JP5046824B2 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP5046824B2
JP5046824B2 JP2007244224A JP2007244224A JP5046824B2 JP 5046824 B2 JP5046824 B2 JP 5046824B2 JP 2007244224 A JP2007244224 A JP 2007244224A JP 2007244224 A JP2007244224 A JP 2007244224A JP 5046824 B2 JP5046824 B2 JP 5046824B2
Authority
JP
Japan
Prior art keywords
partition wall
pair
measurement tube
ultrasonic
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007244224A
Other languages
Japanese (ja)
Other versions
JP2009074932A (en
Inventor
智夫 五明
一樹 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP2007244224A priority Critical patent/JP5046824B2/en
Publication of JP2009074932A publication Critical patent/JP2009074932A/en
Application granted granted Critical
Publication of JP5046824B2 publication Critical patent/JP5046824B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、計測管の両端部の開口に1対の超音波センサを対峙させた超音波流量計に関する。   The present invention relates to an ultrasonic flowmeter in which a pair of ultrasonic sensors are opposed to openings at both ends of a measurement tube.

この種の従来の超音波流量計としては、計測管の両端部に一体形成された1対のセンサ保持部に、それぞれ超音波センサを保持したものが知られている(例えば、特許文献1を参照)。
特開2006−337059(第1図)
As this type of conventional ultrasonic flowmeter, one in which an ultrasonic sensor is respectively held in a pair of sensor holding portions integrally formed at both ends of a measurement tube is known (for example, see Patent Document 1). reference).
JP 2006-337059 (FIG. 1)

ところが、上述した従来の超音波流量計では、計測管の管壁を伝播した超音波(以下、適宜「筐体ノイズ」という)が受信側の超音波センサにて受信され得る。筐体ノイズは、計測管内を流れる流体を伝播した超音波より先に、受信側の超音波センサに受信されるため、その受信信号は、流体を伝播した超音波に筐体ノイズが重畳したものとなり、流体を伝播した超音波の受信タイミングが不明確になる。このため、流体を伝播した超音波の伝播時間、延いては、流体の流量を精度よく計測することが困難であった。   However, in the above-described conventional ultrasonic flowmeter, ultrasonic waves propagated through the tube wall of the measurement tube (hereinafter referred to as “housing noise” as appropriate) can be received by the ultrasonic sensor on the receiving side. Since the housing noise is received by the ultrasonic sensor on the receiving side prior to the ultrasonic wave propagating through the fluid flowing in the measurement tube, the received signal is a superposition of the housing noise on the ultrasonic wave propagating through the fluid Thus, the reception timing of the ultrasonic wave propagating through the fluid becomes unclear. For this reason, it has been difficult to accurately measure the propagation time of the ultrasonic wave that has propagated the fluid, and thus the flow rate of the fluid.

本発明は、上記事情に鑑みてなされたもので、計測精度を従来より向上させることが可能な超音波流量計の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an ultrasonic flowmeter capable of improving the measurement accuracy from the conventional level.

上記目的を達成するためになされた請求項1の発明に係る超音波流量計は、流体が流れ込む入口と流体が流れ出す出口とを有したメーターケースの内部を仕切壁にて上流側流路と下流側流路とに仕切り、その仕切壁を貫通した計測管の両端部の開口に1対の超音波センサを対峙させて備えた超音波流量計において、計測管の外側を覆った筒形をなして仕切壁の表裏両面から相反する方向にそれぞれ延び、各先端部が計測管より先方に突出して超音波センサを計測管の端部の開口から離して保持した1対の樹脂製筒形ホルダーを設け、それら1対の樹脂製筒形ホルダーを、軸方向に凹凸が連続した蛇腹筒構造にすると共に、仕切壁とは音響インピーダンスが異なる材質の別部品にして、仕切壁に固定したところに特徴を有する。 In order to achieve the above object, an ultrasonic flowmeter according to the invention of claim 1 is characterized in that the inside of a meter case having an inlet into which a fluid flows and an outlet from which the fluid flows out is separated from an upstream channel and a downstream by a partition wall. In an ultrasonic flowmeter that is divided into a side channel and has a pair of ultrasonic sensors facing the openings at both ends of the measurement tube that penetrates the partition wall, it has a cylindrical shape that covers the outside of the measurement tube A pair of resin cylindrical holders extending in opposite directions from the front and back surfaces of the partition wall, each tip projecting forward from the measurement tube, and holding the ultrasonic sensor away from the opening at the end of the measurement tube The pair of plastic cylindrical holders is provided with a bellows-cylindrical structure with concavities and convexities in the axial direction, and is a separate part made of a material with a different acoustic impedance from the partition wall, and is fixed to the partition wall Have

請求項2の発明に係る超音波流量計は、流体が流れ込む入口と流体が流れ出す出口とを有したメーターケースの内部を仕切壁にて上流側流路と下流側流路とに仕切り、その仕切壁を貫通した計測管の両端部の開口に1対の超音波センサを対峙させて備えた超音波流量計において、計測管の外側を覆った筒形をなして仕切壁の表裏両面から相反する方向にそれぞれ延び、各先端部が計測管より先方に突出して超音波センサを計測管の端部の開口から離して保持した1対の樹脂製筒形ホルダーを設け、それら1対の樹脂製筒形ホルダーを、軸方向に凹凸が連続した蛇腹筒構造にすると共に、計測管に対して隙間を設けて配置したところに特徴を有する。 The ultrasonic flowmeter according to the invention of claim 2 divides the inside of a meter case having an inlet through which a fluid flows and an outlet through which the fluid flows into an upstream channel and a downstream channel by a partition wall, and the partition In the ultrasonic flowmeter provided with a pair of ultrasonic sensors facing each other at the openings at both ends of the measurement tube penetrating the wall, it forms a cylindrical shape that covers the outside of the measurement tube and contradicts both the front and back surfaces of the partition wall. A pair of resin cylindrical holders each extending in the direction, each tip projecting forward from the measurement tube and holding the ultrasonic sensor away from the opening at the end of the measurement tube, and the pair of resin tubes The shape holder is characterized in that it has a bellows cylinder structure with concavities and convexities in the axial direction and is arranged with a gap with respect to the measurement tube .

請求項3の発明は、請求項1又は2に記載の超音波流量計において、仕切壁をポリアセタール樹脂で構成しかつ、樹脂製筒形ホルダーをウレタン樹脂で構成したところに特徴を有する。 The invention of claim 3 is characterized in that, in the ultrasonic flowmeter according to claim 1 or 2, the partition wall is made of polyacetal resin and the resin cylindrical holder is made of urethane resin.

請求項4の発明は、請求項1乃至3の何れかに記載の超音波流量計において、各樹脂製筒形ホルダーを縦に分割してそれぞれ1対のホルダー構成体を設けると共に、仕切壁の表裏両面から突出して基端部より先端部が側方に張り出した係合突部を設け、1対のホルダー構成体の分割面に、1対のホルダー構成体が軸方向と直交する方向へ移動する過程で係合突部と凹凸係合して、1対のホルダー構成体の軸方向への移動を規制可能な係合溝を形成したところに特徴を有する。   According to a fourth aspect of the present invention, in the ultrasonic flowmeter according to any one of the first to third aspects, each of the resin cylindrical holders is vertically divided to provide a pair of holder components, and the partition wall Engagement protrusions that protrude from both the front and back sides and that protrude from the base end to the side are provided, and the pair of holder components move in a direction perpendicular to the axial direction on the split surface of the pair of holder components In the process, the engagement protrusions are engaged with the projections to form engagement grooves that can regulate the movement of the pair of holder components in the axial direction.

請求項5の発明は、請求項1乃至4の何れかに記載の超音波流量計において、1対の樹脂製筒形ホルダーの先端部から内側に突出して、計測管の両端面に係止した位置決め突起を備えたところに特徴を有する。   According to a fifth aspect of the present invention, in the ultrasonic flowmeter according to any one of the first to fourth aspects, the pair of resin cylindrical holders protrudes inward from the front ends of the pair of resin cylindrical holders and are locked to both end faces of the measuring tube. It is characterized in that it has positioning protrusions.

請求項6の発明は、請求項1乃至5の何れかに記載の超音波流量計において、計測管を金属製としたところに特徴を有する。   The invention of claim 6 is characterized in that in the ultrasonic flowmeter according to any one of claims 1 to 5, the measurement tube is made of metal.

[請求項1〜3の発明]
請求項1及び2の発明によれば、メーターケース内は仕切壁にて、上流側流路と下流側流路とに仕切られており、その仕切壁を貫通した計測管によって連通している。メーターケースの入口からメーターケースの上流側流路に流れ込んだ流体は、全て計測管を通過し、下流側流路へと流れ込む。そして、計測管を通過する際の流体の流速が、1対の超音波センサ間で送受信された超音波の伝播時間に基づいて演算され、その流速に計測管の断面積を乗じて流量が演算される。
[Invention of Claims 1 to 3 ]
According to the first and second aspects of the present invention, the inside of the meter case is partitioned by the partition wall into the upstream flow path and the downstream flow path, and is communicated by the measurement pipe penetrating the partition wall. All of the fluid that flows into the upstream flow path of the meter case from the inlet of the meter case passes through the measurement pipe and flows into the downstream flow path. Then, the flow velocity of the fluid passing through the measurement tube is calculated based on the propagation time of the ultrasonic waves transmitted and received between the pair of ultrasonic sensors, and the flow rate is calculated by multiplying the flow velocity by the cross-sectional area of the measurement tube. Is done.

ここで、本発明の超音波流量計では、計測管の外側を覆った1対の樹脂製筒形ホルダーにそれぞれ超音波センサが保持されている。従って、超音波は、1対の樹脂製筒形ホルダーを伝播して受信側の超音波センサに到達し得るが、各樹脂製筒形ホルダーは蛇腹筒構造をなしているので、樹脂製筒形ホルダーを伝播する超音波(筐体ノイズ)の伝播経路長が従来よりも長くなっている。これにより、筐体ノイズが受信側の超音波センサに到達するタイミングを、計測管内の流体を伝播した超音波が受信側の超音波センサに到達するタイミングに対して、十分に遅らせることができる。つまり、流体中を伝播した超音波の受信時に筐体ノイズが重畳しないから、流体を伝播した超音波の受信タイミング明確にすることができ、流体中を伝播した超音波の伝播時間の計測精度、延いては、流量の計測精度を従来より向上させることができる。そして、請求項2の発明のように、計測管に対して1対の樹脂製筒形ホルダーを隙間を設けて配置することで、樹脂製筒形ホルダーを介して計測管に伝搬される筐体ノイズを低減させることができるので、流量の計測精度をさらに向上させることができる。 Here, in the ultrasonic flowmeter of the present invention, the ultrasonic sensors are respectively held by a pair of resin cylindrical holders covering the outside of the measurement tube. Accordingly, the ultrasonic waves can propagate through the pair of resin cylindrical holders and reach the ultrasonic sensor on the receiving side. However, since each resin cylindrical holder has a bellows cylindrical structure, The propagation path length of the ultrasonic wave (casing noise) propagating through the holder is longer than before. Accordingly, the timing at which the housing noise reaches the reception-side ultrasonic sensor can be sufficiently delayed with respect to the timing at which the ultrasonic wave propagated through the fluid in the measurement tube reaches the reception-side ultrasonic sensor. In other words, since the housing noise is not superimposed when receiving the ultrasonic wave that has propagated in the fluid, the reception timing of the ultrasonic wave that has propagated in the fluid can be clarified, and the measurement accuracy of the propagation time of the ultrasonic wave that has propagated in the fluid As a result, the measurement accuracy of the flow rate can be improved as compared with the prior art. Then , as in the second aspect of the invention, a pair of resin cylindrical holders are arranged with a gap with respect to the measurement pipe so that the casing is propagated to the measurement pipe via the resin cylindrical holder. Since noise can be reduced, flow rate measurement accuracy can be further improved.

また、請求項の構成によれば、別部品で構成された仕切壁と各樹脂製筒形ホルダーとの界面において、それらの音響インピーダンスの相違により、筐体ノイズが反射する。即ち、筐体ノイズの伝播が阻害され、筐体ノイズを減衰させることができる。ここで、請求項3の発明のように、仕切壁をポリアセタール樹脂で構成し、樹脂製筒形ホルダーをウレタン樹脂で構成することが好ましい。なお、仕切壁を樹脂ではなく金属(例えば、アルミニウムなど)で構成すると、樹脂製筒形ホルダーとの音響インピーダンスの差を大きくすることができ、より効果的である。 Moreover, according to the structure of Claim 1 , at the interface of the partition wall comprised with another part, and each resin cylindrical holder, housing noise reflects by the difference in those acoustic impedances. That is, the propagation of the housing noise is hindered and the housing noise can be attenuated. Here, it is preferable that the partition wall is made of polyacetal resin and the resin cylindrical holder is made of urethane resin as in the invention of claim 3. If the partition wall is made of metal (for example, aluminum) instead of resin, the difference in acoustic impedance with the resin cylindrical holder can be increased, which is more effective.

[請求項4の発明]
請求項4の発明によれば、1対のホルダー構成体を、軸方向と直交する方向(互いの分割面を近づける方法)へ移動して合体させる過程で、各ホルダー構成体の互いの分割面に形成された係合溝が、仕切壁の表裏両面から突出した係合突部に凹凸係合する。そして、係合突部の先端部と係合溝とがホルダー構成体の軸方向で係止して、1対のホルダー構成体、即ち、それらを合体してなる樹脂製筒形ホルダーの軸方向への移動が規制され、各樹脂製筒形ホルダーが仕切壁の表裏両面に固定される。
[Invention of claim 4]
According to the invention of claim 4, in the process of moving the pair of holder components in the direction orthogonal to the axial direction (method of bringing the divided surfaces close to each other) and combining them, the divided surfaces of the holder components The engaging grooves formed on the concave and convex portions engage with the engaging protrusions protruding from both the front and back surfaces of the partition wall. And the front-end | tip part of an engagement protrusion and an engagement groove | channel are latched in the axial direction of a holder structure, and the axial direction of a pair of holder structure, ie, the resin cylindrical holder formed by uniting them And the resin cylindrical holders are fixed to both the front and back surfaces of the partition wall.

[請求項5の発明]
請求項5の発明によれば、1対の樹脂製筒形ホルダーの内側に収容された計測管を軸方向で位置決めすることができる。
[Invention of claim 5]
According to the invention of claim 5, the measuring tube accommodated inside the pair of resin cylindrical holders can be positioned in the axial direction.

[請求項6の発明]
請求項6の発明によれば、温度変化による計測管の断面積変化を防止することができる。なお、流体をスムーズに流すために、継ぎ目の無い引抜管又は押出管にすることが好ましい。
[Invention of claim 6]
According to invention of Claim 6, the change of the cross-sectional area of a measuring tube by a temperature change can be prevented. In order to make the fluid flow smoothly, it is preferable to use a seamless drawn tube or extruded tube.

以下、本発明の一実施形態を図1〜図7に基づいて説明する。
図1及び図2における符号10は、本発明の超音波流量計であって流体(液体又はガス、具体的には、比較的音速の速い水素ガスやヘリウムガス)が流れるパイプライン100(図2参照)の途中に取り付けられている。超音波流量計10は、メーターケース20の内部に計量アッシ30を収容してなる。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
Reference numeral 10 in FIGS. 1 and 2 is an ultrasonic flowmeter of the present invention, and a pipeline 100 (FIG. 2) in which a fluid (liquid or gas, specifically, hydrogen gas or helium gas having a relatively high acoustic velocity) flows. (See Fig.). The ultrasonic flow meter 10 includes a metering assembly 30 inside a meter case 20.

メーターケース20は、両側部においてケース本体21とケース蓋体22,22とに分割可能となっている。そして、ケース本体21の一方の開口(図1における右側の開口)から計量アッシ30を挿入し、ケース蓋体22,22にてケース本体21の両開口端を閉塞することで超音波流量計10が構成されている。なお、ケース本体21とケース蓋体22,22とは、図示しない複数のビスによって固定されている。   The meter case 20 can be divided into a case main body 21 and case cover bodies 22 and 22 on both sides. Then, the measurement assembly 30 is inserted from one opening (the right opening in FIG. 1) of the case main body 21, and both opening ends of the case main body 21 are closed by the case lid bodies 22, 22, so that the ultrasonic flowmeter 10. Is configured. The case body 21 and the case lids 22 and 22 are fixed by a plurality of screws (not shown).

メーターケース20の内部には、計量アッシ30を収容した計量アッシ収容室23が備えられている。計量アッシ収容室23は全体として円筒構造をなすと共に、その軸方向の中央部から両端部に向かうに従って徐々に拡径している。   Inside the meter case 20, a measuring assembly housing chamber 23 for storing the measuring assembly 30 is provided. The measuring assembly housing chamber 23 has a cylindrical structure as a whole, and gradually increases in diameter from the axial center to both ends.

図2に示すように、メーターケース20(詳細にはケース本体21)の側面には、1対の接続筒部24,24が設けられている。接続筒部24,24は、メーターケース20の側面から僅かに突出し計量アッシ収容室23の軸方向に並んで設けられている。接続筒部24,24のうち、一方の接続筒部24(図2における右側の接続筒部24)の内部は、メーターケース20内(計量アッシ収容室23)に流体が流れ込む導入路24A(本発明の「入口」に相当する)となっており、他方の接続筒部24(図2における左側の接続筒部24)の内部は、メーターケース20内(計量アッシ収容室23)から流体が流れ出す排出路24B(本発明の「出口」に相当する)となっている。なお、接続筒部24,24の内周面には、メーターケース20をパイプライン100の途中に螺合接続するための雌螺旋部が形成されている。   As shown in FIG. 2, a pair of connecting tube portions 24, 24 are provided on the side surface of the meter case 20 (specifically, the case body 21). The connecting tube portions 24, 24 slightly protrude from the side surface of the meter case 20 and are provided side by side in the axial direction of the measuring assembly housing chamber 23. Of the connecting tube portions 24, 24, the inside of one connecting tube portion 24 (the right connecting tube portion 24 in FIG. 2) is an introduction path 24 </ b> A (the main channel 24 </ b> A) through which fluid flows into the meter case 20 (the measuring assembly housing chamber 23). The fluid flows out from the inside of the meter case 20 (measuring assembly storage chamber 23) in the other connecting tube portion 24 (the left connecting tube portion 24 in FIG. 2). It is a discharge path 24B (corresponding to the “exit” of the present invention). A female spiral portion for screwing and connecting the meter case 20 to the middle of the pipeline 100 is formed on the inner peripheral surfaces of the connecting cylinder portions 24 and 24.

図2に示すように、計量アッシ収容室23の軸方向の中間部には、仕切壁35が設けられている。仕切壁35は、1対の接続筒部24,24の中間位置で計量アッシ収容室23を二部屋に仕切っている。即ち、計量アッシ収容室23が、導入路24Aと連通した上流側流路25と、排出路24Bと連通した下流側流路26とに仕切られている。   As shown in FIG. 2, a partition wall 35 is provided at an intermediate portion in the axial direction of the weighing assembly housing chamber 23. The partition wall 35 partitions the measuring assembly housing chamber 23 into two chambers at an intermediate position between the pair of connecting tube portions 24, 24. That is, the measurement assembly housing chamber 23 is partitioned into an upstream flow path 25 that communicates with the introduction path 24A and a downstream flow path 26 that communicates with the discharge path 24B.

仕切壁35は、例えば、樹脂(具体的には、ポリアセタール樹脂)の成形品であって、計量アッシ30に一体に設けられている。仕切壁35は、計量アッシ収容室23の中間部における内径より小径な円板形状をなしている(図7(A)参照)。仕切壁35の外周面と計量アッシ収容室23の内周面との間はOリング37によってシールされている。   The partition wall 35 is a molded product of resin (specifically, polyacetal resin), for example, and is provided integrally with the weighing assembly 30. The partition wall 35 has a disk shape that is smaller in diameter than the inner diameter of the intermediate portion of the measurement assembly housing chamber 23 (see FIG. 7A). A space between the outer peripheral surface of the partition wall 35 and the inner peripheral surface of the measurement assembly housing chamber 23 is sealed by an O-ring 37.

仕切壁35の中心には計測管挿通孔36が形成され計測管31が貫通している。計測管31は、例えば、金属製のストレートパイプであって、内径及び外径が一定な円管状をなしている。具体的には、押出加工引又は引抜加工した継ぎ目のないアルミニウム又はアルミニウム合金製のパイプで構成されている。計測管31を金属製としたことで、流体の温度変化による計測管31の流路31Aの断面積変化を防止することができる。   A measurement tube insertion hole 36 is formed at the center of the partition wall 35 and the measurement tube 31 passes therethrough. The measurement tube 31 is, for example, a metal straight pipe and has a circular tube shape with a constant inner diameter and outer diameter. Specifically, it is composed of a seamless aluminum or aluminum alloy pipe that has been drawn or drawn. Since the measurement pipe 31 is made of metal, it is possible to prevent a change in the cross-sectional area of the flow path 31A of the measurement pipe 31 due to a temperature change of the fluid.

一方、図7(B)に示すように、計測管挿通孔36は、計測管31の外径と同径の小径部36Aと、小径部36Aより大径な大径部36Bとから構成され、大径部36Bの内側にOリング38が装着されている。このOリング38によって、計測管31の外周面と計測管挿通孔36の内周面との間がシールされている。なお、Oリング38によって仕切壁35と計測管31とのがたつきを防止することもできる。   On the other hand, as shown in FIG. 7B, the measurement tube insertion hole 36 includes a small diameter portion 36A having the same diameter as the outer diameter of the measurement tube 31, and a large diameter portion 36B larger in diameter than the small diameter portion 36A. An O-ring 38 is mounted inside the large diameter portion 36B. The O-ring 38 seals between the outer peripheral surface of the measurement tube 31 and the inner peripheral surface of the measurement tube insertion hole 36. Note that rattling between the partition wall 35 and the measurement tube 31 can be prevented by the O-ring 38.

仕切壁35を貫通した計測管31は、計量アッシ収容室23の軸方向における一端寄り位置から他端寄り位置(換言すれば、ケース本体21の一方の開口から他方の開口)まで延びている。そして、上流側流路25と下流側流路26の間は、この計測管31内の流路31Aのみによって連絡されている。即ち、メーターケース20の導入路24A(一方の接続筒部24)から上流側流路25へと流入した流体は、全て計測管31(流路31A)を通過して下流側流路26へと流れるようになっている。   The measuring tube 31 penetrating the partition wall 35 extends from a position near one end in the axial direction of the measurement assembly housing chamber 23 to a position near the other end (in other words, from one opening of the case body 21 to the other opening). The upstream flow path 25 and the downstream flow path 26 are connected only by the flow path 31 </ b> A in the measurement pipe 31. That is, all of the fluid that has flowed into the upstream flow path 25 from the introduction path 24A (one connecting cylinder portion 24) of the meter case 20 passes through the measurement pipe 31 (flow path 31A) to the downstream flow path 26. It comes to flow.

図1に示すように、計量アッシ収容室23の軸方向における両端部には、1対の超音波センサ50,50が配置されている。超音波センサ50,50は、計測管31と同軸上に配置されており、図2に示すように、計測管31の流路31Aを挟んで対向配置されている。   As shown in FIG. 1, a pair of ultrasonic sensors 50, 50 are arranged at both ends in the axial direction of the weighing assembly housing chamber 23. The ultrasonic sensors 50, 50 are arranged coaxially with the measurement tube 31, and are arranged opposite to each other with the flow channel 31A of the measurement tube 31 interposed therebetween as shown in FIG.

各超音波センサ50,50は、その前面に送受信面51を有し、後端部に係止鍔部52を有している。また、各超音波センサ50の送受信面51は、計測管31の開口に対して所定の距離だけ離れて対峙している。そして、計測管31に対して上記した位置に超音波センサ50,50を位置決めして保持するために、計量アッシ30には1対のセンサホルダー40,40(本発明の「樹脂製筒形ホルダー」に相当する)が備えられている。   Each of the ultrasonic sensors 50 and 50 has a transmission / reception surface 51 on the front surface, and a locking collar 52 on the rear end. In addition, the transmission / reception surface 51 of each ultrasonic sensor 50 is opposed to the opening of the measurement tube 31 by a predetermined distance. In order to position and hold the ultrasonic sensors 50, 50 at the above-described positions with respect to the measuring tube 31, the measuring assembly 30 is provided with a pair of sensor holders 40, 40 (“resin cylindrical holder of the present invention”). Is equivalent to “)”.

1対のセンサホルダー40,40は、仕切壁35を挟んで対称に配置されており、同一形状をなしている。センサホルダー40は、仕切壁35から計測管31の軸方向に沿って延びており、計測管31の外周面を覆った筒形をなしている(図2参照)。また、センサホルダー40,40は、仕切壁35とは音響インピーダンスが異なる樹脂(例えば、ウレタン樹脂)の成形品である。   The pair of sensor holders 40, 40 are arranged symmetrically across the partition wall 35 and have the same shape. The sensor holder 40 extends from the partition wall 35 along the axial direction of the measurement tube 31 and has a cylindrical shape covering the outer peripheral surface of the measurement tube 31 (see FIG. 2). The sensor holders 40, 40 are molded products of a resin (for example, urethane resin) having a different acoustic impedance from the partition wall 35.

図3に示すように、1つのセンサホルダー40は、1対のホルダー構成体41,41に分割可能となっており、それらを合体させることで構成されている。詳細には、1対のホルダー構成体41,41は、センサホルダー40を軸方向に沿って縦に分割した構造をなしかつ、同一形状をなしている。1対のホルダー構成体41,41を同一形状としたことで、成形金型の共通化を図ることができる。   As shown in FIG. 3, one sensor holder 40 can be divided into a pair of holder structures 41, 41 and is configured by combining them. Specifically, the pair of holder structures 41, 41 has a structure in which the sensor holder 40 is vertically divided along the axial direction and has the same shape. By making the pair of holder constituting bodies 41, 41 into the same shape, it is possible to share a molding die.

ホルダー構成体41の縁部からは、ホルダー構成体41,41同士を結合するための結合壁42,42が側方に張り出している。これら結合壁42,42はホルダー構成体41,41の分割面と面一な平板状をなしており、2つのホルダー構成体41,41の分割面を重ねて合体したときに、それらホルダー構成体41,41の結合壁42,42同士が重なるようになっている。そして、図6に示すように、合体に伴い重なった結合壁42,42に、例えば、タッピンネジ43,43を貫通させることで1対のホルダー構成体41,41が合体状態に保持されている。なお、各結合壁42には、タッピンネジ43用の下穴42Aが開けられている。   From the edge part of the holder structure 41, the coupling walls 42 and 42 for connecting the holder structures 41 and 41 protrude sideways. These coupling walls 42, 42 have a flat plate shape that is flush with the divided surfaces of the holder components 41, 41, and when the divided surfaces of the two holder components 41, 41 are overlapped and joined, The connecting walls 42 and 42 of 41 and 41 overlap each other. Then, as shown in FIG. 6, for example, the pair of holder structures 41 and 41 are held in the combined state by passing the tapping screws 43 and 43 through the coupling walls 42 and 42 that overlap with each other. Each coupling wall 42 is provided with a pilot hole 42A for a tapping screw 43.

図7(B)に示すように、仕切壁35の表裏両面(背中合わせの両側面)には、計測管31の軸方向に突出して先端部が直角に折れ曲がった「L」字状のフック39(本発明の「係合突部」に相当する)が突出形成されており、図5に示すように、各ホルダー構成体41の分割面には、フック39の形状に対応して「L」字状をなした係合溝44が形成されている。そして、図6に示すように、1対のホルダー構成体41,41を、その軸方向と直交する方向(互いの分割面を近づける方向)へ移動してそれらを合体させる過程で、係合溝44とフック39とが凹凸係合して(図2参照)、各ホルダー構成体41,41(センサホルダー40)の軸方向への移動が規制される。即ち、各センサホルダー40,40が、仕切壁35の表裏両面に固定される。   As shown in FIG. 7B, on the front and back surfaces (both side surfaces of the back-to-back) of the partition wall 35, an “L” -shaped hook 39 that protrudes in the axial direction of the measuring tube 31 and is bent at a right angle. (Corresponding to the “engagement protrusion” of the present invention) is formed so as to project, and as shown in FIG. 5, the divided surface of each holder component 41 has an “L” shape corresponding to the shape of the hook 39. An engaging groove 44 having a shape is formed. Then, as shown in FIG. 6, in the process of moving the pair of holder structures 41, 41 in a direction orthogonal to the axial direction (a direction in which the divided surfaces are brought closer to each other) and combining them, 44 and the hook 39 engage with each other (see FIG. 2), and the movement of the holder components 41 and 41 (sensor holder 40) in the axial direction is restricted. That is, the sensor holders 40 are fixed to both the front and back surfaces of the partition wall 35.

センサホルダー40の各部位について説明する。センサホルダー40は、仕切壁35から計測管31の軸方向に沿って延びて計測管31の外周面を覆った筒形胴部410を備えている。筒形胴部410の一端部にはフランジ壁420が一体形成されており、他端部には超音波センサ50を保持したセンサ保持部430が一体形成されている。   Each part of the sensor holder 40 will be described. The sensor holder 40 includes a cylindrical body 410 that extends from the partition wall 35 along the axial direction of the measurement tube 31 and covers the outer peripheral surface of the measurement tube 31. A flange wall 420 is integrally formed at one end portion of the cylindrical body portion 410, and a sensor holding portion 430 that holds the ultrasonic sensor 50 is integrally formed at the other end portion.

図4に示すように、フランジ壁420は、筒形胴部410のうち、仕切壁35側の端部(以下、適宜「基端部」という)から側方に張り出しており、仕切壁35より大径な円板状をなしている。図1に示すように、フランジ壁420は、仕切壁35に宛がわれて当接している。また、仕切壁35の外周面と、仕切壁35の両側に備えたフランジ壁420,420との間で、前記Oリング37を収容した環状溝が形成され、Oリング37の脱落を防止している。   As shown in FIG. 4, the flange wall 420 protrudes laterally from an end of the cylindrical body 410 on the side of the partition wall 35 (hereinafter referred to as “proximal end” as appropriate), and from the partition wall 35. It has a large diameter disk shape. As shown in FIG. 1, the flange wall 420 is addressed to and abuts on the partition wall 35. An annular groove that accommodates the O-ring 37 is formed between the outer peripheral surface of the partition wall 35 and the flange walls 420 and 420 provided on both sides of the partition wall 35 to prevent the O-ring 37 from falling off. Yes.

センサ保持部430は、筒形胴部410のうち、フランジ壁420とは反対側の端部(以下、適宜「先端部」という)から、計測管31の軸方向(計測管31の開口から離れる方向)に延設されている。   The sensor holding part 430 is separated from the end of the cylindrical body 410 opposite to the flange wall 420 (hereinafter referred to as “tip part” as appropriate) in the axial direction of the measurement tube 31 (from the opening of the measurement tube 31). Direction).

詳細には、図4に示すように、センサ保持部430は、筒形胴部410の先端部から計測管31の軸方向に延設された1対のアーム部431を備え、そのアーム部431の先端に、計測管31と同心のリング部432を備えると共に、リング部432から片持ち梁状に突出した複数(例えば4つ)の係止突片433(具体的には、スナップフィット)を備えた構造をなしている。各係止突片433は、それぞれ計測管31の開口から離れる方向に延びており、リング部432の周方向に等間隔に配置されている。各係止突片433は、超音波センサ50の係止鍔部52に形成された係止孔(図示せず)を貫通して、その縁部に先端突部433Aが係止している。そして、複数の係止突片433が協働して1つの超音波センサ50を保持している。   Specifically, as shown in FIG. 4, the sensor holding portion 430 includes a pair of arm portions 431 extending from the distal end portion of the cylindrical body portion 410 in the axial direction of the measurement tube 31, and the arm portions 431. A ring portion 432 concentric with the measurement tube 31 is provided at the tip of the tube, and a plurality of (for example, four) locking protrusions 433 (specifically, snap fit) protruding from the ring portion 432 in a cantilever shape. Has a structure with. Each locking protrusion 433 extends in a direction away from the opening of the measuring tube 31 and is arranged at equal intervals in the circumferential direction of the ring portion 432. Each locking projection 433 passes through a locking hole (not shown) formed in the locking collar 52 of the ultrasonic sensor 50, and the tip protruding portion 433A is locked to the edge thereof. A plurality of locking protrusions 433 cooperate to hold one ultrasonic sensor 50.

センサホルダー40の筒形胴部410の先端部には、複数の位置決め突起411が設けられている。図4に示すように、位置決め突起411は筒形胴部410の開口縁から内側に突出している。そして、1対のセンサホルダー40,40に備えた各位置決め突起411,411が、計測管31の両端面に突き当てられて計測管31が軸方向で位置決めされている(図2参照)。   A plurality of positioning protrusions 411 are provided at the tip of the cylindrical body 410 of the sensor holder 40. As shown in FIG. 4, the positioning protrusion 411 protrudes inward from the opening edge of the cylindrical body 410. Then, the positioning protrusions 411 and 411 provided in the pair of sensor holders 40 and 40 are abutted against both end faces of the measuring tube 31 to position the measuring tube 31 in the axial direction (see FIG. 2).

ところで、筒形胴部410の軸方向における中間部は、センサホルダー40を伝播する筐体ノイズの伝播経路長を、従来より長くするために、軸方向に沿って凹凸が連続した蛇腹筒構造をなしている。図4に示すように、蛇腹筒の断面は矩形波状をなしている。より詳細には、筒形胴部410の外周面には軸方向に複数の環状凹部412が等間隔に形成され、それら環状凹部412の両側が相対的に凸となった環状凸部413を形成すると共に、筒形胴部410の内周面のうち、前記環状凸部413が形成された部分に環状凹部414が形成されて、筒形胴部410の外周面における環状凹部412と内周面における環状凹部414とが、センサホルダー40の軸方向で交互に隣接配置された構造をなしている。なお、本実施形態では、環状凹部412,414の深さが幅寸法より大きくなっている。   By the way, the intermediate part in the axial direction of the cylindrical body 410 has a bellows cylinder structure with concavities and convexities along the axial direction in order to make the propagation path length of the housing noise propagating through the sensor holder 40 longer than before. There is no. As shown in FIG. 4, the cross-section of the bellows tube has a rectangular wave shape. More specifically, a plurality of annular recesses 412 are formed at equal intervals in the axial direction on the outer peripheral surface of the cylindrical body 410, and an annular projection 413 is formed in which both sides of the annular recesses 412 are relatively convex. In addition, an annular recess 414 is formed in a portion of the inner peripheral surface of the cylindrical body 410 where the annular protrusion 413 is formed, and the annular recess 412 and the inner peripheral surface of the outer periphery of the cylindrical body 410 are formed. The annular recesses 414 in FIG. 6 are structured so as to be alternately arranged adjacent to each other in the axial direction of the sensor holder 40. In the present embodiment, the depths of the annular recesses 412 and 414 are larger than the width dimension.

以上が、本実施形態の超音波流量計10の構造に関する説明である。この超音波流量計10は、例えば、以下の手順で組み立てることができる。   The above is the description regarding the structure of the ultrasonic flowmeter 10 of the present embodiment. This ultrasonic flow meter 10 can be assembled, for example, by the following procedure.

計量アッシ30については以下のようである。即ち、仕切壁35の計測管挿通孔36(大径部36B)にOリング38を嵌めた状態で計測管31を貫通させ、その計測管31の外周面を覆うようにセンサホルダー40,40を取り付ける。具体的には、図6に示すように、計測管31の側方から1対のホルダー構成体41,41を近づけて合体させる。このとき、仕切壁35のフック39と、各ホルダー構成体41,41の係合溝44とを凹凸係合させる。そして、タッピンネジ43で各ホルダー構成体41,41の結合壁42,42同士を結合する。これで、計測管31のうち、仕切壁35の一方側にセンサホルダー40が取り付けられる。   The measurement assembly 30 is as follows. That is, the sensor tube 40 is passed through the measurement tube 31 with the O-ring 38 fitted in the measurement tube insertion hole 36 (large diameter portion 36 </ b> B) of the partition wall 35 so as to cover the outer peripheral surface of the measurement tube 31. Install. Specifically, as shown in FIG. 6, a pair of holder constituting bodies 41, 41 are brought close to each other from the side of the measuring tube 31 and combined. At this time, the hooks 39 of the partition wall 35 and the engaging grooves 44 of the holder constituting bodies 41 and 41 are engaged with each other. And the connecting walls 42 and 42 of each holder structure 41 and 41 are couple | bonded with the tapping screw 43. FIG. Thus, the sensor holder 40 is attached to one side of the partition wall 35 in the measurement tube 31.

次いで、Oリング37を仕切壁35の外側に嵌合し、他方のセンサホルダー40を同じ手順で計測管31の外側に取り付ける。そして、各センサホルダー40,40のセンサ保持部430,430に超音波センサ50,50を取り付けて、計量アッシ30の組み立ては完了である。   Next, the O-ring 37 is fitted to the outside of the partition wall 35, and the other sensor holder 40 is attached to the outside of the measuring tube 31 in the same procedure. Then, the ultrasonic sensors 50, 50 are attached to the sensor holding portions 430, 430 of the sensor holders 40, 40, and the assembly of the weighing assembly 30 is completed.

次いで、完成した計量アッシ30をメーターケース20内に取り付ける。即ち、ケース本体21の一端側(図1における右側の端部)の開口から計量アッシ収容室23内に計量アッシ30を挿入し、センサホルダー40のフランジ壁420が計量アッシ収容室23の内面に形成された段差部23A(図1を参照)に突き当たるまで押し込む。すると、仕切壁35が、2つの接続筒部24,24の中間位置に位置決めされて、計量アッシ収容室23が軸方向で、上流側流路25と下流側流路26とに仕切られる。そして、ケース本体21の両端部にケース蓋体22,22を固定してケース本体21の両端部を閉塞すれば、超音波流量計10が完成である。   Next, the completed measuring assembly 30 is mounted in the meter case 20. That is, the measuring assembly 30 is inserted into the measuring assembly housing chamber 23 from the opening on one end side (the right end in FIG. 1) of the case body 21, and the flange wall 420 of the sensor holder 40 is formed on the inner surface of the measuring assembly housing chamber 23. It is pushed in until it hits the formed step portion 23A (see FIG. 1). Then, the partition wall 35 is positioned at an intermediate position between the two connecting cylinder portions 24, 24, and the measuring assembly housing chamber 23 is partitioned into the upstream flow path 25 and the downstream flow path 26 in the axial direction. And if the case lids 22 and 22 are fixed to both ends of the case body 21 and both ends of the case body 21 are closed, the ultrasonic flowmeter 10 is completed.

本実施形態の超音波流量計10をパイプライン100の途中に接続すると、パイプライン100の上流側からメーターケース20の上流側流路25へと流体が流入する。上流側流路25に流入した流体は、全て計測管31を通過して下流側流路26へと流入し、下流側流路26からパイプライン100の下流側へと排出される。このとき、1対の超音波センサ50,50間において、流体の流れに沿った順方向と逆行した逆方向との両方向で超音波の送受信が行われる。即ち、計測管31を流れる流体を伝播媒体として超音波を伝播させて、順方向及び逆方向における伝播時間が検出される。そして、それら伝播時間(詳細には、伝播時間の逆数差)に基づいて、流体の流速が演算され、流速に計測管31の流路31Aの断面積を乗じて流量が演算される。   When the ultrasonic flowmeter 10 of the present embodiment is connected in the middle of the pipeline 100, the fluid flows from the upstream side of the pipeline 100 to the upstream flow path 25 of the meter case 20. All of the fluid that has flowed into the upstream flow path 25 passes through the measurement pipe 31 and flows into the downstream flow path 26, and is discharged from the downstream flow path 26 to the downstream side of the pipeline 100. At this time, transmission / reception of ultrasonic waves is performed between the pair of ultrasonic sensors 50, 50 in both the forward direction along the fluid flow and the reverse direction. That is, the propagation time in the forward direction and the reverse direction is detected by propagating ultrasonic waves using the fluid flowing through the measurement tube 31 as a propagation medium. Then, based on the propagation time (specifically, the reciprocal difference in propagation time), the flow velocity of the fluid is calculated, and the flow rate is calculated by multiplying the flow velocity by the cross-sectional area of the flow path 31A of the measurement tube 31.

ここで、一方の超音波センサ50から超音波を発信すると、他方の超音波センサ50は、上述の如く計測管31を通過する流体を伝播した超音波を受信すると共に、超音波センサ50,50を保持した1対のセンサホルダー40,40と仕切壁35とを伝播した筐体ノイズを受信する。   Here, when an ultrasonic wave is transmitted from one ultrasonic sensor 50, the other ultrasonic sensor 50 receives the ultrasonic wave propagated through the fluid passing through the measurement tube 31 as described above, and the ultrasonic sensors 50, 50. The housing noise propagated through the pair of sensor holders 40, 40 and the partition wall 35 is received.

これに対し、本実施形態の超音波流量計10によれば、各センサホルダー40,40の筒形胴部410を蛇腹筒構造にしたので、筐体ノイズの伝播経路長が従来よりも長くなっている。これにより、受信側の超音波センサ50が筐体ノイズを受信するタイミングを、計測管31内の流体を伝播した超音波の受信タイミングに対して、十分に遅らせることができる。つまり、流体中を伝播した超音波の受信時に筐体ノイズが重畳しないから、流体を伝播した超音波の受信タイミングを明確にすることができ、流体中を伝播した超音波の伝播時間の計測精度、延いては、流量の計測精度を従来より向上させることができる。なお、蛇腹構造にしたことで筐体ノイズがセンサホルダー40,40を伝播中に反射し、また、筐体ノイズの伝播経路長が延びたことで、筐体ノイズが従来よりも大きく減衰するという効果も奏する。   On the other hand, according to the ultrasonic flowmeter 10 of the present embodiment, the cylindrical body portion 410 of each sensor holder 40, 40 has a bellows cylinder structure, so that the propagation path length of the housing noise becomes longer than before. ing. Thereby, the timing at which the reception-side ultrasonic sensor 50 receives the housing noise can be sufficiently delayed with respect to the reception timing of the ultrasonic wave propagated through the fluid in the measurement tube 31. In other words, since the housing noise is not superimposed when receiving the ultrasonic wave that has propagated in the fluid, the reception timing of the ultrasonic wave that has propagated in the fluid can be clarified, and the measurement accuracy of the propagation time of the ultrasonic wave that has propagated in the fluid As a result, the measurement accuracy of the flow rate can be improved as compared with the prior art. In addition, the housing noise is reflected during propagation through the sensor holders 40 and 40 due to the bellows structure, and the housing noise propagation path length is extended, so that the housing noise is attenuated more than before. There is also an effect.

さらに、センサホルダー40,40と仕切壁35とを別部品で構成すると共に、それらを互いに音響インピーダンスの異なる材質で構成したので、各センサホルダー40,40と仕切壁35との界面において筐体ノイズの一部が反射する。即ち、各センサホルダー40,40と仕切壁35との界面において筐体ノイズの伝播が阻害されるから、筐体ノイズをより一層減衰させることができる。   Furthermore, since the sensor holders 40 and 40 and the partition wall 35 are configured as separate parts and are formed of materials having different acoustic impedances, housing noise is generated at the interface between the sensor holders 40 and 40 and the partition wall 35. Part of the reflection. That is, since the propagation of the housing noise is hindered at the interface between the sensor holders 40 and 40 and the partition wall 35, the housing noise can be further attenuated.

ここで、単に筐体ノイズの伝播経路長を延ばすだけなら、超音波センサを保持するためのセンサ保持部を計測管の両端部に一体形成して、計測管を蛇腹筒構造にすればよいが、このような構成だと、計測管の内面の凹凸によって流体の流れが乱されるため、計測精度に悪影響を及ぼす虞がある。これに対し、本実施形態の超音波流量計10は、超音波センサ50,50を保持するセンサホルダー40,40を、計測管31とは別部品で構成した上で、それらセンサホルダー40,40を蛇腹筒構造にしたので、計測管31を通過する流体の流れを乱すことなく筐体ノイズの伝播経路長を従来より延ばして、計測精度の向上を図ることができる。   Here, if the length of the propagation path of the housing noise is simply increased, a sensor holding part for holding the ultrasonic sensor may be integrally formed at both ends of the measurement pipe, and the measurement pipe has a bellows cylinder structure. In such a configuration, the flow of fluid is disturbed by the irregularities on the inner surface of the measurement tube, which may adversely affect the measurement accuracy. On the other hand, in the ultrasonic flowmeter 10 of the present embodiment, the sensor holders 40 and 40 that hold the ultrasonic sensors 50 and 50 are configured as separate parts from the measurement tube 31, and then the sensor holders 40 and 40 are configured. Since the accordion cylinder structure is used, the propagation path length of the housing noise can be extended from the conventional one without disturbing the flow of the fluid passing through the measurement tube 31, and the measurement accuracy can be improved.

[他の実施形態]
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
[Other Embodiments]
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.

(1)上記実施形態において、仕切壁35とセンサホルダー40,40は、音響インピーダンスが異なる材質であればよく、ポリアセタール樹脂とウレタン樹脂の組合せに限定するものではない。例えば、仕切壁35を金属(例えば、アルミニウム)で構成してもよい。仕切壁35をアルミニウムとし、センサホルダー40をポリウレタン樹脂とした場合、仕切壁35とセンサホルダー40との界面における超音波の透過率は約50%なので、センサホルダー40、仕切壁35、センサホルダー40の順に伝播した場合に、筐体ノイズを約1/4に減衰することが可能である。   (1) In the said embodiment, the partition wall 35 and the sensor holders 40 and 40 should just be a material from which acoustic impedance differs, and are not limited to the combination of polyacetal resin and urethane resin. For example, the partition wall 35 may be made of metal (for example, aluminum). When the partition wall 35 is made of aluminum and the sensor holder 40 is made of polyurethane resin, the transmittance of ultrasonic waves at the interface between the partition wall 35 and the sensor holder 40 is about 50%. Therefore, the sensor holder 40, the partition wall 35, and the sensor holder 40 The case noise can be attenuated to about ¼ when it propagates in this order.

(2)図8(A)に示すように、仕切壁35をセンサホルダー40のフランジ壁420より大径として、その外周面にOリング37を収容するOリング溝を設けた構成としてもよい。また、図8(B)に示すように、センサホルダー40,40を、フランジ壁420,420を貫通して仕切壁35に螺合されたビス45にて仕切壁35に固定してもよい。   (2) As shown in FIG. 8A, the partition wall 35 may have a larger diameter than the flange wall 420 of the sensor holder 40, and an O-ring groove that accommodates the O-ring 37 may be provided on the outer peripheral surface thereof. Further, as shown in FIG. 8B, the sensor holders 40, 40 may be fixed to the partition wall 35 with screws 45 that pass through the flange walls 420, 420 and are screwed into the partition wall 35.

(3)さらに、図8(A)及び同図(B)に示すように計測管31の外周面とセンサホルダー40,40の内周面とを僅かに離して隙間を設けた構造としてもよい。   (3) Further, as shown in FIGS. 8A and 8B, the outer peripheral surface of the measuring tube 31 and the inner peripheral surfaces of the sensor holders 40 and 40 may be slightly separated to provide a gap. .

(4)図9に示すように、センサ保持部430のアーム部431を蛇行させて、筐体ノイズの伝播経路長をさらに延長してもよい。   (4) As shown in FIG. 9, the arm part 431 of the sensor holding part 430 may meander to further extend the propagation path length of the housing noise.

(5)上記実施形態において、センサホルダー40,40に設けた蛇腹筒の断面は矩形波状をなしていたが、山部と谷部との間が斜面となった三角波状や鋸歯状としてもよい。また、図10に示すように、筒形胴部410の外周面に螺旋状の溝部415を形成して相対的に凸となった螺旋状の凸部416を形成し、筒形胴部410の内周面のうち、螺旋状の凸部416が形成された部分に、螺旋状の凹部417を形成して、筒形胴部410の外周面に形成された螺旋状の凹部415と筒形胴部410の内周面に形成された螺旋状の凹417部とを、センサホルダー40の軸方向で隣接配置した構造としてもよい。   (5) In the above embodiment, the cross section of the bellows cylinder provided in the sensor holders 40, 40 has a rectangular wave shape, but it may have a triangular wave shape or a sawtooth shape with a slope between the peak portion and the valley portion. . Further, as shown in FIG. 10, a spiral groove 415 is formed on the outer peripheral surface of the cylindrical body 410 to form a relatively convex spiral 416, A spiral recess 417 is formed in a portion of the inner peripheral surface where the spiral convex portion 416 is formed, and the spiral recess 415 formed on the outer peripheral surface of the cylindrical barrel 410 and the cylindrical barrel. A structure in which the spiral concave portion 417 formed on the inner peripheral surface of the portion 410 is adjacently disposed in the axial direction of the sensor holder 40 may be employed.

(6)仕切壁35は、計量アッシ30に一体に設けられていたが、メーターケース20に一体形成されていてもよい。   (6) The partition wall 35 is provided integrally with the weighing assembly 30, but may be formed integrally with the meter case 20.

(7)上記実施形態では、1対のセンサホルダー40,40の両方に、位置決め突起411が設けられていたが、一方のセンサホルダー40だけに位置決め突起411を設けておき、仕切壁35の表裏両面にセンサホルダー40,40を固定した状態で、計測管31を挿入組み付け可能な構成としてもよい。なお、筒形のセンサホルダー40,40に計測管31を挿入するよりも、計測管31の側方からホルダー構成体41,41を近づけて合体させた方が、組み付けが容易である。   (7) In the above embodiment, the positioning projections 411 are provided on both of the pair of sensor holders 40, 40. However, the positioning projections 411 are provided only on one sensor holder 40, and the front and back of the partition wall 35 are provided. It is good also as a structure which can insert and assemble the measurement pipe | tube 31 in the state which fixed the sensor holders 40 and 40 to both surfaces. In addition, it is easier to assemble the holder constituent bodies 41 and 41 from the side of the measuring tube 31 than to insert the measuring tube 31 into the cylindrical sensor holders 40 and 40.

(8)計測管31の断面は円形に限るものではなく楕円形や長円形でもよい。   (8) The cross section of the measuring tube 31 is not limited to a circle but may be an ellipse or an oval.

(9)流体が計測管31に対してスムーズに流入及び流出するように、計測管31の両開口縁をテーパー状に面取りして、ラッパ状に拡径させてもよい。   (9) Both opening edges of the measurement tube 31 may be chamfered in a tapered shape so that the fluid smoothly flows in and out of the measurement tube 31 and may be expanded in a trumpet shape.

本発明の一実施形態に係る超音波流量計の平断面図1 is a cross-sectional plan view of an ultrasonic flowmeter according to an embodiment of the present invention. 超音波流量計の側断面図Side view of ultrasonic flowmeter センサホルダーの分解斜視図Exploded perspective view of sensor holder 計量アッシの平断面図Cross section of weighing assembly ホルダー構成体を分割面側から見た平面図Plan view of the holder structure as seen from the split surface side 1対のホルダー構成体を合体させる過程の側面図Side view of the process of uniting a pair of holder components 仕切壁の(A)正面図、(B)側断面図(A) Front view of partition wall, (B) Side sectional view 変形例に係る超音波流量計の側断面図Side sectional view of ultrasonic flowmeter according to modification 変形例に係るセンサホルダーの断面図Sectional drawing of the sensor holder which concerns on a modification 変形例に係るセンサホルダーの部分断面図Partial sectional view of a sensor holder according to a modification

符号の説明Explanation of symbols

10 超音波流量計
20 メーターケース
24A 導入路(入口)
24B 導出路(出口)
25 上流側流路
26 下流側流路
31 計測管
35 仕切壁
39 フック(係合突部)
40 センサホルダー(樹脂製筒形ホルダー)
41 ホルダー構成体
44 係合溝
50 超音波センサ
411 位置決め突起
10 Ultrasonic flow meter 20 Meter case 24A Introduction path (inlet)
24B Departure route (exit)
25 Upstream channel 26 Downstream channel 31 Measuring tube 35 Partition wall 39 Hook (engaging protrusion)
40 Sensor holder (plastic cylinder holder)
41 Holder structure 44 Engaging groove 50 Ultrasonic sensor 411 Positioning protrusion

Claims (6)

流体が流れ込む入口と流体が流れ出す出口とを有したメーターケースの内部を仕切壁にて上流側流路と下流側流路とに仕切り、その仕切壁を貫通した計測管の両端部の開口に1対の超音波センサを対峙させて備えた超音波流量計において、
前記計測管の外側を覆った筒形をなして前記仕切壁の表裏両面から相反する方向にそれぞれ延び、各先端部が前記計測管より先方に突出して前記超音波センサを前記計測管の端部の開口から離して保持した1対の樹脂製筒形ホルダーを設け、
それら1対の樹脂製筒形ホルダーを、軸方向に凹凸が連続した蛇腹筒構造にすると共に、前記仕切壁とは音響インピーダンスが異なる材質の別部品にして、前記仕切壁に固定したことを特徴とする超音波流量計。
The inside of the meter case having an inlet through which the fluid flows and an outlet through which the fluid flows out is divided into an upstream flow channel and a downstream flow channel by a partition wall, and 1 is provided at the openings at both ends of the measurement tube penetrating the partition wall. In an ultrasonic flowmeter equipped with a pair of ultrasonic sensors facing each other,
Forming a cylindrical shape covering the outside of the measurement tube and extending in opposite directions from both the front and back surfaces of the partition wall, each tip protrudes forward from the measurement tube, and the ultrasonic sensor is connected to the end of the measurement tube. A pair of plastic cylindrical holders held away from the opening of the
The pair of resin cylindrical holders has a bellows cylindrical structure with concavities and convexities in the axial direction, and is fixed to the partition wall as a separate part having a material different in acoustic impedance from the partition wall. Ultrasonic flow meter.
流体が流れ込む入口と流体が流れ出す出口とを有したメーターケースの内部を仕切壁にて上流側流路と下流側流路とに仕切り、その仕切壁を貫通した計測管の両端部の開口に1対の超音波センサを対峙させて備えた超音波流量計において、The inside of the meter case having an inlet through which the fluid flows and an outlet through which the fluid flows out is divided into an upstream flow channel and a downstream flow channel by a partition wall, and 1 is provided at the openings at both ends of the measurement tube penetrating the partition wall. In an ultrasonic flowmeter equipped with a pair of ultrasonic sensors facing each other,
前記計測管の外側を覆った筒形をなして前記仕切壁の表裏両面から相反する方向にそれぞれ延び、各先端部が前記計測管より先方に突出して前記超音波センサを前記計測管の端部の開口から離して保持した1対の樹脂製筒形ホルダーを設け、Forming a cylindrical shape covering the outside of the measurement tube and extending in opposite directions from both the front and back surfaces of the partition wall, each tip protrudes forward from the measurement tube, and the ultrasonic sensor is connected to the end of the measurement tube. A pair of plastic cylindrical holders held away from the opening of the
それら1対の樹脂製筒形ホルダーを、軸方向に凹凸が連続した蛇腹筒構造にすると共に、計測管に対して隙間を設けて配置したことを特徴とする超音波流量計。An ultrasonic flowmeter characterized in that the pair of resin cylindrical holders has a bellows cylindrical structure with concavities and convexities in the axial direction and is provided with a gap with respect to the measurement tube.
前記仕切壁をポリアセタール樹脂で構成しかつ、前記樹脂製筒形ホルダーをウレタン樹脂で構成したことを特徴とする請求項1又は2に記載の超音波流量計。 The ultrasonic flowmeter according to claim 1 or 2, wherein the partition wall is made of polyacetal resin and the resin cylindrical holder is made of urethane resin. 前記各樹脂製筒形ホルダーを縦に分割してそれぞれ1対のホルダー構成体を設けると共に、前記仕切壁の表裏両面から突出して基端部より先端部が側方に張り出した係合突部を設け、
前記1対のホルダー構成体の分割面に、前記1対のホルダー構成体が軸方向と直交する方向へ移動する過程で前記係合突部と凹凸係合して、前記1対のホルダー構成体の軸方向への移動を規制可能な係合溝を形成したことを特徴とする請求項1乃至3の何れかに記載の超音波流量計。
The resin cylindrical holders are vertically divided to provide a pair of holder structures, and engaging protrusions projecting from both the front and back surfaces of the partition wall and projecting from the base end to the side. Provided,
The pair of holder components is engaged with the engaging protrusions in the process of moving the pair of holder components in a direction perpendicular to the axial direction on the split surfaces of the pair of holder components. The ultrasonic flowmeter according to claim 1, wherein an engagement groove capable of restricting movement in the axial direction is formed.
前記1対の樹脂製筒形ホルダーの先端部から内側に突出して、前記計測管の両端面に係止した位置決め突起を備えたことを特徴とする請求項1乃至4の何れかに記載の超音波流量計。   5. The supermarket according to claim 1, further comprising positioning protrusions that protrude inward from the tip end portions of the pair of resin cylindrical holders and are engaged with both end faces of the measuring tube. Sonic flow meter. 前記計測管を金属製としたことを特徴とする請求項1乃至5の何れかに記載の超音波流量計。   The ultrasonic flowmeter according to claim 1, wherein the measurement tube is made of metal.
JP2007244224A 2007-09-20 2007-09-20 Ultrasonic flow meter Expired - Fee Related JP5046824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007244224A JP5046824B2 (en) 2007-09-20 2007-09-20 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007244224A JP5046824B2 (en) 2007-09-20 2007-09-20 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2009074932A JP2009074932A (en) 2009-04-09
JP5046824B2 true JP5046824B2 (en) 2012-10-10

Family

ID=40610046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007244224A Expired - Fee Related JP5046824B2 (en) 2007-09-20 2007-09-20 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP5046824B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4984346B2 (en) * 2001-02-08 2012-07-25 パナソニック株式会社 Flowmeter
JP2005180988A (en) * 2003-12-17 2005-07-07 National Institute Of Advanced Industrial & Technology Ultrasonic flowmeter
JP4737669B2 (en) * 2005-05-31 2011-08-03 愛知時計電機株式会社 Ultrasonic flow meter
JP4873535B2 (en) * 2006-02-02 2012-02-08 愛知時計電機株式会社 Ultrasonic flow meter and manufacturing method thereof

Also Published As

Publication number Publication date
JP2009074932A (en) 2009-04-09

Similar Documents

Publication Publication Date Title
US9297680B2 (en) Ultrasonic flow meter having deterioration suppression in flow rate accuracy
JP2009518633A (en) Plastic ultrasonic measuring section and corresponding measuring method
WO2011064905A1 (en) Ultrasonic fluid-measuring structure and ultrasonic fluid-measuring apparatus
GB2299860A (en) Ultrasonic flowmeter
EP1742024B1 (en) Ultrasonic flowmeter with triangular cross section
KR20150141876A (en) Clamp-on type ultrasonic flowmeter and method for measuring flow rate
RU2637381C2 (en) Ultrasonic waveguide
WO2020044887A1 (en) Ultrasonic flowmeter
WO2011064906A1 (en) Channel member and ultrasonic fluid-measuring apparatus
JP4707088B2 (en) Ultrasonic flow meter
JP2009008406A (en) Ultrasonic flow meter and ultrasonic transducer unit
KR101327182B1 (en) Structure of combing duct with ultrasonic oscillator and ultrasonics wave flowmeter using the same of
JP5046824B2 (en) Ultrasonic flow meter
JP5527756B2 (en) Ultrasonic flow meter
JP5259313B2 (en) Ultrasonic flow meter
JP4459828B2 (en) Ultrasonic flow meter
JP4931550B2 (en) Ultrasonic flow meter
JP5240763B2 (en) Ultrasonic flow meter
JP5224465B2 (en) Ultrasonic flow meter and noise wave remover for ultrasonic flow meter
JP4943825B2 (en) Ultrasonic flow meter
JP4873535B2 (en) Ultrasonic flow meter and manufacturing method thereof
JP2000065613A (en) Ultrasonic flowmeter
RU2277700C2 (en) Cut in section of ultrasound flowmeter
JP4485648B2 (en) Ultrasonic flow meter
AU2022394015A1 (en) Throughflow measuring device having a housing and measuring insert

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5046824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees