JP5052874B2 - Fuel oil composition for diesel engines - Google Patents

Fuel oil composition for diesel engines Download PDF

Info

Publication number
JP5052874B2
JP5052874B2 JP2006328655A JP2006328655A JP5052874B2 JP 5052874 B2 JP5052874 B2 JP 5052874B2 JP 2006328655 A JP2006328655 A JP 2006328655A JP 2006328655 A JP2006328655 A JP 2006328655A JP 5052874 B2 JP5052874 B2 JP 5052874B2
Authority
JP
Japan
Prior art keywords
volume
content
oil composition
pressure
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006328655A
Other languages
Japanese (ja)
Other versions
JP2008138143A (en
Inventor
和久 齊藤
治夫 滝澤
宏明 大塚
重行 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2006328655A priority Critical patent/JP5052874B2/en
Publication of JP2008138143A publication Critical patent/JP2008138143A/en
Application granted granted Critical
Publication of JP5052874B2 publication Critical patent/JP5052874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、コモンレール式燃料噴射装置、ユニットインジェクタ式燃料噴射装置などの、燃料高圧噴射式のディーゼルエンジンにおいて、燃料を高圧にした際に生じる固化・ゲル化を抑制し、適切な燃焼状態を維持し、かつ噴射装置への機械的なダメージを回避することができる燃料油組成物を提供するものである。   The present invention suppresses solidification / gelation that occurs when fuel is at a high pressure and maintains an appropriate combustion state in a high-pressure fuel injection diesel engine such as a common rail fuel injection device or a unit injector fuel injection device. And a fuel oil composition capable of avoiding mechanical damage to the injection device.

近年、環境問題から自動車から排出される排気ガスの低減や熱効率の向上が求められている。ディーゼル車は、ガソリン車に比べ熱効率に優れ、CO排出が少ないものの、燃焼がディーゼル特有の拡散燃焼であることに起因する粒子状物質(PM)の排出やNOxの排出などによる人体への影響の懸念や環境に対する悪影響が問題となっている。 In recent years, reduction of exhaust gas emitted from automobiles and improvement of thermal efficiency have been demanded due to environmental problems. Diesel vehicles have better thermal efficiency than gasoline vehicles and have less CO 2 emissions, but the impact on the human body due to particulate matter (PM) emissions and NOx emissions due to the diffusion combustion characteristic of diesel Concerns and adverse environmental impacts are a problem.

これらディーゼル車から排出されるPMやNOxの問題に対し、燃焼形態を改善するため、コモンレール式燃料噴射装置や、ユニットインジェクタ方式に代表される燃料高圧噴射装置の導入が進んでいる。燃料の高圧噴射は、エンジン筒内に噴射される燃料の微粒化を促進し、かつ、筒内空気との混合を促進することにより、燃焼形態を改善することができる。コモンレール式燃料噴射装置や、ユニットインジェクタ式燃料噴射装置による最大燃料噴射圧力は、従来車の代表である列型噴射装置の噴射圧力50MPa程度に対し、160〜200MPa程度と非常に高く、その高圧化は更に進んでいる。また、これら燃料高圧噴射装置は、電子制御により、これまでのエンジン回転数に応じた燃料噴射圧力ではなく、あらかじめ高圧化された燃料をプールしておき、運転条件により最適な燃料噴射圧力を判断し、噴射圧力を調整して噴射する方式となっているため、全運転領域において最適な燃焼状態の維持が可能となっている。更に、上記の高圧噴射型の車輌においては、インジェクタノズル噴射孔のサイズもこれまでより小さくなっており、噴射燃料の微細化の一助となっている。   In order to improve the combustion mode against the problem of PM and NOx discharged from these diesel vehicles, introduction of a common rail type fuel injection device and a fuel high pressure injection device represented by a unit injector method has been advanced. The high-pressure injection of fuel can improve the combustion mode by promoting atomization of the fuel injected into the engine cylinder and promoting mixing with the cylinder air. The maximum fuel injection pressure by the common rail type fuel injection device or the unit injector type fuel injection device is very high, about 160 to 200 MPa, compared to the injection pressure of about 50 MPa of the row type injection device which is a typical conventional vehicle. Is going further. In addition, these high-pressure fuel injection devices use electronic control to pool fuel that has already been increased in pressure rather than the fuel injection pressure corresponding to the engine speed so far, and determine the optimal fuel injection pressure based on operating conditions. In addition, since the injection is performed by adjusting the injection pressure, it is possible to maintain the optimum combustion state in the entire operation region. Further, in the above-described high-pressure injection type vehicle, the size of the injector nozzle injection hole is also smaller than before, which contributes to the miniaturization of the injected fuel.

このような燃料噴射装置の導入により、燃焼形態が大幅に改善され、PM排出量やNOx排出量が大きく低減された。そしてエンジンアウトでの排出ガスが低減されたことにより、従来のエンジンから排出されるPM、NOx量では装着できなかったエンジン後段の各種後処理装置(DPF、DPNR等)も併用可能となり、PM、NOxの大幅な低減の達成がなされている。   With the introduction of such a fuel injection device, the combustion mode has been greatly improved, and PM emissions and NOx emissions have been greatly reduced. And by reducing the exhaust gas from the engine out, it becomes possible to use various post-processing devices (DPF, DPNR, etc.) at the rear stage of the engine that could not be installed with the amount of PM and NOx exhausted from the conventional engine. A significant reduction in NOx has been achieved.

一方、燃料の高圧噴射化は上記に示したように、排ガス低減に大きな効果があり、非常に有用な技術であるものの、200MPaのような超高圧状態における燃料の状態に関する技術的な知見はほとんどないのが現状である。このような中、高圧噴射型の車輌に対応する燃料油として、例えば、軽油の密度と40℃における粘度を規定したものが報告されている(例えば、特許文献1)。   On the other hand, as described above, high-pressure injection of fuel has a great effect on exhaust gas reduction and is a very useful technique, but there is little technical knowledge about the state of fuel in an ultra-high pressure state such as 200 MPa. There is no current situation. Under such circumstances, as a fuel oil corresponding to a high-pressure injection type vehicle, for example, a fuel oil that defines a density of light oil and a viscosity at 40 ° C. has been reported (for example, Patent Document 1).

ここでは、高圧コモンレール燃料系を有する圧縮点火エンジンは、密度と40℃における粘度が特定の範囲にあれば、性能を全く損失することなく、また排出物を実質的に減少させて運転することが可能であることが開示されている。
特表2004−514746号公報
Here, a compression ignition engine with a high pressure common rail fuel system can be operated with no loss of performance and substantially reduced emissions, provided that the density and viscosity at 40 ° C. are in a certain range. It is disclosed that it is possible.
JP-T-2004-514746

しかし、この技術は高圧噴射型の車両における排出物質の減少を目的としており、超高圧状態における燃料の状態を特定しているものではない。
物質の三態図を考えた場合、常温、常圧で液体の物質であっても、200MPaのような超高圧状態にさらされた場合には固体へと状態変化を起こしてしまう。新型の燃料噴射装置は従来のものと比べ、最高圧力では3倍以上、かつ最低でも50MPa以上の圧力が常時燃料にかかっていることから、高圧下でプールされた燃料の固化・ゲル化といったものが懸念される。燃料の固化・ゲル化は、燃料が液体であることを想定されて設計されている燃料噴射の噴霧形状に大きな影響を与えることは明らかであり、かつ、固体またはゲル状態のものが200MPaのような超高圧で噴射された場合、インジェクタのノズルホールがより小さくなっているような高圧噴射型の車両においてはこれらの箇所が破損する可能性が懸念される。
However, this technique aims to reduce emissions in high-pressure injection vehicles, and does not specify the state of fuel in an ultra-high pressure state.
Considering the three-state diagram of a substance, even if it is a liquid substance at normal temperature and normal pressure, when it is exposed to an ultra-high pressure state such as 200 MPa, the state changes to a solid. Compared to the conventional fuel injection system, the new fuel injection system is more than three times the maximum pressure and the minimum pressure is 50 MPa or more, so the fuel pooled under high pressure is solidified and gelled. Is concerned. It is clear that the solidification / gelation of the fuel has a great influence on the spray shape of the fuel injection designed on the assumption that the fuel is liquid, and the solid or gel state is 200 MPa. There is a concern that these parts may be damaged in a high-pressure injection type vehicle in which the nozzle hole of the injector is smaller when it is injected at a very high pressure.

本発明は、上記の技術的な背景から、高圧噴射装置で使用されるような超高圧下においても燃料の状態を液体状態として保持でき、燃料噴霧形態を維持することにより、適切な燃焼状態を保持できると伴に、インジェクタのノズルホール破損などのトラブルを回避できるディーゼルエンジン用の燃料油組成物を提供することを目的とする。   From the above technical background, the present invention can maintain the fuel state in a liquid state even under an ultra-high pressure such as that used in a high-pressure injector, and maintain an appropriate combustion state by maintaining the fuel spray form. An object of the present invention is to provide a fuel oil composition for a diesel engine that can be held and can avoid troubles such as breakage of a nozzle hole of an injector.

本発明者らは、鋭意検討の結果、適切な組成、性状を有する燃料とすることで、高圧下において適切な燃料噴霧を可能とする知見を得て、本発明を完成するに至った。
すなわち本発明は、以下に示す特徴を有するコモンレール式燃料噴射装置、ユニットインジェクタ式燃料噴射装置などの燃料高圧噴射式のディーゼルエンジンに適した燃料油組成物を提供するものである。
(1) 10容量%留出温度が180〜225℃、90容量%留出温度が315〜350℃の蒸留性状を有し、硫黄分が10質量ppm以下であり、飽和分が70〜83.3容量%で、芳香族分が16.7〜30容量%で、かつ、2環芳香族類含有量が1.5容量%以下及び3環以上の多環芳香族類含有量が0.5容量%以下であり、ナフテン類含有量が65容量%以下、多環ナフテン類の含有量が35容量%以下、イソパラフィンの含有量が5〜25.9容量%であることを特徴とするディーゼルエンジン用燃料油組成物。
(2) 燃料噴射圧力が50MPa以上であるディーゼルエンジンに用いられる、上記(1)に記載のディーゼルエンジン用燃料油組成物。
As a result of intensive studies, the present inventors have obtained the knowledge that enables proper fuel spraying under high pressure by using a fuel having an appropriate composition and properties, and have completed the present invention.
That is, the present invention provides a fuel oil composition suitable for a high pressure fuel injection type diesel engine such as a common rail type fuel injection device and a unit injector type fuel injection device having the following characteristics.
(1) 10% by volume distillation temperature is 180 to 225 ° C., 90% by volume distillation temperature is 315 to 350 ° C., has a sulfur content of 10 mass ppm or less, and a saturated content is 70 to 83. 3 % by volume, aromatic content is 16.7-30 % by volume, bicyclic aromatic content is 1.5% by volume or less, and polycyclic aromatic content of 3 or more rings is 0.5%. A diesel engine having a volume% or less, a naphthene content of 65 volume% or less, a polycyclic naphthene content of 35 volume% or less, and an isoparaffin content of 5 to 25.9 volume % Fuel oil composition.
(2) The fuel oil composition for a diesel engine according to (1), which is used for a diesel engine having a fuel injection pressure of 50 MPa or more.

以下に発明の詳細を記載する。
本発明におけるディーゼルエンジン用燃料油組成物の蒸留性状は、10容量%留出温度が180〜225℃、好ましくは183〜222℃、90容量%留出温度が315〜350℃、好ましくは317〜347℃である。
10容量%留出温度が180℃以上であれば、軽油として適切な引火点、動粘度を保つことができ、225℃以下であれば、適度な揮発性を有することから、燃焼室内での空気との混合が促進され、不均一混合燃焼に由来するPM等を低減することができるため好ましい。90容量%留出温度が315℃以上であれば、動粘度を適切に保つことができ、350℃以下であれば軽油中の重質成分、特に芳香族分を低いレベルに抑えることができ、燃焼性を良好に保つことが出来るため、好ましい。
Details of the invention are described below.
The distillation property of the fuel oil composition for diesel engines in the present invention has a 10 vol% distillation temperature of 180 to 225 ° C, preferably 183 to 222 ° C, and a 90 vol% distillation temperature of 315 to 350 ° C, preferably 317 to 347 ° C.
If the 10% by volume distillation temperature is 180 ° C. or higher, the flash point and kinematic viscosity appropriate for light oil can be maintained, and if it is 225 ° C. or lower, it has moderate volatility. And the like, and the PM derived from heterogeneous mixed combustion can be reduced. If the 90% by volume distillation temperature is 315 ° C. or higher, the kinematic viscosity can be maintained appropriately, and if it is 350 ° C. or lower, heavy components in light oil, particularly aromatic components, can be suppressed to a low level. This is preferable because good combustibility can be maintained.

また本発明におけるディーゼルエンジン用燃料油組成物に含まれる硫黄分は10質量ppm以下、好ましくは8質量ppm以下である。硫黄分を10質量ppm以下とすることで、エンジンから排出される粒子状物質(PM)の成分であるサルフェートの排出量を少なくし、排ガス後処理装置の性能に対する影響も小さくなり好ましい。
なお、本発明における蒸留性状はJIS K2254の常圧法蒸留試験、硫黄分はJIS K2541の微量電量滴定式酸化法により、それぞれ測定できる。
Moreover, the sulfur content contained in the fuel oil composition for diesel engines in the present invention is 10 mass ppm or less, preferably 8 mass ppm or less. By setting the sulfur content to 10 mass ppm or less, it is preferable that the amount of sulfate, which is a component of particulate matter (PM) discharged from the engine, is reduced and the influence on the performance of the exhaust gas aftertreatment device is reduced.
The distillation properties in the present invention can be measured by the atmospheric pressure distillation test of JIS K2254, and the sulfur content can be measured by the microcoulometric titration method of JIS K2541.

本発明におけるディーゼルエンジン用燃料油組成物の飽和分は、70容量%以上、85容量%未満、好ましくは75容量%以上、85容量%未満、芳香族分は15〜30容量%、好ましくは15〜28容量%である。その内2環芳香族類含有量は1.5容量%以下、好ましくは1.4容量%以下、3環以上の多環芳香族類の含有量は0.5容量%以下、好ましくは0.3容量%以下である。
飽和分を70容量%以上、芳香族分が30容量%以下として、特に2環芳香族および3環以上の多環芳香族を低レベルに抑えることにより、燃焼時にPMおよびNOxの排出量を低減できる。
なお、ここでの組成割合は、JPI−5S−49−97「石油製品−炭化水素タイプ試験方法−高速液体クロマトグラフ法(HPLC)」に基づいて求められる。
The saturated content of the fuel oil composition for diesel engines in the present invention is 70% by volume or more and less than 85% by volume, preferably 75% by volume or more and less than 85% by volume, and the aromatic content is 15 to 30% by volume, preferably 15%. ~ 28% by volume. Among them, the content of bicyclic aromatics is 1.5% by volume or less, preferably 1.4% by volume or less, and the content of tricyclic or more polycyclic aromatics is 0.5% by volume or less, preferably 0.8%. 3% by volume or less.
Reduces PM and NOx emissions during combustion by reducing the saturation to 70% by volume and aromatics to 30% by volume, especially by reducing the levels of bicyclic aromatics and polycyclic aromatics with 3 or more rings to a low level. it can.
In addition, the composition ratio here is calculated | required based on JPI-5S-49-97 "petroleum product-hydrocarbon type test method-high performance liquid chromatograph method (HPLC)".

本発明におけるディーゼルエンジン用燃料油組成物のナフテン類含有割合は、65容量%以下、好ましくは60容量%以下であり、そのうち2環以上の多環ナフテン類含有量は35容量%以下、好ましくは30容量%以下である。ナフテン類、多環ナフテン類は、50MPa以上の超高圧下においては、その多くが分子的に平面構造に近い形を有していることにより固化しやすい傾向がある。ここで、ナフテン類としては、シクロヘキサンやシクロペンチルシクロヘキサン、2環ナフテン類としては、例えばジシクロヘキシルエタンやデカリンなどが挙げられる。3環以上のナフテン類としては、例えばテトラデカヒドロアントラセンなどが挙げられる。ナフテン類が65容量%以下、特に多環ナフテン類が35容量%以下であることにより、固液平衡線(圧力−温度曲線)の2次曲線の傾きを大きく保つことができるため、好ましい。   The naphthene content in the fuel oil composition for diesel engines in the present invention is 65% by volume or less, preferably 60% by volume or less, and the content of polycyclic naphthenes having two or more rings is 35% by volume or less, preferably 30% by volume or less. Naphthenes and polycyclic naphthenes tend to be easily solidified under an ultrahigh pressure of 50 MPa or more because most of them have a molecularly close shape to a planar structure. Here, examples of naphthenes include cyclohexane and cyclopentylcyclohexane, and examples of bicyclic naphthenes include dicyclohexylethane and decalin. Examples of naphthenes having 3 or more rings include tetradecahydroanthracene. When the naphthenes are 65% by volume or less, particularly the polycyclic naphthenes are 35% by volume or less, the inclination of the quadratic curve of the solid-liquid equilibrium line (pressure-temperature curve) can be kept large, which is preferable.

なおここでのナフテン類含有割合は、高速液体クロマトグラフ法(HPLC)によりディーゼルエンジン用燃料油組成物を芳香族分と飽和分に分画採取した後、飽和分をガスクロマトグラフ法−質量分析法(GC−MS)で分析し、ASTMD 2786に従って解析を行い、各環数別のナフテン類割合を算出し、ここで得られた割合を、JPI−5S−49−97「石油製品−炭化水素タイプ試験方法−高速液体クロマトグラフ法」により求めた飽和分割合に乗ずることで求められる。   The naphthenes content ratio here is determined by gas chromatography-mass spectrometry after the fuel oil composition for a diesel engine is fractionated into an aromatic component and a saturated component by high performance liquid chromatography (HPLC). (GC-MS) and analysis according to ASTM D 2786 to calculate the ratio of naphthenes for each ring number, and the ratio obtained here is determined as JP-5S-49-97 "Petroleum products-hydrocarbon type". It is calculated | required by multiplying the saturation fraction calculated | required by "the test method-high performance liquid chromatograph method.

本発明におけるディーゼルエンジン用燃料油組成物のイソパラフィンの含有量は5容量%以上85容量%未満、好ましくは10容量%以上85容量%未満である。イソパラフィンが5容量%以上であることにより、固液平衡線(圧力−温度曲線)の2次曲線の傾きを大きく保つことができ、85容量%未満であれば、燃料油組成物の燃焼性を適正な範囲に保つことができる。   The isoparaffin content of the diesel engine fuel oil composition in the present invention is 5% by volume or more and less than 85% by volume, preferably 10% by volume or more and less than 85% by volume. When the isoparaffin is 5% by volume or more, the slope of the quadratic curve of the solid-liquid equilibrium line (pressure-temperature curve) can be kept large, and if it is less than 85% by volume, the combustibility of the fuel oil composition is improved. An appropriate range can be maintained.

なおここでのイソパラフィン含有割合は、JPI−5S−49−97「石油製品−炭化水素タイプ試験方法−高速液体クロマトグラフ法」により求めた飽和分からナフテン類含有量とn−パラフィン含有量との和を引くことにより求めることが出来る。また、n−パラフィン含有量は、ガスクロマトグラフ法(GC)により得ることができ、これを容量%に換算することで求めることが出来る。   The isoparaffin content ratio here is the sum of the naphthene content and the n-paraffin content from the saturated content determined by JPI-5S-49-97 “Petroleum products—Hydrocarbon type test method—High performance liquid chromatograph method”. Can be obtained by subtracting. The n-paraffin content can be obtained by gas chromatography (GC), and can be obtained by converting this to volume%.

本発明におけるディーゼルエンジン用燃料油組成物の、50MPaにおける結晶析出温度は20℃以下であり、15℃以下であればさらに好ましく、これに加え、燃料油組成物の固体状態と液体状態の境目を表す固液平衡線の傾きが、−0.035以上であれば好ましく、−0.03以上であればさらに好ましい。
50MPaにおける結晶析出温度が20℃以下であれば、エンジン始動直後の燃料高圧噴射装置の圧力において燃料が液体状態を保つことができ、始動直後のエンジン不調を防ぐことが出来る。固液平衡線の傾きが−0.035以上であれば、ある任意の圧力上昇により結晶が析出した場合でも、小さな温度上昇(少量の熱量の投入)により固相状態から液相状態へ状態変化を起こすため、液相状態を維持するために好ましい。
The crystal oil deposition temperature at 50 MPa of the fuel oil composition for diesel engines in the present invention is 20 ° C. or lower, more preferably 15 ° C. or lower. In addition to this, the boundary between the solid state and the liquid state of the fuel oil composition The slope of the solid-liquid equilibrium line to be expressed is preferably −0.035 or more, and more preferably −0.03 or more.
If the crystal precipitation temperature at 50 MPa is 20 ° C. or less, the fuel can be kept in a liquid state at the pressure of the high-pressure fuel injection device immediately after the engine is started, and the engine malfunction immediately after the start can be prevented. If the slope of the solid-liquid equilibrium line is -0.035 or more, even if crystals are precipitated by an arbitrary pressure increase, the state changes from a solid phase to a liquid phase by a small temperature increase (a small amount of heat input). Therefore, it is preferable for maintaining the liquid phase state.

なお、50MPaにおける結晶析出圧力、および固液平衡線は、図1に示す実験装置を用いて得ることができる。固液平衡線は、図2に示すように高圧室内の温度を−30〜80℃の任意の温度に固定し、圧力を5MPa刻みで昇圧させたときに、試料室内に結晶が析出した圧力を、横軸:温度、縦軸:結晶析出圧力のグラフにプロットし、その点を複数点結ぶことにより、2次関数のグラフとして描くことができる。   The crystal precipitation pressure at 50 MPa and the solid-liquid equilibrium line can be obtained using the experimental apparatus shown in FIG. As shown in FIG. 2, the solid-liquid equilibrium line indicates the pressure at which crystals are precipitated in the sample chamber when the temperature in the high pressure chamber is fixed at an arbitrary temperature of −30 to 80 ° C. and the pressure is increased in steps of 5 MPa. The graph can be drawn as a quadratic function graph by plotting on a graph of horizontal axis: temperature, vertical axis: crystal precipitation pressure, and connecting a plurality of points.

本発明における軽油組成物は、種々の石油留分から蒸留によりその蒸留性状を調整し、水素化脱硫、芳香族抽出処理等の処理を行った軽油留分に、灯油等を適宜配合して製造することができる。JIS規格軽油としては、特1号、1号、2号、3号、特3号全般が使用可能であり、特に限定されない。その他、灯油留分を混合していない軽油基材や、重油を接触分解、水素化脱硫、水素化分解処理、脱アロマ処理およびコーカー等で重質油分をアップグレーディング等した後に分留される軽油留分等でも、その性状が上述の性状を満たすものであれば使用可能であり、特に限定されるものではないが、超高圧下で固化を促進するようなナフテン、多環ナフテンを含まないような原油を選択するか、水素化脱硫反応においてこれら物質を水添するなどした基材を選択的に使用することで好適に製造することができる。   The light oil composition in the present invention is produced by appropriately distilling kerosene or the like into a light oil fraction that has been subjected to treatment such as hydrodesulfurization and aromatic extraction treatment by adjusting the distillation properties of various petroleum fractions by distillation. be able to. As JIS standard light oil, No. 1, No. 2, No. 2, No. 3, and No. 3 can be used in general, and are not particularly limited. Other diesel oil bases that do not contain kerosene fractions, or diesel oil that is fractionated after heavy oil is catalytically cracked, hydrodesulfurized, hydrocracked, dearomatized, and upgraded with heavy oil by coker, etc. The fraction can be used as long as its properties satisfy the above-mentioned properties, and is not particularly limited, but does not include naphthene or polycyclic naphthene that promotes solidification under ultrahigh pressure. It can be suitably produced by selecting a crude oil or selectively using a base material such as hydrogenating these substances in a hydrodesulfurization reaction.

本発明におけるディーゼルエンジン用燃料油組成物には、低温流動性向上剤を10〜1000容量ppm、好ましくは50〜700容量ppm添加することが好ましい。低温流動性向上剤を10容量ppm以上添加することにより、目詰まり点(CFPP)や流動点(PP)を改善することができ好ましい。また低温流動性向上剤の添加量が1000容量ppm以下であることにより、添加剤自体の凝集等を防ぐことができ好ましい。   The low temperature fluidity improver is preferably added in an amount of 10 to 1000 ppm by volume, and preferably 50 to 700 ppm by volume, to the diesel engine fuel oil composition of the present invention. Addition of 10 ppm by volume or more of the low temperature fluidity improver is preferable because the clogging point (CFPP) and the pour point (PP) can be improved. Moreover, it is preferable that the addition amount of the low temperature fluidity improver is 1000 ppm by volume or less because aggregation of the additive itself can be prevented.

本発明において使用する低温流動性向上剤は、種々のものが使用でき、例えばアルケニルコハク酸イミド、エチレン−酢酸ビニル共重合体、エチレン−アルキルアクリレート共重合体、ポリエチレングリコール誘導体等の共重合ポリマー、塩素化ポリエチレン、ポリアルキルアクリレート等のポリマーが挙げられる。これらの低温流動性向上剤は、1種単独でもよいし、2種以上を組合せて用いても良い。   Various low temperature fluidity improvers used in the present invention can be used, for example, alkenyl succinimide, ethylene-vinyl acetate copolymer, ethylene-alkyl acrylate copolymer, copolymer polymer such as polyethylene glycol derivative, Examples thereof include polymers such as chlorinated polyethylene and polyalkyl acrylate. These low temperature fluidity improvers may be used singly or in combination of two or more.

また、本発明のディーゼルエンジン用燃料油組成物には必要に応じて、その他各種の添加剤を適宜配合することができる。このような添加剤としては、潤滑性向上剤、セタン価向上剤、界面活性剤、防腐剤、防錆剤、泡消剤、清浄剤、酸化防止剤、色相改善剤、など公知の燃料添加剤が挙げられる。これらを一種または数種組合せて添加することができる。   Moreover, various other additives can be suitably mix | blended with the fuel oil composition for diesel engines of this invention as needed. Examples of such additives include lubricity improvers, cetane number improvers, surfactants, preservatives, rust preventives, defoamers, detergents, antioxidants, hue improvers, and other known fuel additives. Is mentioned. These can be added singly or in combination.

次に、本発明を実施例、比較例によりさらに具体的に説明する。なお本発明は、これらの例によって何ら制限されるものではない。
実施例、比較例において、引火点、蒸留性状、硫黄分、30℃動粘度、目詰まり点、流動点は、JIS K 2204に定められる方法に準拠して測定を行った。その他に、15℃密度はJIS K 2249、曇り点はJIS K 2269、窒素量はJIS K 2609、酸素量はJISK 2536の方法により測定を行った。
Next, the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not restrict | limited at all by these examples.
In Examples and Comparative Examples, the flash point, distillation properties, sulfur content, 30 ° C. kinematic viscosity, clogging point, and pour point were measured according to the method defined in JIS K 2204. In addition, 15 ° C. density was measured according to JIS K 2249, cloud point was measured according to JIS K 2269, nitrogen content was measured according to JIS K 2609, and oxygen content was measured according to JIS K 2536.

飽和分、芳香族分の割合と、芳香族分の環数別割合は、JPI-5S-49-97に基づいて測定を行った。HPLCの装置構成及び分析条件を以下に示す。
装置:Agilent 1100 Series(ALS:G1329A, Bin Pump: G1312A, Degasser: G1379A, Rid: G1362A, Colcom: G1316A)
移動相:n−ヘキサン
流量:1.0ml/min
カラム:硝酸銀含浸シリカカラム(4.6mml.D.*70mmL. センシュー科学製AgNO-1071-Y)
アミン修飾カラム(4.0mml.D.*250mmL. 2本 センシュー科学製 LICHROSORB-NH
カラム温度:35℃
試料濃度:10vol%
注入量:5μl
The ratio of the saturated component, the aromatic component, and the aromatic component according to the number of rings were measured based on JPI-5S-49-97. The apparatus configuration and analysis conditions of HPLC are shown below.
Equipment: Agilent 1100 Series (ALS: G1329A, Bin Pump: G1312A, Degasser: G1379A, Rid: G1362A, Colcom: G1316A)
Mobile phase: n-hexane Flow rate: 1.0 ml / min
Column: Silver nitrate impregnated silica column (4.6 ml. D. * 70 mm L. AgNO 3 -1071-Y manufactured by Senshu Scientific)
Amine modified column (4.0 ml.D. * 250 mm L. 2 LICROSORB-NH 2 manufactured by Senshu Scientific)
Column temperature: 35 ° C
Sample concentration: 10 vol%
Injection volume: 5 μl

ナフテン類および環数別ナフテン類の含有量、およびイソパラフィン分析は下記方法で行った。
まず試料をHPLCにより飽和分と芳香族分により分画後、飽和分についてGC−MSによりタイプ分析を行った。ここで得られた分析結果を基に、ASTMD 2786に従って解析を行い、飽和分中のパラフィン類と、ナフテン類および環数別ナフテン類の含有割合を求めた。ここで得られた飽和分中のナフテン類および環数別ナフテン類の割合を、上記のように求めた飽和分割合に乗ずることで、ナフテン類および環数別ナフテン類の含有量を求めた。
The content of naphthenes and ring-based naphthenes, and isoparaffin analysis were performed by the following methods.
First, a sample was fractionated by a saturated component and an aromatic component by HPLC, and then a type analysis was performed on the saturated component by GC-MS. Based on the analysis result obtained here, the analysis was performed according to ASTM D 2786, and the content ratios of the paraffins, naphthenes and ring-based naphthenes in the saturated content were determined. The contents of naphthenes and naphthenes by number of rings were determined by multiplying the ratio of naphthenes and naphthenes by number of rings in the saturated content obtained here by the saturation ratio determined as described above.

イソパラフィンは、上記方法で求めたナフテン類と、下記に示すn‐パラフィンの含有量を容量%に換算したものとの和を、JPI−5S−49−97「石油製品−炭化水素タイプ試験方法−高速液体クロマトグラフ法」により求めた飽和分より引くことにより求めることが出来る。
分析条件を下記に示す。
装置:HP−6890 HP5973 四重極質量分析計
カラム:DB−1:30m×0.25mmI.D.×0.25μm
オーブン温度:40℃(1min)→10℃/min→280℃(5min)
注入口温度:43℃ Oven track mode ON
インターフェース温度:300℃
キャリアガス:He:55KPa Constant flow mode ON
Solvent Delay:4.5min
質量範囲:50〜500 Threshold=100 Sampling♯3
イオン化電圧:70eV
注入方法:オンカラム注入 1.0μl
For isoparaffin, the sum of the naphthenes obtained by the above method and the content of n-paraffin shown below converted to volume% is determined by JPI-5S-49-97 "Petroleum products-Hydrocarbon type test method- It can be determined by subtracting from the saturated content determined by “high performance liquid chromatography”.
The analysis conditions are shown below.
Apparatus: HP-6890 HP5973 Quadrupole mass spectrometer Column: DB-1: 30 m × 0.25 mm I.D. D. × 0.25μm
Oven temperature: 40 ° C. (1 min) → 10 ° C./min→280° C. (5 min)
Inlet temperature: 43 ° C. Even track mode ON
Interface temperature: 300 ° C
Carrier gas: He: 55 KPa Constant flow mode ON
Solvent Delay: 4.5min
Mass range: 50-500 Threshold = 100 Sampling # 3
Ionization voltage: 70 eV
Injection method: On-column injection 1.0 μl

n−パラフィン含有量とその炭素数別の分布は、ガスクロマトグラフィ(GC)により測定を行った。以下に測定条件を示す。
・軽油組成物とディーゼルエンジン用燃料油組成物について
装置:5890 series2(Agilent Technologies)
カラム:Ultra 1 (Agilent) Crosslinked Methyl Silicone Gum、50m×0.20mmI.D. 膜厚0.33μm
検出器:FID
オーブン温度:60℃(0min)−(6℃/min)→ 340℃(10min) Run 56.7min
注入口:On-column
注入口温度:オーブントラックモード(オーブン温度+3℃)
検出器温度:350℃
キャリアガス:He 280kPa (定圧) 1.3mL/min 線速度29.7cm/sec(at 60℃)
メイクアップガス:He
FID燃焼ガス:H 30 mL/min , Air 400mL/min
注入量:0.2μl
定量法:内標準法(内標準物質:フタル酸ジブチルエステル)
・パラフィン組成物について
装置:6890 (Agilent Technologies)
カラム:DB-1 30m×0.25mmI.D. 膜厚0.25μm
検出器:FID
オーブン温度:50℃(1min)−(5℃/min)→ 340℃(20min) Run 79min
注入口:Split(Back) 100:1
キャリアガス:He 83kPa (定圧) 1.0mL/min Total 100mL/min
平均線速度:26cm/sec
メイクアップガス:He
FID燃焼ガス:H 30 mL/min , Air 400mL/min
注入量:0.1μl
試料希釈:二硫化炭素で1/2に希釈
ベースライン:補正あり
The n-paraffin content and its distribution by carbon number were measured by gas chromatography (GC). The measurement conditions are shown below.
-About light oil composition and fuel oil composition for diesel engine Equipment: 5890 series2 (Agilent Technologies)
Column: Ultra 1 (Agilent) Crosslinked Methyl Silicone Gum, 50 m × 0.20 mm I.D. D. Film thickness 0.33μm
Detector: FID
Oven temperature: 60 ° C. (0 min) − (6 ° C./min)→340° C. (10 min) Run 56.7 min
Inlet: On-column
Inlet temperature: oven track mode (oven temperature + 3 ° C)
Detector temperature: 350 ° C
Carrier gas: He 280 kPa (constant pressure) 1.3 mL / min Linear velocity 29.7 cm / sec (at 60 ° C.)
Make-up gas: He
FID combustion gas: H 2 30 mL / min, Air 400 mL / min
Injection volume: 0.2 μl
Quantitative method: Internal standard method (Internal standard substance: Dibutyl phthalate)
-About paraffin composition Apparatus: 6890 (Agilent Technologies)
Column: DB-1 30m x 0.25mmI. D. Film thickness 0.25μm
Detector: FID
Oven temperature: 50 ° C. (1 min) − (5 ° C./min)→340° C. (20 min) Run 79 min
Inlet: Split (Back) 100: 1
Carrier gas: He 83 kPa (constant pressure) 1.0 mL / min Total 100 mL / min
Average linear velocity: 26 cm / sec
Make-up gas: He
FID combustion gas: H 2 30 mL / min, Air 400 mL / min
Injection volume: 0.1 μl
Sample dilution: 1/2 dilution with carbon disulfide Baseline: with correction

本発明における実験装置を図1に示す。本実験装置は、実験試料を入れる高圧室と、圧媒(常温時:水、低温時:エタノール)からの圧力に応じて上下するガラス製のピストンから成る。ポンプにより圧媒を圧送することにより、高圧室内の圧力を常圧から、300MPaまでの任意の圧力に昇圧することができる。この際、図に示した高圧セル自体も圧媒に満たすことにより、高圧室及びピストンの外壁が圧力により変形、破損することなく観測を行うことが出来る。高圧室内の観察は、装置上下のサファイア窓よりガラス製のピストンを通してマイクロスコープ等によって光学的に行うことができる。   The experimental apparatus in the present invention is shown in FIG. This experimental apparatus consists of a high-pressure chamber in which experimental samples are placed and a glass piston that moves up and down in response to pressure from a pressure medium (at normal temperature: water, at low temperature: ethanol). By pumping the pressure medium with a pump, the pressure in the high-pressure chamber can be increased from normal pressure to an arbitrary pressure of 300 MPa. At this time, the high pressure cell itself shown in the figure is filled with the pressure medium, so that the high pressure chamber and the outer wall of the piston can be observed without being deformed or damaged by the pressure. Observation in the high-pressure chamber can be optically performed by a microscope or the like through a glass piston through sapphire windows above and below the apparatus.

<実施例1>
原油を常圧蒸留することにより得られた沸点範囲150〜370℃で90%留出温度が340℃の軽油留分を硫黄分10質量ppm以下に水素化脱硫した脱硫軽油基材75容量%に、原油を常圧蒸留することにより得られた沸点範囲140〜280℃の灯油留分を硫黄分10質量ppm以下に水素化脱硫した脱硫灯油基材25容量%を混合することによりディーゼルエンジン用燃料油組成物を得た。そして得られたディーゼルエンジン用燃料油組成物に、エチレン−酢酸ビニル共重合体から成る流動性向上剤をディーゼルエンジン用燃料油組成物全量に対し300容量ppm、また長鎖アルキルエステルから成る潤滑性向上剤をディーゼルエンジン用燃料油組成物全量に対し100mg/kg添加した。得られたディーゼルエンジン用燃料油組成物の性状を表1に示す。
<Example 1>
75% by volume of desulfurized gas oil base obtained by hydrodesulfurizing a gas oil fraction having a boiling point range of 150 to 370 ° C. and a 90% distillation temperature of 340 ° C. obtained by atmospheric distillation of crude oil to a sulfur content of 10 mass ppm or less Fuel for diesel engines by mixing 25 vol% of desulfurized kerosene base material obtained by hydrodesulfurizing a kerosene fraction having a boiling range of 140 to 280 ° C obtained by atmospheric distillation of crude oil to a sulfur content of 10 mass ppm or less An oil composition was obtained. The resulting diesel engine fuel oil composition was mixed with a fluidity improver comprising an ethylene-vinyl acetate copolymer at 300 ppm by volume based on the total amount of the diesel engine fuel oil composition, and a lubricity comprising a long chain alkyl ester. The improver was added at 100 mg / kg to the total amount of the diesel engine fuel oil composition. Properties of the obtained diesel engine fuel oil composition are shown in Table 1.

<実施例2>
原油を常圧蒸留することにより得られた沸点範囲150〜370℃で90%留出温度が350℃の軽油留分を硫黄分10質量ppm以下に水素化脱硫した脱硫軽油基材85容量%に、原油を常圧蒸留することにより得られた沸点範囲140〜280℃の灯油留分を硫黄分10質量ppm以下に水素化脱硫した脱硫灯油基材15容量%を混合することによりディーゼルエンジン用燃料油組成物を得た。そして得られたディーゼルエンジン用燃料油組成物に、エチレン−酢酸ビニル共重合体から成る流動性向上剤をディーゼルエンジン用燃料油組成物全量に対し300容量ppm、また長鎖アルキルエステルから成る潤滑性向上剤をディーゼルエンジン用燃料油組成物全量に対し100mg/kg添加した。得られたディーゼルエンジン用燃料油組成物の性状を表1に示す。
<Example 2>
85% by volume of desulfurized gas oil base obtained by hydrodesulfurizing a gas oil fraction having a boiling point of 150 to 370 ° C. and a 90% distillation temperature of 350 ° C. obtained by atmospheric distillation of crude oil to a sulfur content of 10 mass ppm or less Fuel for diesel engines by mixing 15% by volume of a desulfurized kerosene base material obtained by hydrodesulfurizing a kerosene fraction having a boiling range of 140 to 280 ° C. obtained by atmospheric distillation of crude oil to a sulfur content of 10 mass ppm or less An oil composition was obtained. The resulting diesel engine fuel oil composition was mixed with a fluidity improver comprising an ethylene-vinyl acetate copolymer at 300 ppm by volume based on the total amount of the diesel engine fuel oil composition, and a lubricity comprising a long chain alkyl ester. The improver was added at 100 mg / kg to the total amount of the diesel engine fuel oil composition. Properties of the obtained diesel engine fuel oil composition are shown in Table 1.

<実施例3>
原油を常圧蒸留することにより得られた沸点範囲150〜370℃で90%留出温度が340℃の軽油留分を硫黄分10質量ppm以下に水素化脱硫した脱硫軽油基材65容量%に、原油を常圧蒸留することにより得られた沸点範囲140〜280℃の灯油留分を硫黄分10質量ppm以下に水素化脱硫した脱硫灯油基材35容量%を混合することによりディーゼルエンジン用燃料油組成物を得た。そして得られたディーゼルエンジン用燃料油組成物に、エチレン−酢酸ビニル共重合体から成る流動性向上剤をディーゼルエンジン用燃料油組成物全量に対し300容量ppm、また長鎖アルキルエステルから成る潤滑性向上剤をディーゼルエンジン用燃料油組成物全量に対し100mg/kg添加した。得られたディーゼルエンジン用燃料油組成物の性状を表1に示す。
<Example 3>
65% by volume of desulfurized gas oil base obtained by hydrodesulfurizing a gas oil fraction having a boiling point range of 150 to 370 ° C. and a 90% distillation temperature of 340 ° C. obtained by atmospheric distillation of crude oil to a sulfur content of 10 mass ppm or less Fuel for diesel engines by mixing 35% by volume of a desulfurized kerosene base material obtained by hydrodesulfurizing a kerosene fraction having a boiling range of 140 to 280 ° C. obtained by atmospheric distillation of crude oil to a sulfur content of 10 mass ppm or less An oil composition was obtained. The resulting diesel engine fuel oil composition was mixed with a fluidity improver comprising an ethylene-vinyl acetate copolymer at 300 ppm by volume based on the total amount of the diesel engine fuel oil composition, and a lubricity comprising a long chain alkyl ester. The improver was added at 100 mg / kg to the total amount of the diesel engine fuel oil composition. Properties of the obtained diesel engine fuel oil composition are shown in Table 1.

<比較例1>
実施例1で用いた原油よりもナフテン、多環ナフテン含有量の多いナフテン基原油を常圧蒸留することにより得られた沸点範囲180〜390℃で90%留出温度が350℃の軽油留分を硫黄分10質量ppm以下に水素化脱硫ならびに脱アロマ処理した脱硫軽油基材90容量%に、市販のn−パラフィンを用いて沸点範囲が250〜350℃になるように調整したn−パラフィン混合物10容量%を混合することにより、ディーゼルエンジン用燃料油組成物を得た。そして得られたディーゼルエンジン用燃料油組成物に、エチレン−酢酸ビニル共重合体から成る流動性向上剤をディーゼルエンジン用燃料油組成物全量に対し300容量ppm、また長鎖アルキルエステルから成る潤滑性向上剤をディーゼルエンジン用燃料油組成物全量に対し100mg/kg添加した。得られたディーゼルエンジン用燃料油組成物の性状を表1に示す。
<Comparative Example 1>
A gas oil fraction having a boiling point range of 180 to 390 ° C. and a 90% distillation temperature of 350 ° C. obtained by atmospheric distillation of a naphthene-based crude oil having a higher naphthene and polycyclic naphthene content than the crude oil used in Example 1. N-paraffin mixture in which 90% by volume of desulfurized gas oil base obtained by hydrodesulfurizing and dearomatizing to a sulfur content of 10 mass ppm or less was adjusted to have a boiling point range of 250 to 350 ° C. using commercially available n-paraffin. The fuel oil composition for diesel engines was obtained by mixing 10 volume%. The resulting diesel engine fuel oil composition was mixed with a fluidity improver comprising an ethylene-vinyl acetate copolymer at 300 ppm by volume based on the total amount of the diesel engine fuel oil composition, and a lubricity comprising a long chain alkyl ester. The improver was added at 100 mg / kg to the total amount of the diesel engine fuel oil composition. Properties of the obtained diesel engine fuel oil composition are shown in Table 1.

<比較例2>
ナフテン、多環ナフテン含有量の多いナフテン基原油を常圧蒸留することにより得られた沸点範囲180〜390℃で90%留出温度が350℃の軽油留分を硫黄分10質量ppm以下に水素化脱硫ならびに脱アロマ処理した脱硫軽油基材95容量%に、市販のn−パラフィンを用いて沸点範囲が250〜350℃になるように調整したn−パラフィン混合物5容量%を混合することにより、ディーゼルエンジン用燃料油組成物を得た。そして得られたディーゼルエンジン用燃料油組成物に、エチレン−酢酸ビニル共重合体から成る流動性向上剤をディーゼルエンジン用燃料油組成物全量に対し300容量ppm、また長鎖アルキルエステルから成る潤滑性向上剤をディーゼルエンジン用燃料油組成物全量に対し100mg/kg添加した。得られたディーゼルエンジン用燃料油組成物の性状を表1に示す。
<Comparative example 2>
Hydrogen gas oil fraction having a boiling point range of 180-390 ° C and 90% distillation temperature of 350 ° C obtained by atmospheric distillation of naphthenic crude oil with a high content of naphthene and polycyclic naphthene to a sulfur content of 10 mass ppm or less By mixing 95% by volume of the desulfurized gas oil base material subjected to hydrodesulfurization and dearoma treatment with 5% by volume of an n-paraffin mixture adjusted to have a boiling point range of 250 to 350 ° C. using a commercially available n-paraffin, A fuel oil composition for a diesel engine was obtained. The resulting diesel engine fuel oil composition was mixed with a fluidity improver comprising an ethylene-vinyl acetate copolymer at 300 ppm by volume based on the total amount of the diesel engine fuel oil composition, and a lubricity comprising a long chain alkyl ester. The improver was added at 100 mg / kg to the total amount of the diesel engine fuel oil composition. Properties of the obtained diesel engine fuel oil composition are shown in Table 1.

表中、15℃、50MPaにおける液体状態の維持について、高圧室内の燃料が図3のように液体状態ならば「○」の判定、図4のように結晶の析出が見られる、もしくは図5のように燃料が固化しているならば、「×」と判定した。やや重質な蒸留性状を持っており、ナフテン類含有量が多く、イソパラフィンの少ない比較例1は、15℃、50MPaにおいて結晶の析出が観測された。   In the table, regarding the maintenance of the liquid state at 15 ° C. and 50 MPa, if the fuel in the high-pressure chamber is in the liquid state as shown in FIG. 3, the determination of “◯” is observed, and crystal precipitation is seen as shown in FIG. If the fuel is solidified as described above, it was determined as “x”. In Comparative Example 1 having a slightly heavy distillation property, a high naphthene content and a small amount of isoparaffin, crystal precipitation was observed at 15 ° C. and 50 MPa.

比較例1はナフテン類含有量が多いことから、固−液平衡線の傾きも小さくなっており、さらに高圧になった場合には実施例1〜3と比較して、かなりの温度領域において固体状態となっている結果となった。そして比較例1よりさらに2環以上のナフテン類含有量が多い比較例2においては、50MPaという運転領域の下限の圧力において、かなり高めの温度で結晶が析出する結果となった。   Since Comparative Example 1 has a high naphthene content, the slope of the solid-liquid equilibrium line is also small. When the pressure is further increased, the solid is solid in a considerable temperature range as compared with Examples 1 to 3. As a result, it became a state. In Comparative Example 2 where the content of naphthenes having two or more rings was higher than that in Comparative Example 1, crystals were precipitated at a considerably higher temperature at a lower pressure in the operating range of 50 MPa.

図2に、燃料油組成物の固−液平衡図を示す。横軸は試料温度[℃]、縦軸はある温度での結晶析出圧力[MPa]を示しており、任意の温度における結晶析出圧力を複数点プロットすることにより、固−液平衡線図は通常、2次曲線として描かれる。この固−液平衡線より左の部分は、試料に結晶が析出し、ゲルもしくは、固体状態となっていることを示している。固−液平衡線図の始点:圧力0の時の試料中への結晶析出温度は、いわゆる曇り点を示している。曇り点が同一の試料であっても、試料中の組成により、2次曲線の傾きが異なり、試料の固体状態の領域は大きく異なる。図中の曲線1は実施例1を、曲線2は比較例1を示している。実施例1では15℃、50MPaで液体状態であるが、比較例1では固−液の境界面にあり、固体と液体の共存状態となっている。   FIG. 2 shows a solid-liquid equilibrium diagram of the fuel oil composition. The horizontal axis shows the sample temperature [° C.], and the vertical axis shows the crystal precipitation pressure [MPa] at a certain temperature. By plotting the crystal precipitation pressure at an arbitrary temperature at multiple points, the solid-liquid equilibrium diagram is usually It is drawn as a quadratic curve. The portion to the left of the solid-liquid equilibrium line indicates that crystals are deposited on the sample and are in a gel or solid state. Starting point of solid-liquid equilibrium diagram: The temperature of crystal precipitation in the sample when the pressure is 0 indicates a so-called cloud point. Even for samples with the same cloud point, the slope of the quadratic curve differs depending on the composition in the sample, and the solid state region of the sample varies greatly. In the figure, curve 1 represents Example 1 and curve 2 represents Comparative Example 1. In Example 1, it is in a liquid state at 15 ° C. and 50 MPa.

結晶析出圧力および固液平衡線の測定に使用した実験装置の概略図である。It is the schematic of the experimental apparatus used for the measurement of a crystal precipitation pressure and a solid-liquid equilibrium line. 実施例1および比較例1の固液平衡線をプロットしたグラフである。2 is a graph in which solid-liquid equilibrium lines of Example 1 and Comparative Example 1 are plotted. 燃料油組成物の液体状態をマイクロスコープで観察した図である。It is the figure which observed the liquid state of the fuel oil composition with the microscope. 燃料油組成物の結晶析出状態をマイクロスコープで観察した図である。It is the figure which observed the crystal precipitation state of the fuel oil composition with the microscope. 燃料油組成物の固体状態をマイクロスコープで観察した図である。It is the figure which observed the solid state of the fuel oil composition with the microscope.

Claims (2)

10容量%留出温度が180〜225℃、90容量%留出温度が315〜350℃の蒸留性状を有し、硫黄分が10質量ppm以下であり、飽和分が70〜83.3容量%で、芳香族分が16.7〜30容量%で、かつ、2環芳香族類含有量が1.5容量%以下及び3環以上の多環芳香族類含有量が0.5容量%以下であり、ナフテン類含有量が65容量%以下、多環ナフテン類の含有量が35容量%以下、イソパラフィンの含有量が5〜25.9容量%であることを特徴とするディーゼルエンジン用燃料油組成物。 10% by volume distillation temperature of 180 to 225 ° C., 90% by volume distillation temperature of 315 to 350 ° C., a sulfur content of 10 mass ppm or less, and a saturation content of 70 to 83.3 % by volume . The aromatic content is 16.7 to 30% by volume, the bicyclic aromatics content is 1.5% by volume or less, and the polycyclic aromatics having 3 or more rings is 0.5% by volume or less. A fuel oil for diesel engines having a naphthene content of 65% by volume or less, a polycyclic naphthene content of 35% by volume or less, and an isoparaffin content of 5 to 25.9 % by volume. Composition. 燃料噴射圧力が50MPa以上であるディーゼルエンジンに用いられる、請求項1に記載のディーゼルエンジン用燃料油組成物。The fuel oil composition for a diesel engine according to claim 1, which is used for a diesel engine having a fuel injection pressure of 50 MPa or more.
JP2006328655A 2006-12-05 2006-12-05 Fuel oil composition for diesel engines Active JP5052874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006328655A JP5052874B2 (en) 2006-12-05 2006-12-05 Fuel oil composition for diesel engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006328655A JP5052874B2 (en) 2006-12-05 2006-12-05 Fuel oil composition for diesel engines

Publications (2)

Publication Number Publication Date
JP2008138143A JP2008138143A (en) 2008-06-19
JP5052874B2 true JP5052874B2 (en) 2012-10-17

Family

ID=39599959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006328655A Active JP5052874B2 (en) 2006-12-05 2006-12-05 Fuel oil composition for diesel engines

Country Status (1)

Country Link
JP (1) JP5052874B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10494579B2 (en) 2016-04-26 2019-12-03 Exxonmobil Research And Engineering Company Naphthene-containing distillate stream compositions and uses thereof
US10550335B2 (en) 2015-12-28 2020-02-04 Exxonmobil Research And Engineering Company Fluxed deasphalter rock fuel oil blend component oils
US10550341B2 (en) 2015-12-28 2020-02-04 Exxonmobil Research And Engineering Company Sequential deasphalting for base stock production
US10590360B2 (en) 2015-12-28 2020-03-17 Exxonmobil Research And Engineering Company Bright stock production from deasphalted oil

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5052876B2 (en) * 2006-12-05 2012-10-17 コスモ石油株式会社 Fuel oil composition for diesel engines
JP5205639B2 (en) * 2008-06-04 2013-06-05 コスモ石油株式会社 Diesel engine fuel oil composition and method for producing diesel engine fuel oil composition
JP5147549B2 (en) * 2008-06-04 2013-02-20 コスモ石油株式会社 Fuel oil composition for diesel engines
JP5205640B2 (en) * 2008-06-04 2013-06-05 コスモ石油株式会社 Method for producing fuel oil composition for diesel engine
JP5328973B2 (en) * 2012-11-26 2013-10-30 コスモ石油株式会社 Fuel oil composition for diesel engines

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4563234B2 (en) * 2005-03-29 2010-10-13 コスモ石油株式会社 Fuel oil composition for diesel engines
JP5052876B2 (en) * 2006-12-05 2012-10-17 コスモ石油株式会社 Fuel oil composition for diesel engines

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10550335B2 (en) 2015-12-28 2020-02-04 Exxonmobil Research And Engineering Company Fluxed deasphalter rock fuel oil blend component oils
US10550341B2 (en) 2015-12-28 2020-02-04 Exxonmobil Research And Engineering Company Sequential deasphalting for base stock production
US10590360B2 (en) 2015-12-28 2020-03-17 Exxonmobil Research And Engineering Company Bright stock production from deasphalted oil
US10647925B2 (en) 2015-12-28 2020-05-12 Exxonmobil Research And Engineering Company Fuel components from hydroprocessed deasphalted oils
US10808185B2 (en) 2015-12-28 2020-10-20 Exxonmobil Research And Engineering Company Bright stock production from low severity resid deasphalting
US10947464B2 (en) 2015-12-28 2021-03-16 Exxonmobil Research And Engineering Company Integrated resid deasphalting and gasification
US10494579B2 (en) 2016-04-26 2019-12-03 Exxonmobil Research And Engineering Company Naphthene-containing distillate stream compositions and uses thereof

Also Published As

Publication number Publication date
JP2008138143A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP5052876B2 (en) Fuel oil composition for diesel engines
JP5052875B2 (en) Fuel oil composition for diesel engines
JP5052874B2 (en) Fuel oil composition for diesel engines
JP5205639B2 (en) Diesel engine fuel oil composition and method for producing diesel engine fuel oil composition
JP4593376B2 (en) Fuel oil composition for diesel engines
JP5205640B2 (en) Method for producing fuel oil composition for diesel engine
JP4563234B2 (en) Fuel oil composition for diesel engines
JP5043754B2 (en) Fuel oil composition for diesel engines
JP5205641B2 (en) Fuel oil composition for diesel engines
JP6373530B1 (en) C heavy oil composition
JP5312646B2 (en) Fuel oil composition for diesel engines
JP5328973B2 (en) Fuel oil composition for diesel engines
JP5361807B2 (en) Light oil composition
JP5128631B2 (en) Fuel oil composition for diesel engines
JP2011105958A (en) Method for producing gas oil composition
JP5147549B2 (en) Fuel oil composition for diesel engines
JP2005220329A (en) Gas oil composition
JP2005220330A (en) Gas oil composition
JP5147550B2 (en) Fuel oil composition for diesel engines
JP5053794B2 (en) Fuel oil composition for diesel engines
JP5328974B2 (en) Fuel oil composition for diesel engines
JP5048809B2 (en) Method for producing fuel oil composition for diesel engine
JP4119190B2 (en) Light oil composition and method for producing the same
JP2007197473A (en) Fuel oil composition
JP2004075732A (en) Gas oil composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120725

R150 Certificate of patent or registration of utility model

Ref document number: 5052874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250