed on top of the melt and no vigorous combustion was observed. Further, when the furnace lid was closed and the melting environment was sealed, the protective gas was allowed to flow for 1 hour, and then the furnace lid was opened, and generation of black smoke was not observed.

実施例9
保護ガス成分をシス−1,3,3,3−テトラフルオロプロペンとした以外は、実施例1と同様の手順にて、マグネシウムの溶融を実施した。溶融環境を密閉する前は融液の上部に保護膜が形成され、激しい燃焼は観察されなかった。また、炉蓋を閉め溶融環境を密閉し、保護ガスを1時間流し、その後炉蓋を開けたところ黒煙の発生は観察されなかった。
Example 9
Magnesium was melted in the same procedure as in Example 1 except that the protective gas component was cis-1,3,3,3-tetrafluoropropene. Prior to sealing the molten environment, a protective film was formed on top of the melt and no vigorous combustion was observed. Further, when the furnace lid was closed and the melting environment was sealed, the protective gas was allowed to flow for 1 hour, and then the furnace lid was opened, and generation of black smoke was not observed.

Claims (5)

溶融マグネシウム/マグネシウム合金の急激な酸化、燃焼を防止する保護ガス組成物であり、該保護ガス組成物は、キャリアガス成分とフッ素化オレフィンからなる保護ガス成分とを有し、前記キャリアガス成分が0.1〜10.5体積%の酸素を有することを特徴とする溶融マグネシウム/マグネシウム合金の保護ガス組成物。 A protective gas composition for preventing rapid oxidation and combustion of molten magnesium / magnesium alloy, the protective gas composition comprising a carrier gas component and a protective gas component comprising a fluorinated olefin, wherein the carrier gas component is A molten magnesium / magnesium alloy protective gas composition characterized by having 0.1 to 10.5% by volume of oxygen. 溶融マグネシウム/マグネシウム合金の急激な酸化、燃焼を防止する保護ガス組成物であり、該保護ガス組成物は、キャリアガス成分とフッ素化オレフィンからなる保護ガス成分とを有し、前記キャリアガス成分が0.5〜50体積%の乾燥空気および50〜99.5体積%の窒素からなることを特徴とする溶融マグネシウム/マグネシウム合金の保護ガス組成物。 A protective gas composition for preventing rapid oxidation and combustion of molten magnesium / magnesium alloy, the protective gas composition comprising a carrier gas component and a protective gas component comprising a fluorinated olefin, wherein the carrier gas component is A protective gas composition of a molten magnesium / magnesium alloy, characterized by comprising 0.5 to 50% by volume of dry air and 50 to 99.5% by volume of nitrogen. フッ素化オレフィンが、1,1,3,3,3−ペンタフルオロプロペン、1,2,3,3,3−ペンタフルオロプロペン、2,3,3,3−テトラフルオロプロペン、1,3,3,3−テトラフルオロプロペン、3,3,3−トリフルオロプロペン、1,1,2−トリフルオロプロペンおよびそれらの混合物からなる群から選ばれるフッ素化プロペンであることを特徴とする請求項1又は2に記載の保護ガス組成物。 The fluorinated olefin is 1,1,3,3,3-pentafluoropropene, 1,2,3,3,3-pentafluoropropene, 2,3,3,3-tetrafluoropropene, 1,3,3 Or a fluorinated propene selected from the group consisting of 1,3-tetrafluoropropene, 3,3,3-trifluoropropene, 1,1,2-trifluoropropene and mixtures thereof. 2. The protective gas composition according to 2. 保護ガス成分の濃度が0.02〜5体積%であることを特徴とする請求項1乃至請求項3のいずれかに記載の保護ガス組成物 The protective gas composition according to any one of claims 1 to 3, wherein the concentration of the protective gas component is 0.02 to 5% by volume. マグネシウムまたはマグネシウム合金製造において、請求項1乃至請求項4のいずれかに記載の保護ガス組成物を用いることを特徴とする溶融マグネシウム/マグネシウム合金の急激な酸化、燃焼を防止する方法。 A method for preventing rapid oxidation and combustion of molten magnesium / magnesium alloy, wherein the protective gas composition according to any one of claims 1 to 4 is used in the production of magnesium or a magnesium alloy.
JP2008108126A 2008-04-17 2008-04-17 Protective gas composition of molten magnesium / magnesium alloy Expired - Fee Related JP5056559B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008108126A JP5056559B2 (en) 2008-04-17 2008-04-17 Protective gas composition of molten magnesium / magnesium alloy
CNA2009101291056A CN101559486A (en) 2008-04-17 2009-03-16 Protective gas composition for melting magnesium/magnesium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008108126A JP5056559B2 (en) 2008-04-17 2008-04-17 Protective gas composition of molten magnesium / magnesium alloy

Publications (2)

Publication Number Publication Date
JP2009255136A JP2009255136A (en) 2009-11-05
JP5056559B2 true JP5056559B2 (en) 2012-10-24

Family

ID=41218554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008108126A Expired - Fee Related JP5056559B2 (en) 2008-04-17 2008-04-17 Protective gas composition of molten magnesium / magnesium alloy

Country Status (2)

Country Link
JP (1) JP5056559B2 (en)
CN (1) CN101559486A (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4627045B2 (en) * 2005-04-27 2011-02-09 セントラル硝子株式会社 Metal production protective gas
US7988762B2 (en) * 2005-12-01 2011-08-02 Central Glass Company, Limited Protective gas composition for magnesium/magnesium alloy production and combustion preventing method

Also Published As

Publication number Publication date
JP2009255136A (en) 2009-11-05
CN101559486A (en) 2009-10-21

Similar Documents

Publication Publication Date Title
US8016911B2 (en) Use of a protective gas composition for preventing oxidation or combustion of molten magnesium
TWI457444B (en) Non-ferrous metal cover gases
EP1204499B1 (en) Cover gases
JP2006520853A (en) Processing of melt-reactive metals and alloys using fluorocarbon as cover gas
US7988762B2 (en) Protective gas composition for magnesium/magnesium alloy production and combustion preventing method
JP5056559B2 (en) Protective gas composition of molten magnesium / magnesium alloy
CZ2002504A3 (en) Protective atmospheres of metals and alloys under elevated temperatures based on gases exhibiting reduced effect on global calescence
US20100242677A1 (en) Non-ferrous metal cover gases
US20080000647A1 (en) Non-Ferrous Metal Cover Gases
JP5146172B2 (en) Method for preventing combustion of molten magnesium or magnesium alloy
JP2008173665A (en) Protective gas composition for preventing combustion of molten magnesium/magnesium alloy, and method for preventing combustion of molten magnesium/magnesium alloy
JP5068665B6 (en) Magnesium / magnesium alloy production protective gas composition and combustion prevention method
Chin Not So Inert

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5056559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees