JP5049505B2 - Energy converter - Google Patents

Energy converter Download PDF

Info

Publication number
JP5049505B2
JP5049505B2 JP2006090671A JP2006090671A JP5049505B2 JP 5049505 B2 JP5049505 B2 JP 5049505B2 JP 2006090671 A JP2006090671 A JP 2006090671A JP 2006090671 A JP2006090671 A JP 2006090671A JP 5049505 B2 JP5049505 B2 JP 5049505B2
Authority
JP
Japan
Prior art keywords
electrode
electron
acceleration
conversion device
emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006090671A
Other languages
Japanese (ja)
Other versions
JP2007267533A (en
Inventor
秀喜 塩崎
邦雄 前川
修一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2006090671A priority Critical patent/JP5049505B2/en
Publication of JP2007267533A publication Critical patent/JP2007267533A/en
Application granted granted Critical
Publication of JP5049505B2 publication Critical patent/JP5049505B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱エネルギーを電気エネルギーに変換するエネルギー変換装置に関する。   The present invention relates to an energy conversion device that converts thermal energy into electrical energy.

石炭や石油などの化石燃料を燃焼させることによる得られるエネルギーは、二酸化炭素排出による地球温暖化など、地球環境の悪影響を与えるとともに、埋蔵量にも限りがあり、永久的なものではない。このような化石燃料に代替となるエネルギー源として、太陽光発電や地熱発電等、さまざまなエネルギー源の研究が鋭意なされている。   The energy obtained by burning fossil fuels such as coal and oil has adverse effects on the global environment, such as global warming due to carbon dioxide emissions, and is limited in reserves and is not permanent. As energy sources that can substitute for such fossil fuels, various energy sources such as solar power generation and geothermal power generation have been intensively studied.

その一つとして、太陽光などから得られた熱エネルギー源から電気エネルギーに効率良く、変換可能としたエネルギー変換装置が知られている。(特許文献1参照)。   As one of them, there is known an energy conversion device that can efficiently convert electric energy from a thermal energy source obtained from sunlight or the like. (See Patent Document 1).

このエネルギー変換装置は、真空容器と、真空容器内に配置され外部からの熱エネルギーによる温度上昇によって真空中に電子を放出する電子放出電極と、真空容器内に電子放出電極と対向するように配置された電子加速電極と、電子放出電極にマイナス端子が、電子加速電極にプラス端子がそれぞれ接続された電子加速電源と、電子放出電極と電子加速電極との間に配置された電子収集電極とを備えている。   This energy conversion device is arranged in a vacuum vessel, an electron emission electrode that is arranged in the vacuum vessel and emits electrons into the vacuum due to temperature rise due to external thermal energy, and is arranged in the vacuum vessel so as to face the electron emission electrode An electron accelerating electrode, an electron accelerating power source having a negative terminal connected to the electron emitting electrode and a positive terminal connected to the electron accelerating electrode, and an electron collecting electrode disposed between the electron emitting electrode and the electron accelerating electrode. I have.

このエネルギー変換装置によると、太陽光による熱により加熱されることで、電子放出電極は電子を放出し、放出された電子は、電子加速電極側へ加速移動する。このとき、移動する電子を電子収集電極で収集することで、電子の無くなった電子放出電極を正極、電子収集電極側が負極として、電子を移動させ、電気エネルギーを発生させる。
特許第3449623号
According to this energy conversion device, the electron emission electrode emits electrons by being heated by the heat of sunlight, and the emitted electrons are accelerated and moved to the electron acceleration electrode side. At this time, the moving electrons are collected by the electron collecting electrode, and the electrons are moved by using the electron emitting electrode, which has lost electrons, as the positive electrode and the electron collecting electrode side as the negative electrode, thereby generating electric energy.
Japanese Patent No. 3449623

上記特許文献1のエネルギー変換装置によると、電子放出電極を正極、電子収集電極を負極として、両電極間に負荷をかけるので、この負荷の抵抗値が非常に小さくて実質的にゼロと見なせる場合には、両電極間が実質上同電位となり、電気を効率良く取り出すことができないという問題があった。 According to the energy conversion device of Patent Document 1 described above, a load is applied between the electrodes, with the electron emission electrode as the positive electrode and the electron collection electrode as the negative electrode, and therefore the resistance value of this load is very small and can be regarded as substantially zero the, between the electrodes becomes substantially the same potential, there is a problem that can not be taken out electricity efficiently.

本発明では、上記の問題を鑑みて、太陽光等の熱エネルギーを効率よく電気的エネルギーに変換が可能なエネルギー変換装置を提供する。   In view of the above problems, the present invention provides an energy conversion device that can efficiently convert thermal energy such as sunlight into electrical energy.

この発明によるエネルギー変換装置は、真空容器と、真空容器内に配置され外部からの熱エネルギーによる温度上昇によって真空中に電子を放出する電子放出電極と、真空容器内に電子放出電極と対向するように配置された電子加速電極と、電子放出電極にマイナス端子が、電子加速電極にプラス端子がそれぞれ接続された電子加速電源と、電子放出電極と電子加速電極との間に配置された電子収集電極とを備えているエネルギー変換装置において、電子収集電極は、電子通過用貫通孔が設けられており電子放出電極に近い少なくとも1つの放出電極側電極板と、電子通過用貫通孔が設けられており電子加速電極に近い少なくとも1つの加速電極側電極板とからなり、より多くの電子が加速電極側電極板に収集されることを利用して、加速電極側電極板を負極、放出電極側電極板を正極とすることにより、電気エネルギーが取り出されることを特徴とするものである。   An energy conversion device according to the present invention includes a vacuum vessel, an electron emission electrode that is disposed in the vacuum vessel and emits electrons into the vacuum by a temperature rise due to external thermal energy, and is opposed to the electron emission electrode in the vacuum vessel. An electron accelerating electrode, an electron accelerating power source in which a negative terminal is connected to the electron emitting electrode, a positive terminal is connected to the electron accelerating electrode, and an electron collecting electrode arranged between the electron emitting electrode and the electron accelerating electrode In the energy conversion device, the electron collecting electrode is provided with an electron passage through hole, and is provided with at least one emission electrode side electrode plate close to the electron emission electrode and an electron passage through hole. Accelerating electrode by using at least one accelerating electrode side electrode plate close to the electron accelerating electrode and collecting more electrons on the accelerating electrode side electrode plate. Negative side electrode plates, by the positive electrode of the emission electrode side electrode plate, and is characterized in that the electrical energy is extracted.

電子放出電極と電子加速電極間に、両電極とは分離した形で電子収集電極が設けられる。電子収集電極は、互いに平行な複数枚(通常は1対)の電極板で構成され、電子放出電極から放出されて電子加速電極へ加速されながら移動する電子を収集する。電子収集用の電極板を複数枚設けることにより、各電極板に滞留する電子量に差ができる(電子放出電極から距離の遠い電極板の電子通過用貫通孔が電子放出を増進させかつ電子の軌道を曲げることから、電子放出電極から距離の遠い電極板ほど電子量は多くなる)ので、電子量の多い方の電極板を負極に、電子量の少ない方の電極板を正極とすることで、電気エネルギーとして取り出す(発電する)ことができる。   An electron collecting electrode is provided between the electron emitting electrode and the electron accelerating electrode so as to be separated from both electrodes. The electron collection electrode is composed of a plurality (usually a pair) of electrode plates that are parallel to each other, and collects electrons that move while being emitted from the electron emission electrode and accelerated to the electron acceleration electrode. By providing a plurality of electron collecting electrode plates, the amount of electrons staying in each electrode plate can be made different (the electron passage through-hole of the electrode plate far from the electron emitting electrode enhances the electron emission and the electron emission). (Because the trajectory is bent, the farther away the electrode plate from the electron emission electrode, the larger the amount of electrons). Therefore, the electrode plate with the larger amount of electrons is used as the negative electrode, and the electrode plate with the smaller amount of electrons is used as the positive electrode. It can be taken out (electric power generation) as electrical energy.

電子収集電極の各電極板に設けられる電子通過用貫通孔は、例えば、一方向に長いスリット状のものとされ、これが複数並列状に配置される。そして、互いに対向する電極板同士は、それらの貫通孔同士が互いに直交するように配置される。その結果、電子収集電極のすべての電極板の貫通孔は、互いに重なり合う部分を有するものとされる。貫通孔は、すべての貫通孔同士が互いに重なり合う部分(合成開口)を有するように形成されればよく、その形状は任意である。例えば、一方向に長いスリット状の貫通孔同士を直交させる代わりに、一方を他方に対して所定量ずらす(平行移動させる)ことにより、合成開口を確保するようにしてもよく、貫通孔が円形や方形とされてもよい。   The through holes for electron passage provided in each electrode plate of the electron collecting electrode are, for example, slit-like ones that are long in one direction, and a plurality of them are arranged in parallel. The electrode plates facing each other are arranged such that their through holes are orthogonal to each other. As a result, the through holes of all the electrode plates of the electron collecting electrode have portions that overlap each other. The through hole may be formed so as to have a portion (synthetic opening) where all the through holes overlap with each other, and the shape thereof is arbitrary. For example, instead of making the slit-like through holes long in one direction orthogonal to each other, the synthetic opening may be secured by shifting one side by a predetermined amount (translating) with respect to the other. Or square.

電子収集電極のすべての電極板の貫通孔の重なりによって形成される合成開口の開口率は、30〜70%の範囲とされていることが好ましい。   It is preferable that the aperture ratio of the synthetic aperture formed by the overlap of the through holes of all the electrode plates of the electron collecting electrode is in the range of 30 to 70%.

電子収集電極の合成開口の開口率(すべての電子収集電極板を重ね合わせたときの開口率:全開を100%とする)が、30%未満になると、電子加速電極に至る電子量が著しく減少し、電子の加速性が低下することで、電子の移動が起こりにくくなる。70%を超えると、電子収集電極にて収集される電子量が著しく減少し、電気エネルギーへの変換効率が低下する。前記から、電子の加速性と、電子収集電極における電子量の兼ね合いを考慮すると、合成開口の開口率は、45〜60%がより好ましい。各電極板ごとの開口率は、同じでもよく異なっていてもよく、合成開口の開口率の条件を満たし、かつ、電子放出電極から距離の遠い電極板ほど電子量が多くなるという条件を満たす範囲で種々変更することができる。   When the aperture ratio of the synthetic aperture of the electron collection electrode (the aperture ratio when all the electron collection electrode plates are overlapped: 100% full opening) is less than 30%, the amount of electrons reaching the electron acceleration electrode is significantly reduced. However, since the acceleration property of electrons is reduced, the movement of electrons is less likely to occur. If it exceeds 70%, the amount of electrons collected by the electron collecting electrode is remarkably reduced, and the conversion efficiency into electric energy is lowered. From the above, considering the balance between the acceleration of electrons and the amount of electrons in the electron collecting electrode, the aperture ratio of the synthetic aperture is more preferably 45 to 60%. The aperture ratio for each electrode plate may be the same or different, and satisfies the condition that the aperture ratio of the synthetic aperture is satisfied, and that the amount of electrons increases as the electrode plate is further away from the electron emission electrode. Various changes can be made.

また、電子放出電極は、カーボンナノチューブにより構成されていることが好ましい。   The electron emission electrode is preferably composed of carbon nanotubes.

カーボンナノチューブは、直径が数nm〜数十nmと極めて細いことから、1〜5V/μmの低い電界強度にて電子放出が起こるため、他の電極材料と比べて、電子加速電源の低電圧化が可能となる。また、従来の電極よりも厚みを薄くすることができる。   Since carbon nanotubes are extremely thin with a diameter of several nanometers to several tens of nanometers, electron emission occurs at a low electric field strength of 1 to 5 V / μm. Therefore, the voltage of the electron acceleration power source is lower than other electrode materials. Is possible. Moreover, thickness can be made thinner than the conventional electrode.

また、カーボンナノチューブは、基板上に金属めっきを介して転写されたものであることが好ましい。   The carbon nanotubes are preferably transferred onto the substrate via metal plating.

カーボンナノチューブにおける電子放出は、カーボンナノチューブの先端部で起こるため、電子放出電極表面に対して、略垂直上に配向させるように構成するのが好ましい。しかしながら、電子放出電極は、最低でも500℃以上で加熱されるため、接着剤や樹脂類によってカーボンナノチューブを所定状態で固定することは困難である。そこで、基板上に金属めっきを介して転写することで、金属めっき上にカーボンナノチューブを略垂直上に配向した状態で保持させ、これにより、高温下でのカーボンナノチューブの保持が可能となる。めっき金属は特に限定されないが、銅やニッケルが好ましい。また、めっき方法としては、無電解めっきが好ましい。また、転写先となる基板の材料は、任意であるが、導電材料であることが好ましい。   Since the electron emission in the carbon nanotube occurs at the tip of the carbon nanotube, it is preferable that the carbon nanotube is configured to be oriented substantially vertically with respect to the surface of the electron emission electrode. However, since the electron emission electrode is heated at least at 500 ° C. or more, it is difficult to fix the carbon nanotubes in a predetermined state with an adhesive or resins. Therefore, the carbon nanotubes are transferred onto the substrate via the metal plating, so that the carbon nanotubes are held on the metal plating in a state of being substantially vertically oriented, whereby the carbon nanotubes can be held at a high temperature. The plating metal is not particularly limited, but copper or nickel is preferable. Moreover, as a plating method, electroless plating is preferable. Further, the material of the substrate as the transfer destination is arbitrary, but is preferably a conductive material.

このような電子収集電極は、転写元基板(例えばガラス基板)上にカーボンナノチューブを形成するステップと、カーボンナノチューブの先端部を転写用基板としてのメッシュ(例えば、カーボンナノチューブ配置用の孔が設けられた導電材料製のもの)で保持しながら金属めっき(例えば無電解ニッケルめっき)を行うステップと、転写元基板を剥がすことにより、略垂直状に配向したカーボンナノチューブを金属めっきを介して基板上に得るステップと、金属めっき表面部分を薬液で除去してカーボンナノチューブの先端部を露出させるステップとによって製造することができる。   Such an electron collecting electrode is provided with a step of forming carbon nanotubes on a transfer source substrate (for example, a glass substrate), and a mesh (for example, holes for arranging carbon nanotubes) using the tip of the carbon nanotube as a transfer substrate. A step of performing metal plating (for example, electroless nickel plating) while being held by a conductive material), and peeling off the transfer source substrate so that carbon nanotubes oriented substantially vertically are placed on the substrate via metal plating. And the step of removing the metal plating surface portion with a chemical solution to expose the tip of the carbon nanotube.

電子加速電極は、細分化された複数の電極板からなり、細分化された電極板を走査するように電子加速電源による電圧が印加されていることが好ましい。   The electron acceleration electrode is preferably composed of a plurality of segmented electrode plates, and a voltage from an electron acceleration power source is preferably applied so as to scan the segmented electrode plates.

前記のとおり、電子放出電極からの電子の放出は、カーボンナノチューブの先端部で起こるが、これらの電子放出は、カーボンナノチューブの先端と電子加速電極との距離の短い部分で集中的に発生する。このため、集中的に電子放出するカーボンナノチューブ部分の劣化が激しくなり、電極としての寿命が低下する可能性がある。そこで、電子加速電極を複数に細分化し、細分化された個々の電極板を走査するように順次電圧を印加させることにより、電子放出電極の一部分のみに集中して電子放出が発生することによる電極寿命の低下を防止する。   As described above, the emission of electrons from the electron emission electrode occurs at the tip of the carbon nanotube, but the electron emission occurs intensively at a portion where the distance between the tip of the carbon nanotube and the electron acceleration electrode is short. For this reason, the deterioration of the carbon nanotube portion from which electrons are intensively emitted becomes severe, and the life as an electrode may be reduced. Therefore, by subdividing the electron acceleration electrode into a plurality of electrodes and sequentially applying a voltage so as to scan each of the divided electrode plates, the electrode is formed by concentrating only on a part of the electron emission electrode and generating electron emission. Prevents life reduction.

この発明のエネルギー変換装置によると、電子放出電極と電子加速電極との電位差は、電子加速電源によって常に一定に保持され、この結果、電子収集電極の放出電極側電極板および加速電極側電極板には、常に電子が供給され、この際、より多くの電子が加速電極側電極板に収集されるので、加速電極側電極板を負極、放出電極側電極板を正極とすることにより、電気エネルギーが取り出される。こうして、従来の装置における問題点、すなわち、電子放出電極と電子収集電極との間が実質上同電位となり、電気を効率良く取り出すことができないという問題が解消し、熱エネルギーを高効率で電気エネルギーに変換することができる。   According to the energy conversion device of the present invention, the potential difference between the electron emission electrode and the electron acceleration electrode is always kept constant by the electron acceleration power source. As a result, the electron collection electrode has an emission electrode side electrode plate and an acceleration electrode side electrode plate. Since electrons are always supplied and more electrons are collected in the acceleration electrode side electrode plate at this time, by using the acceleration electrode side electrode plate as a negative electrode and the emission electrode side electrode plate as a positive electrode, electric energy is reduced. It is taken out. Thus, the problem in the conventional apparatus, that is, the problem that the electron emitting electrode and the electron collecting electrode are substantially at the same potential and the electricity cannot be taken out efficiently is solved, and the heat energy is efficiently converted into the electric energy. Can be converted to

この発明の実施の形態を、以下図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に示すように、この発明によるエネルギー変換装置(1)は、真空容器(2)と、真空容器(2)内に配置され外部からの熱エネルギーによる温度上昇によって真空中に電子を放出する電子放出電極(3)と、真空容器(2)内に電子放出電極(3)と対向するように配置された電子加速電極(4)と、電子放出電極(3)がカソードに、電子加速電極(4)がアノードとなるように両電極(3)(4)間に直流電圧を印加する電子加速電源(5)と、電子放出電極(3)と電子加速電極(4)との間に配置された電子収集電極(6)とを備えている。   As shown in FIG. 1, an energy conversion device (1) according to the present invention is arranged in a vacuum vessel (2) and a vacuum vessel (2), and emits electrons into the vacuum by a temperature rise due to external thermal energy. An electron emission electrode (3), an electron acceleration electrode (4) disposed in the vacuum container (2) so as to face the electron emission electrode (3), and the electron emission electrode (3) as a cathode, an electron acceleration electrode An electron acceleration power source (5) that applies a DC voltage between both electrodes (3) and (4) so that (4) becomes an anode, and is arranged between the electron emission electrode (3) and the electron acceleration electrode (4) And an electron collecting electrode (6).

電子収集電極(6)は、電子放出電極(3)に近い側に配置された放出電極側電極板(7)と、電子加速電極(4)に近い側に配置された加速電極側電極板(8)とからなる。   The electron collecting electrode (6) includes an emission electrode side electrode plate (7) arranged on the side close to the electron emission electrode (3) and an acceleration electrode side electrode plate (on the side close to the electron acceleration electrode (4) ( 8).

電子放出電極(3)は、図3に詳しく示すように、方形の導電材料製(例えば、タングステン製)支持板(11)のほぼ全面に熱電子放出可能な複数のカーボンナノチューブ電極(12)が等間隔で配置されたものとされている。   As shown in detail in FIG. 3, the electron emission electrode (3) has a plurality of carbon nanotube electrodes (12) capable of emitting thermoelectrons on almost the entire surface of a support plate (11) made of a rectangular conductive material (for example, tungsten). It is assumed that they are arranged at equal intervals.

電子加速電極(4)は、全体として方形状であり、同一平面内に所定間隔をおいて並列状に配置された複数の短冊状電極板(4a)(4b)(4c)(4d)に分割されている。各電極板(4a)(4b)(4c)(4d)は、例えばSUS製とされ、その分割形状は特に限定されない。   The electron accelerating electrode (4) has a rectangular shape as a whole, and is divided into a plurality of strip electrode plates (4a) (4b) (4c) (4d) arranged in parallel at predetermined intervals in the same plane. Has been. Each electrode plate (4a) (4b) (4c) (4d) is made of, for example, SUS, and the divided shape is not particularly limited.

電子加速電源(5)は、マイナス側の端子が電子放出電極(3)に接続され、プラス側の端子が電子加速電極(4)の各短冊状電極板(4a)(4b)(4c)(4d)にそれぞれスイッチ(S1)(S2)(S3)(S4)を介して接続されている。これらのスイッチ(S1)(S2)(S3)(S4)は、走査回路(9)によって順次そのオン・オフが切り換えられるようになされており、これにより、電子加速電極(4)は、細分化された各電極板(4a)(4b)(4c)(4d)ごとに直流電圧が印加されるように構成されている。   The electron acceleration power source (5) has a negative terminal connected to the electron emission electrode (3) and a positive terminal connected to each of the strip electrode plates (4a) (4b) (4c) ( 4d) are connected to each other through switches (S1), (S2), (S3), and (S4). These switches (S1), (S2), (S3), and (S4) are sequentially turned on and off by the scanning circuit (9), so that the electron acceleration electrode (4) is subdivided. A DC voltage is applied to each of the electrode plates (4a), (4b), (4c), and (4d).

電子収集電極(6)の放出電極側電極板(7)および加速電極側電極板(8)は、例えばSUS製の方形状金属板とされ、各電極板(7)(8)には、図2に示すように、一方向に長い電子通過用貫通孔(7a)(8a)が並列状に設けられている。そして、放出電極側電極板(7)と加速電極側電極板(8)とは、一方向に長い貫通孔(7a)(8a)同士が平面から見て直交するように、所定の間隔で対向させられている。   The emission electrode side electrode plate (7) and the acceleration electrode side electrode plate (8) of the electron collection electrode (6) are, for example, SUS square metal plates. Each electrode plate (7) (8) includes As shown in FIG. 2, electron passing through holes (7a) (8a) that are long in one direction are provided in parallel. The emission electrode side electrode plate (7) and the acceleration electrode side electrode plate (8) face each other at a predetermined interval so that the long through holes (7a) and (8a) that are long in one direction are orthogonal to each other when viewed from the plane. It has been made.

電子通過用貫通孔(7a)(8a)は、放出電極側電極板(7)および加速電極側電極板(8)を重ね合わせたときの合成開口の開口率が56%になるように調整されている。電子通過用貫通孔(7a)(8a)の形状・大きさ・数は、合成開口の開口率が30〜70%(好ましくは45〜60%)の範囲内を満足するものであれば、適時調整することができる。   The through holes (7a) and (8a) for passing electrons are adjusted so that the aperture ratio of the synthetic aperture when the emission electrode side electrode plate (7) and the acceleration electrode side electrode plate (8) are overlapped is 56%. ing. The shape, size, and number of the through holes for electron passage (7a) and (8a) are appropriate as long as the aperture ratio of the synthetic aperture satisfies the range of 30 to 70% (preferably 45 to 60%). Can be adjusted.

カーボンナノチューブ電極(12)は、次のようにして製作されている。   The carbon nanotube electrode (12) is manufactured as follows.

まず、図4(a)に示すように、ガラス基板(21)に所定の間隔で略垂直状に配向したカーボンナノチューブ(22)を成長させる。カーボンナノチューブ(22)の成長は公知方法で実施できる。一例として、ガラス基板(21)上のカーボンナノチューブ(22)を成長させたい部分に金属(鉄等)の錯体を含む溶液を塗布した後、加熱して形成した皮膜上に、アセチレン(C)ガスを用いて一般的な化学蒸着法(CVD法)を施すことにより、略垂直状に配向したカーボンナノチューブ(22)を得ることができる。 First, as shown in FIG. 4 (a), carbon nanotubes (22) oriented substantially vertically at a predetermined interval are grown on a glass substrate (21). The carbon nanotube (22) can be grown by a known method. As an example, a solution containing a metal (iron, etc.) complex is applied to a portion on which a carbon nanotube (22) on a glass substrate (21) is to be grown, and then heated to form acetylene (C 2 H 2 ) By performing a general chemical vapor deposition method (CVD method) using a gas, carbon nanotubes (22) oriented substantially vertically can be obtained.

次いで、図4(b)に示すように、メッシュ(カーボンナノチューブ転写用基板)(23)でカーボンナノチューブ(22)を保持しながら、無電解ニッケルめっき(24)を行う。   Next, as shown in FIG. 4B, electroless nickel plating (24) is performed while holding the carbon nanotubes (22) with a mesh (carbon nanotube transfer substrate) (23).

ニッケルめっき終了後、図4(c)に示すように、ガラス基板(21)を剥がすことで、略垂直状に配向したカーボンナノチューブ(22)がニッケルめっき(24)を介してメッシュ(カーボンナノチューブ転写用基板)(23)上に転写される。   After completion of the nickel plating, as shown in FIG. 4C, the glass substrate (21) is peeled off, so that the carbon nanotubes (22) oriented in a substantially vertical shape are meshed through the nickel plating (24) (carbon nanotube transfer). Transferred onto the substrate (23).

次いで、ニッケルめっき(24)の表面部分のみを薬液で除去することで、図4(d)に示すように、カーボンナノチューブ(22)の先端部分が露出する。これにより、電子放出を行う先端部が露出されたカーボンナノチューブ(22)がニッケルめっき(24)によって導電材料製基板(23)に保持されたカーボンナノチューブ電極(12)が形成される。   Next, by removing only the surface portion of the nickel plating (24) with a chemical solution, the tip portion of the carbon nanotube (22) is exposed as shown in FIG. 4 (d). As a result, the carbon nanotube electrode (12) is formed in which the carbon nanotube (22) from which the tip portion for emitting electrons is exposed is held on the conductive material substrate (23) by the nickel plating (24).

こうして得られたカーボンナノチューブ電極(12)は、図3に示すように、カーボンナノチューブ電極(12)保持用のポケット(11a)が設けられた支持板(11)に支持されて、電子放出電極(3)を形成する。   As shown in FIG. 3, the carbon nanotube electrode (12) thus obtained is supported by a support plate (11) provided with a pocket (11 a) for holding the carbon nanotube electrode (12), and an electron emission electrode ( 3) is formed.

各電極(3)(4)(6)の間隔については、例えば、電子放出電極(3)−加速電極側電極板(8)間は、500μm(カーボンナノチューブ全長:200μm含む)、加速電極側電極板(8)−放出電極側電極板(7)間は、300μm、放出電極側電極板(7)−電子加速電極(4)間は、200μmとされる。各電極(3)(4)(6)の間隔は、この例に限定されるものではない。   The distance between the electrodes (3), (4), and (6) is, for example, 500 μm (including carbon nanotube total length: 200 μm) between the electron emission electrode (3) and the acceleration electrode side electrode plate (8), and the acceleration electrode side electrode. The distance between the plate (8) and the emission electrode side electrode plate (7) is 300 μm, and the distance between the emission electrode side electrode plate (7) and the electron acceleration electrode (4) is 200 μm. The interval between the electrodes (3), (4), and (6) is not limited to this example.

図1のエネルギー変換装置(1)によると、太陽光・廃熱等で得られた熱エネルギーによって電子放出電極(3)を加熱するとともに、電子放出電極(3)−電子加速電極(4)間に電子加速電源(5)からの電圧を印加する。このとき、電子加速電極(4)側は、高圧スイッチS1〜S4により、電子加速電極(4)の細分化された電極板(4a)(4b)(4c)(4d)に走査するように電圧を印加するように走査回路(9)にて制御される。電子放出電極(3)が熱エネルギーにより加熱されることで、電子放出電極(3)から電子が放出され、電子加速電極(4)側へ加速しながら移動する。この移動時に、電子の一部は、電子収集電極(6)の放出電極側電極板(7)および加速電極側電極板(8)で収集され、残部が電子加速電極(4)へ到達する。   According to the energy conversion device (1) in FIG. 1, the electron emission electrode (3) is heated by the thermal energy obtained from sunlight, waste heat, etc., and between the electron emission electrode (3) and the electron acceleration electrode (4). The voltage from the electron acceleration power source (5) is applied to the. At this time, the voltage on the electron acceleration electrode (4) side is scanned by the high voltage switches S1 to S4 to the electrode plates (4a), (4b), (4c), and (4d) that are subdivided in the electron acceleration electrode (4). Is controlled by the scanning circuit (9). When the electron emission electrode (3) is heated by thermal energy, electrons are emitted from the electron emission electrode (3) and move while accelerating toward the electron acceleration electrode (4). During this movement, a part of the electrons is collected by the emission electrode side electrode plate (7) and the acceleration electrode side electrode plate (8) of the electron collection electrode (6), and the remainder reaches the electron acceleration electrode (4).

図5に示すように、電子加速電極(4)から見て、電子放出電極(3)に近い放出電極側電極板(7)の電子通過用貫通孔(7a)が設けられていない部分は、その直下の電子放出電極(3)からの電子放出を抑制する。一方、電子加速電極(4)に近い加速電極側電極板(8)の電子通過用貫通孔(8a)は、電子放出電極(3)からの電子放出を増進させ、また、近隣の貫通孔(8a)は、電子の軌道を曲げる働きをする。したがって、電子加速電極(4)に近い加速電極側電極板(8)により多くの電子が滞留することになる。このため、収集電子量は、放出電極側電極板(7)の電子量<加速電極側電極板(8)の電子量となる。したがって、電子収集電極(6)は、放出電極側電極板(7)が正極、加速電極側電極板(8)が負極の電源となり、両極(6)(7)間を接続することにより、両電極板(7)(8)間の差分の電気を取り出すことができる。こうして、加速電極側電極板(8)により多くの電子が収集されることを利用して、熱エネルギーが電気エネルギーに変換される。   As shown in FIG. 5, when viewed from the electron accelerating electrode (4), the portion of the emission electrode side electrode plate (7) near the electron emission electrode (3) where the electron passage through hole (7a) is not provided is Electron emission from the electron emission electrode (3) immediately below is suppressed. On the other hand, the through-hole (8a) for electron passage in the acceleration electrode side electrode plate (8) close to the electron acceleration electrode (4) enhances the electron emission from the electron emission electrode (3), and the neighboring through-hole ( 8a) works to bend the electron trajectory. Therefore, many electrons stay in the acceleration electrode side electrode plate (8) close to the electron acceleration electrode (4). Therefore, the amount of collected electrons is the amount of electrons in the emission electrode side electrode plate (7) <the amount of electrons in the acceleration electrode side electrode plate (8). Therefore, the electron collecting electrode (6) has a positive electrode for the emission electrode side electrode plate (7) and a negative electrode for the acceleration electrode side electrode plate (8). The difference electricity between the electrode plates (7) and (8) can be taken out. In this way, heat energy is converted into electric energy by utilizing the fact that many electrons are collected by the acceleration electrode side electrode plate (8).

なお、上記実施形態では、電子収集電極(6)を2枚の電極板(7)(8)からなるものとしたが、電極板(7)(8)の数は2枚に限らず、3枚以上とすることもできる。3枚以上の場合、電子加速電極(4)に近い電極板から順に低電位(電子量大)となるので、任意の2枚の電極板から電気エネルギーを取り出すことができる。   In the above embodiment, the electron collecting electrode (6) is composed of two electrode plates (7) and (8). However, the number of electrode plates (7) and (8) is not limited to two, and 3 It can also be more than one. In the case of three or more sheets, since the potential becomes low (large amount of electrons) in order from the electrode plate close to the electron acceleration electrode (4), electric energy can be taken out from any two electrode plates.

図1は、この発明によるエネルギー変換装置の実施形態を模式的に示す図である。FIG. 1 is a diagram schematically showing an embodiment of an energy conversion device according to the present invention. 図2は、電子放出電極を模式的に示す図である。FIG. 2 is a diagram schematically showing an electron emission electrode. 図3は、電子放出電極を模式的に示す図である。FIG. 3 is a diagram schematically showing an electron emission electrode. 図4は、カーボンナノチューブ電極の製作工程を模式的に示す図である。FIG. 4 is a diagram schematically showing a manufacturing process of the carbon nanotube electrode. 図5は、電子収集電極による電子の収集を模式的に示す図である。FIG. 5 is a diagram schematically showing the collection of electrons by the electron collection electrode.

符号の説明Explanation of symbols

(1) エネルギー変換装置
(2) 真空容器
(3) 電子放出電極
(4) 電子加速電極
(4a) 短冊状電極板
(5) 電子加速電源
(6) 電子収集電極
(7) 放出電極側電極板
(7a) 電子通過用貫通孔
(8) 加速電極側電極板
(8a) 電子通過用貫通孔
(12) カーボンナノチューブ電極
(22) カーボンナノチューブ
(23) 転写用基板
(24) 金属めっき
(1) Energy converter
(2) Vacuum container
(3) Electron emission electrode
(4) Electron acceleration electrode
(4a) Strip electrode plate
(5) Electronic acceleration power supply
(6) Electron collecting electrode
(7) Emission electrode side electrode plate
(7a) Electron passage through hole
(8) Acceleration electrode side electrode plate
(8a) Through hole for electron passage
(12) Carbon nanotube electrode
(22) Carbon nanotube
(23) Transfer substrate
(24) Metal plating

Claims (5)

真空容器と、真空容器内に配置され外部からの熱エネルギーによる温度上昇によって真空中に電子を放出する電子放出電極と、真空容器内に電子放出電極と対向するように配置された電子加速電極と、電子放出電極にマイナス端子が、電子加速電極にプラス端子がそれぞれ接続された電子加速電源と、電子放出電極と電子加速電極との間に配置された電子収集電極とを備えているエネルギー変換装置において、
電子収集電極は、電子通過用貫通孔が設けられており電子放出電極に近い少なくとも1つの放出電極側電極板と、電子通過用貫通孔が設けられており電子加速電極に近い少なくとも1つの加速電極側電極板とからなり、より多くの電子が加速電極側電極板に収集されることを利用して、加速電極側電極板を負極、放出電極側電極板を正極とすることにより、電気エネルギーが取り出されることを特徴とするエネルギー変換装置。
A vacuum vessel, an electron emission electrode that is arranged in the vacuum vessel and emits electrons into the vacuum due to a temperature rise due to external heat energy, and an electron acceleration electrode arranged in the vacuum vessel so as to face the electron emission electrode An energy conversion device comprising: an electron accelerating power source in which a negative terminal is connected to the electron emission electrode, and a positive terminal is connected to the electron acceleration electrode; and an electron collection electrode disposed between the electron emission electrode and the electron acceleration electrode In
The electron collecting electrode is provided with at least one emission electrode side electrode plate provided with an electron passage through hole and close to the electron emission electrode, and at least one acceleration electrode provided with an electron passage through hole and close to the electron acceleration electrode. By making use of the fact that more electrons are collected in the acceleration electrode side electrode plate, the acceleration electrode side electrode plate is used as the negative electrode, and the emission electrode side electrode plate is used as the positive electrode. An energy conversion device characterized by being taken out.
電子収集電極のすべての電極板の貫通孔の重なりによって形成される合成開口の開口率が30〜70%の範囲とされていることを特徴とする請求項1記載のエネルギー変換装置。   2. The energy conversion device according to claim 1, wherein the aperture ratio of the synthetic aperture formed by the overlap of the through holes of all the electrode plates of the electron collecting electrode is in the range of 30 to 70%. 電子放出電極は、カーボンナノチューブにより構成されていることを特徴とする請求項1記載のエネルギー変換装置。   The energy conversion device according to claim 1, wherein the electron emission electrode is composed of carbon nanotubes. カーボンナノチューブは、基板上に金属めっきを介して転写されたものであることを特徴とする請求項3記載のエネルギー変換装置。   4. The energy conversion device according to claim 3, wherein the carbon nanotube is transferred onto the substrate through metal plating. 電子加速電極は、複数の電極板からなり、複数の電極板を走査するように電子加速電源による電圧が印加されていることを特徴とする請求項1記載のエネルギー変換装置。   The energy conversion device according to claim 1, wherein the electron acceleration electrode includes a plurality of electrode plates, and a voltage from an electron acceleration power source is applied so as to scan the plurality of electrode plates.
JP2006090671A 2006-03-29 2006-03-29 Energy converter Expired - Fee Related JP5049505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006090671A JP5049505B2 (en) 2006-03-29 2006-03-29 Energy converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006090671A JP5049505B2 (en) 2006-03-29 2006-03-29 Energy converter

Publications (2)

Publication Number Publication Date
JP2007267533A JP2007267533A (en) 2007-10-11
JP5049505B2 true JP5049505B2 (en) 2012-10-17

Family

ID=38639973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090671A Expired - Fee Related JP5049505B2 (en) 2006-03-29 2006-03-29 Energy converter

Country Status (1)

Country Link
JP (1) JP5049505B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7801277B2 (en) * 2008-03-26 2010-09-21 General Electric Company Field emitter based electron source with minimized beam emittance growth
CN103296924A (en) * 2012-02-25 2013-09-11 李星南 Novel solar energy power generating technology

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003250285A (en) * 2002-02-22 2003-09-05 Jgs:Kk Apparatus, system, and method for thermal power generation

Also Published As

Publication number Publication date
JP2007267533A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
Kamboj et al. Ultralong cycle life and outstanding capacitive performance of a 10.8 V metal free micro-supercapacitor with highly conducting and robust laser-irradiated graphene for an integrated storage device
Go et al. Thermionic energy conversion in the twenty-first century: advances and opportunities for space and terrestrial applications
JP2003189646A (en) Solar energy conversion device and system thereof
Zhang et al. Fully Solar‐Powered Uninterrupted Overall Water‐Splitting Systems
JPWO2016152766A1 (en) Flexible solar cell
TWI427665B (en) X-ray generation device and cathode thereof
KR102188080B1 (en) Electron emitting device using graphene and method for manufacturing same
Li et al. Electrical conductivity adjustment for interface capacitive‐like storage in sodium‐ion battery
Kim et al. Sodium biphenyl as anolyte for sodium–seawater batteries
CN101894725A (en) Ion source
JP2009238690A (en) Electron emission element
JP5049505B2 (en) Energy converter
US6949873B2 (en) Amorphous diamond materials and associated methods for the use and manufacture thereof
EP1493167A2 (en) Amorphous diamond materials and associated methods for the use and manufacture thereof
CN112242276B (en) Field emission neutralizer
KR101327432B1 (en) Bipolar plate and fuel cell stack or water electrolysis cell stack having the same
US10658164B2 (en) Thermionic Energy Conversion with Resupply of Hydrogen
US11618955B2 (en) Hydrogen evolution apparatus
US9666377B2 (en) Internal current collection structure of thermal to electric converting cell and manufacturing method of the same
JPWO2018225855A1 (en) Semiconductor layer, oscillation element, and method of manufacturing semiconductor layer
CN213546354U (en) DBC ceramic substrate with stress relaxation and thermoelectric device
US20090174283A1 (en) Field emission electricity generating apparatus
US9607774B2 (en) AMTEC unit cell with partially opened internal electrode and method for manufacturing the AMTEC cell
KR101303502B1 (en) Solid oxide fuel cell stack
KR20140094753A (en) Elastic Current Collector and Current Collecting Method for a Tube Shaped Cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees