JP5052187B2 - Method for producing metal material and metal material - Google Patents

Method for producing metal material and metal material Download PDF

Info

Publication number
JP5052187B2
JP5052187B2 JP2007102132A JP2007102132A JP5052187B2 JP 5052187 B2 JP5052187 B2 JP 5052187B2 JP 2007102132 A JP2007102132 A JP 2007102132A JP 2007102132 A JP2007102132 A JP 2007102132A JP 5052187 B2 JP5052187 B2 JP 5052187B2
Authority
JP
Japan
Prior art keywords
metal material
additive
experimental example
hardness
rotary tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007102132A
Other languages
Japanese (ja)
Other versions
JP2007302997A (en
Inventor
英俊 藤井
好昭 森貞
真男 福角
五兵衛 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honjo Chemical Corp
Osaka University NUC
Original Assignee
Honjo Chemical Corp
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honjo Chemical Corp, Osaka University NUC filed Critical Honjo Chemical Corp
Priority to JP2007102132A priority Critical patent/JP5052187B2/en
Publication of JP2007302997A publication Critical patent/JP2007302997A/en
Application granted granted Critical
Publication of JP5052187B2 publication Critical patent/JP5052187B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は金属材の製造方法に関し、特に金属材に添加材を混入することによって硬度を上昇させた金属材の製造方法およびこの製造方法によって製造された金属材に関する。   The present invention relates to a method for manufacturing a metal material, and more particularly to a method for manufacturing a metal material whose hardness is increased by mixing an additive into the metal material, and a metal material manufactured by this manufacturing method.

従来、金属材に大きさが数〜数百nm程度の添加材を混入させることによって、金属材を強化する技術が提案されている。例えば、特許文献1には、Ti合金を溶解させ、溶解金属中にフラーレン(Fullerene)またはカーボンナノチューブ(Carbon Nanotube;CNT)を混入させた金属材をゴルフクラブヘッドのフェース部に用い、フェース部の強度を高めて、その薄肉化を可能とした技術が記載されている。また、非特許文献1には、粉末状にしたAl試料またはTi試料とカーボンナノチューブ粉末とを三軸振動式ミルによって混合し、ホットプレスを行った後に熱間押出することによって、複合材料を得ることが記載されている。
特開2002−778号公報 大竹尚登、葛巻徹、光田好孝、「ナノカーボンコンポジット」、高分子、社団法人高分子学会、2003年12月、52巻、p888〜892
Conventionally, a technique for strengthening a metal material by mixing an additive having a size of several to several hundred nm with the metal material has been proposed. For example, in Patent Document 1, a metal material in which a Ti alloy is dissolved and fullerene or carbon nanotube (CNT) is mixed in a molten metal is used for a face portion of a golf club head. A technique that increases the strength and enables the thinning is described. Non-Patent Document 1 discloses that a composite material is obtained by mixing a powdered Al sample or Ti sample and a carbon nanotube powder by a triaxial vibration mill, performing hot pressing and then hot extrusion. It is described.
Japanese Patent Laid-Open No. 2002-778 Naoto Otake, Toru Kuzumaki, Yoshitaka Mitsuda, “Nanocarbon Composite”, Polymer, Japan Society for Polymer Science, December 2003, 52, p888-892

しかしながら、上記のような添加材を混入させた金属材料に対しては、産業界からさらなる高強度化の要請がある。ところが、上記の手法により添加材を混入された金属材の機械的特性は、添加材となるフラーレン等の特性から期待されるほど向上せず、さらなる改善が望まれている。   However, there is a demand for higher strength from the industry for metal materials mixed with the above-described additives. However, the mechanical properties of the metal material mixed with the additive by the above-described method are not improved as expected from the properties of fullerene or the like as the additive, and further improvement is desired.

本発明は、斯かる実情に鑑み、添加材を混入することによって金属材の硬度を上昇させる金属材の製造方法において、金属材の硬度を一層向上させることができる金属材の製造方法およびこの製造方法によって硬度を上昇された金属材を提供しようとするものである。   In view of such circumstances, the present invention provides a method for producing a metal material that can further improve the hardness of the metal material and a method for producing the same in a method for producing a metal material that increases the hardness of the metal material by mixing an additive. An object of the present invention is to provide a metal material whose hardness is increased by the method.

本発明は、最小部分の一次粒径が0.5μm未満である粒子からなる添加材を金属材の表面部位に供給し、表面部位に棒状の回転ツールを当接させつつ回転させて、表面部位に添加材を混入させて硬度を上昇させた金属材の製造方法である。   In the present invention, an additive comprising particles having a primary particle size of less than 0.5 μm is supplied to the surface portion of the metal material, and the surface portion is rotated by bringing a rod-shaped rotary tool into contact with the surface portion. This is a method for producing a metal material in which the additive material is mixed in to increase the hardness.

この構成によれば、最小部分の一次粒径が0.5μm未満である微細な粒子を添加材として金属材の表面部位に供給し、粒子を供給した表面部位に棒状の回転ツールを当接させつつ回転させる摩擦攪拌処理(Friction Stir Processing;FSP)を施すため、金属材中に添加材をより均一に混入することができる。また、摩擦攪拌処理における動的再結晶により、金属材の結晶粒が微細化される。このため、金属材の硬度を一層上昇させることができる。   According to this configuration, fine particles having a minimum primary particle size of less than 0.5 μm are supplied to the surface portion of the metal material as an additive, and the rod-shaped rotary tool is brought into contact with the surface portion to which the particles are supplied. Since the friction stir processing (FSP) that rotates while rotating is performed, the additive can be more uniformly mixed in the metal material. Moreover, the crystal grain of a metal material is refined | miniaturized by the dynamic recrystallization in a friction stirring process. For this reason, the hardness of a metal material can be raised further.

なお、本発明における粒子の「最小部分の…粒径」とは、粒子の直径を任意の部位で測定した場合における最小の径を意味する。例えば、外径が25nmであり長さが250nmの円筒状であるカーボンナノチューブの場合、粒径は25nmとなる。また、本発明における粒子の「一次粒径」とは、それぞれの粒子の粒ひとつひとつ(一次粒子)の径を意味し、「一次粒径が0.5μm未満」とは、一次粒子の径が0.5μm未満であれば良く、一次粒子同士が互いの凝集力によって凝集した二次粒子等、高次の凝集構造を取る物の径が0.5μm以上となる物をも含むものとする。   The “minimum portion... Particle diameter” of the particles in the present invention means the minimum diameter when the diameter of the particles is measured at an arbitrary site. For example, in the case of a carbon nanotube having an outer diameter of 25 nm and a length of 250 nm, the particle diameter is 25 nm. Further, the “primary particle size” of the particles in the present invention means the diameter of each particle (primary particle), and “the primary particle size is less than 0.5 μm” means that the primary particle size is 0. It may be less than 5 μm, and includes particles whose primary particle size is 0.5 μm or more, such as secondary particles in which primary particles are aggregated by mutual cohesive force.

この場合、添加材は炭素を含むことが、金属材の硬度を上昇させるために好適である。   In this case, it is preferable that the additive contains carbon in order to increase the hardness of the metal material.

また、添加材はフラーレンを含むことが、金属材の硬度を上昇させるために一層好適である。   Further, it is more preferable that the additive contains fullerene in order to increase the hardness of the metal material.

加えて、粒子はC60を含むことが、金属材の硬度を上昇させるためにさらに好適である。 In addition, it is more preferable that the particles contain C 60 in order to increase the hardness of the metal material.

一方、本発明の別の態様は、本発明の金属材の製造方法によって硬度を上昇された金属材である。この構成によれば、金属材は、最小部分の一次粒径が0.5μm未満である微細な粒子からなる添加材を摩擦攪拌処理によって表面部位に混入されており、添加材が金属材中に均一に混入され、かつ金属材の結晶粒が摩擦攪拌処理によって微細化されているため、その硬度を一層上昇された物とできる。   On the other hand, another aspect of the present invention is a metal material whose hardness has been increased by the method for producing a metal material of the present invention. According to this configuration, the metal material is mixed with an additive material composed of fine particles having a primary particle size of less than 0.5 μm at the minimum portion in the surface portion by friction stir processing, and the additive material is contained in the metal material. Since the metal particles are uniformly mixed and the crystal grains of the metal material are refined by the friction stir processing, the hardness can be further increased.

本発明の金属材の製造方法によれば、金属材の硬度を一層上昇させることができる。また、本発明の金属材は、その強度を一層上昇された物とできる。   According to the method for producing a metal material of the present invention, the hardness of the metal material can be further increased. In addition, the metal material of the present invention can be made to have a further increased strength.

以下、本発明の実施の形態について添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

以下、金属材の製造方法について説明する。図1は、本発明に係る金属材の製造方法の一実施形態を示す斜視図である。図1(a)および(b)に示すように、本実施形態の金属材の製造方法では、金属材10の表面部位に供給した添加材14を、回転ツール16を用いた摩擦攪拌処理によって金属材10中に混入させる。金属材10としては、例えば、Al材、Fe材、Mg材を適用することができる。   Hereinafter, the manufacturing method of a metal material is demonstrated. FIG. 1 is a perspective view showing an embodiment of a method for producing a metal material according to the present invention. As shown in FIGS. 1A and 1B, in the method for manufacturing a metal material according to the present embodiment, the additive 14 supplied to the surface portion of the metal material 10 is made into a metal by a friction stirring process using a rotary tool 16. It mixes in the material 10. As the metal material 10, for example, an Al material, an Fe material, or an Mg material can be applied.

本実施形態では、まず図1(a)に示すように、金属材10の表面部位に溝12を形成し、その溝に添加材14を充填する。添加材14は、最小部分の一次粒径が0.5μm未満である粒子である。より具体的には、添加材14として、最小部分の一次粒径が0.5μm未満であって、炭素を含む黒鉛粉末やSiC粉末等のシリコンカーバイドや金属カーバイドを適用することができる。より好ましくは、添加材14として、カーボンナノチューブ(炭素繊維または炭素ファイバーと呼ばれることもある)を適用することができ、カーボンナノチューブとしては、外径が2nm以下の炭素原子からなる単層の円筒である単層カーボンナノチューブ(SingleWalled Carbon NanoTube;SWCNT)、炭素原子からなる二層の円筒である二層カーボンナノチューブ(DoubleWalled Carbon NanoTube;DWCNT)、および外径が20〜25nmであり長さが250nm以下の炭素原子からなる複数の円筒が入れ子状に多層をなしている多層カーボンナノチューブ(MultiWalled Carbon NanoTube;MWCNT)からなる群から選択される1または2種以上を適用することができる。さらに好ましくは、添加材14として、炭素原子が球状をなしているC60、C70、C76、C78、C82およびC84からなる群から選択される1または2種以上のフラーレン(炭素クラスターまたは球状炭素分子と呼ばれることもある)を適用することができ、最も好ましくは、添加材14として、炭素原子が直径0.7nm以下のサッカーボール状の球形をなしているC60を適用することができる。 In this embodiment, first, as shown in FIG. 1A, the groove 12 is formed in the surface portion of the metal material 10, and the additive material 14 is filled in the groove. The additive 14 is a particle having a primary particle size of a minimum portion of less than 0.5 μm. More specifically, as the additive 14, silicon carbide or metal carbide such as graphite powder or SiC powder containing carbon having a minimum primary particle size of less than 0.5 μm can be applied. More preferably, carbon nanotubes (sometimes referred to as carbon fibers or carbon fibers) can be applied as the additive 14, and the carbon nanotubes are single-layered cylinders having carbon atoms with an outer diameter of 2 nm or less. A single-walled carbon nanotube (SWCNT), a double-walled carbon nanotube (DWCNT) that is a double-layered cylinder made of carbon atoms, and an outer diameter of 20 to 25 nm and a length of 250 nm or less One or more selected from the group consisting of multiwalled carbon nanotubes (MWCNTs) in which a plurality of cylinders made of carbon atoms are nested in multiple layers can be applied. More preferably, the additive 14 is one or more fullerenes (carbons) selected from the group consisting of C 60 , C 70 , C 76 , C 78 , C 82 and C 84 in which the carbon atoms are spherical. Most preferably, as the additive 14, C 60 having a soccer ball-like sphere shape with a carbon atom diameter of 0.7 nm or less is applied as the additive 14. be able to.

次に、図1(b)に示すような回転ツール16を用意する。回転ツール16は、略円筒状をなし、先端に本体より小径の略円柱状のプローブ18を備えている。なお、プローブは必ず必要なものではなく、場合によってはプローブを有しない略円筒状の回転ツールを用いても良い。回転ツール16の材質は、例えば、JISに規格されているSKD61鋼等の工具鋼や、タングステンカーバイト(WC)、コバルト(Co)からなる超硬合金、またはSi等のセラミックスからなるものとすることができる。図1(b)に示すように、金属材10の添加材14を充填した溝12上に、回転ツール16のプローブ18を当接させつつ回転させ、さらに溝12の長手方向に沿って回転ツール16を移動させることにより、溝12に充填した添加材14を回転ツール16によって攪拌させ、添加材14を金属材10中に混入させることができる。なお、添加材を十分に混入させるため、回転ツール16を、添加材14を充填した溝12上で回転させつつ往復動させることもできる。あるいは、回転ツール16を移動させずに同じ場所で回転させ続けることによっても、添加材14を金属材10中に混入させることができる。この場合、添加材14を連続した複数箇所で混入させることにより、金属材10上の広い領域を強化することができる。 Next, a rotating tool 16 as shown in FIG. The rotary tool 16 has a substantially cylindrical shape, and includes a substantially cylindrical probe 18 having a smaller diameter than the main body at the tip. Note that a probe is not necessarily required, and in some cases, a substantially cylindrical rotating tool having no probe may be used. The material of the rotary tool 16 is made of, for example, tool steel such as SKD61 steel standardized by JIS, cemented carbide made of tungsten carbide (WC) or cobalt (Co), or ceramics such as Si 3 N 4. Can be. As shown in FIG. 1 (b), the probe 18 of the rotary tool 16 is rotated on the groove 12 filled with the additive 14 of the metal material 10, and further rotated along the longitudinal direction of the groove 12. By moving 16, the additive 14 filled in the groove 12 can be stirred by the rotary tool 16, and the additive 14 can be mixed into the metal material 10. In order to sufficiently mix the additive, the rotary tool 16 can be reciprocated while rotating on the groove 12 filled with the additive 14. Alternatively, the additive material 14 can be mixed into the metal material 10 by continuing to rotate the same at the same place without moving the rotary tool 16. In this case, a wide region on the metal material 10 can be strengthened by mixing the additive material 14 at a plurality of continuous locations.

以下、本実施形態の金属材の製造方法の作用効果について説明する。本実施形態においては、金属材10の表面部位に最小部分の一次粒径が0.5μm未満の粒子からなる添加材14を供給し、添加材14を摩擦攪拌処理により金属材10中に混入させる。このため、カーボンナノチューブ等の金属材10中に均一に分散しにくい物質を添加材14とした場合であっても、添加材14を金属材10中に均一に混入させることができる。さらに、摩擦攪拌処理における動的再結晶により、金属材10の結晶粒が微細化される。このため、金属材10の強度を一層向上させることができる。   Hereinafter, the effect of the manufacturing method of the metal material of this embodiment is demonstrated. In the present embodiment, the additive material 14 made of particles having a primary particle size of less than 0.5 μm is supplied to the surface portion of the metal material 10, and the additive material 14 is mixed into the metal material 10 by friction stir processing. . For this reason, even when a material that is difficult to disperse uniformly in the metal material 10 such as carbon nanotubes is used as the additive material 14, the additive material 14 can be uniformly mixed in the metal material 10. Furthermore, the crystal grains of the metal material 10 are refined by dynamic recrystallization in the friction stir processing. For this reason, the strength of the metal material 10 can be further improved.

尚、本発明の金属材の製造方法は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、金属材10の表面部位に添加材14を供給する方法としては、図1(a)に示す方法の他、ノズルから添加材14を金属材10の表面に噴射する方法や、回転ツール16に設けた噴出孔から添加材14を金属材10の表面に噴出する方法を用いることができる。また、回転ツール16を構成する材料に添加材14を含有させておき、回転ツール16を金属材10に当接させつつ回転させることにより、回転ツール16を磨耗させつつ金属材10に添加材を供給することができる。この方法では、金属材10に添加材14をより均一に供給することができる。あるいは、添加材14を含有させた粘着テープを金属材10に貼付し、当該粘着テープ上に回転ツール16を当接させつつ回転させることによっても、金属材10に添加材を供給することができる。この方法では、金属材10上の強化したい部位に、一層容易に添加材14を供給することができる。   In addition, the manufacturing method of the metal material of this invention is not limited to above-described embodiment, Of course, a various change can be added in the range which does not deviate from the summary of this invention. For example, as a method of supplying the additive material 14 to the surface portion of the metal material 10, in addition to the method shown in FIG. A method of jetting the additive 14 to the surface of the metal material 10 from the jet holes provided in the metal plate 10 can be used. Further, the additive 14 is contained in the material constituting the rotary tool 16, and the rotary tool 16 is rotated while being in contact with the metal material 10, whereby the additive is added to the metal material 10 while the rotary tool 16 is worn. Can be supplied. In this method, the additive 14 can be more uniformly supplied to the metal material 10. Alternatively, the additive material can be supplied to the metal material 10 by applying an adhesive tape containing the additive material 14 to the metal material 10 and rotating the adhesive tool 16 while abutting the rotating tool 16 on the adhesive tape. . In this method, the additive 14 can be more easily supplied to the portion on the metal material 10 to be strengthened.

さらに、本発明の金属材の製造方法では、2つの金属材同士を接合部において突き合わせるか、あるいは重ね合わるかした後に、接合部に添加材を供給し、回転ツールを接合部に挿入して回転させる摩擦攪拌接合(Friction Stir Welding;FSW)を行うことによっても、接合部周辺の金属材硬度を上昇させることができる。 Furthermore, in the method for producing a metal material of the present invention, after two metal materials are abutted or overlapped at the joint, an additive is supplied to the joint, and a rotary tool is inserted into the joint. The hardness of the metal material around the joint can also be increased by performing friction stir welding (FSW).

次に、本発明者が本発明の金属材の製造方法により、実際に金属材の硬度を上昇させた実験結果を説明する。   Next, an experimental result in which the inventor actually raised the hardness of the metal material by the method for producing the metal material of the present invention will be described.

実験例1
厚さ6mmのAZ31材(Alを3%、Znを1%含有するMg合金)を用意した。用意したAZ31材の表面に、図1(a)に示すような幅1mm、深さ2mmの溝12を形成した。形成した溝12に、図2に示すような炭素原子24が直径0.7nm以下のサッカーボール状の球形をなしているC60(22)を添加材14として充填した。図3に示すようにC60の集合体26は、直径10〜50μm程度の粒径となる。C60の充填後、図1(b)に示すように、直径4mm、長さ1.8mmのプローブ18を有し、本体の直径12mmのSKD61からなる回転ツール16によって摩擦攪拌処理を行った。回転ツールの回転速度は1500rpmとし、回転ツールの移動速度は50mm/minとした。
Experimental example 1
An AZ31 material (Mg alloy containing 3% Al and 1% Zn) having a thickness of 6 mm was prepared. A groove 12 having a width of 1 mm and a depth of 2 mm as shown in FIG. 1A was formed on the surface of the prepared AZ31 material. The formed grooves 12 were filled with C 60 (22) having carbon balls 24 having a diameter of 0.7 nm or less as shown in FIG. As shown in FIG. 3, the C 60 aggregate 26 has a diameter of about 10 to 50 μm. After filling with C 60 , as shown in FIG. 1B, the friction stir processing was performed by the rotary tool 16 having the probe 18 having a diameter of 4 mm and a length of 1.8 mm and made of SKD 61 having a diameter of 12 mm. The rotating speed of the rotating tool was 1500 rpm, and the moving speed of the rotating tool was 50 mm / min.

図4は本実験例の摩擦攪拌処理を施した部位の状態を示す縦断面図であり、図5はC60を含む部位の状態を示す図である。図4および5により、回転ツール16によって攪拌された金属材10の表面に近い部位Aおよび表面から深い部位Bにおいては、金属材10中に白く見えるC60が混入していることが判る。一方、図4により、金属材10の表面から境界28より深い部位Cにおいては、金属材10中にC60が混入していないことが判る。 Figure 4 is a longitudinal sectional view showing a state of a portion subjected to friction stir processing of the present experimental example, FIG. 5 is a diagram showing a state of a portion including a C 60. 4 and 5, it can be seen that C 60 that appears white in the metal material 10 is mixed in the portion A near the surface of the metal material 10 and the portion B deep from the surface stirred by the rotary tool 16. On the other hand, it can be seen from FIG. 4 that C 60 is not mixed in the metal material 10 in the portion C deeper than the boundary 28 from the surface of the metal material 10.

図6は本実験例のC60を含まない部位の結晶粒を示す図であり、図7はC60を含む部位の結晶粒を示す図であり、図8はC60を含む部位と含まない部位との境界を示す図である。図6および8に示すように、C60が混入していない部位Cにおける金属材10の結晶粒径は20μm以上と大きいのに対し、図7および8に示すように、C60が混入している部位Bにおける結晶粒径は500nm以下と微細化されていることが判る。 Figure 6 is a diagram showing the crystal grains of the site without the C 60 of this Example, Figure 7 is a diagram showing a crystal grain of a portion including a C 60, FIG. 8 does not include a site containing the C 60 It is a figure which shows the boundary with a site | part. As shown in FIGS. 6 and 8, the crystal grain size of the metal material 10 in the portion C where C 60 is not mixed is as large as 20 μm or more, whereas as shown in FIGS. 7 and 8, C 60 is mixed. It can be seen that the crystal grain size in the portion B is reduced to 500 nm or less.

図9は、図4における各測定点の組成を示す表であり、各数値は原子%を示す。図9に示すように、部位Cにおいては炭素Cの含有量がAZ31母材と大きな差がないのに対し、部位AおよびBにおいては、炭素Cが多く含有されていることが判る。   FIG. 9 is a table showing the composition of each measurement point in FIG. 4, and each numerical value represents atomic%. As shown in FIG. 9, it can be seen that the carbon content in the part C is not significantly different from that of the AZ31 base material, whereas the carbons are contained in the parts A and B in a large amount.

上記C60を混入させて摩擦攪拌処理を行ったAZ31材と、C60を混入させずに摩擦攪拌処理を行ったAZ31材と、摩擦攪拌処理を行っていないAZ31母材について硬度試験を行った。図10に示すようにC60を混入させて摩擦攪拌処理を行ったAZ31材は測定痕30が小さいのに対し、図11に示すようにC60を混入させずに摩擦攪拌処理を行ったAZ31材は測定痕30が大きいことが判る。さらに、図12に示すように、摩擦攪拌処理を行っていないAZ31母材の微小硬度が40〜50Hvであり、C60を混入させずに摩擦攪拌処理を行ったAZ31材の微小硬度が50〜60Hvであるのに対し、C60を混入させて摩擦攪拌処理を行ったAZ31材のC60が存在する領域(ナノ複合層)の微小硬度は最大で128Hvと硬度が大幅に向上していることが判る。 The a C 60 AZ31 material subjected to friction stir processing is mixed, it was performed and AZ31 material friction stir process is performed without mixing the C 60, a hardness test for AZ31 base material not subjected to friction stir processing . As shown in FIG. 10, the AZ31 material subjected to the friction stirring process with C 60 mixed therein has a small measurement mark 30, whereas the AZ31 material subjected to the friction stirring process without mixing C 60 as illustrated in FIG. 11. It can be seen that the material has a large measurement mark 30. Furthermore, as shown in FIG. 12, the micro hardness of the AZ31 base material not subjected to the friction stir processing is 40 to 50 Hv, and the micro hardness of the AZ31 material subjected to the friction stir processing without mixing C 60 is 50 to 50 In contrast to 60 Hv, the microhardness of the region (nanocomposite layer) where C 60 of the AZ31 material mixed with C 60 and subjected to friction stir processing is 128 Hv is greatly improved. I understand.

上記と同様にして、添加材14として粒径0.5μm未満の黒鉛粉末とSiC粉末を用い、摩擦攪拌処理を行った。図13は本実験例におけるC60を含むAZ31材の結晶粒を示す図であり、図14は黒鉛粉末を含むAZ31材の結晶粒を示す図であり、図15はSiCを含むAZ31材の結晶粒を示す図である。また、図16は摩擦攪拌処理を施していないAZ31材の結晶粒を示す図であり、図17は摩擦攪拌処理を施したAZ31材の結晶粒を示す図である。図16に示すように、摩擦攪拌処理を施していないAZ31材の結晶粒径は平均で79.1μmと大きく、微小硬度も46Hvと低い。図17に示すように、摩擦攪拌処理を施すと結晶粒径は平均で12.9μmに微細化されるが、微小硬度は59Hvまでしか向上しない。一方、図14に示すように、黒鉛粉末を混入させて摩擦攪拌処理を行った場合は、結晶粒径は平均2.5μmまで微細化され、微小硬度は64Hvまで向上することが判る。また図15に示すように、SiCを混入させて摩擦攪拌処理を行った場合は、結晶粒径は平均6.0μmまで微細化され、微小硬度は74Hvまで向上することが判る。しかし、図13に示すように、C60を混入させて摩擦攪拌処理を行った場合に、結晶粒径は最も微細化され、微小硬度は128Hvと大幅に向上することが判る。 In the same manner as described above, a friction stir treatment was performed using graphite powder and SiC powder having a particle size of less than 0.5 μm as additive 14. Figure 13 is a diagram showing the crystal grains of AZ31 material containing C 60 in this experimental example, FIG. 14 is a diagram showing the crystal grains of AZ31 material containing graphite powder, 15 crystals of AZ31 material containing SiC It is a figure which shows a grain. FIG. 16 is a diagram showing crystal grains of the AZ31 material not subjected to the friction stir processing, and FIG. 17 is a diagram showing crystal grains of the AZ31 material subjected to the friction stir processing. As shown in FIG. 16, the crystal grain size of the AZ31 material not subjected to the friction stir processing is as large as 79.1 μm on average, and the micro hardness is as low as 46 Hv. As shown in FIG. 17, when the friction stir processing is performed, the crystal grain size is refined to 12.9 μm on average, but the micro hardness is improved only to 59 Hv. On the other hand, as shown in FIG. 14, when the graphite powder is mixed and the friction stirring process is performed, the crystal grain size is refined to an average of 2.5 μm, and the microhardness is improved to 64 Hv. Further, as shown in FIG. 15, when the friction stir processing is performed with SiC mixed, the crystal grain size is refined to an average of 6.0 μm, and the micro hardness is improved to 74 Hv. However, as shown in FIG. 13, it can be seen that when the friction stir processing is performed with C 60 mixed, the crystal grain size is most refined and the micro hardness is greatly improved to 128 Hv.

実験例2
厚さ6mmのAZ31材(Alを3%、Znを1%含有するMg合金)を用意した。用意したAZ31材の表面に、図1(a)に示すような幅1mm、深さ2mmの溝12を形成した。形成した溝12に、図18に示すような外径が20〜25nmであり長さが250nm以下の炭素原子からなる複数の円筒が入れ子状に多層をなしている多層カーボンナノチューブ32を添加材14として充填した。多層カーボンナノチューブ32の充填後、図1(b)に示すように、直径4mm、長さ1.8mmのプローブ18を有し、本体の直径12mmのSKD61からなる回転ツール16によって摩擦攪拌処理を行った。回転ツールの回転速度は1500rpmとし、回転ツール16の移動速度は100mm/mm,50mm/minおよび25mm/minで行った。
Experimental example 2
An AZ31 material (Mg alloy containing 3% Al and 1% Zn) having a thickness of 6 mm was prepared. A groove 12 having a width of 1 mm and a depth of 2 mm as shown in FIG. 1A was formed on the surface of the prepared AZ31 material. A multi-walled carbon nanotube 32 in which a plurality of cylinders made of carbon atoms having an outer diameter of 20 to 25 nm and a length of 250 nm or less as shown in FIG. As filled. After filling the multi-walled carbon nanotubes 32, as shown in FIG. 1 (b), the friction stir processing is performed by the rotary tool 16 having the probe 18 having a diameter of 4 mm and a length of 1.8 mm and comprising the SKD 61 having a diameter of 12 mm. It was. The rotating speed of the rotating tool was 1500 rpm, and the moving speed of the rotating tool 16 was 100 mm / mm, 50 mm / min, and 25 mm / min.

図19〜21は、それぞれ本実験例において回転ツール16の移動速度100mm/min,50mm/minおよび25mm/minで摩擦攪拌処理を施した部位の縦断面図である。図19に示すように、回転ツール16の移動速度が100mm/minでは、多層カーボンナノチューブ32が凝集している部分が図中に黒く残るが、図20〜21に示すように、回転ツール16の移動速度が50mm/minおよび25mm/minでは、多層カーボンナノチューブ32がほぼ均一に分散されていることが判る。   FIGS. 19 to 21 are longitudinal sectional views of portions subjected to the friction stir processing at the moving speeds of 100 mm / min, 50 mm / min, and 25 mm / min of the rotary tool 16 in this experimental example, respectively. As shown in FIG. 19, when the moving speed of the rotary tool 16 is 100 mm / min, a portion where the multi-walled carbon nanotubes 32 are aggregated remains black in the drawing, but as shown in FIGS. It can be seen that when the moving speed is 50 mm / min and 25 mm / min, the multi-walled carbon nanotubes 32 are almost uniformly dispersed.

図22,24および26はそれぞれ本実験例において回転ツール16の移動速度100mm/min,50mm/minおよび25mm/minで摩擦攪拌処理を施した部位の平面図であり、図23,25および27はそれぞれの破線部における拡大図である。図22〜27に示すように、回転ツール16の移動速度が100mm/minから25mm/minへと遅くなるにつれて、図中で白く見える多層カーボンナノチューブが均一に分散されていることが判る。   22, 24 and 26 are plan views of portions subjected to the friction stir processing at the moving speeds of 100 mm / min, 50 mm / min and 25 mm / min of the rotary tool 16 in this experimental example, respectively. It is an enlarged view in each broken line part. As shown in FIGS. 22 to 27, it can be seen that the multi-walled carbon nanotubes that appear white in the drawing are uniformly dispersed as the moving speed of the rotary tool 16 decreases from 100 mm / min to 25 mm / min.

上記多層カーボンナノチューブを混入させて摩擦攪拌処理を行ったAZ31材と摩擦攪拌処理を行っていないAZ31母材について硬度試験を行った。図28に示すように摩擦攪拌処理を行っていないAZ31母材の微小硬度は41Hvであるのに対し、図29に示すように多層カーボンナノチューブを混入させて摩擦攪拌処理を行ったAZ31材の微小硬度は78Hvと向上していることが判る。   A hardness test was performed on the AZ31 material mixed with the multi-walled carbon nanotubes and subjected to the friction stirring treatment and the AZ31 base material not subjected to the friction stirring treatment. As shown in FIG. 28, the fine hardness of the AZ31 base material not subjected to the friction stir processing is 41 Hv, whereas as shown in FIG. 29, the minute hardness of the AZ31 material subjected to the friction stir processing by mixing multi-walled carbon nanotubes. It can be seen that the hardness is improved to 78 Hv.

図30はAZ31材の結晶粒を示す図であり、図31は多層カーボンナノチューブを混入させずに摩擦攪拌処理を施したAZ31材の結晶粒を示す図であり、図32は本実験例における多層カーボンナノチューブを混入させて摩擦攪拌処理を施したAZ31材の結晶粒を示す図であり、図33は図32の破線部分の拡大図である。図30および31に示すように、摩擦攪拌処理をほどこしただけでは結晶粒はあまり微細化されないが、図32および33に示すように、多層カーボンナノチューブを混入させて摩擦攪拌処理を施すことにより、結晶粒を極めて微細化できることが判る。   FIG. 30 is a diagram showing crystal grains of the AZ31 material, FIG. 31 is a diagram showing crystal grains of the AZ31 material that has been subjected to the friction stirring process without mixing multi-walled carbon nanotubes, and FIG. It is a figure which shows the crystal grain of AZ31 material which mixed the carbon nanotube and performed the friction stirring process, and FIG. 33 is an enlarged view of the broken-line part of FIG. As shown in FIGS. 30 and 31, the crystal grains are not made very fine just by applying the friction stirring process, but as shown in FIGS. It can be seen that the crystal grains can be made extremely fine.

実験例3
A5083材(Mgを約4.5%含有するAl合金)を用意した。用意したA5083材の表面に、図1(a)に示すような幅1mm、深さ2mmの溝12を形成した。形成した溝12にC60とC70との混合物(以下、MF(Mixed Fullerene)と呼ぶ)の粉末を添加材14として充填した。MFの充填後、図1(b)に示すように、直径4mm、長さ1.8mmのプローブ18を有し、本体の直径12mmのSKD61からなる回転ツール16によって摩擦攪拌処理を行った。回転ツール16の移動速度は50mm/minとし、回転速度は500rpm、1000rpm、1500rpm及び2000rpmで行った。
Experimental example 3
A5083 material (Al alloy containing about 4.5% Mg) was prepared. A groove 12 having a width of 1 mm and a depth of 2 mm as shown in FIG. 1A was formed on the surface of the prepared A5083 material. The formed groove 12 was filled with powder of a mixture of C 60 and C 70 (hereinafter referred to as MF (Mixed Fullerene)) as an additive 14. After filling with MF, as shown in FIG. 1 (b), a friction stir processing was performed with a rotary tool 16 having a probe 18 having a diameter of 4 mm and a length of 1.8 mm and made of SKD 61 having a diameter of 12 mm. The moving speed of the rotating tool 16 was 50 mm / min, and the rotating speed was 500 rpm, 1000 rpm, 1500 rpm, and 2000 rpm.

また、同様にしてA5083材に溝12を形成した後、形成した溝12にMFをより高密度に充填するため、MFの粉末をスターチをバインダーとしてペースト状にしたMFペーストを添加材14として充填した。MFペーストの充填後、同様にして摩擦攪拌処理を行った。回転ツール16の移動速度は50mm/minとし、回転速度は1500rpmで行った。   Similarly, after forming the groove 12 in the A5083 material, in order to fill the formed groove 12 with higher density of MF, the MF paste made of paste of MF powder with starch as a binder is filled as the additive 14 did. After filling with the MF paste, a friction stirring process was performed in the same manner. The moving speed of the rotating tool 16 was 50 mm / min, and the rotating speed was 1500 rpm.

さらに、C1020材(純銅)を用意した。同様にしてC1020材に溝12を形成した後、形成した溝12にMFの粉末を添加材14として充填した。MFの充填後、同様にして摩擦攪拌処理を行った。回転ツール16の移動速度は50mm/minとし、回転速度は1500rpmで行った。また、同様に形成した溝にMFペーストを添加材14として充填したC1020材についても、同様にして摩擦攪拌処理を行った。   Furthermore, C1020 material (pure copper) was prepared. Similarly, after forming the groove 12 in the C1020 material, the formed groove 12 was filled with MF powder as the additive 14. After filling with MF, a friction stirring process was performed in the same manner. The moving speed of the rotating tool 16 was 50 mm / min, and the rotating speed was 1500 rpm. Further, the friction stir processing was similarly performed on the C1020 material in which the groove formed in the same manner was filled with the MF paste as the additive 14.

図34〜37は、それぞれ本実験例において回転ツール16の回転速度500rpm,1000rpm,1500rpmおよび2000rpmで摩擦攪拌処理を施した部位の縦断面図である。図中のASは回転ツール16の前進側(Advancing Side)を示し、RSは回転ツール16の後退側(Retreating Side)を示す。図34〜37中で黒く見える領域にMFが分散している。図34〜37から、回転ツール16の回転速度が上昇するにつれて、MFが比較的均一に分散していることが判る。   34 to 37 are longitudinal cross-sectional views of portions subjected to the friction stirring process at the rotation speeds of 500 rpm, 1000 rpm, 1500 rpm, and 2000 rpm of the rotary tool 16 in this experimental example, respectively. In the figure, AS indicates the advancing side of the rotary tool 16, and RS indicates the retreating side of the rotary tool 16. MF is dispersed in a region that looks black in FIGS. 34 to 37, it can be seen that the MF is relatively uniformly dispersed as the rotational speed of the rotary tool 16 increases.

図38は、MFペーストを用いてA5083材の摩擦攪拌処理を施した部位の縦断面図である。図38から、MFペーストを用いて摩擦攪拌処理を施した場合、図中で黒く見えるMFが分散している領域が密に存在していることが判る。また、図39は、図38の拡大図であり、A5083材の結晶粒を示すTEM(Transmission Electoron Microscope:透過電子顕微鏡)写真である。図中でMFをMF34として示す。図39より、母材であるA5083材の結晶粒がnmオーダーまで微細化されていることが判る。   FIG. 38 is a longitudinal cross-sectional view of a portion where the friction stir processing of the A5083 material is performed using MF paste. From FIG. 38, it can be seen that when the friction stir processing is performed using the MF paste, there are densely dispersed regions of MF that appear black in the drawing. FIG. 39 is an enlarged view of FIG. 38 and is a TEM (Transmission Electron Microscope) photograph showing the crystal grains of the A5083 material. In the figure, MF is shown as MF34. From FIG. 39, it can be seen that the crystal grains of the A5083 material, which is the base material, are miniaturized to the nm order.

図40は、実験例3におけるMFを含むA5083材の硬度試験の結果を示すグラフ図であり、A5083材にMFを分散させた試料の表面から深さ方向への硬度分布を示す。図40より、A5083材にMFを分散させた場合、MFを含まないA5083母材と比較して著しく硬度が上昇していることが判る。図41は実験例3におけるMFを含まないA5083母材の硬度試験の様子を示す図であり、図42は実験例3におけるMFペーストを用いて摩擦攪拌処理を施されたA5083材の硬度試験の様子を示す図である。図41に示すようにMFを混入させずに摩擦攪拌処理を行ったA5083材は測定痕30が大きいのに対し、図42に示すようにMFを混入させて摩擦攪拌処理を行ったA5083材は測定痕30が小さいことが判る。   FIG. 40 is a graph showing the results of the hardness test of the A5083 material containing MF in Experimental Example 3, and shows the hardness distribution in the depth direction from the surface of the sample in which MF is dispersed in the A5083 material. FIG. 40 shows that when MF is dispersed in the A5083 material, the hardness is remarkably increased as compared with the A5083 base material not containing MF. FIG. 41 is a diagram showing a state of a hardness test of an A5083 base material not containing MF in Experimental Example 3, and FIG. 42 is a diagram of a hardness test of an A5083 material subjected to friction stirring using the MF paste in Experimental Example 3. It is a figure which shows a mode. As shown in FIG. 41, the A5083 material subjected to the friction stir processing without mixing MF has a large measurement mark 30, whereas the A5083 material subjected to the friction stirring processing mixed with MF as shown in FIG. It can be seen that the measurement mark 30 is small.

図43は実験例3においてC1020材の摩擦攪拌処理を施した部位の縦断面図であり、図44は実験例3においてMFペーストを用いてC1020材の摩擦攪拌処理を施した部位の縦断面図である。図43及び44に示すように、図中で黒くMFが分散している領域が確認できる。   FIG. 43 is a longitudinal sectional view of a portion where the friction stir processing of the C1020 material was performed in Experimental Example 3, and FIG. 44 is a longitudinal sectional view of a portion where the friction stir processing of the C1020 material was performed using MF paste in Experimental Example 3. It is. As shown in FIGS. 43 and 44, black regions in which MFs are dispersed can be confirmed.

図45は、実験例3における硬度試験で得られた試料の最大微小硬度を示すグラフ図である。図中でMF−P/A1050及びMF−P/A5083は、それぞれA1050材及びA5083材にMFペーストを用いて摩擦攪拌処理を施した試料を示す。また、図中でMF/C1020は、C1020材にMFの粉末を用いて摩擦攪拌処理を施した試料を示す。図45に示すように、A1050材、A5083材及びC1020材のいずれの試料についても、MFを分散させると硬度が上昇することが判る。   FIG. 45 is a graph showing the maximum micro hardness of the sample obtained in the hardness test in Experimental Example 3. In the figure, MF-P / A1050 and MF-P / A5083 indicate samples obtained by subjecting the A1050 material and the A5083 material to friction stirring treatment using MF paste, respectively. In the figure, MF / C1020 indicates a sample obtained by subjecting the C1020 material to a friction stirring process using MF powder. As shown in FIG. 45, it can be seen that the hardness of any sample of A1050 material, A5083 material, and C1020 material increases when MF is dispersed.

本発明に係る金属材の製造方法の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the manufacturing method of the metal material which concerns on this invention. 実験例1で適用されるC60の分子構造を示す図である。It is a diagram showing a molecular structure of C 60 to be applied in Experimental Example 1. 実験例1に適用されるC60の集合体を示す図である。It is a diagram illustrating a collection of C 60 to be applied to the experimental example 1. 実験例1の摩擦攪拌処理を施した部位の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state of the site | part which performed the friction stirring process of Experimental example 1. FIG. 実験例1のC60を含む部位の状態を示す図である。It is a diagram showing a state of a portion including a C 60 Experimental Example 1. 実験例1のC60を含まない部位の結晶粒を示す図である。Is a diagram showing the crystal grains of sites that do not contain C 60 of Experimental Example 1. 実験例1のC60を含む部位の結晶粒を示す図である。It is a diagram showing the crystal grains of the site containing the C 60 of Experimental Example 1. 実験例1のC60を含む部位と含まない部位との境界を示す図である。Is a diagram showing the boundary between the portion that does not contain a site containing the C 60 of Experimental Example 1. 図4における各測定点の組成を示す表である。It is a table | surface which shows the composition of each measurement point in FIG. 実験例1におけるC60を含むAZ31材の硬度試験の様子を示す図である。It is a diagram showing a state of hardness tests of AZ31 material containing C 60 in Experimental Example 1. 実験例1におけるC60を含まないAZ31材の硬度試験の様子を示す図である。It is a diagram showing a state of hardness tests of AZ31 material not containing C 60 in Experimental Example 1. 実験例1における硬度試験の結果を示すグラフ図である。It is a graph which shows the result of the hardness test in Experimental example 1. 実験例1におけるC60を含むAZ31材の結晶粒を示す図である。It is a diagram showing the crystal grains of AZ31 material containing C 60 in Experimental Example 1. 実験例1における黒鉛粉末を含むAZ31材の結晶粒を示す図である。It is a figure which shows the crystal grain of AZ31 material containing the graphite powder in Experimental example 1. FIG. 実験例1におけるSiCを含むAZ31材の結晶粒を示す図である。It is a figure which shows the crystal grain of AZ31 material containing SiC in Experimental example 1. FIG. 実験例1におけるAZ31材の結晶粒を示す図である。It is a figure which shows the crystal grain of the AZ31 material in Experimental example 1. FIG. 実験例1における摩擦攪拌処理を施したAZ31材の結晶粒を示す図である。It is a figure which shows the crystal grain of the AZ31 material which performed the friction stirring process in Experimental example 1. FIG. 実験例2で適用されるカーボンナノチューブを示す図である。It is a figure which shows the carbon nanotube applied in Experimental example 2. FIG. 実験例2において回転ツールの移動速度100mm/minで摩擦攪拌処理を施した部位の縦断面図である。It is a longitudinal cross-sectional view of the site | part which performed the friction stirring process with the moving speed of 100 mm / min of the rotation tool in Experimental example 2. FIG. 実験例2において回転ツールの移動速度50mm/minで摩擦攪拌処理を施した部位の縦断面図である。It is a longitudinal cross-sectional view of the site | part which performed the friction stirring process with the moving speed of 50 mm / min of the rotary tool in Experimental example 2. FIG. 実験例2において回転ツールの移動速度25mm/minで摩擦攪拌処理を施した部位の縦断面図である。It is a longitudinal cross-sectional view of the site | part which performed the friction stirring process with the moving speed of 25 mm / min of the rotation tool in Experimental example 2. FIG. 実験例2において回転ツールの移動速度100mm/minで摩擦攪拌処理を施した部位の平面図である。FIG. 9 is a plan view of a portion subjected to a friction stirring process at a moving speed of a rotating tool of 100 mm / min in Experimental Example 2. 図22の拡大図である。It is an enlarged view of FIG. 実験例2において回転ツールの移動速度50mm/minで摩擦攪拌処理を施した部位の平面図である。It is a top view of the site | part which performed the friction stirring process with the moving speed of 50 mm / min of the rotation tool in Experimental example 2. FIG. 図24の拡大図である。It is an enlarged view of FIG. 実験例2において回転ツールの移動速度25mm/minで摩擦攪拌処理を施した部位の平面図である。It is a top view of the site | part which performed the friction stirring process with the moving speed of 25 mm / min of the rotation tool in Experimental example 2. FIG. 図26の拡大図である。It is an enlarged view of FIG. 実験例2における摩擦攪拌処理を行っていないAZ31材の硬度試験の様子を示す図である。It is a figure which shows the mode of the hardness test of AZ31 material which is not performing the friction stirring process in Experimental example 2. FIG. 実験例2における多層カーボンナノチューブを含むAZ31材の硬度試験の様子を示す図である。It is a figure which shows the mode of the hardness test of AZ31 material containing the multilayer carbon nanotube in Experimental example 2. FIG. 実験例2におけるAZ31材の結晶粒を示す図である。It is a figure which shows the crystal grain of the AZ31 material in Experimental example 2. FIG. 実験例2における摩擦攪拌処理を施したAZ31材の結晶粒を示す図である。It is a figure which shows the crystal grain of the AZ31 material which performed the friction stirring process in Experimental example 2. FIG. 実験例2における多層カーボンナノチューブを含むAZ31材の結晶粒を示す図である。It is a figure which shows the crystal grain of AZ31 material containing the multi-walled carbon nanotube in Experimental example 2. FIG. 図32の拡大図である。It is an enlarged view of FIG. 実験例3において回転ツールの回転速度500rpmでA5083材の摩擦攪拌処理を施した部位の縦断面図である。In Experimental example 3, it is a longitudinal cross-sectional view of the site | part which performed the friction stirring process of A5083 material at the rotational speed of 500 rpm of the rotation tool. 実験例3において回転ツールの回転速度1000rpmでA5083材の摩擦攪拌処理を施した部位の縦断面図である。In Experimental example 3, it is a longitudinal cross-sectional view of the site | part which performed the friction stirring process of A5083 material with the rotational speed of 1000 rpm of the rotary tool. 実験例3において回転ツールの回転速度1500rpmでA5083材の摩擦攪拌処理を施した部位の縦断面図である。In Experimental example 3, it is a longitudinal cross-sectional view of the site | part which performed the friction stirring process of A5083 material with the rotational speed of 1500 rpm of a rotary tool. 実験例3において回転ツールの回転速度2000rpmでA5083材の摩擦攪拌処理を施した部位の縦断面図である。In Experimental example 3, it is a longitudinal cross-sectional view of the site | part which performed the friction stirring process of A5083 material with the rotational speed of 2000 rpm of the rotary tool. 実験例3においてMFペーストを用いてA5083材の摩擦攪拌処理を施した部位の縦断面図である。It is a longitudinal cross-sectional view of the site | part which performed the friction stirring process of A5083 material using the MF paste in Experimental example 3. FIG. 図38の拡大図である。It is an enlarged view of FIG. 実験例3におけるMFを含むA5083材の硬度試験の結果を示すグラフ図である。It is a graph which shows the result of the hardness test of A5083 material containing MF in Experimental example 3. 実験例3におけるMFを含まないA5083母材の硬度試験の様子を示す図である。It is a figure which shows the mode of the hardness test of A5083 base material which does not contain MF in Experimental example 3. FIG. 実験例3におけるMFペーストを用いて摩擦攪拌処理を行いMFを含むA5083材の硬度試験の様子を示す図である。It is a figure which shows the mode of the hardness test of A5083 material which performs a friction stirring process using the MF paste in Experimental example 3, and contains MF. 実験例3においてC1020材の摩擦攪拌処理を施した部位の縦断面図である。It is a longitudinal cross-sectional view of the site | part which performed the friction stirring process of C1020 material in Experimental example 3. FIG. 実験例3においてMFペーストを用いてC1020材の摩擦攪拌処理を施した部位の縦断面図である。It is a longitudinal cross-sectional view of the site | part which performed the friction stirring process of C1020 material using the MF paste in Experimental example 3. FIG. 実験例3における硬度試験で得られた試料の最大微小硬度を示すグラフ図である。It is a graph which shows the maximum micro hardness of the sample obtained by the hardness test in Experimental example 3.

符号の説明Explanation of symbols

10…金属材、12…溝、14…添加材、16…回転ツール、18…プローブ、20…攪拌部、22…C60、24…炭素原子、26…C60の集合体、28…境界、30…測定痕、32…カーボンナノチューブ、34…MF。 10 ... metal member, 12 ... groove, 14 ... additional material, 16 ... rotary tool, 18 ... probe, 20 ... stirring unit, 22 ... C 60, 24 ... carbon atoms, a collection of 26 ... C 60, 28 ... boundary, 30 ... measurement mark, 32 ... carbon nanotube, 34 ... MF.

Claims (3)

最小部分の一次粒径が0.5μm未満である粒子であるフラーレン及びカーボンナノチューブのいずれかの添加材を金属材の表面部位に供給し、前記表面部位に棒状の回転ツールを当接させつつ回転させて、前記表面部位に前記添加材の粒子を混入させて硬度を上昇させる、金属材の製造方法。 Supply the fullerene or carbon nanotube additive , which is a particle having a primary particle size of less than 0.5 μm in the smallest part, to the surface part of the metal material, and rotate while bringing a rod-shaped rotary tool into contact with the surface part It is allowed to, the surface sites by mixing particles of the additive material Ru increase the hardness, a manufacturing method of the metal material. 前記添加材はC60を含む、請求項に記載の金属材の製造方法。 The additional material comprises a C 60, method for producing a metal material according to claim 1. 請求項1又は2に記載の金属材の製造方法によって硬度を上昇された金属材。 Metallic material which increases the hardness by the manufacturing method for a metal material according to claim 1 or 2.
JP2007102132A 2006-04-11 2007-04-09 Method for producing metal material and metal material Expired - Fee Related JP5052187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007102132A JP5052187B2 (en) 2006-04-11 2007-04-09 Method for producing metal material and metal material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006109126 2006-04-11
JP2006109126 2006-04-11
JP2007102132A JP5052187B2 (en) 2006-04-11 2007-04-09 Method for producing metal material and metal material

Publications (2)

Publication Number Publication Date
JP2007302997A JP2007302997A (en) 2007-11-22
JP5052187B2 true JP5052187B2 (en) 2012-10-17

Family

ID=38837171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007102132A Expired - Fee Related JP5052187B2 (en) 2006-04-11 2007-04-09 Method for producing metal material and metal material

Country Status (1)

Country Link
JP (1) JP5052187B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261790A (en) 2007-04-13 2008-10-30 Hitachi High-Technologies Corp Flaw inspection device
US7869025B2 (en) 2007-06-28 2011-01-11 Hitachi-High-Technologies Corporation Optical inspection method and optical inspection system
JP2009158216A (en) * 2007-12-26 2009-07-16 Japan Ae Power Systems Corp Electrode contact member of vacuum circuit breaker and method for producing the same
WO2010029864A1 (en) * 2008-09-12 2010-03-18 国立大学法人群馬大学 Method of manufacturing precursor for foam metal and method of manufacturing foam metal, and precursor for foam metal and foam metal manufactured by the methods
JP5641248B2 (en) * 2009-03-19 2014-12-17 国立大学法人群馬大学 Method for producing foam metal precursor and method for producing foam metal
JP6061367B2 (en) * 2010-10-13 2017-01-18 藤井 英俊 Surface hardening method for ferritic graphite cast iron

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3775894B2 (en) * 1997-07-30 2006-05-17 昭和電工株式会社 Method for local modification of base material
JP2002000778A (en) * 2000-06-23 2002-01-08 Maruman Golf Corp Golf club head and its manufacturing method
JP3885061B2 (en) * 2004-03-24 2007-02-21 本田技研工業株式会社 Manufacturing method of composite material

Also Published As

Publication number Publication date
JP2007302997A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
JP5052187B2 (en) Method for producing metal material and metal material
Nieto et al. Graphene reinforced metal and ceramic matrix composites: a review
Munir et al. Effect of dispersion method on the deterioration, interfacial interactions and re-agglomeration of carbon nanotubes in titanium metal matrix composites
Sharma et al. A comparative study on microstructural evolution and surface properties of graphene/CNT reinforced Al6061− SiC hybrid surface composite fabricated via friction stir processing
Yang et al. Preparation mechanism of hierarchical layered structure of graphene/copper composite with ultrahigh tensile strength
Zhai et al. Carbon nanomaterials in tribology
Sharma et al. Surface modification of Al6061-SiC surface composite through impregnation of graphene, graphite & carbon nanotubes via FSP: a tribological study
Hu et al. Laser sintered single layer graphene oxide reinforced titanium matrix nanocomposites
KR101091272B1 (en) Fabrication method of nanocomposite powders consisted with carbon nanotubes and metal
Kwon et al. Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites
Esawi et al. Carbon nanotube-reinforced aluminium strips
EP1923154A2 (en) Hybrid carbon nanotube reinforced composite bodies
US20170050159A1 (en) Method to generate and disperse nanostructures in a composite material
EP1923476A2 (en) Nano-reinforced wc-co for improved properties
Kwon et al. Dual-nanoparticulate-reinforced aluminum matrix composite materials
Yadav et al. Effect of MWCNTs addition on the wear and compressive deformation behavior of LM13-SiC-MWCNTs hybrid composites
ES2628317T3 (en) Wire drawing line
BRPI0707371A2 (en) high performance friction stir welding tools
Li et al. Reduced graphene oxide dispersed in copper matrix composites: Facile preparation and enhanced mechanical properties
Sun et al. Design, fabrication and characterization of multi-layer graphene reinforced nanostructured functionally graded cemented carbides
Wang et al. Nano/microstructures and mechanical properties of Al2O3-WC-TiC ceramic composites incorporating graphene with different sizes
Liu et al. Regulating the mechanical properties and electrical conductivity of CNTs/Cu composites by tailoring nano-sized TiC on the surface of intact CNTs
Joshi et al. Fabrication and applications of fullerene-based metal nanocomposites: A review
Baig et al. Influence of surfactant type on the dispersion state and properties of graphene nanoplatelets reinforced aluminium matrix nanocomposites
Wang et al. Novel graphitic carbon coated IF-WS 2 reinforced poly (ether ether ketone) nanocomposites

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081007

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees