JP5055520B2 - Porous structure and method for producing the same - Google Patents
Porous structure and method for producing the same Download PDFInfo
- Publication number
- JP5055520B2 JP5055520B2 JP2006048135A JP2006048135A JP5055520B2 JP 5055520 B2 JP5055520 B2 JP 5055520B2 JP 2006048135 A JP2006048135 A JP 2006048135A JP 2006048135 A JP2006048135 A JP 2006048135A JP 5055520 B2 JP5055520 B2 JP 5055520B2
- Authority
- JP
- Japan
- Prior art keywords
- porous structure
- liquid
- alumina
- dried
- reference example
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 61
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 47
- 239000007788 liquid Substances 0.000 claims description 43
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 31
- 238000001179 sorption measurement Methods 0.000 claims description 26
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 25
- 239000011148 porous material Substances 0.000 claims description 25
- 239000013078 crystal Substances 0.000 claims description 24
- 230000008859 change Effects 0.000 claims description 22
- 238000001354 calcination Methods 0.000 claims description 21
- 229910001593 boehmite Inorganic materials 0.000 claims description 19
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 15
- 239000000377 silicon dioxide Substances 0.000 claims description 15
- 238000009826 distribution Methods 0.000 claims description 12
- 239000003054 catalyst Substances 0.000 claims description 11
- -1 silicon alkoxide Chemical class 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims description 10
- 238000000352 supercritical drying Methods 0.000 claims description 10
- 230000006378 damage Effects 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 8
- 238000004108 freeze drying Methods 0.000 claims description 8
- 238000001879 gelation Methods 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 3
- 238000009736 wetting Methods 0.000 claims description 2
- 230000000052 comparative effect Effects 0.000 description 42
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 36
- 239000000495 cryogel Substances 0.000 description 31
- 239000012071 phase Substances 0.000 description 29
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 19
- 229910052757 nitrogen Inorganic materials 0.000 description 18
- 239000000499 gel Substances 0.000 description 17
- 238000007654 immersion Methods 0.000 description 13
- 239000000047 product Substances 0.000 description 12
- 239000011240 wet gel Substances 0.000 description 12
- 239000004964 aerogel Substances 0.000 description 11
- 239000002245 particle Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- MYWQGROTKMBNKN-UHFFFAOYSA-N tributoxyalumane Chemical compound [Al+3].CCCC[O-].CCCC[O-].CCCC[O-] MYWQGROTKMBNKN-UHFFFAOYSA-N 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 150000004703 alkoxides Chemical class 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 210000003739 neck Anatomy 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- OBROYCQXICMORW-UHFFFAOYSA-N tripropoxyalumane Chemical compound [Al+3].CCC[O-].CCC[O-].CCC[O-] OBROYCQXICMORW-UHFFFAOYSA-N 0.000 description 2
- 230000010718 Oxidation Activity Effects 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- OSQPUMRCKZAIOZ-UHFFFAOYSA-N carbon dioxide;ethanol Chemical compound CCO.O=C=O OSQPUMRCKZAIOZ-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Landscapes
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Catalysts (AREA)
Description
本発明は、多孔質構造体及びその製造方法に関する。 The present invention relates to a porous structure and a method for producing the same.
近年、内燃機関、ボイラー等の排気ガス中の微粒子や有害物質は、環境への影響を考慮して排気ガス中から除去する必要性が高まりつつあり、各種排ガス浄化技術が提案されている。例えば、自動車の排気系には、酸化触媒、三元触媒、NOX吸蔵還元型触媒等が配置され、主として貴金属の触媒作用によって排ガス中のNOX、HC、CO等の有害成分を浄化している。特に、酸化触媒としては、例えば、アルミナやシリカ等の担体に酸化活性の高いPtを担持したものが知られている。 In recent years, there has been an increasing need to remove particulates and harmful substances in exhaust gas from internal combustion engines, boilers, and the like from the exhaust gas in consideration of environmental effects, and various exhaust gas purification technologies have been proposed. For example, the exhaust system of an automobile, an oxidation catalyst, three-way catalyst, NO X storage reduction catalyst and the like are arranged, to purify NO X in the exhaust gas, HC, harmful components such as CO mainly by the catalytic action of the noble metal Yes. In particular, as an oxidation catalyst, for example, a catalyst in which Pt having a high oxidation activity is supported on a carrier such as alumina or silica is known.
従来、アルミナやシリカの多孔質担体に白金等の触媒成分を担持させる場合、通常、アルミナやシリカの多孔質担体を触媒成分を含有する溶液、例えば、触媒成分の塩の溶液に浸漬し、乾燥し、必要により焼成する方法が採用されている。 Conventionally, when a catalyst component such as platinum is supported on an alumina or silica porous carrier, the alumina or silica porous carrier is usually immersed in a solution containing the catalyst component, for example, a salt solution of the catalyst component and dried. And the method of baking is employ | adopted if necessary.
最近では、多孔質担体として、アルミナ系エアロゲルが好適に用いられている。このようなアルミナ系エアロゲルを製造する方法としては、例えば、アルミニウムアルコキシド等から加水分解して得られた湿潤なアルミナ系ゲル(ウエットゲル)を有機溶媒で満たし、超臨界条件下で乾燥する方法(超臨界乾燥)が提案されており、この方法で得られたエアロゲルは、高表面積、高気孔率及び高耐熱性を有することが知られている。 Recently, alumina-based airgel is suitably used as the porous carrier. As a method for producing such an alumina airgel, for example, a wet alumina gel (wet gel) obtained by hydrolysis from aluminum alkoxide or the like is filled with an organic solvent and dried under supercritical conditions ( Supercritical drying) has been proposed, and the airgel obtained by this method is known to have a high surface area, a high porosity, and a high heat resistance.
しかしながら、アルコキシドの加水分解とゲル化等の方法により作製されたウエットゲルの場合、水やアルコール等との混合物の液相を有するウエットゲルである。乾燥時の収縮による構造破壊を超臨界乾燥法で回避させるため、前記ウエットゲルを超臨界乾燥する前段階として、まず、ウエットゲルの液相中の水等をアルコールで置換することが必要不可欠であるが、その製造工程や設備に大幅なコストを要し、また可燃性・毒性等の安全性に問題があった。 However, in the case of a wet gel prepared by a method such as hydrolysis and gelation of an alkoxide, it is a wet gel having a liquid phase of a mixture with water, alcohol or the like. In order to avoid structural destruction due to shrinkage during drying by the supercritical drying method, it is indispensable to replace water in the liquid phase of the wet gel with alcohol as a step before supercritical drying of the wet gel. However, the manufacturing process and equipment required significant costs, and there were problems with safety such as flammability and toxicity.
また、現在使用されているエアロゲルは、耐液体性に劣り、水等の液体にエアロゲルを浸した瞬間に構造破壊してしまうため、従来の金属イオンを含む水溶液による含浸法で金属担持を行うことが不可能であるため、また使用用途も大幅に限定されてしまうという問題点があった。 In addition, the airgel currently used is inferior in liquid resistance, and the structure is destroyed at the moment when the airgel is immersed in a liquid such as water. Therefore, the metal is supported by the conventional impregnation method using an aqueous solution containing metal ions. However, there is a problem in that the usage is greatly limited.
更に、超臨界乾燥法は、臨界点以上の高温・高圧プロセスのため、高エネルギー消費型の製造方法であり、高製造コストに繋がると同時に、製造プロセス上安全性の問題も誘発する。また高エネルギー消費型プロセスであるがために二酸化炭素の排出も顕著となり、地球温暖化防止に向けた京都議定書の精神にも反するという問題点があった。 Furthermore, the supercritical drying method is a high energy consumption type manufacturing method because of a high temperature / high pressure process above the critical point, leading to high manufacturing costs and at the same time inducing safety problems in the manufacturing process. In addition, because it is a high energy consumption process, carbon dioxide emissions have become prominent, and this is contrary to the spirit of the Kyoto Protocol for the prevention of global warming.
本発明は、上述した従来技術の問題点に鑑みてなされたものであり、その目的とするところは、高表面積、高気孔率及び高耐熱性を有するだけでなく、耐液体性であり、且つ液体との接触で構造破壊を起こさない多孔質構造体を得ることができるとともに、安全性やコストの削減に寄与することができる多孔質構造体及びその製造方法を提供することにある。 The present invention has been made in view of the above-mentioned problems of the prior art, and its object is not only to have a high surface area, high porosity and high heat resistance, but also to be liquid resistant, and An object of the present invention is to provide a porous structure capable of obtaining a porous structure that does not cause structural destruction by contact with a liquid and contributing to safety and cost reduction, and a method for manufacturing the same.
上述の目的を達成するため、本発明は、以下の多孔質構造体及びその製造方法を提供するものである。 In order to achieve the above object, the present invention provides the following porous structure and a method for producing the same.
[1] シリカが全質量ベースで2.5〜10質量%添加されたシリカ−アルミナ系化合物で、アルミニウムアルコキシドから得られたベーマイトゾルに、シリコンアルコキシドを加えた水系でのゲル化反応によりゲル化物を作製し、前記ゲル化物を凍結乾燥した後、多孔質構造体を得る多孔質構造体の製造方法であって、前記ゲル化物から前記多孔質構造体を得る工程のいずれの段階にも触媒物質の担持工程および溶媒置換工程および超臨界乾燥工程を含まないことを特徴とする多孔質構造体の製造方法。 [1] A silica-alumina compound in which silica is added in an amount of 2.5 to 10% by mass based on the total mass, and gelled by an aqueous gelation reaction in which silicon alkoxide is added to boehmite sol obtained from aluminum alkoxide. And producing the porous structure by freeze-drying the gelled product, and a catalytic substance at any stage of the step of obtaining the porous structure from the gelled product. The method for producing a porous structure does not include a supporting step, a solvent replacement step, and a supercritical drying step.
[2] 前記ゲル化物を、トラップ部冷却温度が−80℃以下、且つ乾燥完了時の真空度が10Pa以下で凍結乾燥する[1]に記載の多孔質構造体の製造方法。 [2] The method for producing a porous structure according to [1], wherein the gelled product is freeze-dried at a trap part cooling temperature of −80 ° C. or lower and a degree of vacuum at the completion of drying of 10 Pa or lower.
[3] [1]又は[2]に記載の方法によって製造された多孔質構造体であって、かさ密度が0.1g/cm 3 以下で、且つ主な結晶相がγ−Al 2 O 3 結晶相から構成された多孔質構造体。 [3] A porous structure produced by the method according to [1] or [2], wherein the bulk density is 0.1 g / cm 3 or less and the main crystal phase is γ-Al 2 O 3. A porous structure composed of a crystalline phase.
[4] 耐液体性であり、且つ液体との接触で構造破壊が起きない[3]に記載の多孔質構造体。 [4] The porous structure according to [3], which is liquid-resistant and does not cause structural destruction upon contact with a liquid.
[5] 液体に浸した後に乾燥しても、細孔容積の変化率が液濡前の±30%以内である[3]又は[4]に記載の多孔質構造体。 [5] The porous structure according to [3] or [4], wherein the rate of change in the pore volume is within ± 30% before the liquid is wet even after being dipped in the liquid and dried.
[6] 液体に浸した後に乾燥しても、液濡前と変化率が±20%以内の水蒸気吸着等温線を示す[3]〜[5]のいずれかに記載の多孔質構造体。 [6] The porous structure according to any one of [3] to [5], which shows a water vapor adsorption isotherm having a rate of change within ± 20% even after being dipped in a liquid and then dried.
[7] 液体に浸した後に乾燥しても、液濡前と極大ピーク位置の変化が±1nm以内の細孔分布曲線を示す[3]〜[6]のいずれかに記載の多孔質構造体。
[8] 1100℃以下の仮焼時における前記多孔質構造体の結晶相が、γ−Al 2 O 3 結晶相であり、且つ1200℃の仮焼時における前記多孔質構造体の結晶相が、γ−Al 2 O 3 結晶相又はθ−Al 2 O 3 結晶相のいずれかである請求項[3]〜[7]のいずれかに記載の多孔質構造体。
[7] The porous structure according to any one of [3] to [6], wherein, even after being dipped in a liquid and dried, the change in maximum peak position shows a pore distribution curve within ± 1 nm before liquid wetting .
[8] The crystalline phase of the porous structure at the time of calcination at 1100 ° C. or lower is a γ-Al 2 O 3 crystal phase, and the crystalline phase of the porous structure at the time of calcination at 1200 ° C. The porous structure according to any one of claims [3] to [7], which is either a γ-Al 2 O 3 crystal phase or a θ-Al 2 O 3 crystal phase.
本発明の多孔質構造体及びその製造方法は、高表面積、高気孔率及び高耐熱性を有するだけでなく、耐液体性であり、且つ液体との接触で構造破壊を起こさない多孔質構造体を得ることができるとともに、安全性やコストの削減に寄与することができる。 The porous structure of the present invention and the production method thereof have not only high surface area, high porosity and high heat resistance, but also liquid resistance, and a porous structure that does not cause structural breakage upon contact with liquid. As well as contribute to safety and cost reduction.
以下、本発明の多孔質構造体及びその製造方法について詳細に説明するが、本発明は、これに限定されて解釈されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものである。 Hereinafter, the porous structure of the present invention and the method for producing the same will be described in detail. However, the present invention should not be construed as being limited thereto, and the knowledge of those skilled in the art can be obtained without departing from the scope of the present invention. Various changes, modifications, and improvements can be added based on the above.
本発明に係る多孔質構造体の主な特徴は、かさ密度が0.1g/cm3以下で、且つ主な結晶相がγ−Al2O3結晶相から構成されたものである。 The main features of the porous structure according to the present invention are that the bulk density is 0.1 g / cm 3 or less and the main crystal phase is composed of γ-Al 2 O 3 crystal phase.
このとき、本発明の多孔質構造体は、かさ密度が0.1g/cm3以下、より好ましくは、0.02〜0.1g/cm3である。これは、かさ密度が0.02g/cm3未満である場合、構造的にもろくなり、機械的強度が低下するからである。一方、かさ密度が0.1g/cm3を超過する場合、エアロゲルレベルの多孔質性あるいは気孔率が確保されず、高温下でのシンタリングによりかさ密度が増大しやすいからである。 At this time, the porous structure of the present invention has a bulk density of 0.1 g / cm 3 or less, more preferably 0.02~0.1g / cm 3. This is because when the bulk density is less than 0.02 g / cm 3 , the structure becomes brittle and the mechanical strength decreases. On the other hand, when the bulk density exceeds 0.1 g / cm 3 , the porous property or porosity at the airgel level is not ensured, and the bulk density tends to increase due to sintering at high temperature.
本発明の多孔質構造体は、主な結晶相がγ−Al2O3結晶相であるクリオゲルから構成されたものであることが好ましい。これにより、本発明の多孔質構造体は、多孔体のかさ密度をエアロゲルレベルの0.1g/cm3以下に抑え、粒子成長の原因であるネックの数を減らすことができるからである。その結果、γ−Al2O3結晶相が1000℃付近でα−Al2O3に転移することを抑制することができるため、耐熱性及び高温時(例えば、1000℃以上)における熱安定性を確保することができる。尚、クリオゲルは、耐液体性であるとともに、液体との接触で構造破壊を起こすことなく、液体に浸した後に乾燥しても、液浸前の特性(例えば、BET比表面積、細孔容積、平均細孔径等)とほぼ不変的であるものである(耐液再現性に優れている)。 The porous structure of the present invention is preferably composed of a cryogel whose main crystal phase is a γ-Al 2 O 3 crystal phase. This is because the porous structure of the present invention can suppress the bulk density of the porous body to an airgel level of 0.1 g / cm 3 or less and reduce the number of necks that cause particle growth. As a result, it is possible to suppress the transition of the γ-Al 2 O 3 crystal phase to α-Al 2 O 3 around 1000 ° C., so that heat resistance and thermal stability at high temperatures (eg, 1000 ° C. or higher) are achieved. Can be secured. In addition, the cryogel is liquid-resistant and does not cause structural destruction by contact with the liquid. Even if the gel is dried after being immersed in the liquid, characteristics before the immersion (for example, BET specific surface area, pore volume, Average pore diameter etc.) and almost unchanged (excellent liquid reproducibility).
更に、本発明の多孔質構造体は、液体に浸した後に乾燥しても、液濡前と変化率が±30%(より好ましくは、±25%)以内の細孔容積を示すことが好ましい。これにより、本発明の多孔質構造体は、反応系内に存在する液体による細孔容積変化を最小限にくい止めることができる。 Further, even when the porous structure of the present invention is dipped in a liquid and then dried, it preferably has a pore volume within ± 30% (more preferably ± 25%) before the liquid is wet. . Thereby, the porous structure of the present invention can minimize the change in pore volume due to the liquid present in the reaction system.
本発明の多孔質構造体は、液体に浸した後に乾燥しても、液濡前と変化率が±20%(より好ましくは、±15%)以内の水蒸気吸着等温線を示すことが好ましい。これは、触媒反応系に存在する水による構造変化を最小限にくい止めることができるからである。 Even if the porous structure of the present invention is dipped in a liquid and then dried, it preferably exhibits a water vapor adsorption isotherm with a change rate within ± 20% (more preferably ± 15%). This is because the structural change due to water present in the catalytic reaction system can be minimized.
本発明の多孔質構造体は、液体に浸した後に乾燥しても、液濡前と極大ピーク位置の変化が±1nm(より好ましくは、±0.8nm)以内の細孔分布曲線を示すことが好ましい。これは、反応系中に存在する液体による細孔分布の変化を最小限にくい止めることができるからである。 Even if the porous structure of the present invention is dipped in a liquid and then dried, it exhibits a pore distribution curve within ± 1 nm (more preferably ± 0.8 nm) before the liquid is wet and the change in the maximum peak position. Is preferred. This is because the change in the pore distribution due to the liquid present in the reaction system can be kept to a minimum.
次に、本発明の多孔質構造体の製造方法は、シリカが全質量ベースで2.5〜10質量%添加されたシリカ−アルミナ系化合物で、アルミニウムアルコキシドから得られたベーマイトゾルに、シリコンアルコキシドを加えた水系でのゲル化反応によりゲル化物を作製し、前記ゲル化物を凍結乾燥した後、多孔質構造体を得るものであって、前記ゲル化物から前記多孔質構造体を得る工程のいずれの段階にも触媒物質の担持工程および溶媒置換工程および超臨界乾燥工程を含まないことを特徴とするものである。 Next, the method for producing a porous structure of the present invention is a silica-alumina compound to which 2.5 to 10% by mass of silica is added based on the total mass , and a silicon alkoxide is added to a boehmite sol obtained from aluminum alkoxide. A gelled product is prepared by a gelation reaction in an aqueous system to which a gel is added, and the gelled product is freeze-dried to obtain a porous structure, and any of the steps of obtaining the porous structure from the gelled product This stage is also characterized in that it does not include a catalyst substance loading process, a solvent replacement process, and a supercritical drying process.
このとき、本発明の多孔質構造体の製造方法の主な特徴は、アルミナ(γ−Al2O3)の出発原料であるアルミニウムアルコキシドから得られたベーマイトゾルに、シリカ(SiO2)の出発原料であるシリコンアルコキシドを添加することにある。シリカの添加量は、多孔質構造体の全質量ベースで2.5〜10質量%、より好ましくは、2.5〜5質量%である。 At this time, the main feature of the method for producing the porous structure of the present invention is that the boehmite sol obtained from aluminum alkoxide, which is a starting material of alumina (γ-Al 2 O 3 ), is used to start silica (SiO 2 ). It is to add silicon alkoxide as a raw material. The addition amount of silica is 2.5 to 10% by mass, more preferably 2.5 to 5% by mass, based on the total mass of the porous structure.
これは、シリカの添加量が2.5質量%未満である場合、シリカの添加効果が現れないためである。一方、シリカの添加量が5質量%を超過する場合、アルミナよりもシリカの特徴が顕著になって、高温耐熱特性が低下するからである。 This is because the addition effect of silica does not appear when the addition amount of silica is less than 2.5% by mass. On the other hand, when the addition amount of silica exceeds 5% by mass, the characteristics of silica become more prominent than that of alumina, and the high-temperature heat resistance is deteriorated.
尚、本発明で用いるアルミナの出発原料であるアルミニウムアルコキシドは、特に限定されないが、例えば、アルミニウムトリブトキシド:ASB(Al(sec−BuO)3)またはアルミニウムトリプロポキシド:AIP(Al(iso−Pro)3)を好適に用いることができる。また、本発明で用いるシリカの出発原料であるシリコンアルコキシドは、特に限定されないが、例えば、テトラエトキシシラン(Si(OC2H5)4)を好適に用いることができる。 The aluminum alkoxide that is the starting material of alumina used in the present invention is not particularly limited. For example, aluminum tributoxide: ASB (Al (sec-BuO) 3 ) or aluminum tripropoxide: AIP (Al (iso-Pro) 3 ) can be suitably used. Moreover, the silicon alkoxide which is a starting material of silica used in the present invention is not particularly limited, but, for example, tetraethoxysilane (Si (OC 2 H 5 ) 4 ) can be suitably used.
また、本発明の多孔質構造体の製造方法は、ゲル化物を、トラップ部冷却温度が−80℃以下、且つ真空度が10Pa以下で凍結乾燥することが重要である。これは、トラップ部冷却温度が−80℃を超過する場合、湿潤ゲルの凍結乾燥が不完全となり、乾燥収縮による微構造の破壊が発生するためである。また、真空度は、真空に近ければ近いほど良いが、乾燥完了時の真空度が10Paを超過すると、凍結乾燥が完了しておらず、乾燥収縮による微構造の破壊が発生してしまう。 In the method for producing a porous structure of the present invention, it is important that the gelled product be freeze-dried at a trap portion cooling temperature of −80 ° C. or lower and a vacuum degree of 10 Pa or lower. This is because when the trap portion cooling temperature exceeds −80 ° C., freeze-drying of the wet gel becomes incomplete, and the microstructure is destroyed due to drying shrinkage. Further, the vacuum degree is better as it is closer to the vacuum. However, when the degree of vacuum at the time of completion of drying exceeds 10 Pa, freeze-drying is not completed, and the microstructure is destroyed due to drying shrinkage.
更に詳細には、上記凍結乾燥は、初めに、ゲル化物(ウエットゲル)を、−80℃以下で冷却し、ゲル化物(ウエットゲル)の凍結を確認した後、真空に引き、トラップ部冷却温度を−80℃以下にて、1〜3日程度保持することが好ましい。このとき、上記保持時間は、対象となるゲル化物(ウエットゲル)の大きさ、密度や形状によって様々であるが、少なくとも真空度が10Pa以下になる保持時間が望ましい。また、ゲル化物(ウエットゲル)の初期冷却には、フリーザーを用いてもよいが、ドライアイス−エタノールや液体窒素等の冷媒で、できるだけ瞬間冷却する方が、凍結時間の短縮及びゲル化物(ウエットゲル)の凍結時における構造破壊を抑制することができるため好ましい。 More specifically, in the lyophilization, first, the gelled product (wet gel) is cooled at −80 ° C. or lower, and after the gelled product (wet gel) is confirmed to be frozen, it is evacuated to cool the trap portion cooling temperature. Is preferably maintained at -80 ° C or lower for about 1 to 3 days. At this time, the holding time varies depending on the size, density, and shape of the target gelled product (wet gel), but at least the holding time at which the degree of vacuum is 10 Pa or less is desirable. In addition, a freezer may be used for the initial cooling of the gelled product (wet gel). However, cooling as quickly as possible with a refrigerant such as dry ice-ethanol or liquid nitrogen shortens the freezing time and reduces the gelled product (wet gel). Gel) is preferable because structural destruction during freezing can be suppressed.
このように、本発明の多孔質構造体の製造方法は、超臨界乾燥に代わり凍結乾燥を採用することにより、エアロゲルの優れた特性である高表面積、高気孔率及び高耐熱性を有するだけでなく、耐液体性であり、且つ液体との接触でエアロゲルのように構造破壊を起こさない多孔質構造体(クリオゲル)を得ることができる。 As described above, the manufacturing method of the porous structure of the present invention only has high surface area, high porosity and high heat resistance, which are excellent characteristics of airgel, by adopting freeze drying instead of supercritical drying. In addition, it is possible to obtain a porous structure (cryogel) that is liquid resistant and that does not cause structural breakdown like aerogel when in contact with a liquid.
また、本発明の多孔質構造体の製造方法は、臨界点以上の高温・高圧を用いる超臨界乾燥を行わないため、安全性に優れているとともに、低温・低圧下での凍結乾燥を採用することにより、超臨界乾燥よりも省エネであり、且つウエットゲルの液相中の水をアルコールで置換することなくそのまま乾燥(凍結乾燥)することができるため、工程や設備の簡略化が可能であるため、コストを大幅に削減することができる。 In addition, the method for producing a porous structure of the present invention does not perform supercritical drying using a high temperature and high pressure above the critical point, and thus is excellent in safety and employs freeze drying at a low temperature and low pressure. Therefore, it is more energy-saving than supercritical drying, and it can be directly dried (freeze-dried) without replacing the water in the liquid phase of the wet gel with alcohol, so that the process and equipment can be simplified. Therefore, the cost can be greatly reduced.
以上のことから、本発明の多孔質構造体の製造方法は、アルミニウムとシリコンの金属アルコキシドを用いることにより、アルミニウムの金属アルコキシドだけを用いて得られたものと比較して、クリオゲルのγ−Al2O3結晶相が1000℃付近でα−Al2O3に転移することをより抑制することができるため、耐熱性及び高温時(例えば、1000℃以上)における熱安定性を新たに確保することができる。 From the above, the method for producing the porous structure of the present invention is obtained by using the metal alkoxide of aluminum and silicon, compared with that obtained using only the metal alkoxide of aluminum, and γ-Al of cryogel. Since it is possible to further suppress the transition of the 2 O 3 crystal phase to α-Al 2 O 3 in the vicinity of 1000 ° C., heat resistance and thermal stability at a high temperature (for example, 1000 ° C. or higher) are newly secured. be able to.
また、本発明の多孔質構造体の製造方法は、耐液体性であるとともに、液体との接触で構造破壊を起こすことなく、液浸した後に乾燥しても、液浸前の特性(例えば、BET比表面積、細孔容積、平均細孔径等)とほぼ不変的な、即ち、耐液再現性に優れたクリオゲルを得ることができる。 In addition, the method for producing a porous structure of the present invention is liquid-resistant, and does not cause structural destruction by contact with a liquid. It is possible to obtain a cryogel that is substantially invariant with the BET specific surface area, pore volume, average pore diameter, etc., that is, excellent in liquid reproducibility.
本発明を実施例に基づいて、更に詳細に説明するが、本発明はこれらの実施例に限られるものではない。 The present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
(実施例1〜3、参照例1)
アルミナ源としてアルミニウムトリブトキシド(Al(sec−BuO)3)0.0286molを86℃の温水20mLに投入して加水分解し、HNO3を加えて邂逅させた後、シリカ源としてテトラエトキシシラン(Si(OC2H5)4)を加えた。シリカ添加量は、0質量%(参照例1)、2.5質量%(実施例1)、5質量%(実施例2)、10質量%(実施例3)とした。ゲル化後、トラップ温度−80℃以下、真空度10Pa以下の条件で凍結乾燥し、乾燥ゲル(クリオゲル)のサンプルをそれぞれ得た。
(Examples 1-3, Reference Example 1)
After aluminum tri-butoxide (Al (sec-BuO) 3 ) 0.0286mol a was put into hot water 20mL of 86 ° C. to hydrolyze the alumina source, were Encounter by adding HNO 3, tetraethoxysilane as the silica source (Si (OC 2 H 5 ) 4 ) was added. The amount of silica added was 0% by mass (Reference Example 1), 2.5% by mass (Example 1), 5% by mass (Example 2), and 10% by mass (Example 3). After gelation, the sample was freeze-dried under conditions of a trap temperature of −80 ° C. or lower and a vacuum of 10 Pa or lower to obtain dry gel (cryogel) samples.
得られたサンプル(実施例1〜3及び参照例1)を、1000〜1400℃にて5時間焼成後、XRD分析及びTEM写真により、高温耐熱性の評価を行った。 The obtained samples (Examples 1 to 3 and Reference Example 1) were fired at 1000 to 1400 ° C. for 5 hours, and then evaluated for high-temperature heat resistance by XRD analysis and TEM photographs.
1100℃の仮焼時、参照例1(シリカ無添加クリオゲル)では、α−θ混合相となるのに対し、実施例1〜3(シリカ添加クリオゲル)は、全てγ相のままであった。1200℃の仮焼時、参照例1(シリカ無添加クリオゲル)は、α相となるのに対し、実施例1及び実施例2では、θ−Al2O3結晶相であり、実施例3では、γ−Al2O3結晶相が維持されていた(図1参照)。即ち、実施例1〜3では、1200℃における耐熱性及び熱安定性を確保していることを確認した。 At the time of calcination at 1100 ° C., Reference Example 1 (silica-free cryogel) was an α-θ mixed phase, whereas Examples 1 to 3 (silica-added cryogel) were all in the γ phase. At the time of calcination at 1200 ° C., Reference Example 1 (silica-free cryogel) becomes an α phase, whereas in Example 1 and Example 2, it is a θ-Al 2 O 3 crystal phase, and in Example 3, , Γ-Al 2 O 3 crystal phase was maintained (see FIG. 1). That is, in Examples 1 to 3, it was confirmed that heat resistance and thermal stability at 1200 ° C. were secured.
次に、得られたサンプル(実施例1〜3及び参照例1)を、1000〜1400℃で5時間仮焼した後のBET比表面積のグラフを図2に示す。 Next, the graph of the BET specific surface area after calcining the obtained sample (Examples 1-3 and Reference Example 1) at 1000-1400 degreeC for 5 hours is shown in FIG.
図2に示すように、1200℃仮焼時におけるBET比表面積が、参照例1では、3.3m2/g、実施例1では、25.7m2/g、実施例2では、39.0m2/g、実施例3では、46.7m2/gであった。これにより、実施例1〜3では、シリカを添加することにより、耐熱性及び高温時における熱安定性を飛躍的に向上させることができた。また、実施例1〜3では、従来のアルミナエアロゲルの同温度焼成時における比表面積(通常、20m2/g程度)と遜色無かった。 As shown in FIG. 2, the BET specific surface area during calcination at 1200 ° C. was 3.3 m 2 / g in Reference Example 1, 25.7 m 2 / g in Example 1, and 39.0 m in Example 2. 2 / g, in Example 3, it was 46.7 m 2 / g. Thereby, in Examples 1-3, the heat resistance and the thermal stability at the time of high temperature could be improved dramatically by adding silica. Moreover, in Examples 1-3, the specific surface area (usually about 20 m < 2 > / g) at the time of the same temperature baking of the conventional alumina airgel was not inferior.
尚、実施例1〜3では、1200℃焼成時におけるTEM写真観察により、高温焼成後も微細な粒子が多数存在しており、高温時における熱安定性に優れていることを確認した。 In Examples 1 to 3, it was confirmed by observation of a TEM photograph during firing at 1200 ° C. that many fine particles were present even after firing at high temperature, and the thermal stability at high temperature was excellent.
液体が構造に及ぼす影響を調べるため、実施例1〜3のサンプルを500℃で仮焼したものを蒸留水に浸漬した後に、水を乾燥・除去する処理を行った。500℃仮焼により実施例1〜3のサンプルは全てγ−Al2O3結晶相を示した。水処理による多孔体の構造変化は観察されず、水処理後も水処理前と全く同一の見かけ構造を示した。水処理前後の窒素吸着等温線を測定したところ、等温線は同型を示し、細孔容積の変化率は±25%以内であった。細孔分布曲線のピーク位置も±1nmの変化範囲内にあった。また水処理前後の水蒸気吸着等温線の変化率は±15%以内であった。 In order to investigate the influence of the liquid on the structure, the samples of Examples 1 to 3 were calcined at 500 ° C. and immersed in distilled water, and then the water was dried and removed. All samples of Examples 1 to 3 exhibited a γ-Al 2 O 3 crystal phase by calcining at 500 ° C. The structural change of the porous body due to the water treatment was not observed, and the same apparent structure as that before the water treatment was exhibited after the water treatment. When nitrogen adsorption isotherms before and after water treatment were measured, the isotherms showed the same type, and the change rate of the pore volume was within ± 25%. The peak position of the pore distribution curve was also within a change range of ± 1 nm. The change rate of the water vapor adsorption isotherm before and after the water treatment was within ± 15%.
(参照例2、比較例1〜3)
アルミナ源としてアルミニウムトリブトキシド:ASB(Al(sec−BuO)3)を用いた。86℃の水20mLに対し、このアルミナ源を0.0286mol加えて加水分解した後、HNO3を加えてゾルを邂逅した。邂逅後、透明ゾルが調製されたら0.2gの尿素を添加し、同温度で一晩放置してゲル化を促した。作製されたゲルを液体窒素で急冷凍結した後、―80℃のトラップ冷却温度で24時間真空凍結乾燥を施し、アルミナクリオゲルを得た(参照例2)。比較のため、参照例2と同じ出発原料でありながら凍結乾燥を施さないアルミナキセロゲル(比較例1)と、ゾルゲル反応を施さないアルミナ沈殿物(比較例2)のサンプルを作製し、更に市販アルミナ(大明化学工業株式会社製:TM−300D)(比較例3)のサンプルと共に、XRD分析及びTEM写真により、高温耐熱性を評価した。
(Reference Example 2, Comparative Examples 1 to 3)
Aluminum tributoxide: ASB (Al (sec-BuO) 3 ) was used as the alumina source. After 0.0286 mol of this alumina source was added to 20 mL of water at 86 ° C. for hydrolysis, HNO 3 was added to dissolve the sol. After that, when a transparent sol was prepared, 0.2 g of urea was added and allowed to stand overnight at the same temperature to promote gelation. The prepared gel was quenched and frozen with liquid nitrogen, and then vacuum freeze-dried for 24 hours at a trap cooling temperature of −80 ° C. to obtain an alumina cryogel (Reference Example 2). For comparison, a sample of an alumina xerogel (Comparative Example 1) that is the same starting material as Reference Example 2 but is not lyophilized and an alumina precipitate (Comparative Example 2) that is not subjected to a sol-gel reaction are prepared. High temperature heat resistance was evaluated by an XRD analysis and a TEM photograph together with a sample (Daimei Chemical Industry Co., Ltd .: TM-300D) (Comparative Example 3).
参照例2及び比較例1〜3では、XRD分析結果から、900℃以下の仮焼時、γ−Al2O3結晶相のみが検出された。また、1000℃仮焼時、比較例3(市販アルミナ)では、α−Al2O3結晶相とθ−Al2O3結晶相が検出され、参照例2、比較例1及び比較例2では、θ−Al2O3結晶相のみが検出された。更に、1100℃仮焼時、比較例1〜3では、Al2O3の結晶相が、全てα−Al2O3結晶相に相変化しているのに対し、参照例2では、α−Al2O3結晶相とθ−Al2O3結晶相を維持していることを確認した。即ち、1100℃の仮焼時では、参照例2のみが、1100℃における耐熱性及び熱安定性を確保していることを確認した。 In Reference Example 2 and Comparative Examples 1 to 3, only the γ-Al 2 O 3 crystal phase was detected from the XRD analysis results during calcination at 900 ° C. or lower. Further, at the time of calcining at 1000 ° C., in Comparative Example 3 (commercially available alumina), an α-Al 2 O 3 crystal phase and a θ-Al 2 O 3 crystal phase were detected, and in Reference Example 2, Comparative Example 1 and Comparative Example 2, Only the θ-Al 2 O 3 crystal phase was detected. Furthermore, during 1100 ° C. calcination, Comparative Examples 1 to 3, the crystalline phase of Al 2 O 3 is, while being phase change to all α-Al 2 O 3 crystal phase, in Reference Example 2, alpha- It was confirmed that the Al 2 O 3 crystal phase and the θ-Al 2 O 3 crystal phase were maintained. That is, at the time of calcination at 1100 ° C., it was confirmed that only Reference Example 2 ensured heat resistance and thermal stability at 1100 ° C.
次に、参照例2及び比較例1〜3を、1100℃で、5時間仮焼した後の窒素吸着等温線のグラフを図3に示すとともに、700〜1200℃で5時間仮焼した後のBET比表面積のグラフを図4に示す。 Next, a graph of nitrogen adsorption isotherm after calcining Reference Example 2 and Comparative Examples 1 to 3 at 1100 ° C. for 5 hours is shown in FIG. 3, and after calcining at 700 to 1200 ° C. for 5 hours. A graph of the BET specific surface area is shown in FIG.
図3に示すように、1100℃の仮焼では、参照例2のみ窒素吸着等温線にヒステリシスが認められた。また、図4に示すように、参照例2では、1100℃仮焼時におけるBET比表面積が比較例1〜3よりもはるかに優れていた。尚、このときの参照例2のBET比表面積は20m2/g、細孔容積が61mm3/g、平均細孔径が8nmであった。 As shown in FIG. 3, in the calcining at 1100 ° C., hysteresis was recognized in the nitrogen adsorption isotherm only in Reference Example 2. As shown in FIG. 4, in Reference Example 2, the BET specific surface area at the time of calcining at 1100 ° C. was far superior to Comparative Examples 1 to 3. At this time, the BET specific surface area of Reference Example 2 was 20 m 2 / g, the pore volume was 61 mm 3 / g, and the average pore diameter was 8 nm.
1100℃で5時間仮焼した時の表面積(対700℃仮焼時の表面積)を比較した場合、参照例2(アルミナクリオゲル)では、9.2%、比較例1(アルミナキセロゲル)では、2.9%、比較例2(アルミナ沈殿物)では、4.5%、比較例3(市販アルミナ)では、3.9%であることから、参照例2(アルミナクリオゲル)の耐熱性及び高温時における熱安定性に優れていることを確認した。 When comparing the surface area when calcined at 1100 ° C. for 5 hours (vs. the surface area when calcined at 700 ° C.), in Reference Example 2 (alumina cryogel), in 9.2%, in Comparative Example 1 (alumina xerogel), Since 2.9%, Comparative Example 2 (alumina precipitate) is 4.5%, and Comparative Example 3 (commercial alumina) is 3.9%, the heat resistance of Reference Example 2 (alumina cryogel) and It was confirmed that the thermal stability at high temperature was excellent.
更に、700℃で仮焼した参照例2及び比較例1〜3のTEM写真を比較すると、参照例2(アルミナクリオゲル)は、一次粒子同士の密集度が小さく、粒子間の隙間が大きいのに対し、比較例1(アルミナキセロゲル)、比較例2(アルミナ沈殿物)の順に従って粒子同士の密集度が大きくなった。尚、密集度が小さいと粒子成長の原因であるネック数を減少させることができる。従って、1100℃の高温仮焼では、比較例1(アルミナキセロゲル)や比較例2(アルミナ沈殿物)、比較例3(市販アルミナ)では、α相転移により巨大なアルミナ粒子へと粒成長するのに対し、参照例2(アルミナクリオゲル)では、微細なアルミナ粒子が多数存在しており、高温時における熱安定性に優れていることを確認した。 Furthermore, when the TEM photographs of Reference Example 2 and Comparative Examples 1 to 3 calcined at 700 ° C. are compared, Reference Example 2 (alumina cryogel) has a small degree of compaction between primary particles and a large gap between particles. On the other hand, the density of particles increased in the order of Comparative Example 1 (alumina xerogel) and Comparative Example 2 (alumina precipitate). If the density is small, the number of necks that cause particle growth can be reduced. Therefore, in high-temperature calcining at 1100 ° C., comparative example 1 (alumina xerogel), comparative example 2 (alumina precipitate), and comparative example 3 (commercial alumina) grow into large alumina particles due to α phase transition. On the other hand, in Reference Example 2 (alumina cryogel), a large number of fine alumina particles were present, and it was confirmed that the thermal stability at high temperature was excellent.
(参照例3、比較例4)
アルミナ源としてアルミニウムトリブトキシド(Al(sec−BuO)3)0.0286molを86℃の温水20mLに投入して加水分解し、HNO3を加えてゾルを邂逅した。邂逅後、透明ゾル(透明ベーマイトゾル)を得た。この透明ゾルに0.2gの尿素を添加し、同温度で一晩放置してゲル化を促した。
( Reference Example 3 , Comparative Example 4)
Aluminum tri-butoxide (Al (sec-BuO) 3 ) 0.0286mol a was put into hot water 20mL of 86 ° C. to hydrolyze the alumina source, it was encounter the sol by addition of HNO 3. After that, a transparent sol (transparent boehmite sol) was obtained. 0.2 g of urea was added to this transparent sol and allowed to stand overnight at the same temperature to promote gelation.
作製されたゲル(湿潤ベーマイトゲル)を溶媒置換することなく液体窒素で急冷凍結した後、−80℃のトラップ冷却温度で24時間真空凍結乾燥を施し、ベーマイトクリオゲルを得た。得られたクリオゲルを500℃で3時間仮焼し、アルミナクリオゲルのサンプルを作製した(参照例3)。 The prepared gel (wet boehmite gel) was quenched and frozen with liquid nitrogen without solvent substitution, and then vacuum freeze-dried at a trap cooling temperature of −80 ° C. for 24 hours to obtain a boehmite cryogel. The obtained cryogel was calcined at 500 ° C. for 3 hours to prepare an alumina cryogel sample ( Reference Example 3 ).
一方、作製されたゲル(湿潤ベーマイトゲル)をエタノールに浸漬し、ゲル内の水などをエタノールに置換した後、エタノールの臨界点、即ち243℃、64気圧以上の超臨界条件下でエタノールを除去し、ベーマイトエアロゲルを得た。得られたベーマイトエアロゲルを500℃で3時間仮焼し、アルミナエアロゲルのサンプルを作製した(比較例4)。 On the other hand, after the prepared gel (wet boehmite gel) is immersed in ethanol and the water in the gel is replaced with ethanol, ethanol is removed under supercritical conditions of ethanol at the critical point, that is, 243 ° C., 64 atm or more. Boehmite airgel was obtained. The obtained boehmite airgel was calcined at 500 ° C. for 3 hours to prepare an alumina airgel sample (Comparative Example 4).
それぞれ得られたサンプル(参照例3及び比較例4)をシャーレに並べて水に浸漬させると、エアロゲル構造体(比較例4)の場合、水との接触で瞬時に構造破壊が起こり、パウダー状となってしまった。一方、クリオゲル構造体(参照例3)の場合、水との接触で何ら構造変化が起きず、再度、水を乾燥除去後も全く同一の見かけ構造を示した。 When the obtained samples ( Reference Example 3 and Comparative Example 4) were arranged in a petri dish and immersed in water, in the case of an airgel structure (Comparative Example 4), structural destruction occurred instantaneously upon contact with water, It is had. On the other hand, in the case of the cryogel structure ( Reference Example 3 ), no structural change occurred upon contact with water, and the same apparent structure was shown even after the water was removed by drying again.
(参照例4及び参照例5、比較例5及び比較例6)
アルミナ源としてアルミニウムトリブトキシド(Al(sec−BuO)3)0.0286molを86℃の温水20mLに投入して加水分解し、HNO3を加えてゾルを邂逅した。邂逅後、透明ゾル(透明ベーマイトゾル)を得た。得られた透明ゾルに、0.2gの尿素を添加し、同温度で一晩放置してゲル化を促した。
( Reference Example 4 and Reference Example 5 , Comparative Example 5 and Comparative Example 6)
Aluminum tri-butoxide (Al (sec-BuO) 3 ) 0.0286mol a was put into hot water 20mL of 86 ° C. to hydrolyze the alumina source, it was encounter the sol by addition of HNO 3. After that, a transparent sol (transparent boehmite sol) was obtained. To the obtained transparent sol, 0.2 g of urea was added and allowed to stand overnight at the same temperature to promote gelation.
作製されたゲル(湿潤ベーマイトゲル)を溶媒置換することなく液体窒素で急冷凍結した後、−80℃のトラップ冷却温度で24時間真空凍結乾燥を施し、クリオゲル(ベーマイトクリオゲル)を得た。得られたベーマイトクリオゲルを500℃で3時間仮焼し、アルミナクリオゲルのサンプルを作製した(参照例4)。同様の方法で、アルミナ源としてアルミニウムトリプロポキシド(Al(iso−Pro)3)を用いたアルミナクリオゲルのサンプルを作製した(参照例5)。 The prepared gel (wet boehmite gel) was quenched and frozen with liquid nitrogen without solvent substitution, and then subjected to vacuum lyophilization for 24 hours at a trap cooling temperature of −80 ° C. to obtain a cryogel (boehmite cryogel). The obtained boehmite cryogel was calcined at 500 ° C. for 3 hours to prepare an alumina cryogel sample ( Reference Example 4 ). In the same manner, an alumina cryogel sample using aluminum tripropoxide (Al (iso-Pro) 3 ) as an alumina source was prepared ( Reference Example 5 ).
一方、作製されたゲル(湿潤ベーマイトゲル)をエタノールに浸漬し、ゲル内の水などをエタノールに置換した後、エタノールの臨界点、即ち243℃、64気圧以上の超臨界条件下でエタノールを除去し、エアロゲル(ベーマイトエアロゲル)を得た(比較例5)。得られたベーマイトエアロゲルを500℃で3時間仮焼しアルミナエアロゲルのサンプルを作製した(比較例6)。 On the other hand, after the prepared gel (wet boehmite gel) is immersed in ethanol and the water in the gel is replaced with ethanol, ethanol is removed under supercritical conditions of ethanol at the critical point, that is, 243 ° C., 64 atm or more. Airgel (boehmite airgel) was obtained (Comparative Example 5). The obtained boehmite airgel was calcined at 500 ° C. for 3 hours to prepare a sample of alumina airgel (Comparative Example 6).
得られたサンプル(参照例4及び参照例5、比較例5及び比較例6)を、蒸留水に浸漬した後、水を乾燥・除去する水処理を行った。このとき、水処理前後の液体窒素温度における窒素吸着等温線(図5〜8)、細孔分布(図9〜12)、25℃における水蒸気吸着等温線(図13〜16)を、それぞれのサンプルについて測定した。 The obtained samples ( Reference Example 4 and Reference Example 5 , Comparative Example 5 and Comparative Example 6) were immersed in distilled water, and then subjected to water treatment for drying and removing the water. At this time, the nitrogen adsorption isotherm (FIGS. 5-8), the pore distribution (FIGS. 9-12) at the liquid nitrogen temperature before and after the water treatment, and the water vapor adsorption isotherm (FIGS. 13-16) at 25 ° C. Was measured.
参照例4及び参照例5(アルミナクリオゲル)では、図5及び図6に示すように、水処理前後の液体窒素温度における窒素吸着等温線に変化が無く、細孔容積の変化率は±0.35%以内であった。細孔分布曲線では、図9及び図10に示すように、2〜3nmにピークを示し、ピーク位置の変化は±1nm以内であった。 In Reference Example 4 and Reference Example 5 (alumina cryogel), as shown in FIGS. 5 and 6, there is no change in the nitrogen adsorption isotherm at the liquid nitrogen temperature before and after the water treatment, and the rate of change of the pore volume is ± 0. Within 35%. In the pore distribution curve, as shown in FIGS. 9 and 10, a peak was observed at 2 to 3 nm, and the change in the peak position was within ± 1 nm.
一方、比較例5(ベーマイトエアロゲル)及び比較例6(アルミナエアロゲル)では、図11及び図12に示すように、水処理前、ミクロ孔からマクロ孔まで幅広い細孔分布を示していたが、水処理後、3nm前後のメソ孔が相対的に増大していることを確認した。尚、水処理後には、図7及び図8に示すように、窒素吸着等温線にヒステリシスが出現し、アルミナエアロゲルの細孔容積変化率は32%以上に達した。 On the other hand, Comparative Example 5 (boehmite aerogel) and Comparative Example 6 (alumina aerogel) showed a wide pore distribution from micropores to macropores before water treatment, as shown in FIGS. After the treatment, it was confirmed that the mesopores around 3 nm were relatively increased. After water treatment, as shown in FIGS. 7 and 8, hysteresis appeared in the nitrogen adsorption isotherm, and the pore volume change rate of the alumina airgel reached 32% or more.
また、参照例4及び参照例5(アルミナクリオゲル)では、図13及び図14に示すように、25℃における水蒸気吸着等温線に変化が無く、算出される比表面積も、相対圧0.90での水吸着量も水処理前後でほとんど変化が無かった。 In Reference Example 4 and Reference Example 5 (alumina cryogel), as shown in FIGS. 13 and 14, there is no change in the water vapor adsorption isotherm at 25 ° C., and the calculated specific surface area also has a relative pressure of 0.90. The amount of water adsorbed on the basin was almost unchanged before and after water treatment.
一方、比較例5(ベーマイトエアロゲル)及び比較例6(アルミナエアロゲル)では、図15及び図16に示すように、水処理前後で形の全く異なる水蒸気吸着等温線を示した。また窒素吸着等温線(図7及び図8)と比較すると、水蒸気吸着等温線では、水処理前のサンプルでも等温線に大きなヒステリシスが現れた。水処理前のエアロゲルサンプルを水蒸気吸着測定した後に目視・観察すると、測定前にセル内に投入したエアロゲルの様子とは明らかに異なり、いわゆる体積収縮が観察された。これは水蒸気吸着測定中にエアロゲルが水と接触し、徐々に構造破壊を起こしたことによるものと考えられた。 On the other hand, in Comparative Example 5 (boehmite aerogel) and Comparative Example 6 (alumina aerogel), as shown in FIGS. 15 and 16, water vapor adsorption isotherms having completely different shapes before and after water treatment were shown. In addition, compared with the nitrogen adsorption isotherm (FIGS. 7 and 8), the water vapor adsorption isotherm showed a large hysteresis in the isotherm even in the sample before water treatment. When the airgel sample before water treatment was visually observed and observed after water vapor adsorption measurement, the so-called volume shrinkage was observed, which was clearly different from the state of the airgel put into the cell before the measurement. This was thought to be due to the fact that the airgel contacted water during the water vapor adsorption measurement and gradually caused structural destruction.
本発明の多孔質構造体及びその製造方法は、例えば、排ガス処理用の触媒の製造に好適に用いることができる。 The porous structure and the method for producing the same according to the present invention can be suitably used for producing a catalyst for treating exhaust gas, for example.
Claims (8)
前記ゲル化物から前記多孔質構造体を得る工程のいずれの段階にも触媒物質の担持工程および溶媒置換工程および超臨界乾燥工程を含まないことを特徴とする多孔質構造体の製造方法。 A silica-alumina compound with 2.5 to 10% by mass of silica added based on the total mass, and a gelled product is produced by a gelation reaction in an aqueous system in which silicon alkoxide is added to boehmite sol obtained from aluminum alkoxide. , A method for producing a porous structure obtained by freeze-drying the gelled product to obtain a porous structure,
A method for producing a porous structure characterized in that any step of obtaining the porous structure from the gelled product does not include a catalyst substance supporting step, a solvent replacement step, and a supercritical drying step.
かさ密度が0.1g/cm3以下で、且つ主な結晶相がγ−Al2O3結晶相から構成された多孔質構造体。 A porous structure produced by the method according to claim 1 or 2,
A porous structure having a bulk density of 0.1 g / cm 3 or less and a main crystal phase composed of a γ-Al 2 O 3 crystal phase.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006048135A JP5055520B2 (en) | 2006-02-24 | 2006-02-24 | Porous structure and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006048135A JP5055520B2 (en) | 2006-02-24 | 2006-02-24 | Porous structure and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007223856A JP2007223856A (en) | 2007-09-06 |
JP5055520B2 true JP5055520B2 (en) | 2012-10-24 |
Family
ID=38546008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006048135A Expired - Fee Related JP5055520B2 (en) | 2006-02-24 | 2006-02-24 | Porous structure and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5055520B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5019526B2 (en) * | 2007-07-10 | 2012-09-05 | 独立行政法人産業技術総合研究所 | Method for producing porous platinum-alumina cryogel catalyst and porous platinum-alumina cryogel catalyst obtained thereby |
JP5120804B2 (en) * | 2007-10-05 | 2013-01-16 | 独立行政法人産業技術総合研究所 | Porous cerium oxide-alumina cryogel catalyst and method for producing the same |
JP5598859B2 (en) * | 2011-02-09 | 2014-10-01 | 独立行政法人産業技術総合研究所 | Porous alumina and catalyst using the same |
CN111122417B (en) * | 2020-02-22 | 2022-06-21 | 太原理工大学 | Device and method for measuring total volume expansion rate of open-close hole of coal containing gas |
CN111943704B (en) * | 2020-08-18 | 2022-08-26 | 航天特种材料及工艺技术研究所 | Reusable high-temperature-resistant nanocrystalline aerogel material and preparation method thereof |
CN117796568A (en) * | 2022-09-23 | 2024-04-02 | 深圳市合元科技有限公司 | Atomizer, electronic atomizing device, porous body and preparation method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH068172B2 (en) * | 1986-07-14 | 1994-02-02 | 花王株式会社 | Aggregate of slit-like or honeycomb-like structure of aluminum hydroxide or aluminum oxide and its manufacturing method |
JP3010212B1 (en) * | 1998-09-01 | 2000-02-21 | 工業技術院長 | Method for producing high heat resistant porous alumina-based catalyst support |
CN1418260A (en) * | 2000-01-07 | 2003-05-14 | 杜克大学 | High yield vapor phase deposition method for large scale single walled carbon nanotube prepration |
WO2006011616A1 (en) * | 2004-07-26 | 2006-02-02 | Ngk Insulators, Ltd. | Reactor |
-
2006
- 2006-02-24 JP JP2006048135A patent/JP5055520B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007223856A (en) | 2007-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5055520B2 (en) | Porous structure and method for producing the same | |
Horiuchi et al. | A novel alumina catalyst support with high thermal stability derived from silica-modified alumina aerogel | |
BR0001560B1 (en) | process for producing a ceramic catalyst body and a ceramic catalyst body. | |
BRPI1100634A2 (en) | Process for the production of a catalyst converter, Process for the production of a catalytic converter and Process for the production of a nox catalytic converter | |
JP2594879B2 (en) | Lanthanum-stabilized alumina and method for producing the same | |
JP5252250B2 (en) | Noble metal catalyst and method for producing the same | |
JP5098333B2 (en) | Method for producing porous structure | |
KR20140005342A (en) | Complex oxide, method for producing same, and exhaust gas purification catalyst | |
JP5598859B2 (en) | Porous alumina and catalyst using the same | |
JP2011224428A (en) | Porous catalyst, and method of producing the same | |
JP4620641B2 (en) | Noble metal catalyst and method for producing the same | |
JP6966445B2 (en) | Alumina and a method for manufacturing an automobile catalyst using it | |
JP5019526B2 (en) | Method for producing porous platinum-alumina cryogel catalyst and porous platinum-alumina cryogel catalyst obtained thereby | |
JP2016204232A (en) | Hydrogen molecule storage material and hydrogen generation method therefor | |
JP5120804B2 (en) | Porous cerium oxide-alumina cryogel catalyst and method for producing the same | |
JP5048253B2 (en) | Porous structure | |
JP2001190955A (en) | Catalyst molding for exhaust gas cleaning | |
JP2006225178A (en) | Method for producing carbon-containing metal oxide | |
JPS63178850A (en) | Production of catalyst carrier using xanthane gum | |
JP3010212B1 (en) | Method for producing high heat resistant porous alumina-based catalyst support | |
JP7393912B2 (en) | Boehmite and its manufacturing method | |
JP2009196854A (en) | Method for producing active alumina | |
JP5247204B2 (en) | Method for producing activated alumina molded body | |
RU2626001C1 (en) | Aluminoxide carbonate carrier | |
JP2012232252A (en) | Catalyst for cleaning exhaust gas, method for producing the catalyst, and apparatus for cleaning exhaust gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081111 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120619 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120702 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150810 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5055520 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |