JP5055611B2 - Preadipocyte cell line - Google Patents

Preadipocyte cell line Download PDF

Info

Publication number
JP5055611B2
JP5055611B2 JP37801398A JP37801398A JP5055611B2 JP 5055611 B2 JP5055611 B2 JP 5055611B2 JP 37801398 A JP37801398 A JP 37801398A JP 37801398 A JP37801398 A JP 37801398A JP 5055611 B2 JP5055611 B2 JP 5055611B2
Authority
JP
Japan
Prior art keywords
differentiation
cells
adipocytes
culture
days
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP37801398A
Other languages
Japanese (ja)
Other versions
JP2000083656A (en
Inventor
浩一郎 加野
光一郎 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP37801398A priority Critical patent/JP5055611B2/en
Publication of JP2000083656A publication Critical patent/JP2000083656A/en
Application granted granted Critical
Publication of JP5055611B2 publication Critical patent/JP5055611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は動物の単胞性脂肪細胞由来の前駆脂肪細胞株の樹立方法に関する。
【0002】
【従来の技術】
白色脂肪組織の大部分を占有する成熟脂肪細胞は、生体が摂取した余剰エネルギーを中性脂肪に変換して貯蔵するだけでなく、生体維持に必要なエネルギー収支の調節機能においても主要な役割を果たすことが明らかにされている。このため脂肪細胞では、脂質代謝ならびに種々の生理活性物質の生成および分泌が活発に行われている。成熟脂肪細胞の直径は、10〜200μmと多様であるが、細胞質内に一つの大きな脂肪滴と周辺部に押しやられた核を有する典型的な形態から単胞性脂肪細胞と呼ばれている。脂肪細胞の形成過程は、まず多能性中胚葉細胞から前駆脂肪細胞となり、活発に増殖する。ついで、前駆脂肪細胞はコミットメントされたのち、増殖停止して脂肪細胞へと終末分化するとされている。この一連の分化過程において脂肪細胞特異的な遺伝子が整然と発現されることが知られている。最近、脂肪細胞の分化に関与する転写因子(核内受容体)の研究が急速に進展し、脂肪細胞特異的な遺伝子群の発現誘導および抑制を調節するマスターレギュレーターとして、ペルオキシソーム増殖剤応答性受容体γ(PPARγ)が発見された。PPARγは脂肪細胞にのみ特異的に発現し、栄養素である脂肪酸をリガンドとする核内受容体である。また、PPARγはレチノイドX受容体と補因子二量体を形成して、標的遺伝子の応答配列(PPRE)に結合して転写調節することも明らかにされた。
【0003】
これと並行して、PPARγはインスリン非依存型糖尿病(NIDDM)に対する治療薬であるチアゾリジン誘導体の細胞内標的タンパク質であることが示され、肥満症、糖尿病、および、高脂血症などの成人病と、脂肪細胞分化を支配する転写調節の研究との緊密な接点が明らかにされつつある。成人病との関連性では、脂肪細胞が種々の生理活性物質を生成および分泌する内分泌細胞としての側面が注目されている。インスリン抵抗性は、肥満症および糖尿病において最も頻繁に認められる病態である。肥満を伴う糖尿病におけるインスリン抵抗性は、脂肪細胞から分泌されるTNFαによって惹起されると考えられている。実際、肥満のヒトあるいは動物では、内臓に形成された脂肪細胞からTNFα分泌が亢進されており、インスリン抵抗性の指標と相関することが示されている。また、PAI-1(plasminogen activator inhibitor 1)は血液線溶系における最も重要な物質であり、線溶性を低下させ血栓形成を促進し、心筋梗塞などの原因となることが知られている。肥満症およびNIDDM患者では血中PAI-1が上昇するが、それらは主に内臓脂肪細胞由来であることも明らかにされている。さらに、肥満遺伝子の産物であるレプチンは脂肪細胞で産生され、中枢に作用して摂食抑制およびエネルギー消費を促進して体脂肪を一定に調節する新しいホルモンであるが、これも肥満症およびNIDDM患者において高く、またTNFαによって産生が亢進されることも明らかにされている。肥満症あるいはNIDDMにおける血中のTNFα、PAI-1およびレプチンの上昇は、チアゾリジン誘導体によって強く改善されることから、それら脂肪細胞由来の生理活性物質の生成および分泌は脂肪細胞分化に直接関係すると考えられる。しかし、疾患についての知見はヒトにおいて、また脂肪細胞分化の機構についてはマウス前駆脂肪細胞株を用いた体外培養における知見がほとんどであり、それらの疾患と脂肪細胞分化の関連性については未だ不明な点が多く残されている。
【0004】
一方、家畜あるいは家禽など産業動物の体脂肪蓄積の制御および脂肪交雑肉の作出は、これまで飼料エネルギーあるいは栄養素の調節によっておこなわれきた。しかし、経済効果優先の育種目標として、増体量の向上が優先されたことから飼料摂取量の多い個体が必然的に選抜されてきた。それにより、飼料摂取量が多い個体ではエネルギー過剰に陥りやすく、脂肪として過剰に蓄積する傾向を有する。これに反して、ヒトでは肥満症の増加から低脂肪の畜肉が嗜好され、生産される大部分の脂肪は食されることなく廃棄されているのが現状である。同時に、家畜あるいは家禽においても体脂肪の過剰蓄積に起因する代謝障害による疾病の増加も問題になっている。これらの解決策として、飼料成分の調整等による従来の間接的な方法によって高い生産性を維持しつつ、体脂肪の過剰蓄積を抑制することはすでに限界に達していると思われる。そこで、根本的なテーマとして、脂肪組織を構成する脂肪細胞の増殖および分化機構を直接的に制御することができれば、体脂肪蓄積のより効果的な制御を可能にすると考えられる。しかし、家畜あるいは家禽の脂肪組織を構成する脂肪細胞の増殖および分化に関する細胞レベルでの知見の集積はほとんどなされていないのが現状であり、またそれを調べるための優れた実験系も未だ確立されていない。
【0005】
これまで脂肪細胞の増殖および分化に関する研究は、主に、Swiss-3T3由来の前駆脂肪細胞株(3T3-L1や3T3-F443A)、或いは、脂肪組織を酵素処理することによって得られる間質-血管画分に含まれる前駆脂肪細胞(S-V細胞)の初代培養系を用いて行われてきた。しかし、Swiss-3T3由来の前駆脂肪細胞株には、1)パターンが異なった染色体をもつ変異細胞が混入している、2)妊娠17〜19日の胚由来であるため、アダルト由来の前駆脂肪細胞とは分化特性が異なる、3)血清添加培地で培養すると自発的に分化誘導されるので、本質的に分化誘導する物質を特定できない、等の解決すべき課題がある。一方、S-V細胞は、1)前駆脂肪細胞以外の細胞、たとえば、血管内皮細胞、平滑筋細胞、線維芽細胞などが混入しているため、前駆脂肪細胞自体の分化特性を調べることができない(他の細胞群の影響を無視できない)、2)脂肪組織中には、中胚葉性の多能性細胞から前駆脂肪細胞へと分化したばかりの細胞から、既にコミットメントされ脂肪細胞への分化途上の細胞に至る、種々の段階の分化過程にある細胞が存在する、3)初代培養系であるため、同一材料を用いて複数回の実験ができない、4)前記2)及び3)の理由から細胞を調製する個体間の差が大きいため、再現性の高いデータが得られない、等の解決すべき課題がある。
【0006】
これらの課題は、対象とする動物の前駆脂肪細胞を限界希釈法などによってクローニングして、前駆脂肪細胞株を樹立することにより解決できる可能性があるが、この様な操作は煩雑であり、且つ成功率が低い。
【0007】
【発明が解決しょうとする課題】
そこで、本発明は、動物の単胞性脂肪細胞由来の前駆脂肪細胞の新たな樹立方法及び該方法により得られる前駆脂肪細胞株を提供することを課題とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意研究を行った結果、すでに、終末分化を遂げている動物由来の単胞性脂肪細胞を天井培養し、得られる線維芽細胞様脂肪細胞が、前駆脂肪細胞と同様な増殖及び分化特性を有し、分化誘導により、形態学的にも、分化特性においても脂肪細胞へ分化することを確認し、さらに、該線維芽細胞様脂肪細胞を長期間継代培養しても形質転換なしに、かつ、均一な増殖及び分化能を保持して継代培養ができることを見出し、本発明を完成した。すなわち、本発明は、1)動物の単胞性脂肪細胞を天井培養して形成される線維芽細胞様脂肪細胞を継代培養し、脱分化することによって得られる該動物由来の前駆脂肪細胞株、2)動物がヒトである1)に記載の前駆脂肪細胞株、3)動物がブタである1)に記載の前駆脂肪細胞株、4)動物がニワトリである1)に記載の前駆脂肪細胞株、に関する。
【0009】
【発明の実施の形態】
動物の脂肪組織は、形成される部位(腸間膜、腎臓周囲、皮下、精巣上体、筋肉組織内など)ごとに異なる特性を有することが明らかにされつつある。そこで、前駆脂肪細胞の樹立目的によって、動物の年齢あるいは性別など、採取する脂肪組織を選択することができる。例えば、家畜では、商品価値の高い畜肉(例えば、霜降り肉)生産を目的として、筋肉組織内脂肪細胞の形成機構解明のための筋肉組織由来の前駆脂肪細胞株の樹立、肉用家畜あるいは家禽の枝肉率の向上を目的として、腹腔内脂肪細胞の形成機構およびその特性解明のための腹腔内脂肪由来の前駆脂肪細胞株の樹立、乳脂肪と脂肪酸組成との関連の調査を目的とした乳腺組織由来の前駆脂肪細胞株の樹立、或いはヒトにおいて、特に肥満症あるいは成人病に深く関与する生理活性物質(TNFα、レプチン、PAI-1など)の生成および分泌の調節機構解明のための内臓脂肪組織由来の前駆脂肪細胞株の樹立、などが考えられる。
【0010】
1)単胞性脂肪細胞の分離
単胞性脂肪細胞の分離は、基本的には、Rodbelの方法(Rodbel M.: J. Biol. Chem., 239: 173-181, 1964)に準じて行うことができる。外科手術中のヒト、或いは家畜・家禽から目的とする脂肪組織をすばやく採取する。太めの血管および結合組織を除去する。抗生物質を含む基礎培地(例えばダルベッコー変法イーグル培地)、或いはリン酸緩衝生理食塩水に脂肪組織を入れ、緩やかに脂肪組織を洗浄する。次いで、脂肪組織を、ウシ血清アルブミンおよびコラゲナーゼ、トリプシン、プロナーゼ、ディスパーゼ、エラスターゼ、ヒアルロニダーゼ、などの酵素を含む培地中に入れ、外科用ハサミで細胞が挫滅しないよう細切した後、45〜60分間震盪して細胞を分散する。分散操作後、細胞懸濁液をナイロンメッシュで濾過して未消化組織を除去する。濾液を緩やかに遠心分離すると、単胞性脂肪細胞は上層に浮遊して集まる。一方、間質血管細胞(前駆脂肪細胞を含む)は、沈殿に集まる。単胞性脂肪細胞をピペットで吸引採取する。採取した単胞性脂肪細胞は、さらに培地(例えば血清あるいはBSAを含むダルベッコー変法イーグル培地)に移し、数回遠心洗浄する。
【0011】
2)単胞性脂肪細胞の培養
単胞性脂肪細胞の培養は、杉原らの方法(Sugihara, H.et al.: Differentiation,31: 42-49, 1986)に準じて行うことができる。すなわち、単胞性脂肪細胞は、細胞質内に含まれる中性脂肪によって培養液中で浮遊するが、この浮遊性を逆に利用して、培地を100%充満させたフラスコの内側上面(天井面)に該細胞を接着させて培養する方法(天井培養)である。この方法で、単胞性脂肪細胞を数日間天井培養すると、大部分の細胞は細胞質の一部を伸長あるいは拡張させ、フラスコ天井面にしっかりと接着し、大型の脂肪滴の周辺に種々の大きさの脂肪滴を有する多胞性脂肪細胞へと形態変化する。この時点で、フラスコ内の培地を適量の培地に交換し、通常の培養法に戻して培養を継続する。多胞性脂肪細胞に含まれる脂肪滴はさらに分割され、小さくなるにつれて、多胞性脂肪細胞は細胞質をさらに伸長させ、線維芽細胞様の形態に変化する細胞が観察される。さらに培養を継続すると、線維芽細胞様の形態を呈する多胞性脂肪細胞の周辺部には、脂肪滴を僅かに、あるいはまったく持たない線維芽細胞様脂肪細胞(FA)が多数観察されるようになる。 FAは活発に増殖する一方で、多胞性脂肪細胞は徐々に観察されなくなる。その後、フラスコ内の細胞はFAのみとなりコンフルエントに達する。ブタ、ニワトリ、ラットあるいはヒトなど、いずれの種から採取した単胞性脂肪細胞を天井培養した場合においても、上記に示した形態変化したのち、活発に増殖するが、年齢、採取した組織の部位(例えば、皮下あるいは内臓脂肪組織)および性別などによって若干異なる。
【0012】
3)線維芽細胞様脂肪細胞(FA)の増殖および分化
上記2)において形成されたFAの採取および継代培養は以下に示す方法を用いて行う。天井培養後、フラスコ内にFAが形成され、活発に増殖することが確認されたら、フラスコ内の培地を除去し、フラスコ内の細胞をトリプシン処理および遠心分離する。この操作により、脂肪滴を有する多胞性脂肪細胞を上層画分に、脂肪滴をもたないFAを沈殿画分に分離することができる。この単胞性脂肪細胞由来のFAを継代培養すると、培養24時間後に、殆どの細胞は培養皿底面に接着し、線維芽細胞様の形態を示しながら活発に増殖し、数日後には、ほぼコンフルエントに達する。この培養期間における増殖曲線を作成することによって該動物あるいは組織由来のFAの増殖特性を調べる。動物種(ヒトあるいはラット)によっては、細胞質内に微小な脂肪滴が観察されるが、この場合は脂肪細胞の脱分化誘導作用を有するTNFα添加した培地を用いるなど適宜に行う。細胞質内の脂肪滴の有無の確認は、オイルレッドO染色法を用いて行う。なお、ブタあるいはニワトリのFAでは、脂肪滴は観察されない。
【0013】
FAの分化特性については、以下に示す方法を用いて行う。FAの培地を分化誘導剤を添加した培地(動物種で若干異なる)に交換し、数日間培養培養して分化誘導を行う。分化誘導後、通常の培地に戻し、さらに培養を継続する。一般的に、FAを分化誘導後数日経過すると、FAは星状あるいは敷石状に形態変化し、細胞質内に小さな脂肪滴を有する細胞が観察されるようになる。さらに培養を継続すると、細胞質は拡張し、細胞質内に種々の大きさの脂肪滴が観察されるようになる。分化誘導後におけるFA細胞質内の脂肪滴蓄積の確認は、オイルレッドO染色法を用いて行う。また、脂肪細胞の分化の後期マーカーであるglycerol-3-phosphate-dehydrogenase(GPDH)活性を分化の指標として測定し、分化誘導後の培養期間中における活性の変化を観察する。以上の結果として、該動物あるいは組織のFAが活発な増殖および分化能を有することが示されれば、FAは単胞性脂肪細胞由来の前駆脂肪細胞であることが示される。
【0014】
4)前駆脂肪細胞株の樹立
単胞性脂肪細胞由来の前駆脂肪細胞の継代培養を行い、各継代ごとの増殖および分化能を調べることによって前駆脂肪細胞株の樹立を試みる。例えば、ブタおよびニワトリの単胞性脂肪細胞由来の前駆脂肪細胞では、それぞれ37および33代目においても、継代初期と同様の均一な増殖能力および分化能が維持されており、かつ、染色体異常などの形質転換も観察されないことが確認されている。
【0015】
以上のように、本発明は4行程からなる。本発明では、実施例として以下にブタ皮下脂肪組織およびニワトリ腹腔内脂肪組織由来の前駆脂肪細胞株の樹立を示したが、その他の家畜、例えばウシやヒツジ、或いは家禽のアヒル、ウズラ、さらにはヒトなどにも、本発明で開示された技術を用いて、或いは当業者であるならば、必要な変更を加えて、目的の動物および組織由来の前駆脂肪細胞株を樹立することが可能である。例えば培養条件における培地、血清濃度、分化誘導剤などの選択は、当業者であるならば、簡単な試行錯誤の結果、適宜に最適条件を設定することが可能である。例えば、14日齢ニワトリ腹腔脂肪細胞由来の前駆脂肪細胞の場合では、血清添加添加濃度は10%、分化誘導剤は脂肪酸を用い、また、6〜7ヶ月齢ブタ皮下脂肪組織由来の前駆脂肪細胞の場合では20%血清添加で分化誘導剤にはインスリン、デキサメタゾンおよびイソブチルメチルキサンチンの同時添加が適当である。
【0016】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0017】
[実施例1]単胞性脂肪細胞の増殖特性
ブタ単胞性脂肪細胞の増殖特性を明らかにする目的で行った。すなわち、天井培養法を用いて単胞性脂肪細胞を培養し、増殖様式を観察した。ついで、単胞性脂肪細胞から形成されるFAの増殖状況を調べることによって、それらの効率的な採取が可能であるかについても検討した。
【0018】
1)材料および方法
(1) 脂肪組織の採取
と畜場において、6〜7ヶ月齢の雄あるいは雌ブタの皮下脂肪組織を採取し、約37℃に調整しておいた保温瓶に入れて1時間以内に実験室に持ち帰った。
【0019】
(2) 単胞性脂肪細胞の単離および培養
単胞性脂肪細胞の単離および培養方法の概略を図1に示す。0.08mg/mlカナマイシン一硫酸塩(SIGMA)および0.5mg/mlポリビニールアルコール(SIGMA)添加のリン酸緩衝食塩水(PBS-PVA)に、0.1%(v/v)セチルトリメチルアンモニウムブロミドを添加した溶液で脂肪組織を洗浄した。さらに、PBS-PVAで組織を3回洗浄した。25mM HEPES、1.8mg/ml NaHCO3および0.08mg/mlカナマイシン一硫酸塩を添加したダルベッコ変法イーグル培地(HEPES-DMEM;日水製薬)に、さらに2%ウシ血清アルブミン(BSA)および0.1%コラゲナーゼ(Type II; SIGMA)を添加した培地(pH7.4)中に約4gの脂肪組織を移し、外科用ハサミを用いて細切した。ついで遠沈管に移したのち、39℃の培養装置内で60分間震盪培養した。コラゲナーゼ処理後、細胞懸濁液を口径250および150μmのナイロンメッシュ(共進理工)を用いて濾過したのち、3%(v/v)ウシ胎子血清(FCS; Filtron)を添加したHEPES-DMEMでメッシュに付着した細胞を洗い流し、未消化組織と細胞を分別した。細胞懸濁液を遠沈管に移し、3分間、106Gで遠心分離するこによって、上層に単胞性脂肪細胞からなる画分を得た。単胞性脂肪細胞画分をピペットで吸引採取し、それを新鮮な3%FCS添加HEPES-DMEM中に移した。さらに、106G、3分間の遠心洗浄を3回繰り返したのち、血球計算盤を用いて細胞数を測定した。
【0020】
単胞性脂肪細胞の培養は、Sugiharaら(Sugihara, H.et al.: Differentiation, 31: 42-49, 1986)の方法に準じて行った。すなわち、3〜6×105個の単胞性脂肪細胞を組織培養フラスコ(FALCON, 3107)に移し、20%FCS、1.8mg/ml NaHCO3および0.08mg/mlカナマイシン一硫酸塩を添加したDMEMでフラスコ内を完全に満たした。37℃、5%CO2、95%空気の気相下の炭酸ガス培養装置内に、フラスコ底面が上となるように静置して6日間培養した。培養6日後、フラスコ内の培地を除去したのち、20%FCS添加DMEMに交換し、細胞接着面が底面となるようにして炭酸ガス培養装置内でさらに16日間培養を続けた。なお、天井培養後の培地交換は4日毎に行った。単胞性脂肪細胞の増殖状況については、倒立顕微鏡下で毎日観察を行った。
【0021】
(3)FA数の測定
培養6、10、14、18および22日後に、単胞性脂肪細胞から増殖したFAを以下に示す方法で測定した。フラスコ内の培地を除去したのち、PBS-PVAで4回洗浄した。ついで、0.1%(w/v)トリプシン(Difco)、0.1%(w/v)エチレンジアミン四酢酸(EDTA; ナカライテスク)を添加したPBS(トリプシンEDTA-PBS)をフラスコ内に加えたのち、炭酸ガス培養装置内に5分間静置した。培養後、3%FCS添加DMEMを加えたのち遠沈管に移し、さらに同培地でフラスコ内を2回洗浄して細胞を回収した。その後、165G、3分間遠心洗浄し、20%FCS添加DMEMで細胞を再浮遊させたのち、血球計算盤を用いて細胞数を計算した。
【0022】
(4) 組織化学的検索
細胞質内における脂肪蓄積の組織化学的検索には、オイルレッドO染色(Hausman, G. J.: Stain Technology, 56: 149-154, 1981)を用いた。すなわち、10%ホルマリン(v/v)添加PBS(ホルマリン-PBS)をフラスコ内の培地に加えて20分間室温下で前固定した。さらに、フラスコ内の培地を除去し、再び10%ホルマリン-PBSを加えて1時間室温下で後固定した。その後、フラスコ内のホルマリン-PBSを除去し、蒸留水で2〜3回洗浄した。0.5%(w/w)オイルレッドO-イソプロピルアルコール溶液と蒸留水を3:2で混合したのち、定性濾紙(No. 2、Advantec)で濾過して作成したオイルレッドO染色液をフラスコに入れ、1時間室温下で染色した。染色後、蒸留水で2〜3回洗浄し、風乾させたのち倒立顕微鏡下で単胞性、多胞性およびFAの脂肪蓄積状況を観察した。
【0023】
2)結 果
コラゲナーゼ処理後の遠心分離操作によって、単胞性脂肪細胞からなる単一な細胞画分が得られた(図2-a)。皮下脂肪組織から採取された単胞性脂肪細胞数は、4g当たり約3×106個であった。
【0024】
フラスコ内に導入された全ての単胞性脂肪細胞は、フラスコ天井面(底面)に浮き上がり、細胞質に含まれる一つの大きな脂肪滴に押し出されて細胞の周辺部に移動した核を有する典型的な形態を呈した。天井培養2〜3日後、一部の単胞性脂肪細胞は不完全ではあるが、フラスコ天井面に接着した。培養4日後には、大部分の細胞は細胞質の一部を伸長あるいは拡張させフラスコ天井面にしっかりと接着し、大型の脂肪滴の周辺に種々の大きさの脂肪滴を有する多胞性脂肪細胞へと形態変化した。多胞性脂肪細胞に含まれる脂肪滴はさらに分割され、小さくなるにつれて、多胞性脂肪細胞は細胞質をさらに伸長させ、線維芽細胞様の形態に変化する細胞が観察された。培養6日後には、線維芽細胞様の形態を呈する多胞性脂肪細胞の周辺部には、脂肪滴をまったく持たないFAが多数観察された(図2-a)。 その後、脂肪滴を持たないFAは活発に増殖したが、多胞性脂肪細胞は徐々に観察されなくなった(図2-b)。培養14日後、フラスコ内の細胞はFAのみとなり外観上コンフルエントに達した(図2-c)。
【0025】
天井培養終了後(培養6日後)には、フラスコ内の細胞をトリプシン処理および遠心分離することによって、脂肪滴を有する多胞性脂肪細胞を上層画分に、脂肪滴をもないFAを沈殿画分に分離することができた。天井培養後におけるFAの増殖曲線を図3に示した。培養6日後に採取されたFAは、約6×104個/25cm2であったが、急速に増加しコンフルエントに達した。例えば、培養18日後では、約1.4×106個/25cm2と約23倍にまで増加した。以上の結果から、ブタ単胞性脂肪細胞は多胞性脂肪細胞へ、さらにはFAへと形態変化したのち、活発に増殖し、コンフルエントにまで達することが示された。したがって、ブタ単胞性脂肪細胞を天井培養すれば、前駆脂肪細胞株樹立のための有用な材料であるFAを簡便かつ効率的に採取できることが明らかとなった。
【0026】
[実施例2]ブタFAの増殖および分化特性
ブタ単胞性脂肪細胞を天井培養すると細胞質に脂肪滴を持たないFAの効率的な採取が可能であることを実施例1で示した。もし、採取されたFAが継代培養後においても活発な増殖能および脂肪細胞への再分化能を有するとすれば、それらの細胞は、前駆脂肪細胞である。本実施例では、単胞性脂肪細胞から得られたFAが前駆脂肪細胞にまで脱分化するか、すなわち、FAは前駆脂肪細胞であるかを調べる目的で行った。まず、FA細胞が前駆脂肪細胞と同様な増殖および分化特性を有するかを、脂肪組織から採取したS-V細胞を対照区として比較検討した。さらに、FAの増殖および分化における至適条件についても調べた。
【0027】
1)材料および方法
(1) FAの増殖特性
FAの採取は、実施例1の(1)と同様の方法で行った。天井培養14日後、フラスコ内の培地を除去したのち、PBS-PVAで4回洗浄した。トリプシンEDTA-PBSをフラスコ内に加えたのち、炭酸ガス培養装置内に5〜8分間静置した。培養後、3%FCS添加DMEMを加えたのち遠沈管に移し、さらに同培地でフラスコ内を2回洗浄して細胞を回収した。その後、165G、3分間遠心洗浄し、20%FCS添加DMEMで細胞を再浮遊させたのち、血球計算盤を用いて細胞数を測定した。
【0028】
一方、対照区であるS-V細胞の採取は、細胞懸濁液を遠心後、上層画分をピペットで吸引除去し、沈殿層のS-V画分を採取した以外は、実施例1の(2)と同様に行った。
【0029】
10%FCSおよび20%FCSを添加したDMEMのそれぞれに対して、FAおよびS-V細胞を104および105 個/mlとなるように播種したのち、35mmの培養皿(FALCON、 3001J)に播種した。5%CO2炭酸ガス培養装置内に静置して、培養16日後まで4日毎にそれぞれの細胞数を測定した。また、FAおよびS-V細胞の増殖状況の観察は、倒立顕微鏡を用いて毎日行った。
【0030】
(2) FAの分化特性
FAあるいはS-V細胞を、最終濃度1×104個/mlとなるように20%FCS添加DMEMで調整して培養皿に播種し、炭酸ガス培養装置内(37℃、5%CO2、95%空気)で10日間培養した。培養後、コンフルエント状態を確認したのち、FCSについては種々の濃度で、またデキサメタゾン(DEX; 0〜2.5μM)、1-メチル-3-イソブチルキサンチン (IBMX; 0〜5 mM)、あるいはインスリン (INS; 0〜50μg/ml)などの分化誘導剤については、種々の濃度あるいは組み合わせで添加した分化誘導培地に交換して4日間培養した。培養後、再び20%FCS添加DMEMに交換し、さらに8日間培養した。分化状況は、グリセロール3リン酸デヒドロゲナーゼ (G3PDH) 比活性値およびオイルレッドO染色を指標として調べた。
【0031】
G3PDH活性測定に用いる細胞の調整は、PairaultとGreen (Pairault, J. and Green, H.: Proc. Natl. Acad. Sci. USA, 76: 5138-5142 ,1979)の方法に準じて行った。すなわち、培養12後まで4日毎、あるいは培養12日後に培養皿の培地を除去し、あらかじめ4℃に冷却しておいたPBSで細胞を2回洗浄したのち、1 mM EDTA添加した25 mMTris-HCl (pH 7.5) を加え、ラバーポリスマンで細胞をかき集めた。細胞塊を含むTris-HClをマイクロチューブに移し、150W、10秒間の超音波破砕処理して細胞を破壊した。ついで、4℃、12800 Gで5分間遠心分離したのち、上清を超遠心用チューブに移し、4℃、100000 G、60分間遠心分離した。遠心後に得られた上清(粗酵素液)をマイクロチューブに移し、G3PDH活性測定の直前まで-80℃で保存した。
【0032】
G3PDH活性の測定は、KozakとJensen (Kozak, L. P. and Jensen, J. T.: J. Biol. Chem., 249:7775-7781, 1974) の方法に従った。すなわち、0.5 Mトリエタノールアミン、10 mM EDTAおよび10 mMβ-メルカプトエタノールの混合溶液50μl、5mMジヒドロキシアセトンリン酸 (SIGMA) および0.5 mM NADH (オリエンタル酵母) を混合したものを反応液として用いた。融解直後の粗酵素液を反応液に加えて、攪拌したのち、ただちに分光光度計(25℃、340nm)を用いて、単位時間あたりの吸光度の変化を測定した。
【0033】
粗酵素液中のタンパク質濃度はLowryらの方法に従って測定した。すなわち、蒸留水で25倍希釈した粗酵素液に2%(w/v) Na2CO3と1%(w/v) CuSO4・5H2Oおよび2%(w/v)酒石酸カリナトリウムが50:1になるように混合したものを加えて10分間室温下に静置した。その後、1Nフェノール試薬を加えたのち、30分間静置した。発色反応後、分光光度計(750nm)を用いて吸光度を測定した。以上の操作によって得られたG3PDH活性値およびタンパク質含有量からG3PDH比活性値(units/mg protein) を以下に示す数式を用いて算出した。
G3PDH比活性値 (units/mg protein) =(100×t分間の吸光度変化量/1.25×t分)/粗酵素液中のタンパク質濃度(mg)
【0034】
2)結 果
(1) FAの増殖特性
継代培養したFAの増殖期における形態変化を調べた。培養24時間後、FAおよびS-V細胞にかかわりなく、播種されたほとんどの細胞は培養皿底面に接着した。その後、接着したFAおよびS-V細胞は伸長して線維芽細胞様の形態を示し、活発に増殖した。培養10日後には、いずれの細胞も培養皿一面に広がりほぼコンフルエントに達した。増殖期におけるFAおよびS-V細胞の形態的な差異は観察されなかった。FAおよびS-V細胞の増殖曲線を図4に示した。FAおよびS-V細胞の105個/ml播種区では、FCS濃度にかかわりなく急速に増殖し、培養8日後にはコンフルエントに達した。一方、104個/ml播種区においてもFAおよびS-V細胞は、FCS濃度にかかわりなく急速に増加し、培養12日後にはほぼコンフルエントに達した。しかし、FAの20%FCS添加区では培養12日後においても細胞数の増加が認められ、培養16日後には105個/ml播種区と同様の値を示した。
【0035】
(2) FAの分化特性
FAの分化にともなう形態変化を図5に示した。分化誘導直前のFAはコンフルエントに達しても線維芽細胞様の典型的な形態を示し、細胞質内に脂肪滴は観察されなかった(図5-a、 b)。0.25μM DEX、5μg/ml INS、0.5 mM IBMXおよび20%FCSを添加したDMEMを用いて分化誘導すると、分化誘導4日後には、FAは星状の形態を示し、細胞質内に小さな脂肪滴を有するものも観察された(図5-b)。分化誘導12日後には、細胞質は拡張し、細胞質内に種々の大きさの脂肪滴が多数観察された(図5-c)。また、図には示さなかったが、分化誘導後のS-V細胞においても一部が星状になったが、他のほとんどの細胞は線維芽細胞様の形態を維持した。しかし、培養12日後にはFAと同様に細胞質は拡張し、細胞質内に種々の大きさの脂肪滴を蓄積した細胞も観察された。
【0036】
分化誘導直前のコンフルエントに達したFAをオイルレッドO染色しても、染色された細胞は全く観察されなかった(図5-d)。しかし、分化誘導12日後のFAをオイルレッドO染色すると、培養皿底面のほぼ全体がオイルレッドO染色され(図5-f)、培養したFAのほとんどが成熟脂肪細胞へと分化することが示された。一方、S-V細胞では、コロニー状にオイルレッドO染色された部分が観察されたが、染色の程度はFAに比べて少なかった(図5-g)。また、分化誘導しないFAは、線維芽細胞様の形態が培養期間の全てにおいて維持され、培養12日後においてもオイルレッドO染色に陽性の細胞はほとんど観察されなかった(図5-e)。
【0037】
FAおよびS-V細胞の分化誘導後におけるG3PDH比活性値の変化を図6に示した。分化誘導剤無添加区では、FAおよびS-V細胞のいずれにおいてもG3PDH比活性値の上昇は培養12日後まで認められなかった。この結果は、FAが分化誘導剤によってのみ分化誘導され、自発的な分化を起こさないことを示している。一方、分化誘導剤添加区におけるFAおよびS-V細胞のG3PDH比活性値は、それぞれ分化誘導4および8日後から急速に上昇し、各培養日数間におけるその差は有意であった。分化誘導12日後におけるFAおよびS-V細胞のG3PDH比活性値は、それぞれ160および54 units/mg proteinであり、FAのG3PDH比活性値はS-V細胞に比べて約3倍高い値を示した。
【0038】
FAの分化に及ぼす血清濃度の影響を調べた。0.25μM DEX、5μg/ml INSおよび0.5 mM IBMX添加したDMEMに5、10、20あるいは40% (v/v) FCS添加した培地で分化誘導し、12日間培養した。その結果、G3PDH比活性値は、5〜20%FCS添加区の間で濃度依存的に増加し、各区間に有意差が認められた。しかし、40%FCS添加区では、G3PDH比活性値は低下する傾向が認められた。これらの結果から、FAの分化誘導には分化誘導培地への20%FCS添加が至適濃度であることが示された。
【0039】
培地に添加するDEX、IBMXおよびINSなどの分化誘導剤の組み合わせがFAの分化に及ぼす影響を調べた(図7)。3種の分化誘導剤をそれぞれ単独あるいは組み合わせて添加し、培養12日後のG3PDH比活性値を測定した。その結果、IBMXおよびDEXのG3PDH比活性値は、INS添加区および対照区に比べて有意に高い値を示した。2種の分化誘導剤を組み合わせると、全ての区において対照区およびINS区と比べて有意に高い値を示した。特に、DEX+IBMX区では相乗効果が認められ、INS+IBMX区および全ての単独添加区と比べて有意に高い値を示した。さらに、3種を組み合せたDEX+IBMX+INS区の比活性値は、132 units/mg proteinと著しい相乗効果を示し、対照区および全ての実験区に比べて有意(p<0.001)に高い値を示した。ついで、DEX+IBMX+INS区に含まれる各分化誘導剤の至適濃度を調べた。その結果、DEX、IBMXおよびINSのいずれにおいても、それぞれ0.25μM、0.5 mMおよび5μ/mlまで濃度依存的に培養12日後におけるG3PDH比活性値を上昇させたが、それ以上の濃度では変化が認められなかった。
【0040】
以上の結果から、単胞性脂肪細胞由来のFAは、活発な増殖および分化能を有する前駆脂肪細胞であることが明らかとなった。
【0041】
[実施例3]ブタ前駆脂肪細胞の増殖および分化に及ぼす継代回数の影響
実施例2において、単胞性脂肪細胞から形成されるFAは前駆脂肪細胞であることが明らかとなった。したがって、この単胞性脂肪細胞由来の前駆脂肪細胞(Porcine Peradipocytes derived from Matured Adipocytes : PPMA)が継代可能であり、また継代を繰り返しても安定した増殖および分化能が維持されるなら、PPMAはブタ前駆脂肪細胞株であることが明らかでる。本実施例では、ブタ前駆脂肪細胞株の樹立を目的として、PPMAを長期間にわたって継代培養し、継代間における増殖および分化能を比較検討した。
【0042】
1)材料および方法
(1) ブタ単胞性脂肪細胞由来の前駆脂肪細胞の採取
と畜場において、6〜7ヶ月齢の雄あるいは雌ブタ型5頭から皮下脂肪組織を採取し、約37℃に調整しておいた保温瓶に入れて1時間以内に実験室に持ち帰った。ついで、実施例1の方法で天井培養してPPMAを得た。
【0043】
(2) ブタ前駆脂肪細胞の継代培養および分化誘導
PPMAの継代培養法は前項に従って行われた。すなわち、トリプシンEDTA-PBSを用いてPPMAを培養皿底面から剥がし、遠心洗浄したのち、細胞数を血球計算盤を用いて算出した。ついで、最終濃度1×104個/mlとなるように20%FCS添加DMEMで再浮遊させ、細胞懸濁液2mlを培養皿に移し、37℃、5%CO2、95%空気の気相下の炭酸ガス培養装置内で10日間培養した。培地交換は4日毎に行い、以上の操作を継代毎に繰り返した。また、増殖状況の観察については、倒立顕微鏡を用いて毎日観察した。
【0044】
分化誘導については、継代培養10日後にコンフルエントに達しているPPMAの培地を0.25μM DEX、0.5mM IBMXおよび5μg/ml INSを含む20%FCS添加DMEMに交換し、4日間分化誘導した。その後、20%FCS添加DMEMに培地交換し5、さらに6日間培養した。培養10日後、PPMAをサンプリングし、前項2に示した方法にしたがってG3PDH比活性値を測定した。また、分化誘導後における細胞形態変化の観察は倒立顕微鏡を用いて毎日行った。
【0045】
2)結 果
増殖期におけるPPMAは線維芽細胞様の形態を示し、各継代間における形態的な違いは観察されなかった。PPMAの増殖に及ぼす継代回数の影響を図8−aに示した。5個体のうち4個体のPPMAでは、継代6〜7代目において培養10日後における細胞数の減少が認められた。しかし、その後安定し、3個体由来のPPMAでは、継代37代目においても継代初期と同様の増殖能力が維持された。
【0046】
継代35代目におけるPPMAの染色体数の算定を分裂中期像の分析によって行った。PPMAの74%は2倍体(38染色体)であり、11%が39染色体であった。さらに、8%が38染色体以下であり、6%は構造異常および1%が58染色体以上であった。これらの結果は、PPMAが長期継代培養後においても正常な表現型が維持されること示している。
【0047】
PPMAの分化誘導後に観察される形態変化は、各継代間で違いは観察されなかった。また、3個体由来のPPMAでは、35代以上の継代を繰り返しても細胞質内に種々の大きさの脂肪滴を蓄積し、継代初期との形態的な違いは認められなかった。PPMAの分化に及ぼす継代回数の影響を図8−bに示した。3個体由来のPPMAでは、継代37代目までG3PDH比活性値は維持された。しかし、他の2個体由来のPPMAのG3PDH比活性値は、それぞれ継代3および16代目から急速に減少し、それぞれ継代12および22代目以降のG3PDH比活性値はいずれも分化誘導しない対照区(2〜6units/mg protein)と同様の値まで低下した。以上の結果は、単胞性脂肪細胞由来のPPMAが、長期継代を経ても均一な増殖および分化特性を維持することを示しいる。したがって、PPMAは長期継代培養が可能なブタ前駆脂肪細胞株であることが明らかとなった。
【0048】
[実施例4]ニワトリFAの分化特性
本実施例では、ニワトリの腹腔脂肪組織から採取した単胞性脂肪細胞を天井培養し、得られたFAが前駆脂肪細胞にまで脱分化するかについて調べた。腹腔内脂肪組織から採取したS-V細胞を対照区とした。
【0049】
1)材料および方法
14日齢雄ニワトリを放血と殺した後、直ちに腹腔内脂肪を摘出し、重量を測定した。単胞性脂肪細胞およびFAの採取、ならびにそれらの培養法は、実施例1の(1)とほぼ同様の方法で行った。一方、S-V細胞の採取は、実施例2の(1)と同様の方法で行った。ニワトリの場合は、天井培養8日後に形成されるFAを継代培養したものを用いた。FAあるいはS-V細胞を、最終濃度1×105個/mlとなるように10%FCS添加DMEMで調整して培養皿に播種し、炭酸ガス培養装置内(37℃、5%CO2、95%空気)に静置して8日間培養した。培養後、コンフルエント状態を確認したのち、1μg/mlインスリン、10μg/mlトランスフェリンおよび12mg/ml BSAを含むDMEMに、0.1%脂肪酸濃縮液(GIBCO BRL)無添加あるいは添加した培地に交換して12日間培養した。培地交換は、4日毎に行った。分化状況は、G3PDH比活性値およびオイルレッドO染色を指標として調べた。G3PDH活性測定に用いる細胞の調整およびG3PDH比活性測定およびオイルレッドO染色の方法は、実施例2の(2)に従った。
【0050】
2)結果
ニワトリFAおよびS-V細胞の分化誘導後におけるG3PDH比活性値の変化を図9に示す。脂肪酸無添加区では、FAおよびS-V細胞のいずれにおいても培養4日後のG3PDH比活性値はやや上昇する傾向が認められたが、その後、培養12日後まで低下し、G3PDH比活性値の有意な上昇は認められなかった。また、脂肪酸無添加区においては、培養期間のいずれにおいても細胞質にオイルレッドO染色陽性の物質は観察されなかった。一方、脂肪酸添加区における分化誘導4日後のFAおよびS-V細胞のG3PDH比活性値は、無添加区と同様であり、有意な上昇は認められなかったが、分化誘導8日後におけるFAおよびS-V細胞のG3PDH比活性値はいずれも急速に上昇し、FAの比活性値はS-V細胞に比べて有意に高い値を示した。さらに、分化誘導12日後におけるG3PDH比活性値は、それぞれ79および60 units/proteinといずれも最高値を示した。これらの結果から、ニワトリFAは前駆脂肪細胞であることが示された。また、それらは脂肪酸によって分化誘導され、自発的な分化を起こさないことが示された。
【0051】
[実施例5]ニワトリ前駆脂肪細胞の増殖および分化に及ぼす継代回数の影響
実施例4において、ニワトリ単胞性脂肪細胞から形成されるFAが前駆脂肪細胞であることが明らかとなった。この単胞性脂肪細胞由来の前駆脂肪細胞(Chick Preadipocyte drived from Matured Adipocytes:CPMA)が継代可能であり、また継代を繰り返しても安定した増殖および分化能が維持されるとすれば、CPMAはニワトリ前駆脂肪細胞株であると考えられる。本実施例では、ニワトリ前駆脂肪細胞株の樹立を目的として、CPMAを長期間にわたって継代培養し、継代間における増殖および分化能を比較検討した。
【0052】
1)材料および方法
CPMAの継代培養法は実施例3の(2)に従って行われた。すなわち、トリプシンEDTA-PBSを用いてCPMAを培養皿底面から剥がし、遠心洗浄したのち、細胞数を血球計算盤を用いて算出した。最終濃度1×105個/mlとなるように10%FCS添加DMEMで再浮遊させ、細胞懸濁液2mlを培養皿に移し、37℃、5%CO2、95%空気の気相下の炭酸ガス培養装置内で8日間培養した。培地交換は4日毎に行い、以上の操作を継代毎に繰り返した。増殖状況の観察については、倒立顕微鏡を用いて毎日観察した。分化誘導については、継代培養8日後にコンフルエントに達しているCPMAの培地を、実施例4の(2)に示した分化誘導培地に交換することによって行った。その後、さらに分化誘導培地中で12日間培養した。分化誘導12日後、CPMAをサンプリングし、実施例2の(2)に示した方法に従ってG3PDH比活性値を測定した。また、分化誘導後における細胞形態変化の観察は倒立顕微鏡を用いて毎日行った。
【0053】
2)結果
増殖期におけるCPMAは実施例3のブタ前駆脂肪細胞に比べるとやや平滑筋細胞様の形態を示したが、各継代間における形態的な違いについては観察されなかった。CPMAの増殖に及ぼす継代回数の影響を図10に示した。5例中2例のCPMAにおいてのみ、継代10〜15代目の培養8日後における細胞数において減少が認められた。しかし、それ以外のCPMAでは、継代33代目においても継代初期と同様の増殖能力が維持された。
【0054】
分化誘導後に観察されるCPMAの形態変化は、各継代間で違いは観察されなかった。また、5例中2例のCPMAでは、33代以上の継代を繰り返しても、分化誘導後において細胞質内に種々の大きさの脂肪滴を蓄積し、継代初期との形態的な違いは認められなかった。CPMAの分化に及ぼす継代回数の影響を図11に示した。5例中2例のCPMAでは、継代33代目までG3PDH比活性値は維持された。しかし、他の3例のCPMAにおけるG3PDH比活性値は、それぞれ継代6、8および25代目から急速に減少し、それぞれ継代8、9および29代目以降のG3PDH比活性値はいずれも分化誘導しない対照区と同様の値(6〜18 units/mg protein)まで低下した。以上の結果は、単胞性脂肪細胞由来のCPMAが、長期継代を経ても均一な増殖および分化特性を維持することを示しいる。したがって、CPMAは長期継代培養が可能なニワトリ前駆脂肪細胞株であることが明らかとなった。
【0055】
【発明の効果】
本発明により得られる効果を列記すると以下のようになる。
【0056】
1)終末分化を遂げた単胞性脂肪細胞は前駆脂肪細胞にまで脱分化することが明らかにされた。これは、脂肪細胞分化のモデルだけでなく、分化および脱分化の遺伝子レベルでの機構解明のための実験系となり得る。
【0057】
2)これらの前駆脂肪細胞は、形質転換(染色体レベルでの異常など)なしに長期継代可能である。すなわち、本発明により動物細胞由来の前駆脂肪細胞株を簡便にかつ短期間で再現性よく樹立することが可能となる。
【0058】
3)家畜あるいは家禽由来の前駆脂肪細胞株を用いて、増殖および分化を抑制する物質をスクリーニングすることができれば、それを家畜あるいは家禽に投与することによって、より効果的な体脂肪蓄積の制御が可能となる。この方法により現在行われている飼料エネルギーあるいは栄養素の調節による従来法の限界を解決するだけでなく、飼料効率のさらなる向上や、廃棄される脂肪を減少させ食料資源の効率化に貢献する。
【0059】
4)脂肪組織は形成される部位(腸間膜、腎臓周囲、皮下、精巣上体、筋肉組織など)ごとに異なる特性を有することが明らかにされつつある。本発明により各部位由来の前駆脂肪細胞が各個体ごとに採取されることから、各部位ごとの脂肪細胞分化の特性を個体差を含めて詳細に比較検討することが可能となる。
【0060】
5)筋肉組織内に交雑する脂肪(霜降り肉)は、食肉の商品価値を高めるが、本発明によって筋肉組織由来の前駆脂肪細胞株を樹立し、それらの特性を解明すれば、商品価値の高い畜肉生産を可能とする。
【0061】
6)内臓由来の前駆脂肪細胞を用いて、該細胞から生成および分泌される生理活性物質、特に肥満症あるいは成人病に深く関与するTNFα、レプチン、PAI-1などの生成機構を解明のための実験系となる。これによりインスリン抵抗性および肥満解消薬の開発あるいは動脈硬化の指標作りなどが可能となる。
【0062】
7)本発明によって単一な前駆脂肪細胞が得られることから、成熟脂肪細胞、血管上皮細胞あるいは血管周囲細胞、さらには筋細胞などとの共培養が可能となり、それらの細胞が脂肪細胞分化に及ぼす影響について調べることが可能となる。
【0063】
8)ダイオキシンあるいは合成樹脂などの内分泌攪乱化学物質(環境ホルモン)は脂溶性であり、脂肪組織に蓄積される。したがって、分化誘導した脂肪細胞を用いて、それらの物質の取り込みと排出のメカニズムを詳細に検討する実験系となる。
【0064】
9)脂肪細胞は分化過程において脂肪細胞特異的な遺伝子が整然と発現されることから、分化過程のどの位置にある細胞かを明確にとらえることが出来る。したがって、増殖期、分化前期、中期および後期さらには終末分化に至る任意の細胞を用意することができる。本発明をもちいれば、胎児期から成体由来の前駆脂肪細胞を容易に準備することが可能であり、また染色体異常を起こすことなく維持されることから体細胞クローン作成時のドナー細胞として使用できる。
【0065】
10)本発明は、成熟脂肪細胞が採取可能であれば前駆脂肪細胞を得られることを主に哺乳類および鳥類を対象として示した。このことは、爬虫類、両生類あるいは魚類、また、無脊椎動物例えば昆虫類などにおける脂肪細胞の分化特性等を調べるための実験系や物質生産系を構築することができる。
【0066】
【図面の簡単な説明】
【図1】単胞性脂肪細胞の天井培養法を示す図である。脂肪組織をコラゲナーゼ処理し、ろ過後に遠心分離して単胞性脂肪細胞(成熟脂肪細胞)群と間質血管系細胞群を分離した。培地を満たしたフラスコ内に単胞性脂肪細胞を播種し、6日間培養した。その間に単胞性脂肪細胞はフラスコ内において浮上し、天井面に接着する。培養6日後、フラスコ内の培養液を適量にし、接着面を底面に戻して培養を継続した。
【図2】ブタ単胞性脂肪細胞から形成された線維芽細胞様脂肪細胞(FA)の増殖。
a;培養6日後、多胞性脂肪細胞と脂肪滴を持たないFAが混在している。
b;培養10日後、多胞性脂肪細胞は減少し、FAの活発な増殖が観察される。
c;培養14日後、FAはほぼコンフルエントに達する。多胞性脂肪細胞は全く観察されない。
【図3】単胞性脂肪細胞から形成されたブタ線維芽細胞様脂肪細胞の増殖曲線(n=5)。
・20%FCS添加DMEM中で6日間天井培養した後、フラスコ内の培養液を適量にし、接着面を底面に戻してさらに16日間培養した。a〜d:p<0.05。
【図4】ブタ線維芽細胞様脂肪細胞(FA)および間質血管系(S-V)細胞の増殖曲線。
・10%(●)あるいは20%(○)FCS添加したDMEMで細胞濃度104あるいは105個/mlで播種し、培養16日まで4日毎にFAおよびS-V細胞の細胞数を測定した。a〜c:p<0.05。
【図5】ブタ線維芽細胞様脂肪細胞(FA)の分化に伴う形態変化およびオイルレッドO染色像。
a;培養10日後、コンフルエントに達したFAの細胞質には脂肪滴はまったく観察されない。
b;分化誘導4日後、FAは星状の形態を示し、細胞質内に小さな脂肪滴を有する細胞も観察される。
c;分化誘導12日後、FAの細胞質は拡張し、細胞質内に種々の大きさの脂肪滴が多数観察される。
d;分化誘導直前のコンフルエントに達しているFAのオイルレッドO染色像。培養皿に染色された部分は観察されない。
e;分化誘導しないFAは、培養12日後においても培養皿に染色された部分がほとんど観察されない。
f;分化誘導12日後におけるFAのオイルレッドO染色像。オイルレッドO染色されたFAが培養皿の全面に観察される。
g;分化誘導12日後におけるS-V細胞のオイルレッドO染色像。培養皿の底面にコロニー状に染色された部分が観察される。
【図6】分化誘導後におけるブタ線維芽細胞様脂肪細胞(FA)および間質血管系(S-V)細胞のグリセロール3リン酸デヒドロゲナーゼ(G3PDH)活性の変化(n=4)。
・0.25μMデキサメタゾン(DEX)、0.5mMイソブチルメチルキサンチン(IBMX)および5μg/mlインスリン(INS)を添加あるいは無添加した20%FCS添加のDMEMで4日間分化誘導したのち、20%FCS添加DMEMでさらに8日間培養した。分化誘導後、4日毎にG3PDH比活性値を測定した。a〜c:p<0.05。
【図7】種々に分化誘導剤の組み合わせがブタ線維芽細胞様脂肪細胞の分化に及ぼす影響(n=6)。
・0.25μMデキサメタゾン(DEX)、0.5mMイソブチルメチルキサンチン(IBMX)、5μg/mlインスリン(INS)を種々の組み合わせで添加した20%FCS添加DMEMを用いて4日間分化誘導したのち、20%FCS添加DMEMでさらに8日間培養した。a〜d:p<0.05。
【図8】ブタ線維芽細胞様脂肪細胞の増殖(a)および分化(b)に及ぼす継代回数の影響。
a)5個体由来のブタ前駆脂肪細胞を最終濃度1×104個/mlとなるように20%FCS添加DMEM中に播種したのち、培養10日後の細胞数を測定した。
b)コンフルエントに達した5個体由来のブタ前駆脂肪細胞の培地を、0.25μMデキサメタゾン、0.5mMイソブチルメチルキサンチンおよび5μg/mlインスリンを含む20%FCS添加DMEMで4日間分化誘導したのち、20%FCS添加DMEMでさらに6日間培養した。
【図9】分化誘導後におけるニワトリ線維芽細胞様脂肪細胞および間質血管系(S-V)細胞のG3PDH活性の変化(n=5)。
コンフルエントに達したニワトリ線維芽細胞様脂肪細胞の培地を、1μg/mlインスリン、10μg/mlのトランスフェリンおよび12mg/ml BSA添加DMEMに0.1%(v/v)脂肪酸濃縮液を添加、あるいは無添加の培地に交換し、12日間培養した。分化誘導後、4日毎にG3PDH比活性値を測定した。a〜c:p<0.05。
【図10】ニワトリ単胞性脂肪細胞由来の前駆脂肪細胞の増殖に及ぼす継代回数の影響(n=5)。 ニワトリ前駆脂肪細胞を最終濃度1×105個/mlとなるように10%FCS添加DMEM中に播種したのち、培養8日後の細胞数を測定した。
【図11】ニワトリ単胞性脂肪細胞由来の前駆脂肪細胞の分化に及ぼす継代回数の影響(n=5)。
コンフルエントに達したニワトリ前駆脂肪細胞の培地を、0.1%(v/v)脂肪酸濃縮液、1μg/mlインスリン、10μg/mlのトランスフェリンおよび12mg/ml BSA添加DMEMに交換し、12日間培養した。分化誘導12日後にG3PDH比活性値を測定した。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for establishing a preadipocyte cell line derived from an animal monocystic adipocyte.
[0002]
[Prior art]
Mature adipocytes, which occupy most of the white adipose tissue, not only convert and store surplus energy taken by the living body into neutral fat, but also play a major role in the function of regulating the energy balance necessary for living body maintenance. It has been shown to fulfill. For this reason, lipid metabolism and production and secretion of various physiologically active substances are actively performed in adipocytes. The diameter of mature adipocytes varies from 10 to 200 μm, but it is called a monocystic adipocyte because of its typical form with one large lipid droplet in the cytoplasm and a nucleus pushed to the periphery. In the formation process of adipocytes, first, pluripotent mesoderm cells become preadipocytes and actively proliferate. Next, after the preadipocytes are committed, they stop growing and terminally differentiate into adipocytes. It is known that adipocyte-specific genes are systematically expressed during this series of differentiation processes. Recently, research on transcription factors (intranuclear receptors) involved in adipocyte differentiation has progressed rapidly, and peroxisome proliferator-responsive receptors as master regulators that regulate the induction and suppression of adipocyte-specific gene expression. The body γ (PPARγ) was discovered. PPARγ is a nuclear receptor that is specifically expressed only in adipocytes and has a fatty acid as a ligand as a ligand. PPARγ has also been shown to form a cofactor dimer with retinoid X receptor and bind to the target gene response element (PPRE) to regulate transcription.
[0003]
In parallel, PPARγ has been shown to be an intracellular target protein of thiazolidine derivatives that are therapeutic agents for non-insulin dependent diabetes mellitus (NIDDM), and adult diseases such as obesity, diabetes, and hyperlipidemia And a close contact with the study of transcriptional regulation that governs adipocyte differentiation. In relation to adult diseases, attention has been focused on the aspect of endocrine cells in which adipocytes produce and secrete various physiologically active substances. Insulin resistance is the most frequently observed condition in obesity and diabetes. Insulin resistance in diabetes with obesity is thought to be caused by TNFα secreted from adipocytes. In fact, in obese humans or animals, TNFα secretion is increased from adipocytes formed in the viscera, and this has been shown to correlate with an index of insulin resistance. PAI-1 (plasminogen activator inhibitor 1) is the most important substance in the blood fibrinolytic system, and is known to reduce fibrosis, promote thrombus formation, and cause myocardial infarction. In patients with obesity and NIDDM, blood PAI-1 is elevated, but it has also been shown that they are mainly derived from visceral adipocytes. In addition, leptin, a product of the obesity gene, is produced by adipocytes and is a new hormone that acts centrally to promote feeding suppression and energy expenditure to regulate body fat consistently, which is also obesity and NIDDM It has been shown that it is high in patients and is enhanced by TNFα. Since the increase of TNFα, PAI-1 and leptin in blood in obesity or NIDDM is strongly improved by thiazolidine derivatives, the production and secretion of bioactive substances derived from these adipocytes is directly related to adipocyte differentiation. It is done. However, most of the knowledge about the disease is in humans, and the mechanism of adipocyte differentiation is mostly in vitro culture using mouse preadipocytes, and the relationship between these diseases and adipocyte differentiation is still unknown. Many points are left behind.
[0004]
On the other hand, control of body fat accumulation and production of marinated meat in industrial animals such as livestock or poultry have been carried out by adjusting feed energy or nutrients. However, individuals with high feed intake have been inevitably selected as a goal of breeding with a priority on economic effects because improvement in weight gain has been prioritized. As a result, individuals with a large amount of feed intake are prone to excess energy and tend to accumulate excessively as fat. On the other hand, human beings prefer low-fat meat because of increased obesity, and most of the fat produced is discarded without being eaten. At the same time, an increase in diseases due to metabolic disorders caused by excessive accumulation of body fat is also a problem in livestock or poultry. As these solutions, it seems that the suppression of excessive accumulation of body fat has already reached the limit while maintaining high productivity by conventional indirect methods such as adjustment of feed ingredients. Therefore, as a fundamental theme, it is considered that more effective control of body fat accumulation can be achieved if the proliferation and differentiation mechanism of adipocytes constituting the adipose tissue can be directly controlled. However, at present, there has been little accumulation of knowledge at the cellular level regarding the proliferation and differentiation of adipocytes constituting the adipose tissue of livestock or poultry, and an excellent experimental system for investigating it has not yet been established. Not.
[0005]
So far, research on adipocyte proliferation and differentiation has been mainly focused on Swiss-3T3-derived preadipocytes (3T3-L1 and 3T3-F443A), or stromal-blood vessels obtained by enzymatic treatment of adipose tissue It has been carried out using a primary culture system of preadipocytes (SV cells) contained in the fraction. However, Swiss-3T3-derived preadipocytes are 1) mixed with mutant cells with chromosomes with different patterns. 2) Since they are derived from embryos on gestation 17-19, adult-derived preadipocytes Differentiating characteristics from cells 3) Since differentiation is induced spontaneously when cultured in a serum-supplemented medium, there are problems to be solved, such as the fact that substances that induce differentiation can not be identified. On the other hand, since SV cells are mixed with 1) cells other than preadipocytes, such as vascular endothelial cells, smooth muscle cells, fibroblasts, etc., the differentiation characteristics of preadipocytes themselves cannot be examined (others) 2) In adipose tissue, cells that have just differentiated from mesodermal pluripotent cells to preadipocytes and have already committed to adipocytes 3) There are cells in various stages of differentiation process, 3) Since it is a primary culture system, it is not possible to conduct multiple experiments using the same material. 4) For the reasons of 2) and 3) above, There is a problem to be solved such as high reproducibility data cannot be obtained because the difference between individuals to be prepared is large.
[0006]
These problems may be solved by cloning the preadipocytes of the target animal by the limiting dilution method or the like and establishing the preadipocyte cell line, but such an operation is complicated, and The success rate is low.
[0007]
[Problems to be solved by the invention]
Then, this invention makes it a subject to provide the new establishment method of the preadipocyte derived from the monocystic adipocyte of an animal, and the preadipocyte cell line obtained by this method.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have already cultivated monocystic adipocytes derived from animals that have already undergone terminal differentiation and obtained fibroblast-like adipocytes as precursors. It has the same proliferation and differentiation characteristics as adipocytes, and it has been confirmed that differentiation induces differentiation into adipocytes both morphologically and in differentiation characteristics, and the fibroblast-like adipocytes can be passed over a long period of time. The present invention was completed by finding that subculture can be performed without transformation and maintaining uniform growth and differentiation ability even if subculture is performed. That is, the present invention relates to 1) a preadipocyte cell line derived from the animal obtained by subculturing and dedifferentiating fibroblast-like adipocytes formed by ceiling culture of animal monocystic adipocytes, 2) the preadipocyte cell line according to 1), wherein the animal is a human, 3) the preadipocyte cell line according to 1), wherein the animal is a pig, 4) the preadipocyte cell line according to 1), wherein the animal is a chicken , Regarding.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
It is becoming clear that animal adipose tissue has different characteristics depending on the site of formation (mesentery, perinephrine, subcutaneous, epididymis, muscle tissue, etc.). Therefore, the adipose tissue to be collected such as the age or sex of the animal can be selected depending on the purpose of establishing the preadipocytes. For example, in livestock, for the purpose of producing high-value-added livestock meat (for example, marbled meat), establishment of muscle tissue-derived preadipocyte cell lines for elucidation of the formation mechanism of adipocytes in muscle tissue, meat livestock or poultry Mammary gland tissue for the purpose of improving the carcass ratio and for the purpose of investigating the relationship between milk fat and fatty acid composition, establishment of intraperitoneal fat-derived preadipocyte cell lines for elucidation of the mechanism and characteristics of intraperitoneal fat cells Visceral adipose tissue for the establishment of preadipocyte cell lines derived from humans, or for the elucidation of the regulation mechanism of production and secretion of bioactive substances (TNFα, leptin, PAI-1, etc.) that are deeply involved in obesity or adult diseases in humans For example, establishment of a preadipocyte cell line derived from the origin.
[0010]
1) Isolation of monocystic adipocytes
Separation of monocystic adipocytes can be basically performed according to the method of Rodbel (Rodbel M .: J. Biol. Chem., 239: 173-181, 1964). Quickly collect the target adipose tissue from humans during surgery or livestock and poultry. Remove thick blood vessels and connective tissue. Adipose tissue is placed in a basal medium containing antibiotics (for example, Dulbecco's modified Eagle's medium) or phosphate buffered saline, and the adipose tissue is gently washed. The adipose tissue is then placed in a medium containing enzymes such as bovine serum albumin and collagenase, trypsin, pronase, dispase, elastase, hyaluronidase, etc., and minced with surgical scissors for 45-60 minutes. Shake to disperse cells. After the dispersion operation, the cell suspension is filtered through a nylon mesh to remove undigested tissue. When the filtrate is gently centrifuged, monocystic adipocytes float and collect in the upper layer. On the other hand, stromal vascular cells (including preadipocytes) collect in the precipitate. Aspirate monocystic adipocytes with a pipette. The collected monocystic adipocytes are further transferred to a medium (for example, Dulbecco's modified Eagle medium containing serum or BSA), and washed several times by centrifugation.
[0011]
2) Culture of monocystic adipocytes
Monocystic adipocytes can be cultured according to the method of Sugihara et al. (Sugihara, H. et al .: Differentiation, 31: 42-49, 1986). In other words, monocystic adipocytes float in the culture medium due to neutral fat contained in the cytoplasm, but by utilizing this suspension, the inner upper surface (ceiling surface) of the flask filled with 100% of the medium. And culturing with the cells adhered (ceiling culture). In this way, when monocystic adipocytes are ceiling-cultured for several days, most cells stretch or expand part of the cytoplasm, adhere firmly to the ceiling of the flask, and vary in size around the large lipid droplets. Changes into multivesicular adipocytes with a number of lipid droplets. At this point, the medium in the flask is replaced with an appropriate amount of medium, and the culture is continued by returning to the normal culture method. The lipid droplets contained in multivesicular adipocytes are further divided and as they become smaller, the multivesicular adipocytes further elongate the cytoplasm and cells that change to a fibroblast-like morphology are observed. When the culture is further continued, many fibroblast-like adipocytes (FA) with few or no lipid droplets are observed in the periphery of the multivesicular adipocytes having a fibroblast-like morphology. Become. While FA proliferates actively, multivesicular adipocytes are gradually not observed. Thereafter, the cells in the flask reach only confluence with FA. Even when monocystic adipocytes collected from any species, such as pigs, chickens, rats, or humans, are cultured on the ceiling, after the above-mentioned morphological changes, they proliferate actively, but age, site of collected tissues ( For example, it varies somewhat depending on the sex or the like, subcutaneous or visceral adipose tissue.
[0012]
3) Proliferation and differentiation of fibroblast-like adipocytes (FA)
The FA formed in the above 2) is collected and subcultured using the method described below. When it is confirmed that FA is formed in the flask and actively proliferates after the ceiling culture, the medium in the flask is removed, and the cells in the flask are trypsinized and centrifuged. By this operation, multivesicular adipocytes having lipid droplets can be separated into the upper fraction and FA without lipid droplets can be separated into the precipitated fraction. When this monocystic adipocyte-derived FA was subcultured, after 24 hours of culture, most cells adhered to the bottom of the culture dish and proliferated actively while showing a fibroblast-like morphology. Reach confluence. The growth characteristics of FA derived from the animal or tissue are examined by preparing a growth curve during this culture period. Depending on the animal species (human or rat), minute lipid droplets are observed in the cytoplasm. In this case, it is appropriately performed, for example, using a medium supplemented with TNFα having an action of inducing dedifferentiation of adipocytes. The presence or absence of lipid droplets in the cytoplasm is confirmed using the oil red O staining method. In pig or chicken FA, no lipid droplets are observed.
[0013]
Regarding the differentiation characteristics of FA, the following method is used. The medium of FA is replaced with a medium supplemented with a differentiation inducer (slightly different depending on the animal species), and differentiation is induced by culturing for several days. After differentiation induction, the medium is returned to a normal medium and further cultured. In general, when a few days have passed after the differentiation induction of FA, FA changes its shape into a star or paving stone, and cells having small lipid droplets in the cytoplasm are observed. When the culture is further continued, the cytoplasm expands, and lipid droplets of various sizes are observed in the cytoplasm. Confirmation of lipid droplet accumulation in the FA cytoplasm after differentiation induction is performed using the oil red O staining method. In addition, glycerol-3-phosphate-dehydrogenase (GPDH) activity, which is a late marker of adipocyte differentiation, is measured as an indicator of differentiation, and the change in activity during the culture period after differentiation induction is observed. As a result of the above, if FA of the animal or tissue is shown to have active proliferation and differentiation ability, it is indicated that FA is a preadipocyte derived from monocystic adipocytes.
[0014]
4) Establishment of preadipocyte cell line
We try to establish a preadipocyte cell line by subculturing preadipocytes derived from monocystic adipocytes and examining the proliferation and differentiation ability of each passage. For example, in the preadipocytes derived from porcine and chicken monocystic adipocytes, even in the 37th and 33rd generations, the same proliferation ability and differentiation ability as in the early passage were maintained, and chromosomal abnormalities and the like were maintained. It has been confirmed that no transformation is observed.
[0015]
As described above, the present invention comprises four strokes. In the present invention, as examples, the establishment of a preadipocyte cell line derived from porcine subcutaneous adipose tissue and chicken abdominal adipose tissue is shown below, but other livestock such as cattle and sheep, or poultry ducks, quails, It is possible to establish a preadipocyte cell line derived from a target animal and tissue for humans and the like by using the technique disclosed in the present invention or by a person skilled in the art with necessary modifications. . For example, selection of a medium, a serum concentration, a differentiation inducer, and the like in culture conditions can be appropriately set as appropriate by a person skilled in the art as a result of simple trial and error. For example, in the case of preadipocytes derived from 14-day-old chicken peritoneal adipocytes, the serum addition concentration is 10%, the differentiation inducer uses fatty acids, and the preadipocytes derived from 6-7 month-old pig subcutaneous adipose tissue In this case, it is appropriate to add 20% serum and simultaneously add insulin, dexamethasone and isobutylmethylxanthine to the differentiation inducer.
[0016]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[0017]
[Example 1] Proliferation characteristics of monocystic adipocytes
The purpose of this study was to clarify the growth characteristics of porcine monocystic adipocytes. That is, monocystic adipocytes were cultured using the ceiling culture method, and the growth mode was observed. Next, by investigating the state of growth of FA formed from monocystic adipocytes, we also examined whether they could be collected efficiently.
[0018]
1) Materials and methods
(1) Collection of adipose tissue
In the slaughterhouse, 6-7 months old male or female pig subcutaneous adipose tissue was collected, placed in a heat-retaining bottle adjusted to about 37 ° C., and brought back to the laboratory within 1 hour.
[0019]
(2) Isolation and culture of monocystic adipocytes
The outline of the isolation and culture method of monocystic adipocytes is shown in FIG. 0.1% (v / v) cetyltrimethylammonium bromide was added to phosphate buffered saline (PBS-PVA) supplemented with 0.08 mg / ml kanamycin monosulfate (SIGMA) and 0.5 mg / ml polyvinyl alcohol (SIGMA). Adipose tissue was washed with the solution. Further, the tissue was washed 3 times with PBS-PVA. 25 mM HEPES, 1.8 mg / ml NaHCO Three 2% bovine serum albumin (BSA) and 0.1% collagenase (Type II; SIGMA) were added to Dulbecco's modified Eagle's medium (HEPES-DMEM; Nissui Pharmaceutical) supplemented with 0.08 mg / ml kanamycin monosulfate Approximately 4 g of adipose tissue was transferred into the medium (pH 7.4) and minced using surgical scissors. Then, after moving to a centrifuge tube, shaking culture was performed in a culture apparatus at 39 ° C. for 60 minutes. After the collagenase treatment, the cell suspension was filtered using a 250 and 150 μm nylon mesh (Kyojin Riko), and then meshed with HEPES-DMEM supplemented with 3% (v / v) fetal calf serum (FCS; Filtron) The cells attached to the cells were washed away, and undigested tissue and cells were separated. The cell suspension was transferred to a centrifuge tube and centrifuged at 106 G for 3 minutes to obtain a fraction consisting of monocystic adipocytes in the upper layer. The monocystic adipocyte fraction was aspirated and pipetted and transferred into fresh 3% FCS supplemented HEPES-DMEM. Furthermore, 106G, 3 minutes of centrifugal washing was repeated three times, and then the number of cells was measured using a hemocytometer.
[0020]
Monocystic adipocytes were cultured according to the method of Sugihara et al. (Sugihara, H. et al .: Differentiation, 31: 42-49, 1986). That is, 3-6 × 10 Five Single monocystic adipocytes into a tissue culture flask (FALCON, 3107), 20% FCS, 1.8 mg / ml NaHCO Three The flask was completely filled with DMEM supplemented with 0.08 mg / ml kanamycin monosulfate. 37 ° C, 5% CO 2 In a carbon dioxide culture apparatus under a gas phase of 95% air, the flask was allowed to stand so that the bottom of the flask was up and cultured for 6 days. After 6 days of culturing, the medium in the flask was removed and replaced with 20% FCS-added DMEM, and culturing was continued for another 16 days in a carbon dioxide culture apparatus so that the cell adhesion surface became the bottom. In addition, the culture medium exchange after ceiling culture | cultivation was performed every 4 days. The growth status of monocystic adipocytes was observed daily under an inverted microscope.
[0021]
(3) Measurement of FA number
After 6, 10, 14, 18 and 22 days of culture, FA grown from monocystic adipocytes was measured by the method shown below. After removing the medium in the flask, it was washed 4 times with PBS-PVA. Next, PBS (trypsin EDTA-PBS) containing 0.1% (w / v) trypsin (Difco) and 0.1% (w / v) ethylenediaminetetraacetic acid (EDTA; Nacalai Tesque) was added to the flask, and carbon dioxide gas was added. It left still for 5 minutes in a culture apparatus. After culturing, 3% FCS-added DMEM was added, then transferred to a centrifuge tube, and the inside of the flask was further washed twice with the same medium to collect cells. Then, after centrifuging and washing at 165G for 3 minutes and resuspending the cells with DMEM supplemented with 20% FCS, the number of cells was calculated using a hemocytometer.
[0022]
(4) Histochemical search
Oil red O staining (Hausman, GJ: Stain Technology, 56: 149-154, 1981) was used for histochemical retrieval of fat accumulation in the cytoplasm. That is, 10% formalin (v / v) added PBS (formalin-PBS) was added to the medium in the flask and pre-fixed at room temperature for 20 minutes. Further, the medium in the flask was removed, 10% formalin-PBS was added again, and the mixture was post-fixed at room temperature for 1 hour. Thereafter, formalin-PBS in the flask was removed and washed with distilled water 2 to 3 times. Mix 0.5% (w / w) oil red O-isopropyl alcohol solution and distilled water 3: 2, then filter with qualitative filter paper (No. 2, Advantec) and put oil red O staining solution into the flask. Stained for 1 hour at room temperature. After staining, the cells were washed 2-3 times with distilled water, air-dried, and observed for monocystic, multivesicular and FA fat accumulation under an inverted microscope.
[0023]
2) Results
A single cell fraction consisting of monocystic adipocytes was obtained by centrifugation after collagenase treatment (FIG. 2-a). The number of monocystic adipocytes collected from subcutaneous adipose tissue is about 3 × 10 4g 6 It was a piece.
[0024]
All the monocystic adipocytes introduced into the flask float on the top (bottom) surface of the flask and are pushed out by one large fat droplet contained in the cytoplasm and have a nucleus that has moved to the periphery of the cell Was presented. After 2-3 days of ceiling culture, some monocystic adipocytes were incomplete but adhered to the flask ceiling. After 4 days of culture, most cells stretch or expand part of the cytoplasm and adhere firmly to the ceiling of the flask, resulting in multivesicular adipocytes having fat droplets of various sizes around the large lipid droplets. And the form changed. The lipid droplets contained in the multivesicular adipocytes were further divided, and as they became smaller, the cells further extended the cytoplasm, and cells that changed to a fibroblast-like morphology were observed. After 6 days of culturing, many FAs having no lipid droplets were observed in the periphery of multivesicular adipocytes having a fibroblast-like morphology (FIG. 2-a). Thereafter, FA without lipid droplets proliferated actively, but multivesicular adipocytes were gradually not observed (FIG. 2-b). After 14 days of culture, the cells in the flask became FA only and reached confluence in appearance (FIG. 2-c).
[0025]
After the ceiling culture is completed (after 6 days of culture), the cells in the flask are trypsinized and centrifuged, so that multivesicular adipocytes with lipid droplets are in the upper layer fraction, and FA without lipid droplets is the precipitated fraction. Could be separated. The growth curve of FA after ceiling culture is shown in FIG. FA collected after 6 days of culture is approximately 6 × 10 Four Pieces / 25cm 2 However, it increased rapidly and reached confluence. For example, after 18 days of culture, about 1.4 × 10 6 Pieces / 25cm 2 And increased to about 23 times. From the above results, it was shown that porcine monocystic adipocytes proliferate actively and reach confluence after morphological changes to multivesicular adipocytes and further to FA. Therefore, it was clarified that FA, which is a useful material for establishing a preadipocyte cell line, can be collected easily and efficiently by ceiling culture of porcine monocystic adipocytes.
[0026]
[Example 2] Growth and differentiation characteristics of porcine FA
In Example 1, it was shown that when porcine monocystic adipocytes were cultured on the ceiling, it was possible to efficiently collect FA without lipid droplets in the cytoplasm. If the collected FA has active proliferation ability and ability to redifferentiate into adipocytes even after subculture, those cells are preadipocytes. In this example, the purpose was to examine whether FA obtained from monocystic adipocytes is dedifferentiated to preadipocytes, that is, whether FA is a preadipocyte. First, whether or not FA cells have the same proliferation and differentiation characteristics as those of preadipocytes was compared and examined using SV cells collected from adipose tissue as a control group. In addition, the optimal conditions for FA growth and differentiation were also examined.
[0027]
1) Materials and methods
(1) FA growth characteristics
FA was collected in the same manner as in Example 1 (1). After 14 days of ceiling culture, the medium in the flask was removed, and then the plate was washed 4 times with PBS-PVA. Trypsin EDTA-PBS was added to the flask, and then allowed to stand in a carbon dioxide culture apparatus for 5 to 8 minutes. After culturing, 3% FCS-added DMEM was added, then transferred to a centrifuge tube, and the inside of the flask was further washed twice with the same medium to collect cells. Thereafter, the cells were centrifuged at 165G for 3 minutes, resuspended with 20% FCS-added DMEM, and then the number of cells was measured using a hemocytometer.
[0028]
On the other hand, collection of SV cells as a control group was carried out as in (2) of Example 1 except that the cell suspension was centrifuged, the upper fraction was aspirated and removed, and the SV fraction of the precipitated layer was collected. The same was done.
[0029]
For each DMEM supplemented with 10% FCS and 20% FCS, 10 FA and SV cells were used. Four And 10 Five After seeding at a rate of 1 / ml, the cells were seeded on a 35 mm culture dish (FALCON, 3001J). 5% CO 2 It left still in a carbon dioxide culture device, and measured the number of each cell every 4 days until 16 days after culture. Moreover, the observation of the proliferation of FA and SV cells was performed daily using an inverted microscope.
[0030]
(2) Differentiation characteristics of FA
FA or SV cells at a final concentration of 1 x 10 Four Adjust with 20% FCS-added DMEM so that the number of cells / ml is inoculated on the culture dish, and in a carbon dioxide culture apparatus (37 ° C, 5% CO 2 , 95% air) for 10 days. After culturing, after confirming the confluent state, FCS at various concentrations, dexamethasone (DEX; 0 to 2.5 μM), 1-methyl-3-isobutylxanthine (IBMX; 0 to 5 mM), or insulin (INS The differentiation inducers such as 0 to 50 μg / ml) were cultured for 4 days by replacing with differentiation induction media added at various concentrations or combinations. After the culture, the medium was again replaced with 20% FCS-added DMEM, and further cultured for 8 days. The differentiation status was examined using glycerol 3-phosphate dehydrogenase (G3PDH) specific activity value and oil red O staining as indicators.
[0031]
The cells used for G3PDH activity measurement were prepared according to the method of Pairault and Green (Pairault, J. and Green, H .: Proc. Natl. Acad. Sci. USA, 76: 5138-5142, 1979). That is, every 4 days until culture 12 or after 12 days of culture, the culture medium was removed and the cells were washed twice with PBS that had been cooled to 4 ° C. in advance, and then 25 mM Tris-HCl supplemented with 1 mM EDTA. (pH 7.5) was added and the cells were scraped with a rubber policeman. Tris-HCl containing the cell mass was transferred to a microtube, and the cells were disrupted by sonication at 150 W for 10 seconds. Subsequently, after centrifuging at 4 ° C. and 12800 G for 5 minutes, the supernatant was transferred to an ultracentrifuge tube and centrifuged at 4 ° C. and 100,000 G for 60 minutes. The supernatant (crude enzyme solution) obtained after centrifugation was transferred to a microtube and stored at −80 ° C. until immediately before measurement of G3PDH activity.
[0032]
The measurement of G3PDH activity followed the method of Kozak and Jensen (Kozak, LP and Jensen, JT: J. Biol. Chem., 249: 7775-7781, 1974). That is, a mixture of 50 μl of a mixed solution of 0.5 M triethanolamine, 10 mM EDTA and 10 mM β-mercaptoethanol, 5 mM dihydroxyacetone phosphate (SIGMA) and 0.5 mM NADH (oriental yeast) was used as a reaction solution. The crude enzyme solution immediately after thawing was added to the reaction solution, stirred, and immediately, the change in absorbance per unit time was measured using a spectrophotometer (25 ° C., 340 nm).
[0033]
The protein concentration in the crude enzyme solution was measured according to the method of Lowry et al. In other words, 2% (w / v) Na was added to the crude enzyme solution diluted 25 times with distilled water. 2 CO Three And 1% (w / v) CuSO Four ・ 5H 2 A mixture of O and 2% (w / v) potassium sodium tartrate in a ratio of 50: 1 was added and allowed to stand at room temperature for 10 minutes. Then, after adding a 1N phenol reagent, it was left still for 30 minutes. After the color development reaction, the absorbance was measured using a spectrophotometer (750 nm). The G3PDH specific activity value (units / mg protein) was calculated from the G3PDH activity value and protein content obtained by the above operation using the following mathematical formula.
G3PDH specific activity (units / mg protein) = (absorbance change in 100 x t minutes / 1.25 x t minutes) / protein concentration in crude enzyme solution (mg)
[0034]
2) Results
(1) FA growth characteristics
Morphological changes during the growth phase of subcultured FA were examined. After 24 hours of culture, most of the seeded cells adhered to the bottom of the culture dish regardless of FA and SV cells. Thereafter, the adhered FA and SV cells expanded to show a fibroblast-like morphology and proliferated actively. After 10 days of culture, all the cells spread across the culture dish and reached almost confluence. No morphological differences between FA and SV cells were observed during the proliferative phase. The growth curves of FA and SV cells are shown in FIG. 10 of FA and SV cells Five In the seed / ml seeding group, it grew rapidly regardless of the FCS concentration, and reached confluence after 8 days of culture. Meanwhile, 10 Four The FA and SV cells increased rapidly regardless of the FCS concentration even in the seed / ml seeding group, and reached almost confluence after 12 days of culture. However, in the group with FA 20% FCS, the number of cells increased even after 12 days of culture, and 10 days after 16 days of culture. Five The value was the same as that of the seed / ml seeding group.
[0035]
(2) Differentiation characteristics of FA
The morphological changes accompanying FA differentiation are shown in FIG. The FA immediately before differentiation induction showed a typical fibroblast-like morphology even when it reached confluence, and no lipid droplets were observed in the cytoplasm (FIGS. 5-a and b). When differentiation was induced using DMEM supplemented with 0.25 μM DEX, 5 μg / ml INS, 0.5 mM IBMX and 20% FCS, FA showed a star-like morphology after 4 days of differentiation induction, and small lipid droplets were formed in the cytoplasm. Some were also observed (FIG. 5-b). After 12 days of induction of differentiation, the cytoplasm expanded, and many lipid droplets of various sizes were observed in the cytoplasm (FIG. 5-c). Although not shown in the figure, some of the SV cells after differentiation induction were also star-shaped, but most other cells maintained a fibroblast-like morphology. However, after 12 days in culture, the cytoplasm expanded like FA, and cells that accumulated lipid droplets of various sizes were observed in the cytoplasm.
[0036]
Even when FA that reached confluence just before differentiation induction was stained with oil red O, no stained cells were observed (FIG. 5-d). However, when 12 days after differentiation induction, FA was stained with Oil Red O, almost the entire bottom of the culture dish was stained with Oil Red O (Fig. 5-f), indicating that most of the cultured FA differentiated into mature adipocytes. It was done. On the other hand, in the SV cells, colony-like portions stained with oil red O were observed, but the degree of staining was less than that of FA (FIG. 5-g). Further, the FA that did not induce differentiation maintained a fibroblast-like morphology throughout the culture period, and few cells positive for oil red O staining were observed even after 12 days of culture (FIG. 5-e).
[0037]
FIG. 6 shows changes in the specific activity value of G3PDH after induction of differentiation of FA and SV cells. In the group with no differentiation inducer added, the increase in the specific activity of G3PDH was not observed until 12 days after culture in both FA and SV cells. This result shows that FA is induced to differentiate only by a differentiation inducer and does not cause spontaneous differentiation. On the other hand, the G3PDH specific activity values of FA and SV cells in the differentiation-inducing agent-added group increased rapidly after 4 and 8 days of differentiation induction, respectively, and the difference between the culture days was significant. The G3PDH specific activity value of FA and SV cells 12 days after differentiation induction was 160 and 54 units / mg protein, respectively, and the G3PDH specific activity value of FA was about 3 times higher than that of SV cells.
[0038]
The effect of serum concentration on FA differentiation was investigated. Differentiation was induced in a medium containing 5, 10, 20 or 40% (v / v) FCS in DMEM supplemented with 0.25 μM DEX, 5 μg / ml INS and 0.5 mM IBMX, and cultured for 12 days. As a result, the G3PDH specific activity value increased in a concentration-dependent manner between 5 to 20% FCS-added sections, and a significant difference was observed in each section. However, the G3PDH specific activity value tended to decrease in the 40% FCS addition group. From these results, it was shown that the addition of 20% FCS to the differentiation-inducing medium was the optimum concentration for inducing differentiation of FA.
[0039]
The effect of the combination of differentiation inducers such as DEX, IBMX and INS added to the medium on the differentiation of FA was examined (FIG. 7). Three types of differentiation inducers were added alone or in combination, and the G3PDH specific activity value after 12 days of culture was measured. As a result, the G3PDH specific activity values of IBMX and DEX were significantly higher than those of the INS-added group and the control group. When the two differentiation inducers were combined, all groups showed significantly higher values than the control group and the INS group. In particular, a synergistic effect was observed in the DEX + IBMX group, which was significantly higher than those in the INS + IBMX group and all the single addition groups. Furthermore, the specific activity value of the DEX + IBMX + INS group combining the three species showed a remarkable synergistic effect with 132 units / mg protein, which was significant compared to the control group and all experimental groups (p. A high value was shown in <0.001). Next, the optimum concentration of each differentiation inducer contained in DEX + IBMX + INS was examined. As a result, in all of DEX, IBMX, and INS, the G3PDH specific activity value after 12 days of culture was increased in a concentration-dependent manner to 0.25 μM, 0.5 mM, and 5 μ / ml, respectively, but changes were observed at higher concentrations. I couldn't.
[0040]
From the above results, it became clear that FA derived from monocystic adipocytes is a preadipocyte having active proliferation and differentiation ability.
[0041]
[Example 3] Effect of passage number on proliferation and differentiation of porcine preadipocytes
In Example 2, it was revealed that FA formed from monocystic adipocytes is preadipocytes. Therefore, if this monocystic adipocyte-derived preadipocyte (Porcine Peradipocytes derived from Mature Adipocytes: PPMA) can be passaged and stable proliferation and differentiation ability are maintained even after repeated passages, PPMA It is clear that this is a porcine preadipocyte cell line. In this example, for the purpose of establishing a porcine preadipocyte cell line, PPMA was subcultured over a long period of time, and the growth and differentiation ability between the subcultures were compared.
[0042]
1) Materials and methods
(1) Collection of preadipocytes derived from porcine monocystic adipocytes
In the slaughterhouse, subcutaneous adipose tissue was collected from 5 male or 7 6-month-old male or female pigs, placed in a warming bottle adjusted to about 37 ° C., and brought back to the laboratory within 1 hour. Subsequently, ceiling culture was carried out by the method of Example 1 to obtain PPMA.
[0043]
(2) Subculture of porcine preadipocytes and induction of differentiation
PPMA subculture was performed according to the previous section. That is, PPMA was peeled from the bottom of the culture dish using trypsin EDTA-PBS, centrifuged and washed, and the number of cells was calculated using a hemocytometer. Then, final concentration 1 × 10 Four Resuspended in DMEM with 20% FCS so that the number of cells / ml becomes 2 ml, transfer 2 ml of cell suspension to a culture dish, 37 ° C, 5% CO 2 The cells were cultured for 10 days in a carbon dioxide culture apparatus under a gas phase of 95% air. The medium was exchanged every 4 days, and the above operation was repeated every passage. Moreover, about the observation of the growth condition, it observed every day using the inverted microscope.
[0044]
For differentiation induction, the medium of PPMA that reached confluence after 10 days of subculture was replaced with 20% FCS-added DMEM containing 0.25 μM DEX, 0.5 mM IBMX and 5 μg / ml INS, and differentiation induction was performed for 4 days. Thereafter, the medium was replaced with 20% FCS-added DMEM, and the cells were further cultured for 6 days. After 10 days of culture, PPMA was sampled, and the G3PDH specific activity value was measured according to the method described in the previous section 2. Moreover, the observation of the cell shape change after differentiation induction was performed every day using an inverted microscope.
[0045]
2) Results
PPMA in the proliferative phase showed a fibroblast-like morphology, and no morphological differences were observed between each passage. The influence of the number of passages on the growth of PPMA is shown in FIG. In PPMA of 4 out of 5 individuals, a decrease in the number of cells after 10 days of culture was observed at passage 6-7. However, after that, the PPMA derived from the 3 individuals maintained the same growth ability as in the early passage at the 37th passage.
[0046]
The number of chromosomes of PPMA at the 35th passage was calculated by analyzing metaphase images. 74% of PPMA were diploid (38 chromosomes) and 11% were 39 chromosomes. In addition, 8% were below 38 chromosomes, 6% were structural abnormalities and 1% were above 58 chromosomes. These results indicate that PPMA maintains a normal phenotype even after long-term subculture.
[0047]
The morphological changes observed after induction of PPMA differentiation were not observed between each passage. In addition, PPMA derived from 3 individuals accumulated lipid droplets of various sizes in the cytoplasm even after repeated passages of 35 generations or more, and no morphological difference from the early passage was observed. The influence of the number of passages on the differentiation of PPMA is shown in FIG. In PPMA derived from 3 individuals, the G3PDH specific activity value was maintained until passage 37. However, the G3PDH specific activity value of PPMA derived from the other two individuals decreased rapidly from the 3rd and 16th passages, respectively, and the G3PDH specific activity value after the 12th and 22nd passages respectively did not induce differentiation. It decreased to the same value as (2-6 units / mg protein). These results indicate that PPMA derived from monocystic adipocytes maintains uniform growth and differentiation characteristics even after long-term passage. Therefore, it became clear that PPMA is a porcine preadipocyte cell line that can be subcultured for a long time.
[0048]
[Example 4] Differentiation characteristics of chicken FA
In this example, monocystic adipocytes collected from chicken peritoneal adipose tissue were cultured on the ceiling, and it was examined whether the resulting FA was dedifferentiated to preadipocytes. SV cells collected from intraperitoneal adipose tissue were used as a control group.
[0049]
1) Materials and methods
After killing the 14-day-old male chicken for exsanguination, the intraperitoneal fat was immediately removed and weighed. Monocystic adipocytes and FA were collected and cultured in the same manner as (1) of Example 1. On the other hand, SV cells were collected by the same method as in Example 2 (1). In the case of chickens, subcultured FA formed 8 days after ceiling culture was used. FA or SV cells at a final concentration of 1 x 10 Five Adjust with DMEM with 10% FCS so that the number of cells / ml is inoculated into a culture dish, and then in a carbon dioxide incubator (37 ° C, 5% CO 2 , 95% air) and cultured for 8 days. After culturing, after confirming the confluent state, the medium was replaced with a medium supplemented with or without 0.1% fatty acid concentrate (GIBCO BRL) in DMEM containing 1 μg / ml insulin, 10 μg / ml transferrin and 12 mg / ml BSA for 12 days. Cultured. The medium was changed every 4 days. The differentiation status was examined using G3PDH specific activity value and oil red O staining as indicators. Preparation of cells used for measurement of G3PDH activity and measurement of G3PDH specific activity and oil red O staining were in accordance with (2) of Example 2.
[0050]
2) Results
FIG. 9 shows changes in the specific activity value of G3PDH after induction of differentiation of chicken FA and SV cells. In the fatty acid-free group, the G3PDH specific activity value after 4 days of culture in both FA and SV cells tended to increase slightly, but then decreased until 12 days of culture, and the G3PDH specific activity value increased significantly. Was not recognized. In the fatty acid-free group, no oil red O staining positive substance was observed in the cytoplasm during any of the culture periods. On the other hand, the G3PDH specific activity value of FA and SV cells after 4 days of differentiation induction in the fatty acid addition group was the same as that of the non-addition group, and no significant increase was observed, but the FA and SV cells after 8 days of differentiation induction. All of the G3PDH specific activity values rapidly increased, and the specific activity value of FA was significantly higher than that of SV cells. Furthermore, the specific activity value of G3PDH 12 days after differentiation induction was the highest, 79 and 60 units / protein, respectively. From these results, it was shown that chicken FA is a preadipocyte. It was also shown that they were induced to differentiate by fatty acids and did not cause spontaneous differentiation.
[0051]
[Example 5] Effect of passage number on proliferation and differentiation of chicken preadipocytes
In Example 4, it was revealed that FA formed from chicken monocystic adipocytes is preadipocytes. If this monocystic adipocyte-derived preadipocyte (Chick Preadipocyte drived from Mature Adipocytes: CPMA) can be passaged and stable proliferation and differentiation ability are maintained even after repeated passages, CPMA It is considered a chicken preadipocyte cell line. In this example, for the purpose of establishing a chicken preadipocyte cell line, CPMA was subcultured over a long period of time, and the growth and differentiation ability between the subcultures were compared.
[0052]
1) Materials and methods
The subculture method of CPMA was performed according to Example 3 (2). That is, CPMA was peeled from the bottom of the culture dish using trypsin EDTA-PBS, centrifuged and washed, and the number of cells was calculated using a hemocytometer. Final concentration 1 × 10 Five Resuspended in DMEM with 10% FCS so that the number of cells / ml becomes 2 ml, transfer 2 ml of cell suspension to a culture dish, 37 ° C, 5% CO 2 The cells were cultured for 8 days in a carbon dioxide culture apparatus under a gas phase of 95% air. The medium was exchanged every 4 days, and the above operation was repeated every passage. Regarding the observation of the growth state, it was observed daily using an inverted microscope. The differentiation induction was performed by replacing the CPMA medium that reached confluence after 8 days of subculture with the differentiation induction medium shown in Example 4 (2). Thereafter, the cells were further cultured in a differentiation induction medium for 12 days. 12 days after differentiation induction, CPMA was sampled, and the G3PDH specific activity value was measured according to the method shown in Example 2 (2). Moreover, the observation of the cell shape change after differentiation induction was performed every day using an inverted microscope.
[0053]
2) Results
CPMA in the proliferative phase showed a smooth muscle cell-like morphology as compared with the porcine preadipocytes of Example 3, but no morphological differences were observed between the passages. The effect of the number of passages on the growth of CPMA is shown in FIG. Only in 2 out of 5 cases of CPMA, a decrease was observed in the number of cells after 8 days of culture at passage 10-15. However, in other CPMAs, the same growth ability as in the early passage was maintained at passage 33.
[0054]
No difference was observed in the morphological changes of CPMA observed after differentiation induction between each passage. In addition, in 2 cases out of 5 cases, CPMA accumulates lipid droplets of various sizes in the cytoplasm after induction of differentiation even after repeated passages over 33 generations. I was not able to admit. The influence of the number of passages on the differentiation of CPMA is shown in FIG. In 2 out of 5 CPMAs, the G3PDH specific activity value was maintained until passage 33. However, the G3PDH specific activity value in the other 3 cases of CPMA decreased rapidly from the 6th, 8th and 25th passages, respectively, and the G3PDH specific activity value after the 8th, 9th and 29th passages, respectively, induced differentiation. It decreased to the same value (6-18 units / mg protein) as the control group which did not. The above results indicate that CPMA derived from monocystic adipocytes maintains uniform proliferation and differentiation characteristics even after long-term passage. Therefore, it was revealed that CPMA is a chicken preadipocyte cell line that can be subcultured for a long time.
[0055]
【Effect of the invention】
The effects obtained by the present invention are listed as follows.
[0056]
1) It was revealed that terminally differentiated monocystic adipocytes are dedifferentiated into preadipocytes. This can be an experimental system for elucidating not only a model of adipocyte differentiation but also a mechanism at the gene level of differentiation and dedifferentiation.
[0057]
2) These preadipocytes can be passaged for a long time without transformation (such as abnormalities at the chromosomal level). That is, according to the present invention, an animal cell-derived preadipocyte cell line can be established easily and in a short period of time with good reproducibility.
[0058]
3) If a substance that suppresses proliferation and differentiation can be screened using a preadipocyte cell line derived from livestock or poultry, administration of it to livestock or poultry will enable more effective control of body fat accumulation. It becomes possible. This method not only solves the limitations of the conventional method by adjusting the feed energy or nutrients currently used, but also contributes to further improvement of feed efficiency and reduction of discarded fat to increase the efficiency of food resources.
[0059]
4) It is being clarified that adipose tissue has different characteristics depending on the site of formation (mesentery, perirenal, subcutaneous, epididymis, muscle tissue, etc.). According to the present invention, the preadipocytes derived from each site are collected for each individual, so that the characteristics of adipocyte differentiation for each site can be compared in detail including individual differences.
[0060]
5) Fat that crosses into muscle tissue (marbled meat) increases the commercial value of meat. However, if a preadipocyte cell line derived from muscle tissue is established according to the present invention and its characteristics are elucidated, it has high commercial value. Enables livestock production.
[0061]
6) For the purpose of elucidating the mechanism of production of bioactive substances produced and secreted from visceral-derived preadipocytes, especially TNFα, leptin and PAI-1, which are deeply involved in obesity or adult diseases It becomes an experimental system. This makes it possible to develop insulin resistance and anti-obesity drugs or to create an index of arteriosclerosis.
[0062]
7) Since a single preadipocyte can be obtained by the present invention, it becomes possible to co-culture with mature adipocytes, vascular epithelial cells or perivascular cells, and also myocytes, and these cells can be used for adipocyte differentiation. It is possible to investigate the effect of this.
[0063]
8) Endocrine disrupting chemicals (environmental hormones) such as dioxins or synthetic resins are fat-soluble and accumulate in adipose tissue. Therefore, it becomes an experimental system for examining in detail the uptake and excretion mechanisms of these substances using differentiation-induced adipocytes.
[0064]
9) Since adipocytes express adipocyte-specific genes in an orderly manner during the differentiation process, it is possible to clearly identify the position of the cell in the differentiation process. Therefore, any cell that reaches the proliferative phase, the early differentiation phase, the middle phase and the late phase, or even the terminal differentiation can be prepared. By using the present invention, it is possible to easily prepare adult-derived preadipocytes from the fetal stage, and since they are maintained without causing chromosomal abnormalities, they can be used as donor cells at the time of somatic cell cloning. .
[0065]
10) The present invention has mainly shown that mammals and birds can obtain preadipocytes if mature adipocytes can be collected. This makes it possible to construct an experimental system and a substance production system for examining the differentiation characteristics of adipocytes in reptiles, amphibians or fish, and invertebrates such as insects.
[0066]
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 shows a method for ceiling culture of monocystic adipocytes. The adipose tissue was treated with collagenase, and after filtration, it was centrifuged to separate a monocystic adipocyte (mature adipocyte) group and a stromal vascular system cell group. Monocystic adipocytes were seeded in a flask filled with a medium and cultured for 6 days. Meanwhile, monocystic adipocytes float in the flask and adhere to the ceiling surface. After 6 days of culture, the culture solution in the flask was adjusted to an appropriate amount, and the culture was continued with the adhesive surface returned to the bottom.
FIG. 2. Proliferation of fibroblast-like adipocytes (FA) formed from porcine monocystic adipocytes.
a: After 6 days in culture, multivesicular adipocytes and FA without lipid droplets are mixed.
b: After 10 days in culture, the number of multicystic adipocytes decreases and active proliferation of FA is observed.
c: After 14 days of culture, FA reaches almost confluence. No multivesicular adipocytes are observed.
FIG. 3 Proliferation curve of porcine fibroblast-like adipocytes formed from monocystic adipocytes (n = 5).
-After ceiling culture in DMEM with 20% FCS for 6 days, the culture solution in the flask was adjusted to an appropriate amount, and the adhesion surface was returned to the bottom, followed by further culture for 16 days. a-d: p <0.05.
FIG. 4. Growth curves of porcine fibroblast-like adipocytes (FA) and stromal vasculature (SV) cells.
Cell concentration 10% with DMEM with 10% (●) or 20% (○) FCS Four Or 10 Five The cells were seeded at a rate of 4 cells / ml, and the number of FA and SV cells was measured every 4 days until the 16th day of culture. a-c: p <0.05.
FIG. 5 shows morphological changes associated with differentiation of porcine fibroblast-like adipocytes (FA) and oil red O-stained images.
a; After 10 days of culture, no lipid droplets are observed in the cytoplasm of FA that reached confluence.
b; After 4 days of induction of differentiation, FA shows a star-like morphology, and cells with small lipid droplets in the cytoplasm are also observed.
c; 12 days after induction of differentiation, the cytoplasm of FA expands, and many lipid droplets of various sizes are observed in the cytoplasm.
d: Oil red O stained image of FA reaching confluence immediately before differentiation induction. The portion stained on the culture dish is not observed.
e: For FA that does not induce differentiation, a portion stained on the culture dish is hardly observed even after 12 days of culture.
f: Oil red O stained image of FA 12 days after differentiation induction. Oil red O-stained FA is observed on the entire surface of the culture dish.
g: Oil red O stained image of SV cells 12 days after differentiation induction. A colony-stained portion is observed on the bottom of the culture dish.
FIG. 6 shows changes in glycerol 3-phosphate dehydrogenase (G3PDH) activity in porcine fibroblast-like adipocytes (FA) and stromal vasculature (SV) cells after differentiation induction (n = 4).
・ After differentiation induction with DMEM with 20% FCS with or without addition of 0.25 μM dexamethasone (DEX), 0.5 mM isobutylmethylxanthine (IBMX) and 5 μg / ml insulin (INS), then with DMEM with 20% FCS The culture was further continued for 8 days. The G3PDH specific activity value was measured every 4 days after differentiation induction. a-c: p <0.05.
FIG. 7 shows the effect of various combinations of differentiation inducers on the differentiation of porcine fibroblast-like adipocytes (n = 6).
・ Induction of differentiation for 4 days using DMEM with 20% FCS supplemented with various combinations of 0.25 μM dexamethasone (DEX), 0.5 mM isobutylmethylxanthine (IBMX), 5 μg / ml insulin (INS), followed by addition of 20% FCS The cells were further cultured for 8 days in DMEM. a-d: p <0.05.
FIG. 8. Effect of passage number on proliferation (a) and differentiation (b) of porcine fibroblast-like adipocytes.
a) Porcine preadipocytes from 5 individuals with a final concentration of 1 × 10 Four After seeding in DMEM supplemented with 20% FCS so that the number of cells / ml was reached, the number of cells after 10 days of culture was measured.
b) The medium of porcine preadipocytes derived from 5 individuals that reached confluence was induced for 4 days with DMEM supplemented with 20% FCS containing 0.25 μM dexamethasone, 0.5 mM isobutylmethylxanthine and 5 μg / ml insulin, and then 20% FCS. The cells were further cultured for 6 days with the added DMEM.
FIG. 9 shows changes in G3PDH activity of chicken fibroblast-like adipocytes and stromal vasculature (SV) cells after differentiation induction (n = 5).
The medium of chicken fibroblast-like adipocytes that reached confluence was added with 1 μg / ml insulin, 10 μg / ml transferrin and 12 mg / ml BSA-containing DMEM with or without 0.1% (v / v) fatty acid concentrate. The medium was changed and cultured for 12 days. The G3PDH specific activity value was measured every 4 days after differentiation induction. a-c: p <0.05.
FIG. 10 shows the influence of the number of passages (n = 5) on the proliferation of preadipocytes derived from chicken monocystic adipocytes. Final concentration of chicken preadipocytes 1 × 10 Five After seeding in 10% FCS-added DMEM so that the number of cells / ml was reached, the number of cells after 8 days of culture was measured.
FIG. 11 shows the effect of the number of passages on the differentiation of preadipocytes derived from chicken monocystic adipocytes (n = 5).
The medium of chicken preadipocytes that reached confluence was replaced with 0.1% (v / v) fatty acid concentrate, 1 μg / ml insulin, 10 μg / ml transferrin, and 12 mg / ml BSA-added DMEM, and cultured for 12 days. G3PDH specific activity value was measured 12 days after differentiation induction.

Claims (4)

動物の単胞性脂肪細胞を天井培養し、天井面に細胞が接着した段階で、通常の培養法に戻して培養を継続し、細胞質に脂肪滴を有さない線維芽細胞様脂肪細胞となった段階で、遠心分離し、沈殿画分に分離された脂肪滴をまったく有さない線維芽細胞様脂肪細胞のみを継代培養することによって得られる該動物由来の前駆脂肪細胞株であって、細胞質に脂肪滴を持たず、また自発的な分化を起こさない、長期継代培養可能でありかつ長期継代培養後も増殖および分化特性を維持している前駆脂肪細胞株。The matured adipocytes animals were ceiling culture, at the stage where the cells adhered to the ceiling surface, back to the conventional culture method and continuously cultured, and fibroblast-like adipose cells without lipid droplets in cytoplasm in became stage, centrifuged, there only completely fibroblast-like adipose cells without the fat droplets are separated in the precipitation fraction preadipocyte cell lines from animal obtained by passage culture Yosu Rukoto Thus, a preadipocyte cell line that does not have lipid droplets in the cytoplasm and does not undergo spontaneous differentiation, is capable of long-term subculture, and maintains growth and differentiation characteristics even after long-term subculture. 動物がヒトである請求項1に記載の前駆脂肪細胞株。The preadipocyte cell line according to claim 1, wherein the animal is a human. 動物がブタである請求項1に記載の前駆脂肪細胞株。The preadipocyte cell line according to claim 1, wherein the animal is a pig. 動物がニワトリである請求項1に記載の前駆脂肪細胞株。The preadipocyte cell line according to claim 1, wherein the animal is a chicken.
JP37801398A 1998-09-09 1998-09-09 Preadipocyte cell line Expired - Lifetime JP5055611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37801398A JP5055611B2 (en) 1998-09-09 1998-09-09 Preadipocyte cell line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37801398A JP5055611B2 (en) 1998-09-09 1998-09-09 Preadipocyte cell line

Publications (2)

Publication Number Publication Date
JP2000083656A JP2000083656A (en) 2000-03-28
JP5055611B2 true JP5055611B2 (en) 2012-10-24

Family

ID=18509327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37801398A Expired - Lifetime JP5055611B2 (en) 1998-09-09 1998-09-09 Preadipocyte cell line

Country Status (1)

Country Link
JP (1) JP5055611B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11518982B2 (en) 2015-12-01 2022-12-06 Adiposeeds, Inc. Method for manufacturing mesenchymal cell line derived from vertebrate animal adipose tissue
WO2023085219A1 (en) 2021-11-11 2023-05-19 慶應義塾 Treatment for knee osteoarthritis using adipose tissue-derived mesenchymal stem cell line

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001277539A1 (en) * 2000-07-18 2002-01-30 Societe Des Produits Nestle S.A. Pre-adipose cell lines
JP5055613B2 (en) * 2003-06-13 2012-10-24 学校法人日本大学 Differentiated cells derived from preadipocytes and method for obtaining the same
WO2007004469A1 (en) * 2005-07-04 2007-01-11 Osaka University Method for differentiation culture of preadipocyte into mature adipocyte and screening of substance capable of affecting the differentiation process of preadipocyte into mature adipocyte
WO2011090091A1 (en) * 2010-01-21 2011-07-28 セルジェンテック株式会社 Method for determination whether or not cell population is suitable for foreign gene transfer for the purpose of preparation of adipocytes for gene therapy application
KR20140009459A (en) 2011-03-16 2014-01-22 가부시키가이샤 구라레 Culture method, group of mature adipocytes, and drug screening method
US10113147B2 (en) 2013-06-28 2018-10-30 Adiposeeds, Inc. Method for producing megakaryocytes, platelets and/or thrombopoietin using mesenchymal cells
CN105838604B (en) * 2016-05-18 2018-07-06 西安医学院 For the culture dish of mature fat cell ceiling culture
JP7348612B2 (en) * 2018-10-18 2023-09-21 学校法人日本大学 Composition for treating necrotizing enterocolitis
CN114934089B (en) * 2020-10-15 2023-08-01 青岛嘉智生物技术有限公司 Biological agent for lean pork pig breeding
CN112920993A (en) * 2021-04-23 2021-06-08 扬州大学 High-purity duck intramuscular precursor fat cell separation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11518982B2 (en) 2015-12-01 2022-12-06 Adiposeeds, Inc. Method for manufacturing mesenchymal cell line derived from vertebrate animal adipose tissue
WO2023085219A1 (en) 2021-11-11 2023-05-19 慶應義塾 Treatment for knee osteoarthritis using adipose tissue-derived mesenchymal stem cell line

Also Published As

Publication number Publication date
JP2000083656A (en) 2000-03-28

Similar Documents

Publication Publication Date Title
JP2024073421A (en) Ex vivo meat production
RU2426784C2 (en) Method of cardiomyocyte selection (versions)
JP4862046B2 (en) Pluripotent stem cells derived from human adipose tissue and cell therapeutic agents containing the same
AU2001234998B2 (en) Isolation and transplantation of retinal stem cells
JP5055611B2 (en) Preadipocyte cell line
JP5393119B2 (en) Method for inducing differentiation of stem cells into brown adipocytes
JP6129418B2 (en) A composition for preventing and treating liver fibrosis or cirrhosis containing mesenchymal stem cells derived from human embryonic stem cells as an active ingredient
CN106282100B (en) A method of the purifying tissue-derived Preadipocyte In Vitro of ox fetal skeletal muscle
CN103930542A (en) Brown fat cell compositions and methods
DE60130464T2 (en) PRE-ADIPOSE CELL LINES
JP2017502071A (en) Stem cells derived from trophoblast basement layer and cell therapeutic agent containing the same
WO2004083414A1 (en) Monocyte-origin multipotent cell momc
Partridge Tissue culture of skeletal muscle
DE60300681T2 (en) DEDIFFERENCED, PROGRAMMABLE STEM CELLS OF MONOCYTARY ORIGIN, AND THEIR PREPARATION AND USE
KR20120006386A (en) Stem cell derived from first trimester placenta and cellular therapeutic agents comprising the same
CN102140439B (en) In-vitro culture method of adipocytes of large yellow croaker
JP2004129549A (en) Selective growth method for mesenchymal stem cell from fat-derived cell group
US20070274963A1 (en) Methods for Culturing Keratinocytes from Human Embryonic Stem Cells
Maeda et al. Effects of mechanical stimulation on gene expression of articular chondrocytes in polylayer culture
Sengel Study of organogenesis by dissociation and reassociation of embryonic rudiments in vitro
WO2007004469A1 (en) Method for differentiation culture of preadipocyte into mature adipocyte and screening of substance capable of affecting the differentiation process of preadipocyte into mature adipocyte
WO2023282338A1 (en) Cell seeding agent and substrate for cell transplantation use
WO2004111211A1 (en) Differentiated cells originating in precursor fat cells and method of acquiring the same
CN117625527A (en) Method for separating, identifying and adipogenic differentiating mammalian fat precursor cells, composition and application
AU2012227337A1 (en) A method for purifying cardiomyocytes or programmed cardiomyocytes derived from stem cells or fetuses

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081112

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120712

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term