JP5049635B2 - Battery cooling system - Google Patents

Battery cooling system Download PDF

Info

Publication number
JP5049635B2
JP5049635B2 JP2007100277A JP2007100277A JP5049635B2 JP 5049635 B2 JP5049635 B2 JP 5049635B2 JP 2007100277 A JP2007100277 A JP 2007100277A JP 2007100277 A JP2007100277 A JP 2007100277A JP 5049635 B2 JP5049635 B2 JP 5049635B2
Authority
JP
Japan
Prior art keywords
air
intake duct
battery
duct
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007100277A
Other languages
Japanese (ja)
Other versions
JP2008254627A (en
Inventor
敬文 中濱
麻美 水谷
武夫 覚地
多文 尾崎
永晃 室
貴史 堂元
裕作 畑
行生 門田
泰平 小山
洋介 渡並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007100277A priority Critical patent/JP5049635B2/en
Publication of JP2008254627A publication Critical patent/JP2008254627A/en
Application granted granted Critical
Publication of JP5049635B2 publication Critical patent/JP5049635B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02E60/12

Description

本発明は、電動車両、電気機器、作業用機械などに用いられるバッテリを冷却するためのバッテリ冷却装置に関する。   The present invention relates to a battery cooling device for cooling a battery used in an electric vehicle, an electric device, a work machine, and the like.

例えば、電動車両を駆動するための駆動用モ−タ−へ電力を供給する複数のバッテリは、特許文献1または2に記載のように、バッテリ冷却装置により冷却されて、その性能の低下が防止される。この際、各バッテリは、均一に冷却される必要がある。   For example, a plurality of batteries that supply electric power to a driving motor for driving an electric vehicle are cooled by a battery cooling device as described in Patent Document 1 or 2, thereby preventing deterioration in performance. Is done. At this time, each battery needs to be cooled uniformly.

このようなバッテリ冷却装置の一例を図11に示す。バッテリ冷却装置100のバッテリボックス101内に複数のバッテリ102が収納される。バッテリボックス101の吸気ダクト103には、送風ダクト104から空気(外気)が導かれ、この空気が吸気ダクト103から複数のバッテリ102間の通風路110へ導入されて、これらのバッテリ102が冷却される。バッテリ102の冷却により温度上昇した空気は、バッテリボックス101の排気ダクト105における排気口111から大気中へ排出される。   An example of such a battery cooling device is shown in FIG. A plurality of batteries 102 are housed in the battery box 101 of the battery cooling device 100. Air (outside air) is led from the air duct 104 to the air intake duct 103 of the battery box 101, and this air is introduced from the air intake duct 103 into the ventilation path 110 between the plurality of batteries 102, thereby cooling the batteries 102. The The air whose temperature has risen due to the cooling of the battery 102 is discharged into the atmosphere from the exhaust port 111 in the exhaust duct 105 of the battery box 101.

バッテリ冷却装置100では、前述のごとく複数のバッテリ102が均一に冷却される必要があることから、吸気ダクト103において空気の淀み領域Wが低減される必要がある。この淀み領域Wでは空気の流れが不充分となり、バッテリ102の冷却能力が低下するからである。
特開平7−237457号公報 特開平11−195437号公報
In the battery cooling device 100, since the plurality of batteries 102 need to be uniformly cooled as described above, the air stagnation area W needs to be reduced in the intake duct 103. This is because the air flow becomes insufficient in the stagnation region W, and the cooling capacity of the battery 102 is reduced.
JP-A-7-237457 JP 11-195437 A

ところが、吸気ダクト103の長手方向Rに送風ダクト104の長手方向Sを一致させて、吸気ダクト103の空気導入部108に形成された接続口106に送風ダクト104が接続された場合には、この送風ダクト104の吸気口107から、送風ダクト104及び空気導入部108のそれぞれの全長に亘る寸法L0の長い範囲に淀み領域W1が発生してしまう。   However, when the longitudinal direction S of the air duct 104 is aligned with the longitudinal direction R of the air intake duct 103 and the air duct 104 is connected to the connection port 106 formed in the air introduction portion 108 of the air intake duct 103, The stagnation region W1 is generated in the long range of the dimension L0 from the air inlet 107 of the air duct 104 over the entire length of each of the air duct 104 and the air introduction part 108.

この送風ダクト104及び空気導入部108を流れる空気の流れ方向Bに沿う淀み領域W1が、吸気ダクト103におけるバッテリ102に対応する領域に至らないようにして、複数のバッテリ1の冷却均一性を確保するためには、吸気ダクト103におけるバッテリ102に対応しない空気導入部108の長手方向Rの長さM0と、送風ダクト104の長手方向Sの長さNとの総和を、淀み領域W1の空気の流れ方向Bに沿う寸法L0以上に設定する必要がある。このため、バッテリ冷却装置100のコンパクト化を実現できないという課題があった。   The stagnation area W1 along the flow direction B of the air flowing through the blower duct 104 and the air introduction unit 108 is prevented from reaching the area corresponding to the battery 102 in the intake duct 103 to ensure the cooling uniformity of the plurality of batteries 1. In order to achieve this, the sum of the length M0 in the longitudinal direction R of the air introduction portion 108 that does not correspond to the battery 102 in the intake duct 103 and the length N in the longitudinal direction S of the blower duct 104 is calculated as the sum of the air in the stagnation region W1. It is necessary to set it to the dimension L0 or more along the flow direction B. For this reason, there was a problem that the battery cooling device 100 could not be made compact.

尚、淀み領域Wは、吸気ダクト103において、流路断面積が急激に変化する部分109においても、淀み領域W2として発生している。   The stagnation region W is also generated as a stagnation region W2 in a portion 109 where the flow path cross-sectional area changes rapidly in the intake duct 103.

本発明の目的は、上述の事情を考慮してなされたものであり、装置のコンパクト性と複数のバッテリの冷却均一性を実現できるバッテリ冷却装置を提供することにある。   An object of the present invention is to provide a battery cooling device that can realize the compactness of the device and the cooling uniformity of a plurality of batteries.

本発明は、複数のバッテリを収納するバッテリボックス内へ空気を導くことにより、前記バッテリを冷却するバッテリ冷却装置において、前記バッテリボックスには、前記各バッテリの広い面積側の側面へ空気を導く吸気ダクトが設けられると共に、この吸気ダクトへ空気を導入する送風ダクトが、前記吸気ダクトにおいて前記バッテリに対応しない部分である空気導入部に、前記吸気ダクトの長手方向に対し略垂直に設けられ、前記空気導入部は、前記吸気ダクトの長手方向に沿う長さが、前記空気導入部に発生する淀み領域よりも長く構成されたことを特徴とするものである。 The present invention provides a battery cooling device that cools the battery by introducing air into a battery box that houses a plurality of batteries, and the battery box includes an intake air that guides air to a side surface on the wide area side of each battery. with the duct are provided, the air duct for introducing air into the intake duct, the air introducing portion is a portion that does not correspond to the battery in the intake duct, provided substantially perpendicular to the longitudinal direction of the intake duct, the The air introduction part is configured such that a length along a longitudinal direction of the intake duct is longer than a stagnation region generated in the air introduction part .

また、本発明は、複数のバッテリを収納するバッテリボックス内へ空気を導くことにより、前記バッテリを冷却するバッテリ冷却装置において、前記バッテリボックスには、前記各バッテリの広い面積側の側面へ空気を導く吸気ダクトと、前記バッテリボックス内の空気を排出する排気ダクトがそれぞれ設けられ、これらの吸気ダクトと排気ダクトのそれぞれの開口部が同じ側に配置されると共に、前記排気ダクトの高さが前記吸気ダクトの高さの1.4倍に設定されて前記排気ダクトの流路断面積が前記吸気ダクトの流路断面積よりも大きく設定され、前記吸気ダクトにおいて前記バッテリに対応しない部分である空気導入部には、前記吸気ダクトへ空気を導入する送風ダクトが、前記吸気ダクトの長手方向に対し略垂直に設けられ、前記空気導入部は、前記吸気ダクトの長手方向に沿う長さが、前記空気導入部に発生する淀み領域よりも長く構成されたことを特徴とするものである。 According to the present invention, in the battery cooling device that cools the battery by guiding air into a battery box that houses a plurality of batteries, the air is supplied to the side of the battery on the wide area side of the battery box. An intake duct for guiding and an exhaust duct for discharging the air in the battery box are provided, and the openings of the intake duct and the exhaust duct are arranged on the same side, and the height of the exhaust duct is the height of the exhaust duct. Air that is set to 1.4 times the height of the intake duct, the flow passage cross-sectional area of the exhaust duct is set larger than the flow passage cross-sectional area of the intake duct, and is the portion of the intake duct that does not correspond to the battery The introduction part is provided with a blower duct for introducing air into the intake duct substantially perpendicular to the longitudinal direction of the intake duct, Air introduction unit has a length in the longitudinal direction of the intake duct, it is characterized in that it has been configured longer than the stagnation area generated in the air introduction portion.

本発明によれば、バッテリを収納するバッテリボックスには、バッテリの広い面積側の側面へ空気を導く吸気ダクトが設けられると共に、この吸気ダクトへ空気を導入する送風ダクトが、当該吸気ダクトの長手方向に対し略垂直に設けられたことから、送風ダクトから吸気ダクトへ導入される空気は、これらの送風ダクトと吸気ダクトとの接続部近傍の曲がり部における壁面に衝突し、流れ方向を反転して吸気ダクト内を下流側へ流れる。このため、吸気ダクトには、圧力が高くなることで発生する淀み領域が、空気の流れ方向に減少する。この結果、淀みの影響によって複数のバッテリ間で冷却が不均一になることを抑制でき、複数のバッテリの冷却均一性を確保できると共に、吸気ダクトと排気ダクトの長手方向寸法を短縮できるので、装置のコンパクト性を実現できる。   According to the present invention, the battery box that houses the battery is provided with the intake duct that guides air to the side surface on the large area side of the battery, and the air duct that introduces air into the intake duct is the longitudinal length of the intake duct. The air introduced from the air duct into the intake duct collides with the wall surface at the bent portion near the connection between the air duct and the air intake duct and reverses the flow direction. And flows downstream in the intake duct. For this reason, the stagnation area | region which generate | occur | produces in an intake duct when a pressure becomes high reduces in the flow direction of air. As a result, it is possible to suppress the non-uniform cooling between the plurality of batteries due to the influence of the stagnation, to ensure the cooling uniformity of the plurality of batteries, and to shorten the longitudinal dimension of the intake duct and the exhaust duct. The compactness can be realized.

また、本発明によれば、バッテリボックスには、各バッテリの広い面積側の側面へ空気を導く吸気ダクトと、バッテリボックス内の空気を排出する排気ダクトがそれぞれ設けられ、これらの吸気ダクトと排気ダクトのそれぞれの開口部が同じ側に配置されると共に、排気ダクトの流路断面積が吸気ダクトの流路断面積よりも大きく設定されたことから、バッテリー間の通風路ごとに当該排気ダクト部と当該吸気ダクト部の圧力差がほぼ等しくなり、複数のバッテリ間を流れる空気の流れが均一となる。このため、バッテリボックス内の複数のバッテリを均一に冷却することができる。更に、吸気ダクトと排気ダクトのそれぞれの開口部が同じ側に配置されたことで、装置のコンパクト性を実現できる。   Further, according to the present invention, the battery box is provided with the intake duct for guiding the air to the side surface on the wide area side of each battery and the exhaust duct for discharging the air in the battery box. Each opening of the duct is arranged on the same side, and the cross-sectional area of the exhaust duct is set larger than the cross-sectional area of the intake duct. And the pressure difference between the intake duct portions become substantially equal, and the flow of air flowing between the plurality of batteries becomes uniform. For this reason, the some battery in a battery box can be cooled uniformly. Furthermore, since the openings of the intake duct and the exhaust duct are arranged on the same side, the compactness of the apparatus can be realized.

以下、本発明を実施するための最良の形態を、図面に基づき説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

[A]第1の実施の形態(図1)
図1は、本発明に係るバッテリ冷却装置の第1の実施の形態である電動車両用のバッテリ冷却装置を示し、(A)が縦断面図、(B)が図1(A)のIB−IB線に沿う断面図である。
[A] First embodiment (FIG. 1)
FIG. 1 shows a battery cooling device for an electric vehicle which is a first embodiment of a battery cooling device according to the present invention, in which (A) is a longitudinal sectional view, and (B) is an IB- in FIG. It is sectional drawing which follows an IB line.

電動車両用のバッテリ1は、電動車両の駆動モ−タへ電力を供給するものであり、バッテリ冷却装置10のバッテリボックス11内に複数個が一列に収納される。複数個のバッテリ1は、バッテリ冷却装置10によって、導入される空気により後述のように冷却される。   The battery 1 for an electric vehicle supplies electric power to a drive motor of the electric vehicle, and a plurality of batteries 1 are housed in a battery box 11 of the battery cooling device 10. The plurality of batteries 1 are cooled by the battery cooling device 10 by air introduced as described later.

各バッテリ1は直方体形状であり、天面2、天面3がバッテリボックス11における後述の排気ダクト13側、吸気ダクト12側にそれぞれ位置づけられ、且つ側面のうちの広い面積側の側面4が互いに対峙してバッテリボックス11内に配列される。   Each battery 1 has a rectangular parallelepiped shape, and the top surface 2 and the top surface 3 are positioned on the exhaust duct 13 side and the intake duct 12 side, respectively, in the battery box 11, and the side surface 4 on the wide area side of the side surfaces is mutually connected. Oppositely, they are arranged in the battery box 11.

バッテリボックス11は、互いに対向する位置に吸気ダクト12と排気ダクト13を備え、中央部分に複数のバッテリ1を一列に配列して支持する。この状態で、複数のバッテリ1の互いに対峙する広い面積側の側面4間に通風路14が形成される。この通風路14は、バッテリ1の広い面積側の側面4とバッテリボックス11の両端面15との間にも形成される。   The battery box 11 includes an intake duct 12 and an exhaust duct 13 at positions facing each other, and supports a plurality of batteries 1 arranged in a row at the center portion. In this state, the ventilation path 14 is formed between the side surfaces 4 on the wide area side facing each other of the plurality of batteries 1. The ventilation path 14 is also formed between the side surface 4 on the large area side of the battery 1 and both end surfaces 15 of the battery box 11.

吸気ダクト12の接続口16と、排気ダクト13の排気口17とはそれぞれ反対側に位置し、吸気ダクト12の接続口16に送風ダクト18が接続される。この接続口16は、吸気ダクト12においてバッテリ1に対応しない部分である空気導入部24に形成され、従って、この空気導入部24に送風ダクト18が接続される。この送風ダクト18は、吸気ダクト12の長手方向Pに対し略垂直、つまり垂直または垂直近傍の角度で空気導入部24の接続口16に接続される。   The connection port 16 of the intake duct 12 and the exhaust port 17 of the exhaust duct 13 are located on the opposite sides, and a blower duct 18 is connected to the connection port 16 of the intake duct 12. The connection port 16 is formed in the air introduction portion 24 that is a portion not corresponding to the battery 1 in the intake duct 12, and thus the air duct 18 is connected to the air introduction portion 24. The air duct 18 is connected to the connection port 16 of the air introduction part 24 at an angle substantially perpendicular to the longitudinal direction P of the intake duct 12, that is, at an angle near or perpendicular.

送風ダクト18の空気取込口19から導入される空気は、送風ダクト18と吸気ダクト12との接続部近傍の曲がり部20において略直角に流れ方向を変更して、吸気ダクト12内を下流側へ流れる。吸気ダクト12は、流入した空気を複数のバッテリ1間の通風路14、及びバッテリ1とバッテリボックス11の端面15との間の通風路14へ導入して、これらのバッテリ1を冷却する。バッテリ1を冷却して温度上昇した空気は排気ダクト13に至り、この排気ダクト13は排気口17から、温度上昇した空気を排出する。   The air introduced from the air intake port 19 of the blower duct 18 changes the flow direction at a substantially right angle at a bent portion 20 near the connection portion between the blower duct 18 and the intake duct 12, and the inside of the intake duct 12 is downstream. To flow. The intake duct 12 introduces the introduced air into the ventilation path 14 between the plurality of batteries 1 and the ventilation path 14 between the battery 1 and the end face 15 of the battery box 11 to cool these batteries 1. The air whose temperature has increased by cooling the battery 1 reaches the exhaust duct 13, and this exhaust duct 13 discharges the air whose temperature has increased from the exhaust port 17.

送風ダクト18が吸気ダクト12の長手方向Pに対し略垂直に接続されたことで、吸気ダクト12に発生する淀み領域X1は、この吸気ダクト12の空気導入部24における空気の流れ方向Aに沿う寸法L1が減少する。その理由は、送風ダクト18の空気取込口19から導入された空気が、曲がり部20における空気導入部24の外側壁面21に衝突し、その直後に流れ方向を反転(略180度変更)し、更に流れ方向を略90度変更することで、圧力を上昇させることなく、吸気ダクト12の下流側へ流れるからである。   Since the air duct 18 is connected substantially perpendicularly to the longitudinal direction P of the intake duct 12, the stagnation region X1 generated in the intake duct 12 is along the air flow direction A in the air introduction portion 24 of the intake duct 12. The dimension L1 decreases. The reason is that the air introduced from the air intake port 19 of the blower duct 18 collides with the outer wall surface 21 of the air introduction part 24 in the bent part 20 and immediately reverses the flow direction (changes approximately 180 degrees). Furthermore, by changing the flow direction by approximately 90 degrees, it flows to the downstream side of the intake duct 12 without increasing the pressure.

この淀み領域X1は、図1(A)に示すように、曲がり部20における空気導入部24の内側部分22から、この空気導入部24の壁面に沿って空気の流れ方向Aに沿って形成される。この場合、淀み領域X1の空気の流れ方向Aに沿う寸法1は、図11に示す従来技術の淀み領域W1における空気の流れ方向Bに沿う寸法L0に比べて短い寸法となっている(L1<L0)。   As shown in FIG. 1A, the stagnation region X1 is formed from the inner portion 22 of the air introduction portion 24 in the bent portion 20 along the air flow direction A along the wall surface of the air introduction portion 24. The In this case, the dimension 1 along the air flow direction A in the stagnation region X1 is shorter than the dimension L0 along the air flow direction B in the stagnation region W1 of the prior art shown in FIG. 11 (L1 < L0).

従って、空気導入部24における吸気ダクト12の長手方向Pに沿う長さM1は、従来技術のうち吸気ダクト103における空気導入部108の長さM0と、送風ダクト104の長さNとの総和よりも極めて短い長さに設定される。これは、空気の流れ方向Aに沿う淀み領域X1が吸気ダクト12のバッテリ1に対応する領域に至らなければ、バッテリボックス11内のバッテリ1の冷却効率が不充分とならず、これら複数のバッテリ1の冷却均一性が確保されるからであり、このため吸気ダクト12における空気導入部24の長さM1を短くできるのである。   Therefore, the length M1 along the longitudinal direction P of the intake duct 12 in the air introduction portion 24 is based on the sum of the length M0 of the air introduction portion 108 in the intake duct 103 and the length N of the blower duct 104 in the prior art. Is also set to a very short length. This is because if the stagnation region X1 along the air flow direction A does not reach the region corresponding to the battery 1 of the intake duct 12, the cooling efficiency of the battery 1 in the battery box 11 will not be insufficient, and the plurality of batteries This is because the cooling uniformity of 1 is ensured, and therefore the length M1 of the air introduction part 24 in the intake duct 12 can be shortened.

尚、吸気ダクト12においては、図1(B)に示すように、バッテリ1に対応する領域であって、流路断面積が急激に拡大する部分23にも淀み領域X2が生じている。   In the intake duct 12, as shown in FIG. 1B, a stagnation region X2 is also generated in a region 23 corresponding to the battery 1 where the flow path cross-sectional area rapidly increases.

従って、本実施の形態によれば、バッテリ1を収納するバッテリボックス11には、バッテリ1の広い面積側の側面4へ空気を導く吸気ダクト12が設けられると共に、この吸気ダクト12へ空気を導入する送風ダクト18が、吸気ダクト12の長手方向Pに対し略垂直に設けられている。このため、送風ダクト18から吸気ダクト12の空気導入部24へ導入される空気は、これらの送風ダクト18と吸気ダクト12の空気導入部24との接続部近傍の曲がり部20における外側壁面21に衝突し、流れ方向を反転して吸気ダクト12内を下流側へ流れる。このため、吸気ダクト12の空気導入部24には、圧力が高くなることで発生する淀み領域X1が、空気導入部24において空気の流れ方向Aに減少する。この結果、淀みの影響によって複数のバッテリ1間で冷却が不均一になることを抑制でき、これら複数のバッテリ1の冷却均一性を確保することができる。   Therefore, according to the present embodiment, the battery box 11 that houses the battery 1 is provided with the intake duct 12 that guides air to the side surface 4 on the wide area side of the battery 1 and introduces air into the intake duct 12. The blowing duct 18 is provided substantially perpendicularly to the longitudinal direction P of the intake duct 12. For this reason, the air introduced from the air duct 18 to the air introduction part 24 of the intake duct 12 is directed to the outer wall surface 21 in the bent part 20 near the connection part between the air duct 18 and the air introduction part 24 of the intake duct 12. They collide, reverse the flow direction, and flow in the intake duct 12 downstream. For this reason, the stagnation region X <b> 1 generated by the pressure increase in the air introduction part 24 of the intake duct 12 decreases in the air flow direction A in the air introduction part 24. As a result, it is possible to suppress the non-uniform cooling between the plurality of batteries 1 due to the influence of the stagnation, and to ensure the cooling uniformity of the plurality of batteries 1.

更に、吸気ダクト12の空気導入部24における当該吸気ダクト12の長手方向Pに沿う長さM1を短縮できるので、バッテリ冷却装置10のコンパクト性を実現できる。   Furthermore, since the length M1 along the longitudinal direction P of the intake duct 12 in the air introduction part 24 of the intake duct 12 can be shortened, the compactness of the battery cooling device 10 can be realized.

[B]第2の実施の形態(図2)
図2は、本発明に係るバッテリ冷却装置の第2の実施の形態である電動車両用のバッテリ冷却装置を示し、(A)が縦断面図、(B)が図2(A)のIIB−IIB線に沿う断面図、(C)が図2(B)のIIC矢視図である。この第2の実施の形態において、前記第1の実施の形態と同様な部分は、同一の符号を付して説明を簡略化し、または省略する。
[B] Second embodiment (FIG. 2)
2A and 2B show a battery cooling device for an electric vehicle which is a second embodiment of the battery cooling device according to the present invention, in which FIG. 2A is a longitudinal sectional view, and FIG. Sectional drawing which follows the IIB line, (C) is IIC arrow line view of FIG. 2 (B). In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description will be simplified or omitted.

本実施の形態のバッテリ冷却装置25が前記第1の実施の形態のバッテリ冷却装置10と異なる点は、送風ダクト18に代えて、ファン装置26が吸気ダクト12の空気導入部24に設置された点である。   The battery cooling device 25 of the present embodiment is different from the battery cooling device 10 of the first embodiment in that a fan device 26 is installed in the air introduction part 24 of the intake duct 12 instead of the air duct 18. Is a point.

このファン装置26は、ファンケ−シング27内にファン28(例えば遠心ファン)が配置されて構成される。ファンケ−シング27は、その接続口29が、吸気ダクト12における空気導入部24の接続口16に接続されることで、吸気ダクト12の長手方向Pに対し略垂直に設置される。また、ファンケ−シング27には空気吸込口30が設けられる。   The fan device 26 is configured by disposing a fan 28 (for example, a centrifugal fan) in a fan casing 27. The fan casing 27 is installed substantially perpendicular to the longitudinal direction P of the intake duct 12 by connecting the connection port 29 to the connection port 16 of the air introduction part 24 in the intake duct 12. The fan casing 27 is provided with an air inlet 30.

ファン28の矢印O方向の回転により、外気(空気)がファンケ−シング27の空気吸込口30から内部に吸い込まれる。この空気は、ファン28の半径方向外向きに移動した後、ファンケ−シング27の壁面に沿って移動し、吸気ダクト12における空気導入部24の接続口16を経て、この吸気ダクト12の長手方向Pに対し略垂直方向に当該吸気ダクト12の空気導入部24内へ強制送風される。この空気導入部24内へ圧送された空気は、ファンケ−シング27と空気導入部24との接続部近傍の曲がり部20における空気導入部24の外側壁面21に衝突し、流れ方向を略90度変更して、空気導入部24から吸気ダクト12の下流側である、バッテリ1に対応する領域へ流れる。   As the fan 28 rotates in the direction of arrow O, outside air (air) is sucked into the air from the air inlet 30 of the fan casing 27. The air moves outward in the radial direction of the fan 28, then moves along the wall surface of the fan casing 27, and passes through the connection port 16 of the air introduction portion 24 in the intake duct 12, and then the longitudinal direction of the intake duct 12. The air is forcibly blown into the air introduction portion 24 of the intake duct 12 in a direction substantially perpendicular to P. The air pressure-fed into the air introduction part 24 collides with the outer wall surface 21 of the air introduction part 24 at the bent part 20 in the vicinity of the connection part between the fan casing 27 and the air introduction part 24, and the flow direction is approximately 90 degrees. The air flows from the air introduction part 24 to the area corresponding to the battery 1 on the downstream side of the intake duct 12.

従って、本実施の形態においても、吸気ダクト12の空気導入部24に発生する淀み領域X1の空気の流れ方向Aに沿う寸法L1が、従来技術の淀み領域W1(図11参照)における寸法L0に比べて減少することから、前記実施の形態と同様に、複数のバッテリ1の冷却均一性とバッテリ冷却装置25のコンパクト性を向上させることができる。   Therefore, also in the present embodiment, the dimension L1 along the air flow direction A of the stagnation region X1 generated in the air introduction portion 24 of the intake duct 12 is the dimension L0 in the stagnation region W1 (see FIG. 11) of the prior art. As compared with the above-described embodiment, the cooling uniformity of the plurality of batteries 1 and the compactness of the battery cooling device 25 can be improved.

[C]第3の実施の形態(図3)
図3は、本発明に係るバッテリ冷却装置の第3の実施の形態である電動車両用のバッテリ冷却装置を示し、(A)が縦断面図、(B)が図3(A)のIIIB−IIIB線に沿う断面図である。この第3の実施の形態において、前記第1の実施の形態と同様な部分は、同一の符号を付して説明を簡略化し、または省略する。
[C] Third embodiment (FIG. 3)
3A and 3B show a battery cooling device for an electric vehicle which is a third embodiment of the battery cooling device according to the present invention. FIG. 3A is a longitudinal sectional view, and FIG. It is sectional drawing which follows the IIIB line. In the third embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description will be simplified or omitted.

本実施の形態のバッテリ冷却装置35が前記第1の実施の形態のバッテリ冷却装置10と異なる点は、バッテリボックス11内の複数のバッテリ1間の通風路14などへ空気を導く吸気ダクト36において、送風ダクト18と接続する空気導入部37が、空気の流れ方向Aに沿って流路断面積を漸次拡大する広がり管形状に構成された点である。   The battery cooling device 35 of the present embodiment is different from the battery cooling device 10 of the first embodiment in the intake duct 36 that guides air to the ventilation path 14 between the plurality of batteries 1 in the battery box 11. The air introduction part 37 connected to the blower duct 18 is configured in a wide tube shape that gradually expands the cross-sectional area of the flow path along the air flow direction A.

送風ダクト18から導入された空気は、この送風ダクト18と吸気ダクト36の空気導入部37との接続部近傍の曲がり部20において、空気導入部37の外側壁面21に衝突した後、流れ方向を変更し、空気導入部37内をスム−ズに流れて、吸気ダクト36の下流側であるバッテリ1に対応する部分へ導入される。   The air introduced from the blower duct 18 collides with the outer wall surface 21 of the air introduction part 37 at the bent part 20 near the connection part between the blower duct 18 and the air introduction part 37 of the intake duct 36, and then changes the flow direction. Then, the air flows smoothly through the air introduction portion 37 and is introduced into the portion corresponding to the battery 1 on the downstream side of the intake duct 36.

従って、実施の形態によれば、送風ダクト18から導入されて曲がり部20において流れ方向を変更した空気が、空気の流れ方向Aに流路断面積を漸次拡大する広がり管形状の空気導入部37を流れることから、曲がり部20における内側部分22から、吸気ダクト36の空気導入部37の壁面に沿って発生する淀み領域X1は、この空気導入部37における空気の流れ方向Aに沿う寸法L2が、第1の実施の形態の同寸法L1よりも短くなる。このため、空気導入部37における吸気ダクト36の長手方向Pに沿う長さM2を、前記第1の実施の形態の空気導入部24の長さM1よりも短くできる。しかも、吸気ダクト36の空気導入部37が広がり管形状に形成されたため、吸気ダクト36におけるバッテリ1に対応する部分に淀み領域X2(図1(B)参照)が発生することを防止できる。   Therefore, according to the embodiment, the air that has been introduced from the air duct 18 and whose flow direction has been changed in the bent portion 20 has an expanded pipe-shaped air introduction portion 37 that gradually expands the cross-sectional area in the air flow direction A. Therefore, the stagnation region X1 generated along the wall surface of the air introduction part 37 of the intake duct 36 from the inner part 22 in the bent part 20 has a dimension L2 along the air flow direction A in the air introduction part 37. It becomes shorter than the same dimension L1 of 1st Embodiment. For this reason, the length M2 along the longitudinal direction P of the intake duct 36 in the air introduction part 37 can be made shorter than the length M1 of the air introduction part 24 of the first embodiment. In addition, since the air introduction part 37 of the intake duct 36 is spread and formed in a tube shape, it is possible to prevent the stagnation region X2 (see FIG. 1B) from occurring in the part corresponding to the battery 1 in the intake duct 36.

これらの結果、複数のバッテリ1の冷却均一性と、バッテリ冷却装置35のコンパクト性を、前記第1の実施の形態のバッテリ冷却装置10よりも向上させることができる。   As a result, the cooling uniformity of the plurality of batteries 1 and the compactness of the battery cooling device 35 can be improved as compared with the battery cooling device 10 of the first embodiment.

[D]第4の実施の形態(図4)
図4は、本発明に係るバッテリ冷却装置の第4の実施の形態である電動車両用のバッテリ冷却装置を示し、(A)が縦断面図、(B)が図4(A)のIVB−IVB線に沿う断面図、(C)が図4(B)のIVC矢視図である。この第4の実施の形態において、前記第1〜第3の実施の形態と同様な部分は、同一の符号を付して説明を簡略化し、または省略する。
[D] Fourth embodiment (FIG. 4)
4A and 4B show a battery cooling device for an electric vehicle which is a fourth embodiment of the battery cooling device according to the present invention. FIG. 4A is a longitudinal sectional view, and FIG. 4B is an IVB- in FIG. Sectional drawing which follows the IVB line, (C) is an IVC arrow line view of FIG. 4 (B). In the fourth embodiment, the same parts as those in the first to third embodiments are denoted by the same reference numerals, and the description is simplified or omitted.

本実施の形態のバッテリ冷却装置40は、前記第2の実施の形態のバッテリ冷却装置25と前記第3の実施の形態のバッテリ冷却装置35とを組み合わせて構成されたものである。即ち、バッテリ冷却装置40は、吸気ダクト36の空気導入部37にファン装置26が設置され、このファン装置26から吸気ダクト36の空気導入部37へ、吸気ダクト36の長手方向Pに対し略垂直に空気が強制送風されるものである。   The battery cooling device 40 of the present embodiment is configured by combining the battery cooling device 25 of the second embodiment and the battery cooling device 35 of the third embodiment. That is, in the battery cooling device 40, the fan device 26 is installed in the air introduction portion 37 of the intake duct 36, and the air introduction portion 37 of the intake duct 36 is substantially perpendicular to the longitudinal direction P of the intake duct 36 from the fan device 26. The air is forcibly blown.

従って、本実施の形態によれば、前記第3の実施の形態と同様に、複数のバッテリ1の冷却均一性とバッテリ冷却装置40のコンパクト性を、前記第1及び第2の実施の形態の場合よりも向上させることができる。   Therefore, according to the present embodiment, similarly to the third embodiment, the cooling uniformity of the plurality of batteries 1 and the compactness of the battery cooling device 40 are the same as those of the first and second embodiments. It can be improved more than the case.

[E]第5の実施の形態(図5)
図5は、本発明に係るバッテリ冷却装置の第5の実施の形態である電動車両用のバッテリ冷却装置を示し、(A)が縦断面図、(B)が図5(A)のVB−VB線に沿う断面図である。この第5の実施の形態において、前記第1及び第3の実施の形態と同様な部分は、同一の符号を付して説明を簡略化し、または省略する。
[E] Fifth embodiment (FIG. 5)
FIG. 5 shows a battery cooling device for an electric vehicle which is a fifth embodiment of the battery cooling device according to the present invention, in which (A) is a longitudinal sectional view and (B) is a VB- in FIG. It is sectional drawing which follows the VB line. In the fifth embodiment, the same parts as those in the first and third embodiments are denoted by the same reference numerals, and the description will be simplified or omitted.

この第5の実施の形態のバッテリ冷却装置50が前記第3の実施の形態のバッテリ冷却装置35と異なる点は、吸気ダクト51の空気導入部52が送風ダクト18に接続される近傍の曲がり部20の内側部分53が、階段状に形成された点である。空気導入部52の階段形状は、この空気導入部52が送風ダクト18に接続される、内側部分53を含む周囲に形成される。   The battery cooling device 50 of the fifth embodiment is different from the battery cooling device 35 of the third embodiment in that a bent portion in the vicinity where the air introduction portion 52 of the intake duct 51 is connected to the air duct 18. The inside portion 53 of 20 is a point formed in a step shape. The staircase shape of the air introduction part 52 is formed around the inner part 53 where the air introduction part 52 is connected to the air duct 18.

つまり、吸気ダクト51は、バッテリ1に対応する領域において、バッテリボックス11内の複数のバッテリ1間の通風路14などへ空気を導く。また、吸気ダクト51の空気導入部52は、その接続口16が送風ダクト18に接続され、この接続部近傍に曲がり部20が形成される。この曲がり部20の内側に階段形状の内側部分53が形成されることで、送風ダクト18から空気導入部52へ至り、流れ方向が略直角に変更される空気は、階段状の内側部分53において流れ方向が段階的に変更される。   That is, the intake duct 51 guides air to the ventilation path 14 between the plurality of batteries 1 in the battery box 11 in an area corresponding to the battery 1. The connection port 16 of the air introduction part 52 of the intake duct 51 is connected to the blower duct 18, and the bent part 20 is formed in the vicinity of this connection part. By forming the step-shaped inner portion 53 inside the bent portion 20, the air from the blower duct 18 to the air introduction portion 52 and the flow direction is changed to a substantially right angle flows in the step-shaped inner portion 53. The flow direction is changed in stages.

従って、本実施の形態によれば、吸気ダクト51の空気導入部52において、曲がり部20の内側部分53から空気導入部52の壁面に沿って形成される淀み領域X1は、空気導入部52内を流れる空気の流れ方向Aに沿う寸法L3が、第3の実施の形態の場合の淀み領域X1の寸法L2よりも短くなる。このため、空気導入部52における吸気ダクト51の長手方向Pに沿う長さM3を、前記第3の実施の形態における空気導入部37の長さM2よりも短くできる。この結果、複数のバッテリ1の冷却均一性とバッテリ冷却装置50のコンパクト性を、前記第3の実施の形態のバッテリ冷却装置35よりも向上させることができる。   Therefore, according to the present embodiment, in the air introduction portion 52 of the intake duct 51, the stagnation region X1 formed along the wall surface of the air introduction portion 52 from the inner portion 53 of the bent portion 20 is within the air introduction portion 52. The dimension L3 along the flow direction A of the air flowing through is shorter than the dimension L2 of the stagnation region X1 in the case of the third embodiment. For this reason, the length M3 along the longitudinal direction P of the intake duct 51 in the air introduction portion 52 can be made shorter than the length M2 of the air introduction portion 37 in the third embodiment. As a result, the cooling uniformity of the plurality of batteries 1 and the compactness of the battery cooling device 50 can be improved as compared with the battery cooling device 35 of the third embodiment.

[F]第6の実施の形態(図6)
図6は、本発明に係るバッテリ冷却装置の第6の実施の形態である電動車両用のバッテリ冷却装置を示し、(A)が縦断面図、(B)が図6(A)のVIB−VIB線に沿う断面図、(C)が図6(B)のVIC矢視図である。この第6の実施の形態において、前記第1〜第4の実施の形態と同様な部分は、同一の符号を付して説明を簡略化し、または省略する。
[F] Sixth embodiment (FIG. 6)
FIG. 6 shows a battery cooling device for an electric vehicle that is a sixth embodiment of the battery cooling device according to the present invention, in which (A) is a longitudinal sectional view, and (B) is a VIB- in FIG. Sectional drawing which follows a VIB line, (C) is a VIC arrow line view of FIG. 6 (B). In the sixth embodiment, the same parts as those in the first to fourth embodiments are denoted by the same reference numerals, and the description will be simplified or omitted.

本実施の形態のバッテリ冷却装置60が前記第4の実施の形態のバッテリ冷却装置40と異なる点は、吸気ダクト61の空気導入部62が送風ダクト18に接続される近傍の曲がり部20の内側部分63が、テ−パ形状に形成された点である。空気導入部62のテ−パ形状は、この空気導入部62がファン装置26に接続される、内側部分63を含む周囲に形成される。   The battery cooling device 60 of the present embodiment is different from the battery cooling device 40 of the fourth embodiment in that the inside of the bent portion 20 in the vicinity where the air introduction portion 62 of the intake duct 61 is connected to the air duct 18. The portion 63 is a point formed in a taper shape. The taper shape of the air introduction portion 62 is formed around the inner portion 63 where the air introduction portion 62 is connected to the fan device 26.

つまり、吸気ダクト61は、バッテリ1に対応する領域において、バッテリボックス11内の複数のバッテリ1間の通風路14などへ空気を導く。また、吸気ダクト61の空気導入部62は、その接続口16がファン装置26のファンケ−シング27に接続され、この接続部近傍に曲がり部20が形成される。この曲がり部20の内側にテ−パ形状の内側部分63が形成されることで、ファン装置26から空気導入部62へ至り、流れ方向が略直角に変更される空気は、テ−パ形状の内側部分63において流れ方向が滑らかに連続して変更される。   That is, the air intake duct 61 guides air to the ventilation path 14 between the plurality of batteries 1 in the battery box 11 in an area corresponding to the battery 1. The connection port 16 of the air introduction part 62 of the intake duct 61 is connected to the fan casing 27 of the fan device 26, and the bent part 20 is formed in the vicinity of this connection part. The taper-shaped inner portion 63 is formed inside the bent portion 20, so that the air from the fan device 26 to the air introduction portion 62 and whose flow direction is changed to a substantially right angle is a taper-shaped portion. In the inner portion 63, the flow direction is changed smoothly and continuously.

従って、本実施の形態によれば、吸気ダクト61の空気導入部62において、曲がり部20の内側部分63から空気導入部62の壁面に沿って形成される淀み領域X1は、空気導入部62内を流れる空気の流れ方向Aに沿う寸法L4が、第4の実施の形態の場合の淀み領域X1の寸法L2よりも短くなる。このため、空気導入部62における吸気ダクト61の長手方向Pに沿う長さM4を、前記第4の実施の形態における空気導入部37の長さM2よりも短くできる。この結果、複数のバッテリ1の冷却均一性とバッテリ冷却装置60のコンパクト性を、前記第4の実施の形態のバッテリ冷却装置40よりも向上させることができる。   Therefore, according to the present embodiment, in the air introduction portion 62 of the intake duct 61, the stagnation region X1 formed along the wall surface of the air introduction portion 62 from the inner portion 63 of the bent portion 20 is within the air introduction portion 62. The dimension L4 along the flow direction A of the air flowing through is shorter than the dimension L2 of the stagnation region X1 in the case of the fourth embodiment. For this reason, the length M4 along the longitudinal direction P of the intake duct 61 in the air introduction part 62 can be shorter than the length M2 of the air introduction part 37 in the fourth embodiment. As a result, the cooling uniformity of the plurality of batteries 1 and the compactness of the battery cooling device 60 can be improved as compared with the battery cooling device 40 of the fourth embodiment.

[G]第7の実施の形態(図7〜9)
図7は、本発明に係るバッテリ冷却装置の第7の実施の形態である電動車両用のバッテリ冷却装置を示し、(A)が縦断面図、(B)が図7(A)のVIIB−VIIB線に沿う断面図、(C)が図7(B)のVIIC−VIIC線に沿う断面図である。この第7の実施の形態において、前記第1の実施の形態と同様な部分は、同一の符号を付して説明を簡略化し、または省略する。
[G] Seventh embodiment (FIGS. 7 to 9)
7A and 7B show a battery cooling device for an electric vehicle that is a seventh embodiment of the battery cooling device according to the present invention, in which FIG. 7A is a longitudinal sectional view, and FIG. 7B is a VIIB- in FIG. Sectional drawing which follows the VIIB line, (C) is sectional drawing which follows the VIIC-VIIC line | wire of FIG. 7 (B). In the seventh embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description will be simplified or omitted.

本実施の形態のバッテリ冷却装置70が前記第1の実施の形態のバッテリ冷却装置10と異なる点は、吸気ダクト12に送風ダクト18が接続されていない点と、排気ダクト71の方向及び構造が変更された点とである。   The battery cooling device 70 of the present embodiment is different from the battery cooling device 10 of the first embodiment in that the air duct 18 is not connected to the intake duct 12 and the direction and structure of the exhaust duct 71. It is a changed point.

つまり、吸気ダクト12の空気導入部24には送風ダクト18が接続されず、空気導入部24の開口部は、吸気ダクト12の長手方向Pと直交して形成されて、空気を導入する吸気口72として機能する。また、排気ダクト71は、排気口73が吸気ダクト12の吸気口72と同じ側に配置されて、バッテリ冷却装置70は反流側(U形)流路構造に構成される。   That is, the air duct 18 is not connected to the air introduction portion 24 of the intake duct 12, and the opening portion of the air introduction portion 24 is formed orthogonal to the longitudinal direction P of the intake duct 12 to introduce air. 72 functions. Further, the exhaust duct 71 has an exhaust port 73 disposed on the same side as the intake port 72 of the intake duct 12, and the battery cooling device 70 is configured in a counter-flow side (U-shaped) flow path structure.

更に、バッテリ冷却装置70の長手方向Zの同一位置において、排気ダクト71の流路断面積は吸気ダクト12の流路断面積よりも大きく設定されている。例えば、排気ダクト71の高さH1は吸気ダクト12の高さH2よりも高く、例えば高さH2の略1.4倍の高さに設定されている。   Furthermore, at the same position in the longitudinal direction Z of the battery cooling device 70, the flow passage cross-sectional area of the exhaust duct 71 is set larger than the flow passage cross-sectional area of the intake duct 12. For example, the height H1 of the exhaust duct 71 is higher than the height H2 of the intake duct 12, and is set to, for example, approximately 1.4 times the height H2.

このように排気ダクト71の高さH1を吸気ダクト12の高さH2よりも高く設定することで、排気ダクト71を流れる空気の流速が速くなる。従って、吸気口72から吸気ダクト12内へ導入された空気は、バッテリボックス11内の複数のバッテリ1間の通風路14などを流れて排気ダクト71へ至るが、このとき排気ダクト71内を流れる高速の空気に引き寄せられて、バッテリ冷却装置70の長手方向Zにおいて、吸気口72及び排気口73に近い手前側から遠い奥側へ至る全範囲の通風路14で、略均一な速度の流れとなる。このため、バッテリボックス11内で手前側から奥側へ一列に配置された複数のバッテリ1が均一な温度に冷却されることになる。   Thus, by setting the height H1 of the exhaust duct 71 higher than the height H2 of the intake duct 12, the flow velocity of the air flowing through the exhaust duct 71 is increased. Accordingly, the air introduced from the air inlet 72 into the air intake duct 12 flows through the ventilation path 14 between the plurality of batteries 1 in the battery box 11 and reaches the exhaust duct 71. At this time, the air flows in the exhaust duct 71. In the longitudinal direction Z of the battery cooling device 70 drawn by the high-speed air, in the entire range of the ventilation path 14 from the near side close to the intake port 72 and the exhaust port 73 to the far side, the flow at a substantially uniform speed Become. For this reason, the plurality of batteries 1 arranged in a line from the near side to the far side in the battery box 11 are cooled to a uniform temperature.

上述の速度(流速)特性及び冷却特性を、図8及び図9を用いて従来のバッテリ冷却装置100(図11)の場合と比較して説明する。   The speed (flow velocity) characteristics and cooling characteristics described above will be described using FIGS. 8 and 9 in comparison with the conventional battery cooling device 100 (FIG. 11).

図11に示す従来のバッテリ冷却装置100では、排気ダクト105の高さH3が吸気ダクト103及び送風ダクト104の高さH4と略同一に設定されている。このため、図8の実線βに示すように、吸気ダクト103からバッテリ102間の各通風路110へ流れる空気は、バッテリ冷却装置100の長手方向Yにおける排気口111側の奥側に位置する通風路110では流速が速いが、吸気口107側の手前側に位置する通風路110では流速が遅くなってしまう。従って、図9の実線δに示すように、バッテリ冷却装置100の手前側に位置するバッテリ102の冷却が不充分となって温度が上昇し、バッテリ冷却装置100内の複数のバッテリ102を均一に冷却することができない。   In the conventional battery cooling device 100 shown in FIG. 11, the height H3 of the exhaust duct 105 is set to be substantially the same as the height H4 of the intake duct 103 and the air duct 104. For this reason, as shown by the solid line β in FIG. 8, the air flowing from the intake duct 103 to each ventilation path 110 between the batteries 102 is ventilated on the far side on the exhaust port 111 side in the longitudinal direction Y of the battery cooling device 100. Although the flow speed is fast in the path 110, the flow speed is slow in the ventilation path 110 located on the near side of the intake port 107 side. Therefore, as shown by a solid line δ in FIG. 9, the battery 102 located on the front side of the battery cooling device 100 is insufficiently cooled and the temperature rises, and the plurality of batteries 102 in the battery cooling device 100 are uniformly distributed. It cannot be cooled.

これに対し、本実施の形態のバッテリ冷却装置70では、排気ダクト71の高さH1が吸気ダクト12の高さH2よりも例えば1.4倍になるよう設定されたので、排気ダクト71を流れる空気の流れが速く、吸気ダクト12からバッテリ1間の各通風路14などへ流れる空気は、図8の実線αに示すように、バッテリ冷却装置70の手前側から奥側の範囲にそれぞれ位置する通風路14において略等しくなる。このため、図9の実線γに示すように、バッテリ冷却装置70の手前側から奥側の範囲にそれぞれ設置されるバッテリ1は、均一に冷却されて略同一温度になる。   On the other hand, in the battery cooling device 70 of the present embodiment, the height H1 of the exhaust duct 71 is set to be, for example, 1.4 times the height H2 of the intake duct 12, and therefore flows through the exhaust duct 71. The air flow is fast, and the air flowing from the intake duct 12 to each ventilation path 14 between the batteries 1 is located in the range from the front side to the back side of the battery cooling device 70, as indicated by the solid line α in FIG. In the ventilation path 14, it becomes substantially equal. For this reason, as shown by the solid line γ in FIG. 9, the batteries 1 installed in the range from the front side to the back side of the battery cooling device 70 are uniformly cooled and become substantially the same temperature.

尚、本実施の形態のバッテリ冷却装置70は、排気ダクト71の手前側を流れる空気の流速が速く、吸気ダクト12から複数のバッテリ1間の通風路14などへ導かれる空気を排気ダクト71内へ引き寄せることから、吸気ダクト12における空気導入部24やバッテリ1に対応する領域に、淀みの発生を抑制することが可能となる。   Note that the battery cooling device 70 according to the present embodiment has a high flow velocity of the air flowing in front of the exhaust duct 71, and the air guided from the intake duct 12 to the ventilation path 14 between the plurality of batteries 1 and the like in the exhaust duct 71. Therefore, it is possible to suppress the occurrence of stagnation in the area corresponding to the air introduction part 24 and the battery 1 in the intake duct 12.

従って、実施の形態によれば、バッテリボックス11には、各バッテリ1の広い面積側の側面4へ空気を導く吸気ダクト12と、バッテリボックス11内の空気を排出する排気ダクト71とがそれぞれ設けられ、これらの吸気ダクト12の吸気口72と排気ダクト71の排気口73とが同じ側に設置されると共に、排気ダクト71の高さH1が吸気ダクト12の高さH2よりも例えば1.4倍高く設定されている。このことから、排気ダクト71を流れる空気の流速が速くなり、複数のバッテリ1間の通風路14などを流れる空気の流れが均一となるため、バッテリボックス11内の複数のバッテリ1を均一に冷却することができる。   Therefore, according to the embodiment, the battery box 11 is provided with the intake duct 12 that guides air to the side surface 4 on the wide area side of each battery 1 and the exhaust duct 71 that discharges the air in the battery box 11. The intake port 72 of the intake duct 12 and the exhaust port 73 of the exhaust duct 71 are installed on the same side, and the height H1 of the exhaust duct 71 is 1.4, for example, higher than the height H2 of the intake duct 12. It is set twice as high. Accordingly, the flow velocity of the air flowing through the exhaust duct 71 is increased, and the flow of air flowing through the ventilation path 14 between the plurality of batteries 1 becomes uniform, so that the plurality of batteries 1 in the battery box 11 are uniformly cooled. can do.

更に、吸気ダクト12の吸気口72と排気ダクト71の排気口73とが同じ側に配置されたことで、バッテリ冷却装置70のコンパクト性を実現できる。   Furthermore, since the intake port 72 of the intake duct 12 and the exhaust port 73 of the exhaust duct 71 are arranged on the same side, the compactness of the battery cooling device 70 can be realized.

[H]第8の実施の形態(図10)
図10は本発明に係るバッテリ冷却装置の第8の実施の形態である電動車両用のバッテリ冷却装置を示し、(A)が縦断面図、(B)が図10(A)のXB−XB線に沿う断面図、(C)が図10(B)のXC矢視図である。この第8の実施の形態において、前記第1〜第4及び第7の実施の形態と同様な部分は、同一の符号を付して説明を簡略化し、または省略する。
[H] Eighth embodiment (FIG. 10)
10A and 10B show a battery cooling device for an electric vehicle that is an eighth embodiment of the battery cooling device according to the present invention. FIG. 10A is a longitudinal sectional view, and FIG. Sectional drawing in alignment with a line, (C) is a XC arrow directional view of FIG.10 (B). In the eighth embodiment, the same parts as those in the first to fourth and seventh embodiments are denoted by the same reference numerals, and the description will be simplified or omitted.

本実施の形態のバッテリ冷却装置80は、第4の実施の形態のバッテリ冷却装置40と第7の実施の形態のバッテリ冷却装置70とを組み合わせたものである。   The battery cooling device 80 according to the present embodiment is a combination of the battery cooling device 40 according to the fourth embodiment and the battery cooling device 70 according to the seventh embodiment.

つまり、バッテリ冷却装置80は、バッテリ冷却装置40において吸気ダクト36の接続口16と同じ側に排気ダクト81の排気口82を配置し、且つ排気ダクト81の高さH1を吸気ダクト36の高さH2よりも高く、例えば高さH2の略1.4倍の高さに設定して、バッテリ冷却装置80の長手方向Zにおける同一位置において、排気ダクト81の流路断面積を吸気ダクト36の流路断面積よりも大きく設定したものである。尚、このバッテリ冷却装置80では、排気口82付近の幅Uが、バッテリボックス11の幅Vと略同一に形成されている。   That is, in the battery cooling device 80, the exhaust port 82 of the exhaust duct 81 is disposed on the same side as the connection port 16 of the intake duct 36 in the battery cooling device 40, and the height H1 of the exhaust duct 81 is set to the height of the intake duct 36. It is set to be higher than H2, for example, approximately 1.4 times the height H2, and at the same position in the longitudinal direction Z of the battery cooling device 80, the flow passage cross-sectional area of the exhaust duct 81 is changed to the flow of the intake duct 36. It is set larger than the road cross-sectional area. In the battery cooling device 80, the width U near the exhaust port 82 is formed to be substantially the same as the width V of the battery box 11.

従って、本実施の形態によれば、排気ダクト81の高さH1が吸気ダクト36の高さH2よりも高く、例えば高さH2の略1.4倍の高さに設定されたので、バッテリ冷却装置80のバッテリボックス11内に収納された複数のバッテリ1を均一に冷却できるなど、第7の実施の形態と同様な効果を奏する。   Therefore, according to the present embodiment, the height H1 of the exhaust duct 81 is set higher than the height H2 of the intake duct 36, for example, approximately 1.4 times the height H2. The same effects as those of the seventh embodiment can be obtained, for example, the plurality of batteries 1 housed in the battery box 11 of the device 80 can be uniformly cooled.

更に、吸気ダクト36の空気導入部37にファン装置26が設置され、このファン装置26から吸気ダクト36の空気導入部37へ吸気ダクト36の長手方向Pに略垂直に空気が送風され、且つ空気導入部37が空気の流れ方向Aに沿って流路断面積が漸次拡大する広がり管形状に形成されている。このため、空気導入部37に淀みが発生した場合にも、その淀み領域の空気の流れ方向Aの寸法を短くできる。この結果、淀みの影響による複数のバッテリ1の冷却の不均一を抑制して、これらのバッテリ1を均一に冷却できると共に、空気導入部37における吸気ダクト36の長手方向Pに沿う寸法を短縮して、バッテリ冷却装置80をコンパクト化できるなど、第4の実施の形態と同様な効果を奏する。   Further, the fan device 26 is installed in the air introduction portion 37 of the intake duct 36, and air is blown from the fan device 26 to the air introduction portion 37 of the intake duct 36 substantially perpendicularly to the longitudinal direction P of the intake duct 36, and the air The introduction portion 37 is formed in a wide tube shape in which the cross-sectional area of the flow path gradually increases along the air flow direction A. For this reason, even when stagnation occurs in the air introduction portion 37, the dimension of the stagnation region in the air flow direction A can be shortened. As a result, non-uniform cooling of the plurality of batteries 1 due to the influence of stagnation can be suppressed, and these batteries 1 can be cooled uniformly, and the dimension along the longitudinal direction P of the intake duct 36 in the air introduction portion 37 can be shortened. Thus, the battery cooling device 80 can be made compact, and effects similar to those of the fourth embodiment can be obtained.

以上、本発明を上記実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。   As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to this.

例えば、第7の実施の形態と第4の実施の形態とを組み合わせたものを第8の実施の形態として述べたが、第7の実施の形態のバッテリ冷却装置70と第1の実施の形態のバッテリ冷却装置10とを組み合わせてもよく、また、第7の実施の形態のバッテリ冷却装置70と第5または第6の実施の形態のバッテリ冷却装置50または60とを組み合わせてもよい。   For example, the combination of the seventh embodiment and the fourth embodiment is described as the eighth embodiment, but the battery cooling device 70 of the seventh embodiment and the first embodiment are described. The battery cooling device 10 according to the seventh embodiment may be combined with the battery cooling device 70 according to the seventh embodiment and the battery cooling device 50 or 60 according to the fifth or sixth embodiment.

更に、上述の各実施の形態では、バッテリ1は、電動車両に用いられるものを述べたが、電子レンジや掃除機などの家庭用もしくは業務用の電気機器、または例えば屋外で使用される作業用機械などに用いられるものでもよい。   Furthermore, in each of the above-described embodiments, the battery 1 is described as being used for an electric vehicle. However, the battery 1 is used for household or business electric equipment such as a microwave oven or a vacuum cleaner, or for work used outdoors, for example. What is used for a machine etc. may be used.

本発明に係るバッテリ冷却装置の第1の実施の形態である電動車両用のバッテリ冷却装置を示し、(A)が縦断面図、(B)が図1(A)のIB−IB線に沿う断面図。The battery cooling device for electric vehicles which is 1st Embodiment of the battery cooling device which concerns on this invention is shown, (A) is a longitudinal cross-sectional view, (B) follows the IB-IB line of FIG. 1 (A). Sectional drawing. 本発明に係るバッテリ冷却装置の第2の実施の形態である電動車両用のバッテリ冷却装置を示し、(A)が縦断面図、(B)が図2(A)のIIB−IIB線に沿う断面図、(C)が図2(B)のIIC矢視図。The battery cooling device for electric vehicles which is 2nd Embodiment of the battery cooling device which concerns on this invention is shown, (A) is a longitudinal cross-sectional view, (B) follows the IIB-IIB line | wire of FIG. 2 (A). Sectional drawing and (C) are IIC arrow directional views of FIG. 2 (B). 本発明に係るバッテリ冷却装置の第3の実施の形態である電動車両用のバッテリ冷却装置を示し、(A)が縦断面図、(B)が図3(A)のIIIB−IIIB線に沿う断面図。The battery cooling device for electric vehicles which is 3rd Embodiment of the battery cooling device which concerns on this invention is shown, (A) is a longitudinal cross-sectional view, (B) follows the IIIB-IIIB line | wire of FIG. 3 (A). Sectional drawing. 本発明に係るバッテリ冷却装置の第4の実施の形態である電動車両用のバッテリ冷却装置を示し、(A)が縦断面図、(B)が図4(A)のIVB−IVB線に沿う断面図、(C)が図4(B)のIVC矢視図。The battery cooling device for electric vehicles which is 4th Embodiment of the battery cooling device which concerns on this invention is shown, (A) is a longitudinal cross-sectional view, (B) follows the IVB-IVB line | wire of FIG. 4 (A). Sectional drawing and (C) are IVC arrow directional views of FIG. 4 (B). 本発明に係るバッテリ冷却装置の第5の実施の形態である電動車両用のバッテリ冷却装置を示し、(A)が縦断面図、(B)が図5(A)のVB−VB線に沿う断面図。The battery cooling device for electric vehicles which is 5th Embodiment of the battery cooling device which concerns on this invention is shown, (A) is a longitudinal cross-sectional view, (B) follows the VB-VB line | wire of FIG. 5 (A). Sectional drawing. 本発明に係るバッテリ冷却装置の第6の実施の形態である電動車両用のバッテリ冷却装置を示し、(A)が縦断面図、(B)が図6(A)のVIB−VIB線に沿う断面図、(C)が図6(B)のVIC矢視図。The battery cooling device for electric vehicles which is 6th Embodiment of the battery cooling device which concerns on this invention is shown, (A) is a longitudinal cross-sectional view, (B) follows the VIB-VIB line | wire of FIG. 6 (A). Sectional drawing, (C) is a VIC arrow view of FIG. 6 (B). 本発明に係るバッテリ冷却装置の第7の実施の形態である電動車両用のバッテリ冷却装置を示し、(A)が縦断面図、(B)が図7(A)のVIIB−VIIB線に沿う断面図、(C)が図7(B)のVIIC−VIIC線に沿う断面図。The battery cooling device for electric vehicles which is the 7th Embodiment of the battery cooling device which concerns on this invention is shown, (A) is a longitudinal cross-sectional view, (B) follows the VIIB-VIIB line | wire of FIG. 7 (A). Sectional drawing, (C) is sectional drawing which follows the VIIC-VIIC line | wire of FIG. 7 (B). 図7のバッテリ冷却装置におけるバッテリボックス内の流速分布を、従来技術と比較して示すグラフ。The graph which shows the flow-velocity distribution in the battery box in the battery cooling device of FIG. 7 compared with a prior art. 図7のバッテリ冷却装置におけるバッテリボックス内の各バッテリの温度分布を、従来技術と比較して示すグラフ。The graph which shows the temperature distribution of each battery in the battery box in the battery cooling device of FIG. 7 compared with a prior art. 本発明に係るバッテリ冷却装置の第8の実施の形態である電動車両用のバッテリ冷却装置を示し、(A)が縦断面図、(B)が図10(A)のXB−XB線に沿う断面図、(C)が図10(B)のXC矢視図。The battery cooling device for electric vehicles which is 8th Embodiment of the battery cooling device which concerns on this invention is shown, (A) is a longitudinal cross-sectional view, (B) follows the XB-XB line | wire of FIG. 10 (A). Sectional drawing and (C) are XC arrow directional views of FIG. 10 (B). 従来の電動車両用のバッテリ冷却装置を示し、(A)が縦断面図、(B)が図11(A)のXIB−XIB線に沿う断面図。The conventional battery cooling device for electric vehicles is shown, (A) is a longitudinal cross-sectional view, (B) is sectional drawing which follows the XIB-XIB line | wire of FIG. 11 (A).

符号の説明Explanation of symbols

1 バッテリ
10 バッテリ冷却装置
11 バッテリボックス
12 吸気ダクト
16 接続口
18 送風ダクト
20 曲がり部
25 バッテリ冷却装置
26 ファン装置
28 ファン
35 バッテリ冷却装置
36 吸気ダクト
37 空気導入部
40 バッテリ冷却装置
50 バッテリ冷却装置
51 吸気ダクト
53 内側部分
60 バッテリ冷却装置
61 吸気ダクト
63 内側部分
70 バッテリ冷却装置
71 排気ダクト
72 吸気口
73 排気口
80 バッテリ冷却装置
81 排気ダクト
82 排気口
H1、H2 高さ
P 長手方向
X1、X2 淀み領域
DESCRIPTION OF SYMBOLS 1 Battery 10 Battery cooling device 11 Battery box 12 Intake duct 16 Connection port 18 Air blow duct 20 Bending part 25 Battery cooling device 26 Fan device 28 Fan 35 Battery cooling device 36 Intake duct 37 Air introduction part 40 Battery cooling device 50 Battery cooling device 51 Intake duct 53 Inner portion 60 Battery cooling device 61 Intake duct 63 Inner portion 70 Battery cooling device 71 Exhaust duct 72 Intake port 73 Exhaust port 80 Battery cooling device 81 Exhaust port 82 Exhaust ports H1, H2 Height P Longitudinal directions X1, X2 region

Claims (10)

複数のバッテリを収納するバッテリボックス内へ空気を導くことにより、前記バッテリを冷却するバッテリ冷却装置において、
前記バッテリボックスには、前記各バッテリの広い面積側の側面へ空気を導く吸気ダクトが設けられると共に、この吸気ダクトへ空気を導入する送風ダクトが、前記吸気ダクトにおいて前記バッテリに対応しない部分である空気導入部に、前記吸気ダクトの長手方向に対し略垂直に設けられ
前記空気導入部は、前記吸気ダクトの長手方向に沿う長さが、前記空気導入部に発生する淀み領域よりも長く構成されたことを特徴とするバッテリ冷却装置。
In the battery cooling device that cools the battery by guiding air into a battery box that houses a plurality of batteries,
The battery box is provided with an air intake duct that guides air to a wide area side surface of each battery, and an air duct that introduces air into the air intake duct is a portion that does not correspond to the battery in the air intake duct. The air introduction part is provided substantially perpendicular to the longitudinal direction of the intake duct ,
The battery cooling device according to claim 1 , wherein the air introduction part is configured such that a length along a longitudinal direction of the intake duct is longer than a stagnation region generated in the air introduction part .
前記送風ダクトに代えて、吸気ダクトの長手方向に対し略垂直方向に当該吸気ダクトへ空気を強制送風するファン装置が設置されたことを特徴とした請求項1に記載のバッテリ冷却装置。 2. The battery cooling device according to claim 1, wherein a fan device that forcibly blows air to the intake duct in a direction substantially perpendicular to the longitudinal direction of the intake duct is installed instead of the air duct. 前記送風ダクトまたはファン装置に接続される吸気ダクトの空気導入部は、空気の流れ方向に沿って流路断面積が漸次拡大する広がり管形状に構成されたことを特徴とする請求項1または2に記載のバッテリ冷却装置。 The air introduction part of the air intake duct connected to the blower duct or the fan device is configured to have an expanded tube shape in which the flow path cross-sectional area gradually increases along the air flow direction. The battery cooling device described in 1. 前記吸気ダクトが送風ダクトまたはファン装置に接続される近傍の曲がり部の内側部分が、階段形状またはテ−パ形状に形成されたことを特徴とする請求項1乃至3のいずれかに記載のバッテリ冷却装置。 The battery according to any one of claims 1 to 3, wherein an inner portion of a bent portion in the vicinity where the intake duct is connected to a blower duct or a fan device is formed in a step shape or a taper shape. Cooling system. 前記空気導入部における吸気ダクトの長手方向に沿う長さは、送風ダクトまたはファン装置の長手方向の長さよりも短く構成されたことを特徴とする請求項1乃至4のいずれかに記載のバッテリ冷却装置。5. The battery cooling according to claim 1, wherein a length along a longitudinal direction of the air intake duct in the air introduction portion is configured to be shorter than a length of the air duct or the fan device in the longitudinal direction. apparatus. 複数のバッテリを収納するバッテリボックス内へ空気を導くことにより、前記バッテリを冷却するバッテリ冷却装置において、
前記バッテリボックスには、前記各バッテリの広い面積側の側面へ空気を導く吸気ダクトと、前記バッテリボックス内の空気を排出する排気ダクトがそれぞれ設けられ、
これらの吸気ダクトと排気ダクトのそれぞれの開口部が同じ側に配置されると共に、前記排気ダクトの高さが前記吸気ダクトの高さの1.4倍に設定されて前記排気ダクトの流路断面積が前記吸気ダクトの流路断面積よりも大きく設定され、
前記吸気ダクトにおいて前記バッテリに対応しない部分である空気導入部には、前記吸気ダクトへ空気を導入する送風ダクトが、前記吸気ダクトの長手方向に対し略垂直に設けられ、
前記空気導入部は、前記吸気ダクトの長手方向に沿う長さが、前記空気導入部に発生する淀み領域よりも長く構成されたことを特徴とするバッテリ冷却装置。
In the battery cooling device that cools the battery by guiding air into a battery box that houses a plurality of batteries,
The battery box is provided with an intake duct that guides air to the side of the large area of each battery and an exhaust duct that discharges the air inside the battery box,
The openings of the intake duct and the exhaust duct are arranged on the same side, and the height of the exhaust duct is set to 1.4 times the height of the intake duct, so that the flow path of the exhaust duct is cut off. The area is set larger than the flow passage cross-sectional area of the intake duct,
A blower duct that introduces air into the intake duct is provided substantially perpendicular to the longitudinal direction of the intake duct in an air introduction portion that is a portion not corresponding to the battery in the intake duct.
The battery cooling device according to claim 1, wherein the air introduction part is configured such that a length along a longitudinal direction of the intake duct is longer than a stagnation region generated in the air introduction part .
前記送風ダクトに代えて、吸気ダクトの長手方向に対し略垂直方向に当該吸気ダクトへ空気を強制送風するファン装置が設置されたことを特徴とした請求項に記載のバッテリ冷却装置。 The battery cooling device according to claim 6 , wherein a fan device that forcibly blows air to the intake duct in a direction substantially perpendicular to a longitudinal direction of the intake duct is installed instead of the blower duct. 前記送風ダクトまたはファン装置に接続される吸気ダクトの空気導入部は、空気の流れ方向に沿って流路面積が漸次拡大する広がり管形状に構成されたことを特徴とする請求項またはに記載のバッテリ冷却装置。 Air inlet portion of the intake duct connected to the air duct or fan apparatus in claim 6 or 7, characterized in that the flow path area in the flow direction of the air is configured to spread tube shape gradually expanding The battery cooling device described. 前記吸気ダクトが送風ダクトまたはファン装置に接続される近傍の曲がり部の内側部分が、階段形状またはテ−パ形状に形成されたことを特徴とする請求項乃至のいずれかに記載のバッテリ冷却装置。 The inner portion of the bent portion in the vicinity of the intake duct is connected to a blower duct or fan device, stepped shape or tape - battery according to any one of claims 6 to 8, characterized in that formed on the path shape Cooling system. バッテリが、電動車両、電気機器または作業用機械に用いられるものであることを特徴とする請求項1乃至のいずれかに記載のバッテリ冷却装置。 Battery, electric vehicle, a battery cooling device according to any of claims 1 to 9, characterized in that for use in electrical equipment or working machine.
JP2007100277A 2007-04-06 2007-04-06 Battery cooling system Active JP5049635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007100277A JP5049635B2 (en) 2007-04-06 2007-04-06 Battery cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007100277A JP5049635B2 (en) 2007-04-06 2007-04-06 Battery cooling system

Publications (2)

Publication Number Publication Date
JP2008254627A JP2008254627A (en) 2008-10-23
JP5049635B2 true JP5049635B2 (en) 2012-10-17

Family

ID=39978644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007100277A Active JP5049635B2 (en) 2007-04-06 2007-04-06 Battery cooling system

Country Status (1)

Country Link
JP (1) JP5049635B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101451873B1 (en) * 2010-12-30 2014-10-17 에스케이이노베이션 주식회사 Battery pack that inset and outlet are vertical structure
EP2725652B1 (en) * 2011-06-21 2019-10-09 LG Chem, Ltd. Battery pack of air cooling structure
WO2013048060A2 (en) * 2011-09-29 2013-04-04 주식회사 엘지화학 Battery pack having a novel cooling structure
KR101475737B1 (en) * 2012-02-07 2014-12-24 주식회사 엘지화학 Battery Pack of Novel Air Cooling Structure
CN110031045B (en) * 2019-05-23 2024-02-23 南京信息工程大学 Device and method for monitoring gas in sealed battery compartment of electric bus

Also Published As

Publication number Publication date
JP2008254627A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
JP5049635B2 (en) Battery cooling system
WO2017098765A1 (en) Cooling device
JP2014020245A (en) Cooling fan device
US9951859B2 (en) Gearset with an air-guiding cover
US20080229776A1 (en) Centrifugal blower and air conditioner having the same
US9768667B2 (en) Electric motor with outer radiator and two separate cooling circuits
JP2011080427A (en) Electric blower and vacuum cleaner using the same
JP5297128B2 (en) Blower, air conditioner for vehicle
JP2016115514A (en) Battery temperature adjustment device
JP2007041541A (en) Cooling apparatus and image forming apparatus
JP2011188671A (en) Power supply apparatus
JP5072416B2 (en) Battery cooling system
JP2018206591A (en) Light emitting device
CN115664165B (en) Inverter and power supply apparatus
JP2596682B2 (en) Electronic equipment cooling device
JP6374462B2 (en) Total heat exchanger
JP2002299871A (en) Heat sink assembly
JP2014015863A (en) Cooling fan device
JP2007329253A (en) Cooling structure of electronic apparatus
KR101550509B1 (en) Tightly closed and air cooled moter
CN108566045B (en) Ventilation structure and method for improving heat dissipation efficiency of air-cooled generator
KR101980632B1 (en) Cooler Assembly Having Reducing Cooling Loss, and Generator Having The Same
JP5389076B2 (en) Blower and air conditioner outdoor unit
JP5702962B2 (en) Heat dissipation structure of electronic equipment
JP3955945B2 (en) Blower

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5049635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151