JP5046610B2 - Resin composition comprising styrene resin and polylactic acid - Google Patents
Resin composition comprising styrene resin and polylactic acid Download PDFInfo
- Publication number
- JP5046610B2 JP5046610B2 JP2006285067A JP2006285067A JP5046610B2 JP 5046610 B2 JP5046610 B2 JP 5046610B2 JP 2006285067 A JP2006285067 A JP 2006285067A JP 2006285067 A JP2006285067 A JP 2006285067A JP 5046610 B2 JP5046610 B2 JP 5046610B2
- Authority
- JP
- Japan
- Prior art keywords
- styrene
- resin
- monomer
- meth
- polylactic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Biological Depolymerization Polymers (AREA)
Description
本発明は、ポリ乳酸を含有するスチレン系樹脂組成物に関する。植物由来の材料であるポリ乳酸を配合することにより、石油由来のスチレン系樹脂の使用量を減らすことができ、かつスチレン系樹脂の本来の性質を損なうことがなく、さらに流動性が向上した樹脂組成物を与え、この樹脂組成物は筐体等の成形体に好ましく用いることができる。 The present invention relates to a styrene resin composition containing polylactic acid. By blending polylactic acid, which is a plant-derived material, the amount of petroleum-derived styrene resin can be reduced, the original properties of styrene resin are not impaired, and fluidity is further improved A composition is provided, and the resin composition can be preferably used for a molded body such as a casing.
スチレン系樹脂は成形が容易であること、軽量であること等を生かして発泡体、シート、筐体等数多くの産業分野に使用されている。
一方、近年、石油資源枯渇の問題や炭酸ガス排出増加に伴う地球温暖化といった環境問題の観点より、石油を原料としない非石油系樹脂が注目されている。
こうした中で、植物由来原料をモノマーとした樹脂が開発されてきており、既にとうもろこしや芋類等から得た澱粉を糖化して、さらに乳酸菌により乳酸とし、ついで乳酸を環化させてラクチドとし、これを開環重合することによりポリ乳酸樹脂が生産されるようになった。
Styrenic resins are used in many industrial fields such as foams, sheets, and casings, taking advantage of their ease of molding and light weight.
On the other hand, in recent years, non-petroleum resins that do not use petroleum as a raw material have attracted attention from the viewpoint of environmental problems such as global warming associated with the problem of depletion of petroleum resources and carbon dioxide emissions.
Under these circumstances, resins using plant-derived raw materials as monomers have been developed. Starch obtained from corn and potatoes has already been saccharified, further lactic acid bacteria to lactic acid, and then lactic acid cyclized to lactide, A polylactic acid resin has been produced by ring-opening polymerization of this.
このようにして得られた植物由来原料の樹脂中の炭素は、大気中の炭酸ガスを光合成して固定化されたものであるために、たとえ焼却廃棄しても炭酸ガス総量を増加させることのない、いわゆる「カーボンニュートラル」な材料と言える。すなわち、循環型で環境維持可能な材料である。
このような植物由来の環境維持可能な材料を石油系樹脂に配合して使用することにより、石油系樹脂の使用量を削減することが可能であり、種々の検討が行われている(特許文献1参照)。石油系樹脂の代表格であるスチレン系樹脂にも上記材料を配合して使用することができれば、スチレン系樹脂の使用量も多いだけに、削減量も多大であると期待される。スチレン樹脂の使用量を削減することは、石油使用量および炭酸ガス総量を減らすことであり、環境負荷の低減につながる。
The carbon in the plant-derived raw material resin thus obtained is fixed by photosynthesis of carbon dioxide in the atmosphere, so that even if incinerated, it increases the total amount of carbon dioxide. It can be said that there is no so-called “carbon neutral” material. In other words, it is a circulation type material that can maintain the environment.
By using such a plant-derived material capable of maintaining the environment in a petroleum resin, the amount of petroleum resin used can be reduced, and various studies have been conducted (Patent Documents). 1). If the above materials can be blended and used in a styrene resin, which is a typical petroleum resin, the amount of styrene resin used is large, and the amount of reduction is expected to be great. Reducing the amount of styrene resin used is to reduce the amount of oil used and the total amount of carbon dioxide gas, leading to a reduction in environmental burden.
本発明は上記課題を達成するものであり、植物由来の樹脂をスチレン系樹脂に配合することにより環境負荷を低減することができ、また、スチレン系樹脂の本来の成形性を失わずに、実用的な剛性と衝撃強度及び優れた流動性を兼ね備えている。 The present invention achieves the above-mentioned problems, and can reduce the environmental burden by blending a plant-derived resin with a styrene resin, and can be put into practical use without losing the original moldability of the styrene resin. It combines the rigidity, impact strength and excellent fluidity.
本発明者はこの課題達成のため、鋭意検討した結果、スチレン系樹脂、スチレン系単量体と(メタ)アクリル酸エステル系単量体からなるブロック共重合体およびポリ乳酸からなる樹脂組成物が様々な成形方法に対応できる流動性、優れた機械的物性を兼ね備えていることを見出し、本発明に到達した。
すなわち、本発明は下記のとおりである。
(1)ゴム変性ポリスチレン、又はゴム変性ポリスチレンとポリスチレンの混合物(A)80〜30重量%、スチレン系単量体と(メタ)アクリル酸エステル系単量体からなるブロック共重合体(B)10〜30重量%及びポリ乳酸(C)10〜40重量%からなる樹脂組成物であって、スチレン系単量体と(メタ)アクリル酸エステル系単量体からなるブロック共重合体(B)がa−b型ブロック共重合体であり、aセグメントがスチレン系単量体から形成され、bセグメントが炭素数1〜4のアルキル鎖を有する(メタ)アクリル酸エステル系単量体から形成されており、かつaセグメントとbセグメントとの割合が重量比で40/60〜95/5であることを特徴とする樹脂組成物。
(2)(1)に記載の樹脂組成物からなる成形体。
As a result of diligent studies by the present inventor to achieve this problem, a styrene resin, a block copolymer comprising a styrene monomer and a (meth) acrylic acid ester monomer, and a resin composition comprising polylactic acid are obtained. The present inventors have found that it has fluidity and various mechanical properties that can be applied to various molding methods, and has reached the present invention.
That is, the present invention is as follows.
(1) Rubber-modified polystyrene, or a mixture of rubber-modified polystyrene and polystyrene (A) 80 to 30% by weight, a block copolymer (B) consisting of a styrene monomer and a (meth) acrylic acid ester monomer 10 A resin composition comprising -30 wt% and polylactic acid (C) 10-40 wt%, wherein a block copolymer (B) comprising a styrene monomer and a (meth) acrylate monomer an ab type block copolymer, wherein the a segment is formed from a styrene monomer, and the b segment is formed from a (meth) acrylic acid ester monomer having an alkyl chain having 1 to 4 carbon atoms. And the ratio of the a segment and the b segment is 40/60 to 95/5 in weight ratio.
(2) A molded article comprising the resin composition according to (1).
本発明により、植物由来の樹脂をスチレン系樹脂に配合することにより環境負荷を低減することができ、また、スチレン系樹脂の本来の成形性を失わずに、実用的な剛性と衝撃強度及び優れた流動性を兼ね備えた樹脂組成物を提供することができる。 According to the present invention, environmental load can be reduced by blending plant-derived resin with styrenic resin, and practical rigidity and impact strength and excellent without losing the original moldability of styrenic resin. A resin composition having excellent fluidity can be provided.
以下、本発明について詳細に説明する。
本発明で用いられるスチレン系樹脂(A)とは、スチレンを主成分とした重合体である。
スチレン系樹脂(A)としては、ポリスチレン、ゴム変性ポリスチレン、スチレンと他のビニル系単量体を共重合したスチレン系樹脂、等が挙げられる。
ポリスチレンとはスチレンの単独重合体であり、一般的に入手できるものを適宜選択して用いることができる。一般的に入手できるポリスチレンは、スチレンの重合度、分子量分布、可塑剤や滑剤の量が調整され、流動性の異なるものが提供されている。本発明で使用されるポリスチレンの流動性はISO1133に従って測定したメルトフローレイトが1〜10g/10minの範囲にあることが好ましい。ポリスチレンの流動性が上記範囲を下回ると、本発明の樹脂組成物の成形性、特に射出成形での金型充填性が低下して好ましくない。一方、ポリスチレンの流動性が上記範囲を上回ると、本発明の樹脂組成物の成形性、特に押出成形、真空成形、ブロー成形での厚み均一性が低下して好ましくない。
Hereinafter, the present invention will be described in detail.
The styrene resin (A) used in the present invention is a polymer mainly composed of styrene.
Examples of the styrene resin (A) include polystyrene, rubber-modified polystyrene, styrene resin obtained by copolymerizing styrene and other vinyl monomers, and the like.
Polystyrene is a homopolymer of styrene, and generally available ones can be appropriately selected and used. Generally available polystyrenes are provided with different flowability by adjusting the degree of polymerization of styrene, molecular weight distribution, and the amount of plasticizer and lubricant. As for the fluidity of the polystyrene used in the present invention, the melt flow rate measured in accordance with ISO 1133 is preferably in the range of 1 to 10 g / 10 min. When the flowability of polystyrene is lower than the above range, the moldability of the resin composition of the present invention, particularly the mold filling property in injection molding, is not preferable. On the other hand, when the flowability of polystyrene exceeds the above range, the moldability of the resin composition of the present invention, particularly the thickness uniformity in extrusion molding, vacuum molding, and blow molding, is unfavorable.
ゴム変性ポリスチレンとはスチレン単独の重合体からなる連続相にゴム状重合体がグラフト重合して粒子分散してなる成形材料であり、一般的に入手できるものを適宜選択して用いることができる。ゴム変性ポリスチレンに用いるゴムとしては、ポリブタジエン、スチレン−ブタジエン共重合体、ポリイソプレン、ブタジエン−イソプレン共重合体、天然ゴム、エチレン−プロピレン共重合体などを挙げることができる。特に、ポリブタジエン、スチレン−ブタジエン共重合体が好ましい。
ゴム変性ポリスチレンの流動性は、ISO1133に従って測定したメルトフローレイトが1〜10g/10minの範囲にあることが好ましい。ゴム変性ポリスチレンの流動性が上記範囲を下回ると、本発明の樹脂組成物の成形性、特に射出成形での金型充填性が低下して好ましくない。一方、ゴム変性ポリスチレンの流動性が上記範囲を上回ると、本発明の樹脂組成物の成形性、特に押出成形、真空成形、ブロー成形での厚み均一性が低下して好ましくない。
スチレンと他のビニル系単量体を共重合したスチレン系樹脂としては、スチレンと(メタ)アクリル酸の共重合体、スチレンと無水マレイン酸の共重合体、等が挙げられる。
Rubber-modified polystyrene is a molding material in which a rubber-like polymer is graft-polymerized and dispersed in a continuous phase composed of a polymer of styrene alone, and generally available materials can be appropriately selected and used. Examples of the rubber used for the rubber-modified polystyrene include polybutadiene, styrene-butadiene copolymer, polyisoprene, butadiene-isoprene copolymer, natural rubber, and ethylene-propylene copolymer. In particular, polybutadiene and styrene-butadiene copolymer are preferable.
As for the fluidity of rubber-modified polystyrene, the melt flow rate measured according to ISO 1133 is preferably in the range of 1 to 10 g / 10 min. When the fluidity of the rubber-modified polystyrene is below the above range, the moldability of the resin composition of the present invention, particularly the mold filling property in the injection molding, is not preferable. On the other hand, when the fluidity of the rubber-modified polystyrene exceeds the above range, the moldability of the resin composition of the present invention, particularly the thickness uniformity in extrusion molding, vacuum molding, and blow molding, is unfavorable.
Examples of the styrene resin obtained by copolymerizing styrene and another vinyl monomer include a copolymer of styrene and (meth) acrylic acid, a copolymer of styrene and maleic anhydride, and the like.
本発明で用いられるスチレン系単量体と(メタ)アクリル酸エステル系単量体からなるブロック共重合体(B)とは、a−b型ブロック共重合体であり、aセグメントがスチレン系単量体から形成され、bセグメントが炭素数1〜4のアルキル鎖を有する(メタ)アクリル酸エステル系単量体から形成される。当該a−b型ブロック共重合体は、例えばポリメリックペルオキシドを用いて公知の製造プロセスである塊状重合法、懸濁重合法、乳化重合法及び溶液重合法等で製造することができる。
炭素数1〜4のアルキル鎖を有する(メタ)アクリル酸エステル系単量体の具体例としては、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチル、エステル(メタ)アクリル酸イソプロピルエステル、アクリル酸ブチルエステルが挙げられ、中で最も入手しやすい単量体はメタアクリル酸メチルエステルである。
The block copolymer (B) comprising a styrene monomer and a (meth) acrylic acid ester monomer used in the present invention is an ab block copolymer, and the a segment is a styrene monomer. The b segment is formed from a (meth) acrylic acid ester monomer having an alkyl chain having 1 to 4 carbon atoms. The ab type block copolymer can be produced by using, for example, polymeric peroxide by a known production process such as bulk polymerization, suspension polymerization, emulsion polymerization, and solution polymerization.
Specific examples of the (meth) acrylic acid ester monomer having an alkyl chain having 1 to 4 carbon atoms include (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, ester (meth) acrylic acid isopropyl ester, Examples include butyl acrylate, and the most easily available monomer is methacrylic acid methyl ester.
スチレン系単量体からなるaセグメントと(メタ)アクリル酸エステル系単量体からなるbセグメントとの割合が重量比で40/60〜95/5であり、好ましくは45/55〜93/7である。(メタ)アクリル酸エステル系単量体からなるbセグメントの重量比が上記範囲外では、スチレン系単量体と(メタ)アクリル酸エステル系単量体からなるブロック共重合体(B)を配合することによる引張破壊歪みやシャルピー衝撃強さの向上等が認められない、あるいはむしろ低下する場合もあるので好ましくない。
上記好適なスチレン系単量体と(メタ)アクリル酸エステル系単量体からなるブロック共重合体(B)は市販されているものを使用してもよい。例としては日本油脂(株)製「モディパーMS10B」等が挙げられる。
The ratio of the a segment made of a styrene monomer and the b segment made of a (meth) acrylic acid ester monomer is 40/60 to 95/5 by weight, preferably 45/55 to 93/7. It is. When the weight ratio of the b segment composed of a (meth) acrylate monomer is outside the above range, a block copolymer (B) composed of a styrene monomer and a (meth) acrylate monomer is blended. It is not preferable because the tensile fracture strain and the Charpy impact strength are not improved or may be lowered.
A commercially available block copolymer (B) composed of the above preferred styrene monomer and (meth) acrylic acid ester monomer may be used. Examples include “Modiper MS10B” manufactured by Nippon Oil & Fats Co., Ltd.
本発明に用いるポリ乳酸(C)は、とうもろこしやイモ類等から得た澱粉を糖化して、更に乳酸菌により乳酸を得、次に、乳酸を環化反応させてラクチドとし、これを開環重合すると言う方法で得られたポリ乳酸(C)を用いることが出来る。また、石油からラクチドを合成しこれを開環重合して得たポリ乳酸でも、あるいは石油から乳酸を得、これを直接脱水縮合して得たポリ乳酸を用いてもよい。
また、ポリ乳酸(C)を構成するL−乳酸およびD−乳酸の比率に関しては、特に限定
されることなく用いることが出来る。しかし、ポリ乳酸を結晶化させる事により耐熱性を高める必要がある場合には、L−乳酸とD−乳酸の比率が100:0〜90:10、好ましくはL−乳酸とD−乳酸の比率が100:0〜95:5であるポリ乳酸を用いる。
The polylactic acid (C) used in the present invention is obtained by saccharifying starch obtained from corn, potatoes, etc., further obtaining lactic acid by lactic acid bacteria, and then cyclizing the lactic acid into lactide, which is subjected to ring-opening polymerization. Then, polylactic acid (C) obtained by the method can be used. Also, polylactic acid obtained by synthesizing lactide from petroleum and ring-opening polymerization thereof, or polylactic acid obtained by obtaining lactic acid from petroleum and directly dehydrating and condensing it may be used.
Further, the ratio of L-lactic acid and D-lactic acid constituting the polylactic acid (C) can be used without any particular limitation. However, when it is necessary to increase the heat resistance by crystallizing polylactic acid, the ratio of L-lactic acid to D-lactic acid is 100: 0 to 90:10, preferably the ratio of L-lactic acid to D-lactic acid. Polylactic acid having a ratio of 100: 0 to 95: 5 is used.
更に、ポリ乳酸(C)には、主たる構成モノマーであるD−乳酸およびL−乳酸以外に他の成分が共重合されていても良い。他の共重合成分としては、エチレングリコール、プロピレングリコール、ブタンジオール、シュウ酸、アジピン酸、セバシン酸等を挙げることができる。このような共重合成分は、全単量体成分中、通常0〜30モル%の含有量とするのが好ましく、さらに0〜10モル%であることがより好ましい。
ポリ乳酸(C)の分子量や分子量分布は、実質的に成形加工が可能であれば特に限定されないが、重量平均分子量としては好ましくは1万以上40万以下、より好ましくは4万以上30万以下である。
Furthermore, other components may be copolymerized with polylactic acid (C) in addition to D-lactic acid and L-lactic acid which are main constituent monomers. Examples of other copolymer components include ethylene glycol, propylene glycol, butanediol, oxalic acid, adipic acid, and sebacic acid. Such a copolymer component is preferably contained in an amount of usually 0 to 30 mol%, more preferably 0 to 10 mol%, in all monomer components.
The molecular weight and molecular weight distribution of polylactic acid (C) are not particularly limited as long as it can be substantially molded, but the weight average molecular weight is preferably 10,000 to 400,000, more preferably 40,000 to 300,000. It is.
スチレン系樹脂(A)、スチレン系単量体と(メタ)アクリル酸エステル系単量体からなるブロック共重合体(B)およびポリ乳酸(C)の合計を100重量%として、スチレン系樹脂(A)90〜10重量%、スチレン系単量体と(メタ)アクリル酸エステル系単量体からなるブロック共重合体(B)5〜40重量%およびポリ乳酸(C)5〜50重量%である。好ましくは、スチレン系樹脂(A)80〜30重量%、スチレン系単量体と(メタ)アクリル酸エステル系単量体からなるブロック共重合体(B)10〜30重量%およびポリ乳酸(C)10〜40重量%である。スチレン系樹脂(A)とスチレン系単量体と(メタ)アクリル酸エステル系単量体からなるブロック共重合体(B)の合計が50重量%未満、すなわち、ポリ乳酸(C)が50重量%を超えると樹脂組成物のビカット軟化温度や熱変形温度がポリスチレンやゴム変性ポリスチレンに比べて大幅に低下して好ましくない。一方、スチレン系樹脂(A)とスチレン系単量体と(メタ)アクリル酸エステル系単量体からなるブロック共重合体(B)の合計が95重量%を超える、すなわち、ポリ乳酸(C)が5重量%未満では樹脂組成物の物性はポリ乳酸(C)を添加しない場合と実質的に変わらず、ポリ乳酸(C)の添加効果が発現されず好ましくない。
また、スチレン系単量体と(メタ)アクリル酸エステル系単量体からなるブロック共重合体(B)が5重量%未満では添加しない場合に比べて引張破壊歪みやシャルピー衝撃強さ等の向上はほとんど認められない。一方、スチレン系単量体と(メタ)アクリル酸エステル系単量体からなるブロック共重合体(B)の添加量が40重量%を越えた場合は、シャルピー衝撃強さ等の向上は頭打ちあるいは若干低下する場合もあり、好ましくない。
The total of the styrene resin (A), the block copolymer (B) composed of the styrene monomer and the (meth) acrylic acid ester monomer, and the polylactic acid (C) is 100% by weight, and the styrene resin ( A) 90 to 10% by weight, 5 to 40% by weight of a block copolymer (B) composed of a styrene monomer and a (meth) acrylic acid ester monomer, and 5 to 50% by weight of polylactic acid (C) is there. Preferably, the styrene resin (A) is 80 to 30% by weight, the block copolymer (B) consisting of a styrene monomer and a (meth) acrylic acid ester monomer and 10 to 30% by weight, and polylactic acid (C ) 10 to 40% by weight. The total of the block copolymer (B) composed of the styrene resin (A), the styrene monomer, and the (meth) acrylic acid ester monomer is less than 50% by weight, that is, the polylactic acid (C) is 50% by weight. If it exceeds 50%, the Vicat softening temperature and heat distortion temperature of the resin composition will be significantly lowered compared to polystyrene and rubber-modified polystyrene, which is not preferable. On the other hand, the total of the block copolymer (B) composed of the styrene resin (A), the styrene monomer, and the (meth) acrylic acid ester monomer exceeds 95% by weight, that is, polylactic acid (C). If it is less than 5% by weight, the physical properties of the resin composition are not substantially different from those when polylactic acid (C) is not added, and the effect of adding polylactic acid (C) is not manifested.
In addition, when the block copolymer (B) composed of a styrene monomer and a (meth) acrylic acid ester monomer is less than 5% by weight, the tensile fracture strain, Charpy impact strength, etc. are improved. Is almost unacceptable. On the other hand, when the addition amount of the block copolymer (B) composed of the styrene monomer and the (meth) acrylic acid ester monomer exceeds 40% by weight, the improvement of the Charpy impact strength or the like is peaked or It may be slightly lowered, which is not preferable.
スチレン系樹脂(A)、スチレン系単量体と(メタ)アクリル酸エステル系単量体からなるブロック共重合体(B)およびポリ乳酸(C)を配合、溶融、混練、造粒する方法は特に限定されず、樹脂組成物の製造で常用されている方法を用いることができる。例えば、ドラムタンブラー、ヘンシェルミキサー等で配合した上記成分をバンバリーミキサー、単軸押出機、二軸押出機、ニーダー等を用いて溶融、混練し、ロータリーカッター、ファンカッター等で造粒することによって樹脂組成物を得ることができる。溶融、混練における樹脂温度は180〜240℃が好ましい。目標とする樹脂温度にするためには、押出機等のシリンダ温度は樹脂温度よりも10〜20℃低い温度に設定すべきである。樹脂温度が180℃未満ではスチレン系樹脂(A)及びスチレン系単量体と(メタ)アクリル酸エステル系単量体からなるブロック共重合体(B)の流動性が不十分でポリ乳酸(C)との混合が不十分となり好ましくない。一方、樹脂温度が240℃を越えるとポリ乳酸(C)の熱分解が起こり好ましくない。
さらに、本発明の樹脂組成物は、スチレン系樹脂(A)、スチレン系単量体と(メタ)アクリル酸エステル系単量体からなるブロック共重合体(B)及びポリ乳酸(C)を配合、溶融、混練、造粒するときに、酸化防止剤、滑剤、着色剤、紫外線吸収剤、光安定剤といった添加剤を添加することができる。
本発明の樹脂組成物は射出成形、シート押出成形、真空成形、異型押出成形、ブロー成形といった方法で成形されて樹脂製品となる。
A method of blending, melting, kneading, and granulating a styrene resin (A), a block copolymer (B) composed of a styrene monomer and a (meth) acrylic acid ester monomer, and polylactic acid (C) It does not specifically limit, The method currently used by manufacture of the resin composition can be used. For example, the above ingredients blended with a drum tumbler, Henschel mixer, etc. are melted and kneaded using a Banbury mixer, single screw extruder, twin screw extruder, kneader, etc., and granulated with a rotary cutter, fan cutter, etc. A composition can be obtained. The resin temperature in melting and kneading is preferably 180 to 240 ° C. In order to achieve the target resin temperature, the cylinder temperature of the extruder or the like should be set to a temperature 10 to 20 ° C. lower than the resin temperature. When the resin temperature is less than 180 ° C., the flowability of the styrene resin (A) and the block copolymer (B) composed of the styrene monomer and the (meth) acrylic acid ester monomer is insufficient, and the polylactic acid (C ) Is insufficient and is not preferable. On the other hand, when the resin temperature exceeds 240 ° C., polylactic acid (C) is thermally decomposed, which is not preferable.
Furthermore, the resin composition of the present invention comprises a styrene resin (A), a block copolymer (B) composed of a styrene monomer and a (meth) acrylic acid ester monomer, and polylactic acid (C). When melting, kneading, and granulating, additives such as antioxidants, lubricants, colorants, ultraviolet absorbers, and light stabilizers can be added.
The resin composition of the present invention is molded into a resin product by a method such as injection molding, sheet extrusion molding, vacuum molding, profile extrusion molding, or blow molding.
以下、実施例を挙げて本発明をさらに説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。
<スチレン系樹脂(A)−1>
(A)−1;PSジャパン株式会社製 ゴム変性ポリスチレン「H8117」
基礎物性を(表−1)に示した。
<スチレン系樹脂(A)−2>
(A)−2;PSジャパン株式会社製 ポリスチレン「685」
基礎物性を(表−1)に示した。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further, this invention is not limited to a following example, unless the summary is exceeded.
<Styrene resin (A) -1>
(A) -1; Rubber-modified polystyrene “H8117” manufactured by PS Japan Co., Ltd.
The basic physical properties are shown in (Table-1).
<Styrene resin (A) -2>
(A) -2; Polystyrene “685” manufactured by PS Japan Co., Ltd.
The basic physical properties are shown in (Table-1).
<スチレン系単量体と(メタ)アクリル酸エステル系単量体からなるブロック共重合体(B)−1>
(B)−1;日本油脂株式会社製 「モディパー MS10B」
スチレンとメタクリル酸メチルとのブロック共重合体で組成比:スチレン/メタクリル酸メチル=90/10である。また、当該ブロック共重合体をスチレンモノマーに30重量%で溶解した溶液の粘度は2.0Pa・sであった。
<ポリ乳酸(C)>
(C)−1;Nature Works LLC製「4032D」
ISO1133(200℃、5kgf)に従って測定したメルトフローレイトは14.2g/10minであった。
<Block copolymer (B) -1 comprising styrene monomer and (meth) acrylic acid ester monomer>
(B) -1; “Modiper MS10B” manufactured by NOF Corporation
It is a block copolymer of styrene and methyl methacrylate, and the composition ratio is styrene / methyl methacrylate = 90/10. Moreover, the viscosity of the solution which melt | dissolved the said block copolymer in the styrene monomer at 30 weight% was 2.0 Pa.s.
<Polylactic acid (C)>
(C) -1; “4032D” manufactured by Nature Works LLC
The melt flow rate measured according to ISO 1133 (200 ° C., 5 kgf) was 14.2 g / 10 min.
<樹脂組成物の製造>
スチレン系樹脂(A)、スチレン系単量体と(メタ)アクリル酸エステル系単量体からなるブロック共重合体(B)およびポリ乳酸(C)を(表−2)〜(表−4)の上段に示す通り計量した。
計量した原料をドラムタンブラーで配合し、同方向二軸押出機(WERNER& PF
LEIDERER社製ZSK25)でシリンダー設定温度200℃、スクリュー回転数
200rpmにて溶融混練し溶融ストランドとして抜き出した。溶融ストランドを水冷し
ロータリーカッターでストランドをカッティングしてペレット状の樹脂組成物を得た。
<Manufacture of resin composition>
Styrenic resin (A), block copolymer (B) comprising styrene monomer and (meth) acrylic acid ester monomer, and polylactic acid (C) (Table-2) to (Table-4) Weighed as shown in the upper row.
Weighed raw materials are mixed with a drum tumbler, and the same direction twin screw extruder (WERNER & PF)
The mixture was melt kneaded at a cylinder setting temperature of 200 ° C. and a screw rotation speed of 200 rpm with a LEIDEER ZSK25) and extracted as a molten strand. The molten strand was cooled with water and the strand was cut with a rotary cutter to obtain a pellet-shaped resin composition.
<物性の測定> メルトフローレイトおよび機械物性の測定
上記で製造した樹脂組成物のメルトフローレイトをISO1133にしたがって測定した。又、上記で製造した樹脂組成物をISOタイプA試験片に射出成形し、ISO527−1に従って引張強さ、引張破壊歪みを、ISO178に従って曲げ弾性率を、ISO179に従ってシャルピー衝撃強さを、ISO306に従ってビカット軟化温度を測定した。
以上の測定結果を(表−2)〜(表−4)の下段に示した。
<Measurement of physical properties> Measurement of melt flow rate and mechanical properties The melt flow rate of the resin composition produced above was measured in accordance with ISO 1133. Also, the resin composition produced above is injection molded into an ISO type A test piece, tensile strength and tensile fracture strain according to ISO 527-1, bending elastic modulus according to ISO 178, Charpy impact strength according to ISO 179, and ISO 306 according to ISO 306. Vicat softening temperature was measured.
The above measurement results are shown in the lower part of (Table-2) to (Table-4).
<表−2>
実施例1では、スチレン系単量体と(メタ)アクリル酸エステル系単量体からなるブロック共重合体(B)−1を10重量部配合した。これに対して、比較例1ではポリスチレンであるスチレン系樹脂(A)−2を10重量部配合し、HIPSゴム量およびポリ乳酸の含有量を実施例1と同一とした。実施例1の方が、シャルピー衝撃強さが高くなっている。
同様に実施例2〜4、参考実施例5に対して比較例2〜5はスチレン系単量体と(メタ)アクリル酸エステル系単量体からなるブロック共重合体(B)−1をスチレン系樹脂(A)−2に置き換えた。実施例の方が総じて引張破壊歪みおよびシャルピー衝撃強さが高くなっている。
<Table-2>
In Example 1, 10 parts by weight of a block copolymer (B) -1 composed of a styrene monomer and a (meth) acrylic acid ester monomer was blended. In contrast, in Comparative Example 1, 10 parts by weight of polystyrene-based styrene resin (A) -2 was blended, and the amount of HIPS rubber and the content of polylactic acid were the same as those in Example 1. In Example 1, the Charpy impact strength is higher.
Similarly, in comparison with Examples 2 to 4 and Reference Example 5, Comparative Examples 2 to 5 are styrene block copolymers (B) -1 comprising styrene monomers and (meth) acrylate monomers. System resin (A) -2. The examples generally have higher tensile fracture strain and Charpy impact strength.
<表−3>
ポリ乳酸(C)の配合量が50重量%を越えると(比較例6)、耐熱性の指標であるビカット軟化温度が50℃以下と大幅に低下してしまうので、好ましくない。
また、実施例6と比較例7を比較してわかるように、スチレン系単量体と(メタ)アクリル酸エステル系単量体からなるブロック共重合体(B)の配合量が40重量%を越えると、引張破断歪みおよびシャルピー衝撃強さの向上は頭打ちである。また、(メタ)アクリル酸エステル系単量体からなるブロック共重合体(B)の配合量が5重量%未満(比較例8)では、引張破断歪みおよびシャルピー衝撃強さの向上は認められない。
<Table-3>
When the blending amount of polylactic acid (C) exceeds 50% by weight (Comparative Example 6), the Vicat softening temperature, which is an index of heat resistance, is greatly reduced to 50 ° C. or less, which is not preferable.
Further, as can be seen by comparing Example 6 and Comparative Example 7, the blending amount of the block copolymer (B) composed of the styrene monomer and the (meth) acrylate monomer is 40% by weight. Beyond that, the improvement in tensile rupture strain and Charpy impact strength is at its peak. In addition, when the amount of the block copolymer (B) composed of the (meth) acrylic acid ester monomer is less than 5% by weight (Comparative Example 8), improvement in tensile breaking strain and Charpy impact strength is not recognized. .
<表−4>
スチレン系樹脂(A)がゴム変性ポリスチレン(スチレン系樹脂(A)−1)およびポリスチレン(スチレン系樹脂(A)−2)の混合系についても、スチレン系単量体と(メタ)アクリル酸エステル系単量体からなるブロック共重合体(B)の配合により、引張破壊歪みおよびシャルピー衝撃強さの向上が認められる。(実施例7対比較例10、実施例8対比較例11)
<Table-4>
Styrene resin (A) is a rubber-modified polystyrene (styrene resin (A) -1) and polystyrene (styrene resin (A) -2) mixed system. Improvement in tensile fracture strain and Charpy impact strength is recognized by blending the block copolymer (B) composed of the monomer. (Example 7 vs. Comparative Example 10, Example 8 vs. Comparative Example 11)
本発明の樹脂組成物はポリスチレンの用途である発泡体、シート、筐体等数多くの産業分野に好ましく用いられる。 The resin composition of the present invention is preferably used in many industrial fields such as foams, sheets and housings, which are uses of polystyrene.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006285067A JP5046610B2 (en) | 2006-10-19 | 2006-10-19 | Resin composition comprising styrene resin and polylactic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006285067A JP5046610B2 (en) | 2006-10-19 | 2006-10-19 | Resin composition comprising styrene resin and polylactic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008101125A JP2008101125A (en) | 2008-05-01 |
JP5046610B2 true JP5046610B2 (en) | 2012-10-10 |
Family
ID=39435704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006285067A Active JP5046610B2 (en) | 2006-10-19 | 2006-10-19 | Resin composition comprising styrene resin and polylactic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5046610B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5366167B2 (en) * | 2007-06-15 | 2013-12-11 | Psジャパン株式会社 | Resin composition comprising styrene resin and polylactic acid |
JP5191264B2 (en) * | 2008-04-11 | 2013-05-08 | Psジャパン株式会社 | Resin composition containing styrene resin and polylactic acid resin |
JP2010235715A (en) * | 2009-03-30 | 2010-10-21 | Ps Japan Corp | Styrenic resin composition having excellent chemical resistance |
JP5881164B2 (en) * | 2012-04-23 | 2016-03-09 | 株式会社ジェイエスピー | Method for producing skin-coated foamed molded article |
JP6421825B2 (en) * | 2014-12-18 | 2018-11-14 | Dic株式会社 | Styrene foam sheet and molded body using the same |
JP7333218B2 (en) * | 2019-07-04 | 2023-08-24 | Psジャパン株式会社 | Resin composition and molding |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4491337B2 (en) * | 2004-02-06 | 2010-06-30 | 大阪瓦斯株式会社 | Biodegradable plastic material and molded body |
JP2005239957A (en) * | 2004-02-27 | 2005-09-08 | Hitachi Ltd | Polylactic acid resin composition |
JP2005281424A (en) * | 2004-03-29 | 2005-10-13 | Unitika Ltd | Block copolymer, method for producing the same and resin composition |
JP4655598B2 (en) * | 2004-11-19 | 2011-03-23 | パナソニック電工株式会社 | Thermoplastic resin composition and thermoplastic resin molded article |
JP4935222B2 (en) * | 2006-07-26 | 2012-05-23 | 東レ株式会社 | Resin composition and molded article comprising the same |
-
2006
- 2006-10-19 JP JP2006285067A patent/JP5046610B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008101125A (en) | 2008-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008050426A (en) | Resin composition comprising styrene resin and polylactic acid | |
Jaratrotkamjorn et al. | Toughness enhancement of poly (lactic acid) by melt blending with natural rubber | |
EP2500382B1 (en) | Resin composition, and molded article produced from the same | |
KR101340696B1 (en) | PoLYPROPYLENE•POLYLACTIC ACID RESIN COMPOSITION | |
JP5046610B2 (en) | Resin composition comprising styrene resin and polylactic acid | |
EP2186846B1 (en) | Natural Fiber-Reinforced Polylactic Acid Resin Composition and Molded Product Made Using the Same | |
JP5366167B2 (en) | Resin composition comprising styrene resin and polylactic acid | |
JP6034866B2 (en) | POLY-3-HYDROXYALKANOATE RESIN COMPOSITION AND MOLDED ARTICLE | |
JP2010121131A (en) | Natural fiber-reinforced polylactic acid resin composition and molded article using the same | |
Zhang et al. | Influence of chlorinated polyethylene on poly (vinyl chloride)/poly (α-methylstyrene-acrylonitrile) blends: Mechanical properties, morphology and thermal properties | |
JP5191264B2 (en) | Resin composition containing styrene resin and polylactic acid resin | |
JP5200281B2 (en) | Thermoplastic resin composition | |
WO2011043187A1 (en) | Eyeglasses molded article, process for production of same, and eyeglasses | |
KR20240021175A (en) | High clarity and soft molding compositions comprising SMMA copolymers and SBC-block copolymers | |
JP4424636B2 (en) | Transparent heat-resistant thermoplastic resin composition | |
JP2007308648A (en) | Thermoplastic resin composition and sheet | |
JP2004189805A (en) | Polycarbonate resin composition | |
JP4942426B2 (en) | Resin composition comprising styrene resin and polylactic acid | |
JP2010222462A (en) | Styrene-based resin composition excellent in chemical resistance and molded article formed using this | |
JPWO2007119342A1 (en) | Aliphatic polyester resin composition | |
JP2008101126A (en) | Resin composition composed of styrene resin and polylactic acid | |
JP2010222456A (en) | Styrene-based resin composition excellent in chemical resistance and molded article formed using this | |
JP2010235715A (en) | Styrenic resin composition having excellent chemical resistance | |
KR101690838B1 (en) | Environment friendly resin composition having excellent impact strength and heat resistance | |
JP2010222448A (en) | Styrene-based resin composition excellent in chemical resistance and molded article formed using this |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090716 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101101 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111018 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120306 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120710 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120717 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150727 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5046610 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |