JP5046367B2 - Piezoelectric material, method for manufacturing the same, vibration damping device, and driving device - Google Patents

Piezoelectric material, method for manufacturing the same, vibration damping device, and driving device Download PDF

Info

Publication number
JP5046367B2
JP5046367B2 JP2006287180A JP2006287180A JP5046367B2 JP 5046367 B2 JP5046367 B2 JP 5046367B2 JP 2006287180 A JP2006287180 A JP 2006287180A JP 2006287180 A JP2006287180 A JP 2006287180A JP 5046367 B2 JP5046367 B2 JP 5046367B2
Authority
JP
Japan
Prior art keywords
piezoelectric
medium
piezoelectric material
particles
piezoelectric particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006287180A
Other languages
Japanese (ja)
Other versions
JP2008108762A (en
Inventor
祥吾 間々田
直幸 矢口
実 鈴木
征則 半坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2006287180A priority Critical patent/JP5046367B2/en
Publication of JP2008108762A publication Critical patent/JP2008108762A/en
Application granted granted Critical
Publication of JP5046367B2 publication Critical patent/JP5046367B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、媒体中に複数の圧電粒子が分散された圧電材とその製造方法、可動部材の振動を圧電材によって抑える制振装置、及び可動部材を圧電材によって駆動する駆動装置に関する。   The present invention relates to a piezoelectric material in which a plurality of piezoelectric particles are dispersed in a medium, a manufacturing method thereof, a vibration damping device that suppresses vibration of a movable member with the piezoelectric material, and a drive device that drives the movable member with the piezoelectric material.

応力を加えると電気分極を発生し、電界(電場)を加えると歪みを発生する強誘電体の焼結体である圧電セラミックなどの圧電材が知られている。従来の圧電材は、シート状の圧電材料に電極を印刷し所定の寸法に切り出して積層体を形成し、脱脂後の積層体を電気炉によって焼成して形成されている(例えば、特許文献1参照)。このような従来の圧電材は、結晶相比率を制御することによって目的とする特性を選定可能にしている。また、圧電セラミックスの粉体をゴム中に分散させた圧電ゴムが知られている。従来の圧電ゴムは、圧電体として径方向に分極された圧電セラミックの粉体をゴム中に含有している(例えば、特許文献2参照)。   2. Description of the Related Art Piezoelectric materials such as piezoelectric ceramics, which are ferroelectric sintered bodies that generate electrical polarization when stress is applied and generate distortion when an electric field (electric field) is applied, are known. A conventional piezoelectric material is formed by printing an electrode on a sheet-like piezoelectric material, cutting out to a predetermined size to form a laminated body, and firing the degreased laminated body with an electric furnace (for example, Patent Document 1). reference). Such a conventional piezoelectric material makes it possible to select desired characteristics by controlling the crystal phase ratio. Further, a piezoelectric rubber in which piezoelectric ceramic powder is dispersed in rubber is known. Conventional piezoelectric rubber contains a piezoelectric ceramic powder polarized in the radial direction as a piezoelectric body (see, for example, Patent Document 2).

電場を加えると粘度が変化する電気粘性流体(Electro-Rheological Fluid(ER流体))を利用して振動を抑える制振装置が知られている。従来の制振装置は、振動発生機器からの振動を受けて往復動作する受振部材と、振動発生機器を固定するための固定部材と、受振部材と固定部材との間に充填される電気粘性流体を収容する収容室と、この収容室内の電気粘性流体の粘度を変化させるためにこの電気粘性流体に加わる電界を制御する電界制御制御手段とを備えている(例えば、特許文献3参照)。このような従来の制振装置では、収容室内の電気粘性流体に加える磁界を制御することによって、この電気粘性流体の粘度を変化させ受振部材の振動を減衰させている。   There is known a vibration damping device that suppresses vibration by using an electro-rheological fluid (ER fluid) whose viscosity changes when an electric field is applied. A conventional vibration damping device includes a vibration receiving member that reciprocates in response to vibration from a vibration generating device, a fixing member that fixes the vibration generating device, and an electrorheological fluid that is filled between the vibration receiving member and the fixing member. And an electric field control control means for controlling the electric field applied to the electrorheological fluid in order to change the viscosity of the electrorheological fluid in the chamber (see, for example, Patent Document 3). In such a conventional vibration damping device, by controlling the magnetic field applied to the electrorheological fluid in the accommodation chamber, the viscosity of the electrorheological fluid is changed to attenuate the vibration of the vibration receiving member.

また、磁場を加えると粘度が変化する磁気粘性流体(Magneto-Rheological Fluid(MR流体))を利用して振動を抑える制振装置が知られている。従来の制振装置は、所定の間隔をあけて配列されたスリットを有する多数の平板と、これらの平板の一方の端部を一枚おきに固定する固定部材と、この第1の固定部材に固定された平板以外の平板の他方の端部に接続されて振動する振動部材と、各平板の間に充填される磁気粘性流体を収容する収容室と、この収容室内の磁気粘性流体の粘度を変化させるためにこの磁気粘性流体に加わる磁束を制御する磁束制御手段とを備えている(例えば、特許文献4参照)。このような従来の制振装置では、収容室内の磁気粘性流体に加える磁束を制御することによって、この磁気粘性流体の粘度を変化させ振動部材の振動を減衰させている。   There is also known a vibration damping device that suppresses vibrations using a magneto-rheological fluid (MR fluid) whose viscosity changes when a magnetic field is applied. The conventional vibration damping device includes a large number of flat plates having slits arranged at a predetermined interval, a fixing member that fixes one end of each of the flat plates every other piece, and the first fixing member. A vibrating member that is connected to the other end of the flat plate other than the fixed flat plate and vibrates, a storage chamber that stores the magnetorheological fluid filled between the flat plates, and the viscosity of the magnetorheological fluid in the storage chamber. Magnetic flux control means for controlling the magnetic flux applied to the magnetorheological fluid in order to change it is provided (for example, see Patent Document 4). In such a conventional vibration damping device, by controlling the magnetic flux applied to the magnetorheological fluid in the accommodation chamber, the viscosity of the magnetorheological fluid is changed to attenuate the vibration of the vibrating member.

特開2006-036578号公報JP 2006-036578

特開平11-160011号公報JP 11-160011 A

特開平7-054917公報Japanese Unexamined Patent Publication No. 7-054917

特開2003-056639公報JP 2003-056639 JP

従来の圧電材では、圧電材料を焼結させて形成しているため非常に硬く、一般にぜい性材料であることから割れやすく、大きな変形などに追従することができない問題点がある。また、従来の圧電ゴムでは、圧電粒子がゴム中に三次元的に分散しているだけであり、圧電ゴムに応力が加わって個々の圧電粒子が電気分極しても全体として発生する電力が小さく、圧電ゴムに応力が加わっても歪みがゴムに吸収されてしまい十分な圧電性能を発揮しない問題点がある。さらに、従来の粘性流体による制振装置では、無負荷状態で一定時間静置すると粘性流体内に配合されている導電性粒子や磁気粒子が沈殿し、性能を著しく低下させるという問題があった。また、このような制振装置では、電気粘性流体に電場を加えたり磁気粘性流体に磁束を加えたりするための電気回路や、電場や磁束を制御するための制御回路などが必要になって装置が大型化し複雑になってしまう問題点がある。   The conventional piezoelectric material is very hard because it is formed by sintering the piezoelectric material, and since it is generally a brittle material, there is a problem that it is easily broken and cannot follow large deformation. Further, in the conventional piezoelectric rubber, the piezoelectric particles are only three-dimensionally dispersed in the rubber, and the generated electric power is small even when the piezoelectric rubber is subjected to stress and the individual piezoelectric particles are electrically polarized. However, even if stress is applied to the piezoelectric rubber, there is a problem that the strain is absorbed by the rubber and the piezoelectric performance is not sufficiently exhibited. Further, the conventional vibration damping device using viscous fluid has a problem that, when left standing for a certain period of time in a no-load state, conductive particles and magnetic particles mixed in the viscous fluid are precipitated, and the performance is remarkably deteriorated. In addition, in such a vibration damping device, an electric circuit for applying an electric field to the electrorheological fluid or applying a magnetic flux to the magnetorheological fluid, a control circuit for controlling the electric field and the magnetic flux, and the like are required. There is a problem that becomes larger and complicated.

この発明の課題は、簡単な構造で柔軟であり圧電効果を向上させることができる圧電材とその製造方法、制振装置及び駆動装置を提供することである。   An object of the present invention is to provide a piezoelectric material that has a simple structure and is flexible and that can improve the piezoelectric effect, a manufacturing method thereof, a vibration damping device, and a driving device.

この発明は、以下に記載するような解決手段により、前記課題を解決する。
なお、この発明の実施形態に対応する符号を付して説明するが、この実施形態に限定するものではない。
請求項1の発明は、図1及び図2に示すように、媒体(3)中に複数の圧電粒子(2)が分散された圧電材であって、前記媒体に加わる電界(E)の方向と前記複数の圧電粒子の分極方向とが同一になるように、この電界の方向にこれらの圧電粒子が配向されており前記複数の圧電粒子が複数列に並んだ状態で前記媒体中に配向するように、未硬化の前記媒体に電圧を加えながらこの媒体を硬化させることによって、これらの圧電粒子がこの媒体に保持されていることを特徴とする圧電材(1)である。
The present invention solves the above-mentioned problems by the solving means described below.
In addition, although the code | symbol corresponding to embodiment of this invention is attached | subjected and demonstrated, it is not limited to this embodiment.
The invention of claim 1 is a piezoelectric material in which a plurality of piezoelectric particles (2) are dispersed in a medium (3) as shown in FIGS. 1 and 2, and the direction of an electric field (E) applied to the medium. wherein as the polarization direction of the plurality of piezoelectric particles become the same as the direction of the electric field is oriented these piezoelectric particles, oriented in the medium said plurality of piezoelectric particles in a state of being aligned in the plurality of rows Thus, the piezoelectric material (1) is characterized in that the piezoelectric particles are held by the medium by curing the medium while applying a voltage to the uncured medium .

請求項2の発明は、請求項1に記載の圧電材において、前記複数の圧電粒子は、ゴム中に配向されており前記複数の圧電粒子が複数列に並んだ状態で前記ゴム中に配向するように、未硬化の前記ゴムに電圧を加えながらこのゴムを硬化させることによって、これらの圧電粒子がこのゴムに保持されていることを特徴とする圧電材である。 According to a second aspect of the present invention, in the piezoelectric material according to the first aspect, the plurality of piezoelectric particles are oriented in the rubber, and the plurality of piezoelectric particles are oriented in the rubber in a state of being arranged in a plurality of rows. Thus, the piezoelectric material is characterized in that the piezoelectric particles are held by the rubber by curing the rubber while applying voltage to the uncured rubber .

請求項3の発明は、図1〜図3に示すように、媒体(3)中に複数の圧電粒子(2)が分散された圧電材(1)の製造方法であって、前記媒体中に前記複数の圧電粒子を分散させる分散工程(#200)と、前記媒体に加わる電界(E)の方向と前記複数の圧電粒子の分極方向とが同一になるように、この電界の方向にこれらの圧電粒子を配向させる配向工程(#300)とを含み前記配向工程は、前記複数の圧電粒子が複数列に並んだ状態で前記媒体中に配向するように、未硬化の前記媒体に電圧を加えながらこの媒体を硬化させる工程を含むこと特徴とする圧電材の製造方法(#100)である。 The invention of claim 3 is a method for producing a piezoelectric material (1) in which a plurality of piezoelectric particles (2) are dispersed in a medium (3) as shown in FIGS. The dispersion step (# 200) for dispersing the plurality of piezoelectric particles, and the direction of the electric field (E) applied to the medium and the polarization direction of the plurality of piezoelectric particles are the same in the direction of the electric field. and a orientation step of orienting the piezoelectric particles (# 300), the alignment step, as the plurality of piezoelectric particles are oriented in the medium in a state aligned in a plurality of columns, the voltage to the medium of uncured A piezoelectric material manufacturing method (# 100) including a step of curing the medium while adding .

請求項4の発明は、請求項に記載の圧電材の製造方法において、前記分散工程は、未硬化のゴム中に前記圧電粒子を分散させる工程を含み、前記配向工程は、前記未硬化のゴムに電圧を加えながらこの未硬化のゴムを加熱して硬化させる工程を含むことを特徴とする圧電材の製造方法である。 Invention of Claim 4 is a manufacturing method of the piezoelectric material of Claim 3 , The said dispersion | distribution process includes the process of disperse | distributing the said piezoelectric particle in uncured rubber | gum, and the said alignment process is the said uncured process. A method for producing a piezoelectric material comprising a step of heating and curing the uncured rubber while applying a voltage to the rubber.

請求項5の発明は、図5及び図6に示すように、可動部材(5)の振動を圧電材(1)によって抑える制振装置であって、前記圧電材は、媒体(3)中に複数の圧電粒子(2)が分散されており、この媒体に加わる電界(E)の方向とこれらの圧電粒子の分極方向とが同一になるように、この電界の方向にこれらの圧電粒子が配向されており前記複数の圧電粒子が複数列に並んだ状態で前記媒体中に配向するように、未硬化の前記媒体に電圧を加えながらこの媒体を硬化させることによって、これらの圧電粒子がこの媒体に保持されていることを特徴とする制振装置(6)である。 The invention of claim 5 is a vibration damping device for suppressing vibration of the movable member (5) by the piezoelectric material (1) as shown in FIGS. 5 and 6, wherein the piezoelectric material is contained in the medium (3). A plurality of piezoelectric particles (2) are dispersed, and these piezoelectric particles are oriented in the direction of the electric field so that the direction of the electric field (E) applied to the medium is the same as the polarization direction of the piezoelectric particles. It is, as the plurality of piezoelectric particles are oriented in the medium in a state aligned in a plurality of columns, by curing the medium while the voltage applied to the medium of the uncured, these piezoelectric particles this The vibration damping device (6) is characterized by being held by a medium .

請求項6の発明は、請求項に記載の制振装置において、図5に示すように、前記圧電材は、前記可動部材の振動に応じて振動する第1の電極(4A)と第2の電極(4B)との間に配置され、これらの電極の振動に応じて弾性変形することを特徴とする制振装置である。 According to a sixth aspect of the invention, the vibration damping device according to claim 5, as shown in FIG. 5, the piezoelectric material, a first electrode (4A) and second to vibrate in response to vibration of said movable member The vibration damping device is arranged between the electrode (4B) and elastically deforms according to the vibration of these electrodes.

請求項7の発明は、請求項に記載の制振装置において、図6に示すように、前記圧電材は、前記可動部材の振動に応じて振動する第1の電極(4A)と固定部材(9)に固定される第2の電極(4B)との間に配置され、この第1の電極の振動に応じて弾性変形することを特徴とする制振装置である。 According to a seventh aspect of the invention, in the vibration damping device according to claim 6, as shown in FIG. 6, the piezoelectric material, a first electrode (4A) and the fixing member to vibrate in response to vibration of said movable member The vibration damping device is arranged between the second electrode (4B) fixed to (9) and elastically deforms according to the vibration of the first electrode.

請求項8の発明は、請求項5から請求項7までのいずれか1項に記載の制振装置において、前記圧電材は、ゴム中に前記複数の圧電粒子が配向されており前記複数の圧電粒子が複数列に並んだ状態で前記ゴム中に配向するように、未硬化の前記ゴムに電圧を加えながらこのゴムを硬化させることによって、これらの圧電粒子がこのゴムに保持されていることを特徴とする制振装置である。 The invention of claim 8 is the vibration damping device according to any one of claims 5 to claim 7, wherein the piezoelectric material is oriented during said rubber plurality of piezoelectric particles, the plurality of These rubber particles are held by this rubber by curing the rubber while applying voltage to the uncured rubber so that the piezoelectric particles are aligned in a plurality of rows in the rubber. Is a vibration damping device characterized by

請求項9の発明は、請求項から請求項までのいずれか1項に記載の制振装置において、前記圧電材が発生する電力を消費する電力消費部(8)を備えることを特徴とする制振装置である。 A ninth aspect of the present invention is the vibration damping device according to any one of the fifth to eighth aspects, further comprising a power consuming unit (8) that consumes the power generated by the piezoelectric material. It is a vibration control device.

請求項10の発明は、図7に示すように、可動部材(5)を圧電材(1)によって駆動する駆動装置であって、前記圧電材は、媒体(3)中に複数の圧電粒子(2)が分散されており、この媒体に加わる電界(E)の方向とこれらの圧電粒子の分極方向とが同一になるように、この電界の方向にこれらの圧電粒子が配向されており前記複数の圧電粒子が複数列に並んだ状態で前記媒体中に配向するように、未硬化の前記媒体に電圧を加えながらこの媒体を硬化させることによって、これらの圧電粒子がこの媒体に保持されていることを特徴とする駆動装置(10)である。 The invention of claim 10 is a drive device for driving the movable member (5) by the piezoelectric material (1) as shown in FIG. 7, wherein the piezoelectric material comprises a plurality of piezoelectric particles (in the medium (3)). 2) are dispersed, so that the direction of the electric field (E) applied to the medium and the polarization direction of the piezoelectric particles are the same, and these piezoelectric particles in the direction of the electric field is oriented, the The piezoelectric particles are held on the medium by curing the medium while applying a voltage to the uncured medium so that the plurality of piezoelectric particles are aligned in a plurality of rows in the medium. It is a drive device (10) characterized by being.

請求項11の発明は、請求項10に記載の駆動装置において、前記圧電材は、第1の電極(4A)と第2の電極(4B)との間に配置され、これらの電極間に加わる電圧に応じて弾性変形して前記可動部材を駆動することを特徴とする駆動装置である。 According to an eleventh aspect of the present invention, in the driving device according to the tenth aspect , the piezoelectric material is disposed between the first electrode (4A) and the second electrode (4B), and is applied between these electrodes. It is a drive device characterized by elastically deforming according to voltage and driving the movable member.

請求項12の発明は、請求項11に記載の駆動装置において、前記圧電材は、ゴム中に前記複数の圧電粒子が配向されており前記複数の圧電粒子が複数列に並んだ状態で前記ゴム中に配向するように、未硬化の前記ゴムに電圧を加えながらこのゴムを硬化させることによって、これらの圧電粒子がこのゴムに保持されていることを特徴とする駆動装置である。 According to a twelfth aspect of the present invention, in the drive device according to the eleventh aspect, the piezoelectric material has the plurality of piezoelectric particles oriented in rubber, and the plurality of piezoelectric particles are arranged in a plurality of rows. The drive device is characterized in that the piezoelectric particles are held by the rubber by curing the rubber while applying a voltage to the uncured rubber so as to be oriented in the rubber .

請求項13の発明は、請求項10から請求項12までのいずれか1項に記載の駆動装置において、前記圧電材に加える電圧を制御する電圧制御部(13)を備えることを特徴とする駆動装置である。 The invention of claim 13 is the drive device according to any one of claims 10 to 12 , further comprising a voltage control unit (13) for controlling a voltage applied to the piezoelectric material. Device.

この発明によると、簡単な構造で柔軟であり圧電効果を向上させることができる。   According to this invention, it is flexible with a simple structure, and the piezoelectric effect can be improved.

(第1実施形態)
以下、図面を参照して、この発明の第1実施形態について詳しく説明する。
図1は、この発明の第1実施形態に係る圧電材の模式図である。
図1に示す圧電材1は、媒体3中に複数の圧電粒子2が分散された部材である。圧電材1は、媒体3に加わる電界Eの方向と複数の圧電粒子2の分極方向とが同一になるように、この電界Eの方向にこれらの圧電粒子2が連続して配向されている。圧電材1は、例えば、図1に示すように、所定の長さ、幅及び厚さに形成された板状の部材であり、シリコーンゴムなどの媒体3内にチタン酸ジルコン酸鉛などの圧電粒子2が厚さ方向に連続して配向された圧電ゴムの一種である。圧電材1は、図1に示すように、圧電粒子2と媒体3などを備えている。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view of a piezoelectric material according to the first embodiment of the present invention.
A piezoelectric material 1 shown in FIG. 1 is a member in which a plurality of piezoelectric particles 2 are dispersed in a medium 3. In the piezoelectric material 1, the piezoelectric particles 2 are continuously oriented in the direction of the electric field E so that the direction of the electric field E applied to the medium 3 is the same as the polarization direction of the plurality of piezoelectric particles 2. The piezoelectric material 1 is, for example, a plate-like member having a predetermined length, width, and thickness as shown in FIG. 1, and a piezoelectric material such as lead zirconate titanate in a medium 3 such as silicone rubber. This is a kind of piezoelectric rubber in which the particles 2 are continuously oriented in the thickness direction. As shown in FIG. 1, the piezoelectric material 1 includes piezoelectric particles 2 and a medium 3.

圧電粒子2は、圧電効果を示す粒子である。圧電粒子2は、機械的応力が加わると応力に応じた電気分極を発生して電界Eを発生(正効果)し、電界Eを加えて電気分極を発生させると電界Eの大きさに応じた歪みを発生(逆効果)する圧電効果を示す。圧電粒子2は、例えば、図1に示す媒体3がゴムであるときには、ゴム中に連続して配向されている。圧電粒子2は、例えば、チタン酸ジルコン酸鉛(商品名PZT)、チタン酸バリウム、ニオブ酸リチウム、チタン酸鉛、メタニオブ酸鉛、ポリフッ化ビニリデン又は水晶などの粒子である。   The piezoelectric particles 2 are particles that exhibit a piezoelectric effect. When a mechanical stress is applied, the piezoelectric particle 2 generates an electric polarization corresponding to the stress to generate an electric field E (positive effect). When the electric field E is applied to generate the electric polarization, the piezoelectric particle 2 corresponds to the magnitude of the electric field E. The piezoelectric effect which produces distortion (inverse effect) is shown. For example, when the medium 3 shown in FIG. 1 is rubber, the piezoelectric particles 2 are continuously oriented in the rubber. The piezoelectric particles 2 are particles such as lead zirconate titanate (trade name PZT), barium titanate, lithium niobate, lead titanate, lead metaniobate, polyvinylidene fluoride, or quartz.

媒体3は、圧電粒子2を保持する母材(マトリックス)である。媒体3は、図1に示すように、この媒体3に加わる電界Eの方向に複数の圧電粒子2が連続して配向されるようにこれらの圧電粒子2を保持しており、複数の圧電粒子2が複数列になって並ぶように保持されている。媒体3は、例えば、シリコーンゴム又はウレタンゴムなどの熱硬化型又は二液硬化型のゴム、スチレン系、オレフィン系又は塩化ビニル系の熱可塑性エラストマー、ポリエチレン又はポリプロピレンなどのオレフィン系又は塩化ビニルなどの熱可塑性樹脂、加熱硬化前のエポキシ又はポリエステルなどの熱硬化性樹脂、シリコーンオイル又はエチレングリコール(不凍液)などの液体が好ましい。媒体3としては、柔軟性及びたわみ性に優れたゴムが特に好ましく、ゴムに比べて柔軟性及びたわみ性の利点は失われるが寸法及び成型の自由度があり、圧電セラミックスに比べてもろくなく、高たわみを示す樹脂が好ましい。   The medium 3 is a base material (matrix) that holds the piezoelectric particles 2. As shown in FIG. 1, the medium 3 holds the piezoelectric particles 2 so that the plurality of piezoelectric particles 2 are continuously oriented in the direction of the electric field E applied to the medium 3. 2 are held in a plurality of rows. The medium 3 is, for example, a thermosetting or two-component curing rubber such as silicone rubber or urethane rubber, a styrene, olefin or vinyl chloride thermoplastic elastomer, an olefin such as polyethylene or polypropylene, or vinyl chloride. A thermoplastic resin, a thermosetting resin such as epoxy or polyester before heat curing, a liquid such as silicone oil or ethylene glycol (antifreeze) is preferable. As the medium 3, rubber excellent in flexibility and flexibility is particularly preferable, and the advantages of flexibility and flexibility are lost as compared with rubber, but there are dimensions and freedom of molding, and it is not as fragile as piezoelectric ceramics. Resins that exhibit high deflection are preferred.

次に、この発明の第1実施形態に係る圧電材の作用について説明する。
図2は、この発明の第1実施形態に係る圧電材の作用を示す模式図であり、図2(A)は機械電気変換部としての作用を示し、図2(B)は電源が交流であるときの電気機械変換部としての作用を示し、図2(C)は電源が直流であるときの電気機械変換部としての作用を示す。
図2に示す電極4A,4Bは、圧電材1に電気的に接続された接点部分である。電極4A,4Bは、圧電材1の両面にそれぞれ積層されており、圧電材1の両面全域を被覆するように形成されている。このような電極4A,4Bは、例えば、金属、金属酸化物又はカーボンなどの導電性材料を蒸着、シルクスクリーン印刷又はイオンスパッタリングなどの方法によって圧電材1の両面に形成されたり、導電性材料を含有する樹脂又は導電性高分子などの導電性樹脂を圧電材1の両面に多層化され形成されたりする。
Next, the operation of the piezoelectric material according to the first embodiment of the present invention will be described.
2A and 2B are schematic views showing the action of the piezoelectric material according to the first embodiment of the present invention. FIG. 2A shows the action as the electromechanical conversion unit, and FIG. FIG. 2 (C) shows the operation as an electromechanical conversion unit when the power source is a direct current.
Electrodes 4A and 4B shown in FIG. 2 are contact portions that are electrically connected to the piezoelectric material 1. The electrodes 4 </ b> A and 4 </ b> B are laminated on both surfaces of the piezoelectric material 1, and are formed so as to cover the entire area of both surfaces of the piezoelectric material 1. Such electrodes 4A and 4B are formed on both sides of the piezoelectric material 1 by a method such as vapor deposition, silk screen printing, or ion sputtering, or a conductive material such as metal, metal oxide, or carbon. A conductive resin such as a resin or a conductive polymer is formed on both sides of the piezoelectric material 1 so as to be multilayered.

図2(A)に示すように、圧電材1が振動して応力が加わり変形すると、圧電粒子2にせん断力が作用して歪みが発生し、媒体3内の各圧電粒子2が電気分極する。図1及び図2に示すように、媒体3に加わる電界Eの方向と複数の圧電粒子2の分極方向とが同一になるように、この電界Eの方向にこれらの圧電粒子2が媒体3内に連続して配向されている。その結果、図2(A)に示すように、連続して配向されている複数の圧電粒子2の集合体が一つの圧電体として大きな電界Eを発生し、電極4A,4B間に抵抗Rを接続したときには電極4A,4B間に発生する電力がこの抵抗Rによって消費される。このため、振動エネルギーを電気エネルギーに変換する機械電気変換部として圧電材1が機能し、この電気エネルギーを熱エネルギーに抵抗Rが変換して、圧電材1の振動が抑えられる。   As shown in FIG. 2 (A), when the piezoelectric material 1 is vibrated and stress is applied and deformed, a shearing force acts on the piezoelectric particles 2 to generate distortion, and each piezoelectric particle 2 in the medium 3 is electrically polarized. . As shown in FIGS. 1 and 2, the piezoelectric particles 2 are placed in the medium 3 in the direction of the electric field E so that the direction of the electric field E applied to the medium 3 is the same as the polarization direction of the plurality of piezoelectric particles 2. Are continuously oriented. As a result, as shown in FIG. 2 (A), an aggregate of a plurality of continuously oriented piezoelectric particles 2 generates a large electric field E as one piezoelectric body, and a resistance R is generated between the electrodes 4A and 4B. When connected, the power generated between the electrodes 4A and 4B is consumed by the resistor R. For this reason, the piezoelectric material 1 functions as a mechanical-electrical conversion unit that converts vibration energy into electric energy, and the resistance R converts the electric energy into heat energy, so that vibration of the piezoelectric material 1 is suppressed.

一方、図2(B)に示すように、電極4A,4B間に交流電源V1によって電圧を加えて圧電材1に電界Eを発生させると、媒体3内の各圧電粒子2が電気分極し電界Eの大きさに応じた歪みを発生して圧電材1が伸縮して振動する。また、図2(C)に示すように、電極4A,4B間に直流電源V2によって電圧を加えて圧電材1に電界Eを発生させると、媒体3内の各圧電粒子2が電気分極し電界Eの大きさに応じた歪みを発生して、電極4A,4B間の電圧が正であるときには圧電材1が伸び、電極4A,4B間の電圧が負であるときには圧電材1が縮む。図1及び図2に示すように、媒体3に加わる電界Eの方向と複数の圧電粒子2の分極方向とが同一になるように、この電界Eの方向にこれらの圧電粒子2が媒体3内に連続して配向されている。その結果、図2(B)(C)に示すように、連続して配向されている複数の圧電粒子2の集合体が一つの圧電体として大きな電界Eを発生し、圧電材1のたわみが大きくなる。このため、図2(B)に示すように、電気エネルギーを振動エネルギーに変換する電気機械変換部として圧電材1が機能し、圧電材1が所定の振幅で振動する。また、図2(C)に示すように、電気エネルギーを弾性エネルギーに変換する電気機械変換部として圧電材1が機能し、圧電材1が所定のたわみ量だけ弾性変形する。 On the other hand, as shown in FIG. 2B, when a voltage is applied between the electrodes 4A and 4B by the AC power source V 1 to generate an electric field E in the piezoelectric material 1, each piezoelectric particle 2 in the medium 3 is electrically polarized. A distortion corresponding to the magnitude of the electric field E is generated, and the piezoelectric material 1 expands and contracts and vibrates. Further, as shown in FIG. 2 (C), electrodes 4A, when added to the voltage by the DC power supply V 2 between 4B to generate an electric field E to the piezoelectric material 1, the piezoelectric particles 2 in the medium 3 is electrically polarized A distortion corresponding to the magnitude of the electric field E is generated, and the piezoelectric material 1 expands when the voltage between the electrodes 4A and 4B is positive, and the piezoelectric material 1 contracts when the voltage between the electrodes 4A and 4B is negative. As shown in FIGS. 1 and 2, the piezoelectric particles 2 are placed in the medium 3 in the direction of the electric field E so that the direction of the electric field E applied to the medium 3 is the same as the polarization direction of the plurality of piezoelectric particles 2. Are continuously oriented. As a result, as shown in FIGS. 2B and 2C, an assembly of a plurality of continuously oriented piezoelectric particles 2 generates a large electric field E as one piezoelectric body, and the bending of the piezoelectric material 1 is caused. growing. For this reason, as shown in FIG. 2B, the piezoelectric material 1 functions as an electromechanical converter that converts electrical energy into vibration energy, and the piezoelectric material 1 vibrates with a predetermined amplitude. As shown in FIG. 2C, the piezoelectric material 1 functions as an electromechanical converter that converts electrical energy into elastic energy, and the piezoelectric material 1 is elastically deformed by a predetermined amount of deflection.

次に、この発明の第1実施形態に係る圧電材の製造方法について説明する。
図3は、この発明の第1実施形態に係る圧電材の製造方法の工程図である。図4は、この発明の第1実施形態に係る圧電材の製造工程を模式的に示す概念図である。
図3に示す製造方法#100は、図1及び図2に示す媒体3中に複数の圧電粒子2が分散された圧電材1の製造方法である。製造方法#100は、図3に示すように、媒体3中に複数の圧電粒子2を分散させる分散工程#200と、媒体3に加わる電界Eの方向と複数の圧電粒子2の分極方向とが同一になるように、この電界Eの方向にこれらの圧電粒子2が連続して配向させる配向工程#300とを含む。
Next, a method for manufacturing a piezoelectric material according to the first embodiment of the present invention will be described.
FIG. 3 is a process diagram of the piezoelectric material manufacturing method according to the first embodiment of the present invention. FIG. 4 is a conceptual diagram schematically showing the manufacturing process of the piezoelectric material according to the first embodiment of the present invention.
Manufacturing method # 100 shown in FIG. 3 is a manufacturing method of piezoelectric material 1 in which a plurality of piezoelectric particles 2 are dispersed in medium 3 shown in FIGS. As shown in FIG. 3, the manufacturing method # 100 includes a dispersion step # 200 for dispersing the plurality of piezoelectric particles 2 in the medium 3, the direction of the electric field E applied to the medium 3, and the polarization direction of the plurality of piezoelectric particles 2. An orientation step # 300 in which the piezoelectric particles 2 are continuously oriented in the direction of the electric field E so as to be the same is included.

分散工程#200は、図4(A)に示すように、未硬化のシリコーンゴムなどの流動性の媒体3中に、チタン酸ジルコン酸鉛などの圧電粒子2を分散される工程を含む。配向工程#300は、図4(B)に示すように、未硬化の媒体3に直流電源V2によって電圧を加えながらこの媒体3を加熱してこの媒体3を硬化させる工程であり、図4(B)(C)に示すように未硬化のシリコーンゴムなどの媒体3に直流電源V2によって電圧を加えながらこのシリコーンゴムを加熱して硬化させる工程を含む。配向工程#300は、図3に示すように、未硬化の媒体3に電圧を加える電圧印加工程#310と、未硬化の媒体3を加熱して硬化させる加熱硬化工程#320とを含む。 Dispersing step # 200 includes a step of dispersing piezoelectric particles 2 such as lead zirconate titanate in fluid medium 3 such as uncured silicone rubber, as shown in FIG. As shown in FIG. 4B, the orientation step # 300 is a step of curing the medium 3 by heating the medium 3 while applying a voltage to the uncured medium 3 by the DC power source V 2 . (B) As shown in (C), a step of heating and curing the silicone rubber while applying a voltage to the medium 3 such as uncured silicone rubber by the DC power source V 2 is included. As shown in FIG. 3, the orientation process # 300 includes a voltage application process # 310 for applying a voltage to the uncured medium 3 and a heat curing process # 320 for heating and curing the uncured medium 3.

電圧印加工程#310では、図4(B)に示すように、電極4A,4B間に電界Eを加えると媒体3中に分散している各圧電粒子2が電気分極して、隣接する圧電粒子2の双極子モーメントの方向が同一方向になり、隣接する圧電粒子2が互に引力(クーロン力)を受けて、電界Eの方向に連続して配向する。加熱硬化工程#320では、図4(C)に示すように、電界Eの方向に圧電粒子2が連続して配向した状態で媒体3を加熱して硬化させることによって、媒体3中に圧電粒子2が保持される。   In the voltage application step # 310, as shown in FIG. 4B, when an electric field E is applied between the electrodes 4A and 4B, the piezoelectric particles 2 dispersed in the medium 3 are electrically polarized, and adjacent piezoelectric particles The directions of the dipole moments of the two are the same, and adjacent piezoelectric particles 2 receive an attractive force (Coulomb force) with each other, and are continuously oriented in the direction of the electric field E. In the heat curing step # 320, as shown in FIG. 4C, the medium 3 is heated and cured in a state where the piezoelectric particles 2 are continuously oriented in the direction of the electric field E, so that the piezoelectric particles are contained in the medium 3. 2 is held.

この発明の第1実施形態に係る圧電材とその製造方法には、以下に記載するような効果がある。
(1) この第1実施形態では、媒体3に加わる電界Eの方向と複数の圧電粒子2の分極方向とが同一になるように、この電界Eの方向にこれらの圧電粒子2が連続して配向されている。このため、従来の圧電ゴムに比べて圧電粒子2の配向方向における分極度が高くなり、機械的応力が加わると大きな電界Eを発生するとともに電界Eを加えると大きな歪みを発生して、大きな圧電効果を得ることができる。また、各圧電粒子2が電気分極すると圧電粒子2間の引力が強くなるため、圧電粒子2の配向方向及びこの配向方向と交差するせん断方向における力学的な抵抗が強くなる。このため、圧電粒子2間の引力に対抗して圧電材1を弾性変形させることによって大きな電力を得ることができる。さらに、圧電材1、電極4A,4B及び抵抗Rによって電気回路を構成し、振動エネルギーを電気エネルギーに圧電材1が変換し、この電気エネルギーを熱エネルギーに抵抗Rが変換することによって、圧電材1の振動を抑えることができる。
The piezoelectric material and the manufacturing method thereof according to the first embodiment of the present invention have the effects described below.
(1) In the first embodiment, the piezoelectric particles 2 are continuously arranged in the direction of the electric field E so that the direction of the electric field E applied to the medium 3 and the polarization direction of the plurality of piezoelectric particles 2 are the same. Oriented. For this reason, the degree of polarization in the orientation direction of the piezoelectric particles 2 is higher than that of the conventional piezoelectric rubber, and when a mechanical stress is applied, a large electric field E is generated. An effect can be obtained. Further, when each piezoelectric particle 2 is electrically polarized, the attractive force between the piezoelectric particles 2 becomes strong, so that the mechanical resistance in the orientation direction of the piezoelectric particles 2 and the shear direction intersecting with the orientation direction becomes strong. For this reason, large electric power can be obtained by elastically deforming the piezoelectric material 1 against the attractive force between the piezoelectric particles 2. Further, the piezoelectric material 1, the electrodes 4A and 4B, and the resistor R constitute an electric circuit, and the piezoelectric material 1 converts vibration energy into electric energy, and the resistor R converts this electric energy into heat energy. 1 vibration can be suppressed.

(2) この第1実施形態では、複数の圧電粒子2がゴム中に連続して配向されている。このため、ゴムに対する圧電粒子2の配合を調整することによって、寸法の自由度を向上させることができ、従来の圧電材に比べて大きな圧電材1を製造することができる。また、従来の脆弱な圧電セラミックスに比べて柔軟性に優れたゴムを媒体3に選択することによって、圧電材1が割れ難くなって大きな変形に耐えることができるとともに、圧電材1を対象物に貼り付けるときに、この対象物の曲面や凹凸面(不陸)に圧電材1を密着させることができる。さらに、従来の圧電セラミックスに比べて弾性率が格段に小さくなるため、振幅やたわみを大きくすることができるとともに、従来の圧電ゴムに比べて圧電粒子2が配向されているため少量の圧電粒子2によって圧電効果を効率的に発揮させることができる。 (2) In the first embodiment, the plurality of piezoelectric particles 2 are continuously oriented in the rubber. For this reason, by adjusting the blending of the piezoelectric particles 2 with respect to rubber, the degree of dimensional freedom can be improved, and the piezoelectric material 1 larger than the conventional piezoelectric material can be manufactured. Further, by selecting rubber having excellent flexibility as compared with the conventional fragile piezoelectric ceramics as the medium 3, the piezoelectric material 1 is difficult to break and can withstand large deformation, and the piezoelectric material 1 is used as an object. When pasting, the piezoelectric material 1 can be brought into close contact with the curved surface or uneven surface (non-land) of the object. Further, since the elastic modulus is remarkably smaller than that of the conventional piezoelectric ceramic, the amplitude and the deflection can be increased, and since the piezoelectric particles 2 are oriented as compared with the conventional piezoelectric rubber, a small amount of the piezoelectric particles 2 is obtained. Thus, the piezoelectric effect can be efficiently exhibited.

(第2実施形態)
図5は、この発明の第2実施形態に係る制振装置を概略的に示す模式図である。以下では、図1〜図4に示す部分と同一の部分については、同一の番号を付して詳細な説明を省略する。
図5に示す可動部材5は、制振装置6によって振動を抑制される制振対象物であり、例えば両端が単純支持された梁状部材又は板状部材である。制振装置6は、可動部材5の振動を圧電材1によって抑える装置であり、図5に示すように圧電材1と、電極4A,4Bと、導電部7A,7Bと、電力消費部8などを備えている。制振装置6は、可動部材5の振動に応じて振動する電極4Aと電極4Bとの間に圧電材1を配置しており、電極4A,4Bの振動に応じて圧電材1が弾性変形すると圧電粒子2が電気分極し、電極4Aと電極4Bとの間に電界Eを発生する。制振装置6は、例えば、可動部材5の中央部にこの可動部材5を挟み込むようにそれぞれ1つずつ取り付けられており、可動部材5の表面に電極4Aを取り付けて、この電極4Aとの間で圧電材1を挟み込むように圧電材1の表面に電極4Bを取り付けている。
(Second Embodiment)
FIG. 5 is a schematic view schematically showing a vibration damping device according to the second embodiment of the present invention. In the following, the same parts as those shown in FIGS. 1 to 4 are denoted by the same reference numerals and detailed description thereof is omitted.
The movable member 5 shown in FIG. 5 is a vibration suppression object whose vibration is suppressed by the vibration suppression device 6, and is, for example, a beam-shaped member or a plate-shaped member that is simply supported at both ends. The vibration damping device 6 is a device that suppresses the vibration of the movable member 5 with the piezoelectric material 1, and as shown in FIG. 5, the piezoelectric material 1, the electrodes 4A and 4B, the conductive portions 7A and 7B, the power consuming portion 8, and the like. It has. In the vibration damping device 6, the piezoelectric material 1 is disposed between the electrode 4 </ b> A and the electrode 4 </ b> B that vibrate according to the vibration of the movable member 5, and when the piezoelectric material 1 is elastically deformed according to the vibration of the electrodes 4 </ b> A and 4 </ b> B. The piezoelectric particles 2 are electrically polarized, and an electric field E is generated between the electrodes 4A and 4B. The damping device 6 is attached, for example, one by one so as to sandwich the movable member 5 in the central portion of the movable member 5, and an electrode 4A is attached to the surface of the movable member 5, and between the electrode 4A The electrode 4B is attached to the surface of the piezoelectric material 1 so as to sandwich the piezoelectric material 1.

導電部7A,7Bは、圧電材1が発生する電流が流れる部分であり、導電部7A,7Bは、一方の端部が電極4A,4Bにそれぞれ接続されており、他方の端部が電力消費部8に接続されている。電力消費部8は、圧電材1が発生する電力を消費する部分であり、電気信号を熱に変換する抵抗素子などの電気熱変換部である。電力消費部8は、電極4A,4Bからの電気エネルギーを熱エネルギーに変換するために、抵抗値を調整可能な電気回路などを備えており、電極4A,4Bが出力する電流(電気信号)が流れる。   The conductive portions 7A and 7B are portions through which the current generated by the piezoelectric material 1 flows. The conductive portions 7A and 7B are connected at one end to the electrodes 4A and 4B, respectively, and the other end is a power consumption. Connected to the unit 8. The power consuming unit 8 is a part that consumes the electric power generated by the piezoelectric material 1, and is an electrothermal converting unit such as a resistance element that converts an electric signal into heat. The power consuming unit 8 includes an electric circuit capable of adjusting a resistance value in order to convert electric energy from the electrodes 4A and 4B into heat energy, and a current (electric signal) output from the electrodes 4A and 4B is generated. Flowing.

次に、この発明の第2実施形態に係る制振装置の動作を説明する。
例えば、図5に示すように、両端が単純支持された可動部材5が中央部を腹として振動すると、この可動部材5と一体となって制振装置6も振動し、図中二点鎖線で示すように可動部材5がたわむと、圧電材1及び電極4A,4Bに曲げ応力が作用する。このため、圧電材1の圧電粒子2が電気分極して電極4Aと電極4Bとの間に電界Eが発生し、電力消費部8に電流が流れて圧電材1が発生する電力を電力消費部8が消費する。その結果、制振装置6によって振動エネルギーが熱エネルギーに変換されて、可動部材5の振動が抑えられる。
Next, the operation of the vibration damping device according to the second embodiment of the present invention will be described.
For example, as shown in FIG. 5, when the movable member 5 that is simply supported at both ends vibrates with the central portion as an antinode, the vibration damping device 6 vibrates integrally with the movable member 5, and is indicated by a two-dot chain line in the figure. As shown, when the movable member 5 bends, bending stress acts on the piezoelectric material 1 and the electrodes 4A and 4B. For this reason, the piezoelectric particles 2 of the piezoelectric material 1 are electrically polarized to generate an electric field E between the electrodes 4A and 4B, and a current flows through the power consuming unit 8 to generate electric power generated by the piezoelectric material 1 as a power consuming unit. 8 is consumed. As a result, vibration energy is converted into thermal energy by the vibration damping device 6, and vibration of the movable member 5 is suppressed.

この発明の第2実施形態に係る制振装置には、第1実施形態の効果に加えて、以下に記載するような効果がある。
(1) この第2実施形態では、可動部材5の振動に応じて振動する電極4Aと電極4Bとの間に圧電材1が配置されており、これらの電極4A,4Bの振動に応じて圧電材1が弾性変形する。このため、電界Eの方向に圧電粒子2が予め連続して配向されているため、従来の制振装置のようなER粒子やMR粒子を配向させるための電気回路などが不要になって、制振装置を簡単に構成することができる。また、圧電効果に優れた圧電材1に曲げ応力が作用したときにこの圧電材1が電気分極し、可動部材5の振動エネルギーを電気エネルギーに効率的に変換することができる。
The vibration damping device according to the second embodiment of the present invention has the following effects in addition to the effects of the first embodiment.
(1) In the second embodiment, the piezoelectric material 1 is disposed between the electrode 4A and the electrode 4B that vibrate according to the vibration of the movable member 5, and the piezoelectric material 1 according to the vibration of the electrodes 4A and 4B. The material 1 is elastically deformed. For this reason, since the piezoelectric particles 2 are continuously oriented in the direction of the electric field E, an electric circuit for orienting ER particles and MR particles as in the conventional vibration damping device becomes unnecessary, and the The vibration device can be configured easily. Further, when a bending stress acts on the piezoelectric material 1 having an excellent piezoelectric effect, the piezoelectric material 1 is electrically polarized, and the vibration energy of the movable member 5 can be efficiently converted into electrical energy.

(2) この第2実施形態では、圧電材1が発生する電力を電力消費部8が消費する。このため、圧電材1によって可動部材5の振動エネルギーを電気エネルギーに変換し、電力消費部8によってこの電気エネルギーを熱エネルギーに変換して、可動部材5の振動を抑えることができる。 (2) In the second embodiment, the power consuming unit 8 consumes the power generated by the piezoelectric material 1. For this reason, the vibration energy of the movable member 5 can be suppressed by converting the vibration energy of the movable member 5 into electric energy by the piezoelectric material 1 and converting the electric energy into heat energy by the power consuming unit 8.

(第3実施形態)
図6は、この発明の第3実施形態に係る制振装置を概略的に示す模式図である。
図6に示す可動部材5は、例えば、内燃機関のシリンダヘッド、車両の座席又は構造物のような振動体を弾性支持する油圧シリンダ又は空気圧シリンダのピストンロッドなどの往復移動する軸状部材である。制振装置6は、可動部材5の振動に応じて振動する電極4Aと固定部材9に固定される電極4Bとの間に圧電材1を配置しており、電極4Aの振動に応じて圧電材1が弾性変形すると圧電粒子2が電気分極し、電極4Aと電極4Bとの間に電界Eを発生する。制振装置6は、例えば、可動部材5の外周部の周方向に所定の間隔をあけて配置されており、可動部材5の外周面に電極4Aを取り付けて、この電極4Aとの間で圧電材1を挟み込むように圧電材1の表面に電極4Bを取り付けている。固定部材9は、電極4Bを固定する部材であり、可動部材5の外周部との間に所定の間隔をあけてこの可動部材5の外側に配置されている。固定部材9は、例えば、鋼材などによって構成された外壁であり、固定部材9の表面には可動部材5の外周面と対向するように電極4Bが取り付けられている。
(Third embodiment)
FIG. 6 is a schematic view schematically showing a vibration damping device according to the third embodiment of the present invention.
The movable member 5 shown in FIG. 6 is a shaft member that reciprocates such as a cylinder head of an internal combustion engine, a hydraulic cylinder that elastically supports a vibrating body such as a vehicle seat or a structure, or a piston rod of a pneumatic cylinder. . The vibration damping device 6 has the piezoelectric material 1 disposed between the electrode 4A that vibrates according to the vibration of the movable member 5 and the electrode 4B that is fixed to the fixed member 9, and the piezoelectric material according to the vibration of the electrode 4A. When 1 is elastically deformed, the piezoelectric particles 2 are electrically polarized, and an electric field E is generated between the electrodes 4A and 4B. The vibration damping device 6 is disposed, for example, at a predetermined interval in the circumferential direction of the outer peripheral portion of the movable member 5, and an electrode 4 </ b> A is attached to the outer peripheral surface of the movable member 5, and a piezoelectric element is connected to the electrode 4 </ b> A. An electrode 4B is attached to the surface of the piezoelectric material 1 so as to sandwich the material 1 therebetween. The fixed member 9 is a member that fixes the electrode 4 </ b> B, and is disposed outside the movable member 5 with a predetermined interval from the outer peripheral portion of the movable member 5. The fixed member 9 is an outer wall made of, for example, a steel material, and an electrode 4B is attached to the surface of the fixed member 9 so as to face the outer peripheral surface of the movable member 5.

次に、この発明の第3実施形態に係る制振装置の動作を説明する。
図6に示すように、可動部材5が上下方向に振動するとこの可動部材5と一体となって制振装置6の電極4Aも振動し、図中二点鎖線で示すように制振装置6の圧電材1がたわむと、圧電材1にせん断応力が作用する。このため、圧電材1の圧電粒子2が電気分極して電極4Aと電極4Bとの間に電界Eが発生し、電力消費部8に電流が流れて圧電材1が発生する電力を電力消費部8が消費する。その結果、制振装置6によって振動エネルギーが熱エネルギーに変換されて、可動部材5の振動が抑えられる。
Next, the operation of the vibration damping device according to the third embodiment of the present invention will be described.
As shown in FIG. 6, when the movable member 5 vibrates in the vertical direction, the electrode 4 </ b> A of the vibration damping device 6 vibrates integrally with the movable member 5, and the vibration damping device 6 of the vibration damping device 6 is vibrated as indicated by a two-dot chain line in the drawing. When the piezoelectric material 1 bends, shear stress acts on the piezoelectric material 1. For this reason, the piezoelectric particles 2 of the piezoelectric material 1 are electrically polarized to generate an electric field E between the electrodes 4A and 4B, and a current flows through the power consuming unit 8 to generate electric power generated by the piezoelectric material 1. 8 is consumed. As a result, vibration energy is converted into thermal energy by the vibration damping device 6, and vibration of the movable member 5 is suppressed.

この発明の第3実施形態に係る制振装置には、第1実施形態の効果に加えて、以下に記載するような効果がある。
この第3実施形態では、可動部材5の振動に応じて振動する電極4Aと固定部材9に固定される電極4Bとの間に圧電材1が配置されており、この電極4Aの振動に応じて圧電材1が弾性変形する。このため、圧電効果に優れた圧電材1にせん断応力が作用したときにこの圧電材1を電気分極させて、可動部材5の振動エネルギーを電気エネルギーに変換することができる。
The vibration damping device according to the third embodiment of the present invention has the following effects in addition to the effects of the first embodiment.
In the third embodiment, the piezoelectric material 1 is disposed between the electrode 4A that vibrates in accordance with the vibration of the movable member 5 and the electrode 4B that is fixed to the fixed member 9, and according to the vibration of the electrode 4A. The piezoelectric material 1 is elastically deformed. Therefore, when shear stress acts on the piezoelectric material 1 having an excellent piezoelectric effect, the piezoelectric material 1 can be electrically polarized, and the vibration energy of the movable member 5 can be converted into electrical energy.

(第4実施形態)
図7は、この発明の第4実施形態に係る駆動装置を概略的に示す模式図である。
図7に示す駆動装置10は、可動部材5を圧電材1によって駆動する装置であり、圧電材1と、電極4A,4Bと、導電部7A,7Bと、電圧発生部11と、動作設定部12と、電圧制御部13などを備えている。駆動装置10は、電極4Aと電極4Bとの間に配置され、これらの電極4A,4B間に加わる電圧に応じて弾性変形して可動部材5を駆動する。駆動装置10は、図7に示すように、可動部材5に電極4Aが固定されており、固定部材9に電極4Bが固定されている。駆動装置10は、電極4A,4B間に正の電圧を加えるとこれらの間に電界Eが発生し、圧電粒子2が電気分極して圧電材1が伸びて可動部材5を前進させる。一方、駆動装置10は、電極4A,4B間に負の電圧を加えるとこれらの間に電界−Eが発生し、圧電粒子2が電気分極して圧電材1が縮み可動部材5を後退させる。駆動装置10は、電圧発生部11が発生する電気エネルギーを運動エネルギーに変換して可動部材5を駆動するアクチュエータとして機能する。
(Fourth embodiment)
FIG. 7 is a schematic diagram schematically showing a drive apparatus according to the fourth embodiment of the present invention.
A driving device 10 shown in FIG. 7 is a device that drives the movable member 5 with the piezoelectric material 1, and includes the piezoelectric material 1, the electrodes 4 </ b> A and 4 </ b> B, the conductive portions 7 </ b> A and 7 </ b> B, the voltage generator 11, and the operation setting unit. 12, a voltage control unit 13, and the like. The driving device 10 is disposed between the electrodes 4A and 4B, and elastically deforms according to the voltage applied between the electrodes 4A and 4B to drive the movable member 5. As shown in FIG. 7, in the driving device 10, the electrode 4 </ b> A is fixed to the movable member 5, and the electrode 4 </ b> B is fixed to the fixed member 9. When a positive voltage is applied between the electrodes 4A and 4B, the driving device 10 generates an electric field E between them, the piezoelectric particles 2 are electrically polarized, and the piezoelectric material 1 extends to advance the movable member 5. On the other hand, when a negative voltage is applied between the electrodes 4 </ b> A and 4 </ b> B, the driving device 10 generates an electric field −E between the electrodes 4 </ b> A and 4 </ b> B, the piezoelectric particles 2 are electrically polarized, and the piezoelectric material 1 is contracted to retract the movable member 5. The driving device 10 functions as an actuator that drives the movable member 5 by converting electric energy generated by the voltage generator 11 into kinetic energy.

電圧発生部11は、交流電圧及び/又は直流電圧を発生する部分であり、交流電源V1として機能するときには任意の電圧値及び周波数の交流電圧を発生し、直流電源V2として機能するときには任意の電圧値の直流電圧を発生する。動作設定部12は、可動部材5の動作を設定する部分である。動作設定部12は、例えば、可動部材5を振動させる振動モードと、可動部材5を第1の方向(上方)に駆動する前進モードと、可動部材5を第1の方向とは逆方向の第2の方向(下方)に駆動する後退モードなどから任意の動作モードを選択し動作条件として設定する。動作設定部12は、例えば、振動モード時の振幅及び周波数、前進モード時又は後退モード時の駆動量(移動量)などを動作条件として設定する。電圧制御部13は、圧電材1に加える電圧を制御する部分であり、動作設定部12が設定する動作条件に基づいて電圧発生部11が発生する電圧を制御する。電圧制御部13は、例えば、動作設定部12が設定する動作条件に応じて、電圧発生部11が交流電圧を発生するときには電圧値及び周波数を可変制御し、電圧発生部11が直流電圧を発生するときには電圧値を可変制御する。 The voltage generator 11 is a part that generates an AC voltage and / or a DC voltage, generates an AC voltage having an arbitrary voltage value and frequency when functioning as the AC power source V 1 , and is optional when functioning as the DC power source V 2. A DC voltage with a voltage value of The operation setting unit 12 is a part for setting the operation of the movable member 5. The operation setting unit 12 includes, for example, a vibration mode in which the movable member 5 is vibrated, a forward mode in which the movable member 5 is driven in the first direction (upward), and the movable member 5 in the first direction opposite to the first direction. An arbitrary operation mode is selected from the reverse mode for driving in the direction 2 (downward) and set as an operation condition. The operation setting unit 12 sets, for example, the amplitude and frequency in the vibration mode, the drive amount (movement amount) in the forward mode or the reverse mode, and the like as the operation conditions. The voltage control unit 13 is a part that controls the voltage applied to the piezoelectric material 1, and controls the voltage generated by the voltage generation unit 11 based on the operating conditions set by the operation setting unit 12. The voltage control unit 13 variably controls the voltage value and frequency when the voltage generation unit 11 generates an AC voltage, for example, according to the operating conditions set by the operation setting unit 12, and the voltage generation unit 11 generates a DC voltage. When doing so, the voltage value is variably controlled.

次に、この発明の第4実施形態に係る駆動装置の動作を説明する。
例えば、図7に示すように、動作設定部12が設定する動作条件が振動モードであるときには、電圧発生部11が交流電圧を発生し、図中二点鎖線で示すように圧電材1が上下方向に振動して可動部材5も上下方向に振動する。また、動作設定部12が設定する動作条件が前進モードであるときには、電極4A,4B間の電圧が正になるように電圧発生部11が直流電圧を発生し、図中二点鎖線で示すように圧電材1が上方向に伸びて可動部材5が上方向に前進する。さらに、動作設定部12が設定する動作条件が後退モードであるときには、前進モード時とは異なり電極4A,4B間の電圧が負になるように電圧発生部11が直流電圧を発生し、図中二点鎖線で示すように圧電材1が下方向に縮み可動部材5が下方向に後退する。
Next, the operation of the driving apparatus according to the fourth embodiment of the present invention will be described.
For example, as shown in FIG. 7, when the operation condition set by the operation setting unit 12 is the vibration mode, the voltage generating unit 11 generates an AC voltage, and the piezoelectric material 1 moves up and down as indicated by a two-dot chain line in the figure. The movable member 5 also vibrates in the vertical direction by vibrating in the direction. When the operation condition set by the operation setting unit 12 is the forward mode, the voltage generation unit 11 generates a DC voltage so that the voltage between the electrodes 4A and 4B becomes positive, as indicated by a two-dot chain line in the figure. Then, the piezoelectric material 1 extends upward and the movable member 5 advances upward. Further, when the operation condition set by the operation setting unit 12 is the reverse mode, the voltage generation unit 11 generates a DC voltage so that the voltage between the electrodes 4A and 4B becomes negative, unlike the forward mode. As indicated by a two-dot chain line, the piezoelectric material 1 is contracted downward, and the movable member 5 is retracted downward.

この発明の第4実施形態に係る駆動装置には、第1実施形態の効果に加えて、以下に記載するような効果がある。
(1) この第4実施形態では、電極4Aと電極4Bとの間に圧電材1が配置されており、これらの電極4A,4B間に加わる電圧に応じて圧電材1が弾性変形して可動部材5を駆動する。このため、圧電効果に優れた圧電材1を伸縮させて可動部材5を振動させたり、可動部材5を前進又は後退させたりすることができる。
The drive device according to the fourth embodiment of the present invention has the following effects in addition to the effects of the first embodiment.
(1) In the fourth embodiment, the piezoelectric material 1 is disposed between the electrode 4A and the electrode 4B, and the piezoelectric material 1 is elastically deformed and movable according to the voltage applied between the electrodes 4A and 4B. The member 5 is driven. For this reason, the movable member 5 can be vibrated by expanding and contracting the piezoelectric material 1 having an excellent piezoelectric effect, or the movable member 5 can be moved forward or backward.

(2) この第4実施形態では、圧電材1に加わる電圧を電圧制御部13が制御する。このため、電極4A,4B間の電界を制御することによって圧電材1の歪みを制御してアクチュエータとして機能させることができる。また、圧電材1が所定の歪みを発生するように電極4A,4B間の電界Eを制御することによって、圧電材1の剛性を可変制御する剛性制御装置として機能させることもできる。 (2) In the fourth embodiment, the voltage controller 13 controls the voltage applied to the piezoelectric material 1. For this reason, by controlling the electric field between the electrodes 4A and 4B, the distortion of the piezoelectric material 1 can be controlled to function as an actuator. Further, by controlling the electric field E between the electrodes 4A and 4B so that the piezoelectric material 1 generates a predetermined strain, the piezoelectric material 1 can function as a stiffness control device that variably controls the stiffness of the piezoelectric material 1.

次に、この発明の実施例について説明する。
図8は、この発明の実施例に係る圧電材のマイクロスコープによる拡大写真である。
硬化前のシリコーンゴム中にチタン酸ジルコン酸鉛の圧電粒子をシリコーンゴム3に対してチタン酸ジルコン酸鉛2の重量比で混合し分散させ、5kV/mmの電界を加えながらチタン酸ジルコン酸鉛を電気分極させて電界の方向に配向させた。次に、シリコーンゴム中にチタン酸ジルコン酸鉛を電界の方向に配向させた状態で、100℃で加熱してシリコーンゴムを加硫し硬化させて圧電材を製作した。その結果、図8に示すように、硬化後のシリコーンゴム中にチタン酸ジルコン酸鉛が電界Eの方向に連続して配向していることが確認された。
Next, examples of the present invention will be described.
FIG. 8 is an enlarged photograph of a piezoelectric material according to an embodiment of the present invention using a microscope.
Piezoelectric particles of lead zirconate titanate in silicone rubber before curing are mixed and dispersed in a weight ratio of lead zirconate titanate 2 to silicone rubber 3 and lead zirconate titanate while applying an electric field of 5 kV / mm. Were electrically polarized and oriented in the direction of the electric field. Next, in a state where lead zirconate titanate is oriented in the direction of the electric field in the silicone rubber, the silicone rubber is vulcanized and cured by heating at 100 ° C. to produce a piezoelectric material. As a result, as shown in FIG. 8, it was confirmed that lead zirconate titanate was continuously oriented in the direction of electric field E in the cured silicone rubber.

この発明は、以上説明した実施形態に限定するものではなく、以下に記載するように種々の変形又は変更が可能であり、これらもこの発明の範囲内である。
(1) この実施形態では、圧電粒子2が連続して配向する場合を例に挙げて説明したが、圧電粒子2の全てが連続して配向している場合に限らず、圧電粒子2の一部が分離してほぼ連続して配向している場合についてもこの発明を適用することができる。また、この実施形態では、硬化前の媒体3が流体又は粘性体などの液体である場合を例に挙げて説明したが、媒体3が流体及び粘性体の混合物である場合についてもこの発明を適用することができる。
The present invention is not limited to the embodiment described above, and various modifications or changes can be made as described below, and these are also within the scope of the present invention.
(1) In this embodiment, the case where the piezoelectric particles 2 are continuously oriented has been described as an example. However, the embodiment is not limited to the case where all of the piezoelectric particles 2 are continuously oriented. The present invention can also be applied to the case where the parts are separated and oriented substantially continuously. In this embodiment, the case where the medium 3 before curing is a fluid such as a fluid or a viscous material has been described as an example. However, the present invention is also applied to a case where the medium 3 is a mixture of a fluid and a viscous material. can do.

(2) この第2及び第3実施形態では、圧電材1を利用して振動を抑える場合を例に挙げて説明したが、圧電材1によって騒音を受けて振動を電気エネルギーに変換し、この電気エネルギーを抵抗素子によって熱エネルギーに変換して騒音を低減することもできる。また、この第1及び第2実施形態では、電力消費部8が抵抗素子を備える場合を例に挙げて説明したが、抵抗値、静電容量又はインダクタンスの少なくとも一つを調整可能な電気回路を備えるように電力消費部8を構成することもできる。 (2) In the second and third embodiments, the case where the piezoelectric material 1 is used to suppress vibration has been described as an example. However, the piezoelectric material 1 receives noise and converts the vibration into electric energy. Noise can also be reduced by converting electrical energy into thermal energy by a resistance element. In the first and second embodiments, the case where the power consuming unit 8 includes a resistance element has been described as an example. However, an electric circuit capable of adjusting at least one of resistance value, capacitance, or inductance is used. The power consumption part 8 can also be comprised so that it may be provided.

(3) この第2実施形態では、可動部材5の中央部に2つの制振装置6を配置した場合を例に挙げて説明したが、可動部材5の中央部に1つの制振装置6を配置することもできる。また、この第3実施形態では、可動部材5の外周部の周方向に間隔あけて制振装置6を配置する場合を例に挙げて説明したが、可動部材5の外周部の周方向に連続してこの可動部材5の外周部を囲むように制振装置6を配置することもできる。さらに、この第4実施形態では、電極4Aを可動部材5に固定し電極4Bを固定部材9に固定して電極4A,4B間に圧電材1を配置する駆動装置10を例に挙げて説明したが、このような駆動装置10に限定するものではない。例えば、図5及び図6に示す制振装置6の電力消費部8を図7に示す電圧発生部11に置き換えてこの電圧発生部11が発生する電圧を制御してアクチュエータ又は剛性制御装置として構成することもできる。 (3) In the second embodiment, the case where two vibration damping devices 6 are arranged in the central portion of the movable member 5 has been described as an example, but one vibration damping device 6 is disposed in the central portion of the movable member 5. It can also be arranged. Moreover, in this 3rd Embodiment, although the case where the damping device 6 was arrange | positioned at intervals in the circumferential direction of the outer peripheral part of the movable member 5 was mentioned as an example, it demonstrated to the circumferential direction of the outer peripheral part of the movable member 5 as an example. And the damping device 6 can also be arrange | positioned so that the outer peripheral part of this movable member 5 may be enclosed. Furthermore, in the fourth embodiment, the driving device 10 in which the electrode 4A is fixed to the movable member 5 and the electrode 4B is fixed to the fixed member 9 and the piezoelectric material 1 is disposed between the electrodes 4A and 4B has been described as an example. However, the present invention is not limited to such a driving device 10. For example, the power consuming unit 8 of the vibration damping device 6 shown in FIGS. 5 and 6 is replaced with the voltage generating unit 11 shown in FIG. 7, and the voltage generated by the voltage generating unit 11 is controlled to constitute an actuator or a rigidity control device. You can also

この発明の第1実施形態に係る圧電材の模式図である。1 is a schematic diagram of a piezoelectric material according to a first embodiment of the present invention. この発明の第1実施形態に係る圧電材の作用を示す模式図であり、(A)は機械電気変換部としての作用を示し、 (B)は電源が交流であるときの電気機械変換部としての作用を示し、(C)は電源が直流であるときの電気機械変換部としての作用を示す。It is a schematic diagram which shows the effect | action of the piezoelectric material which concerns on 1st Embodiment of this invention, (A) shows an effect | action as an electromechanical conversion part, (B) is an electromechanical conversion part when a power supply is alternating current. (C) shows the operation as an electromechanical converter when the power source is a direct current. この発明の第1実施形態に係る圧電材の製造方法の工程図である。It is process drawing of the manufacturing method of the piezoelectric material which concerns on 1st Embodiment of this invention. この発明の第1実施形態に係る圧電材の製造工程を模式的に示す概念図である。It is a conceptual diagram which shows typically the manufacturing process of the piezoelectric material which concerns on 1st Embodiment of this invention. この発明の第2実施形態に係る制振装置を概略的に示す模式図である。It is a schematic diagram which shows schematically the damping device which concerns on 2nd Embodiment of this invention. この発明の第3実施形態に係る制振装置を概略的に示す模式図である。It is a schematic diagram which shows schematically the damping device which concerns on 3rd Embodiment of this invention. この発明の第4実施形態に係る駆動装置を概略的に示す模式図である。It is a schematic diagram which shows schematically the drive device which concerns on 4th Embodiment of this invention. この発明の実施例に係る圧電材のマイクロスコープによる拡大写真である。It is an enlarged photograph with the microscope of the piezoelectric material which concerns on the Example of this invention.

符号の説明Explanation of symbols

1 圧電材
2 圧電粒子
3 媒体
4A,4B 電極
5 可動部材
6 制振装置
7A,7B 導電部
8 電力消費部
9 固定部材
10 駆動装置
11 電圧発生部
12 動作設定部
13 電圧制御部
E 電界
1 交流電源
2 直流電源
R 抵抗
First piezoelectric member 2 piezoelectric particles 3 medium 4A, 4B electrode 5 movable member 6 damping device 7A, 7B conductive portion 8 power unit 9 fixed member 10 driver 11 voltage generator 12 operation setting unit 13 voltage control unit E field V 1 AC power supply V 2 DC power supply R Resistance

Claims (13)

媒体中に複数の圧電粒子が分散された圧電材であって、
前記媒体に加わる電界の方向と前記複数の圧電粒子の分極方向とが同一になるように、この電界の方向にこれらの圧電粒子が配向されており、
前記複数の圧電粒子が複数列に並んだ状態で前記媒体中に配向するように、未硬化の前記媒体に電圧を加えながらこの媒体を硬化させることによって、これらの圧電粒子がこの媒体に保持されていること、
を特徴とする圧電材。
A piezoelectric material in which a plurality of piezoelectric particles are dispersed in a medium,
These piezoelectric particles are oriented in the direction of the electric field so that the direction of the electric field applied to the medium is the same as the polarization direction of the plurality of piezoelectric particles,
The piezoelectric particles are held on the medium by curing the medium while applying a voltage to the uncured medium so that the plurality of piezoelectric particles are aligned in the medium in a plurality of rows. That
A piezoelectric material characterized by
請求項1に記載の圧電材において、
前記複数の圧電粒子は、ゴム中に配向されており
前記複数の圧電粒子が複数列に並んだ状態で前記ゴム中に配向するように、未硬化の前記ゴムに電圧を加えながらこのゴムを硬化させることによって、これらの圧電粒子がこのゴムに保持されていること、
を特徴とする圧電材。
The piezoelectric material according to claim 1,
Said plurality of piezoelectric particles is oriented in the rubber,
By curing the rubber while applying a voltage to the uncured rubber so that the plurality of piezoelectric particles are aligned in a plurality of rows in a row, the piezoelectric particles are held by the rubber. That
A piezoelectric material characterized by
媒体中に複数の圧電粒子が分散された圧電材の製造方法であって、
前記媒体中に前記複数の圧電粒子を分散させる分散工程と、
前記媒体に加わる電界の方向と前記複数の圧電粒子の分極方向とが同一になるように、この電界の方向にこれらの圧電粒子を配向させる配向工程とを含み、
前記配向工程は、前記複数の圧電粒子が複数列に並んだ状態で前記媒体中に配向するように、未硬化の前記媒体に電圧を加えながらこの媒体を硬化させる工程を含むこと、
を特徴とする圧電材の製造方法。
A method of manufacturing a piezoelectric material in which a plurality of piezoelectric particles are dispersed in a medium,
A dispersion step of dispersing the plurality of piezoelectric particles in the medium;
An orientation step of orienting the piezoelectric particles in the direction of the electric field such that the direction of the electric field applied to the medium is the same as the polarization direction of the plurality of piezoelectric particles,
The orientation step includes a step of curing the medium while applying a voltage to the uncured medium so that the plurality of piezoelectric particles are oriented in the medium in a state where the plurality of piezoelectric particles are arranged in a plurality of rows.
A method of manufacturing a piezoelectric material characterized by the above.
請求項3に記載の圧電材の製造方法において、
前記分散工程は、未硬化のゴム中に前記圧電粒子を分散させる工程を含み、
前記配向工程は、前記未硬化のゴムに電圧を加えながらこの未硬化のゴムを加熱して硬化させる工程を含むこと、
を特徴とする圧電材の製造方法。
In the manufacturing method of the piezoelectric material according to claim 3,
The dispersing step includes a step of dispersing the piezoelectric particles in uncured rubber,
The alignment step includes a step of heating and curing the uncured rubber while applying a voltage to the uncured rubber;
A method of manufacturing a piezoelectric material characterized by the above.
可動部材の振動を圧電材によって抑える制振装置であって、
前記圧電材は、媒体中に複数の圧電粒子が分散されており、この媒体に加わる電界の方向とこれらの圧電粒子の分極方向とが同一になるように、この電界の方向にこれらの圧電粒子が配向されており、
前記複数の圧電粒子が複数列に並んだ状態で前記媒体中に配向するように、未硬化の前記媒体に電圧を加えながらこの媒体を硬化させることによって、これらの圧電粒子がこの媒体に保持されていること、
を特徴とする制振装置。
A vibration damping device that suppresses vibration of the movable member with a piezoelectric material,
In the piezoelectric material, a plurality of piezoelectric particles are dispersed in a medium, and the direction of the electric field applied to the medium and the direction of polarization of the piezoelectric particles are the same so that the piezoelectric particles Are oriented,
The piezoelectric particles are held on the medium by curing the medium while applying a voltage to the uncured medium so that the plurality of piezoelectric particles are aligned in the medium in a plurality of rows. That
Damping device characterized by
請求項5に記載の制振装置において、
前記圧電材は、前記可動部材の振動に応じて振動する第1の電極と第2の電極との間に配置され、これらの電極の振動に応じて弾性変形すること、
を特徴とする制振装置。
The vibration damping device according to claim 5,
The piezoelectric material is disposed between a first electrode and a second electrode that vibrate according to the vibration of the movable member, and elastically deforms according to the vibration of these electrodes;
Damping device characterized by
請求項6に記載の制振装置において、
前記圧電材は、前記可動部材の振動に応じて振動する第1の電極と固定部材に固定される第2の電極との間に配置され、この第1の電極の振動に応じて弾性変形すること、
を特徴とする制振装置。
The vibration damping device according to claim 6,
The piezoelectric material is disposed between a first electrode that vibrates according to the vibration of the movable member and a second electrode that is fixed to the fixed member, and is elastically deformed according to the vibration of the first electrode. thing,
Damping device characterized by
請求項5から請求項7までのいずれか1項に記載の制振装置において、
前記圧電材は、ゴム中に前記複数の圧電粒子が配向されており
前記複数の圧電粒子が複数列に並んだ状態で前記ゴム中に配向するように、未硬化の前記ゴムに電圧を加えながらこのゴムを硬化させることによって、これらの圧電粒子がこのゴムに保持されていること、
を特徴とする制振装置。
In the vibration damping device according to any one of claims 5 to 7,
The piezoelectric material is oriented the plurality of piezoelectric particles in the rubber,
By curing the rubber while applying a voltage to the uncured rubber so that the plurality of piezoelectric particles are aligned in a plurality of rows in a row, the piezoelectric particles are held by the rubber. That
Damping device characterized by
請求項5から請求項8までのいずれか1項に記載の制振装置において、
前記圧電材が発生する電力を消費する電力消費部を備えること、
を特徴とする制振装置。
In the vibration damping device according to any one of claims 5 to 8,
Comprising a power consuming unit that consumes the power generated by the piezoelectric material;
Damping device characterized by
可動部材を圧電材によって駆動する駆動装置であって、
前記圧電材は、媒体中に複数の圧電粒子が分散されており、この媒体に加わる電界の方向とこれらの圧電粒子の分極方向とが同一になるように、この電界の方向にこれらの圧電粒子が配向されており、
前記複数の圧電粒子が複数列に並んだ状態で前記媒体中に配向するように、未硬化の前記媒体に電圧を加えながらこの媒体を硬化させることによって、これらの圧電粒子がこの媒体に保持されていること、
を特徴とする駆動装置。
A driving device for driving a movable member by a piezoelectric material,
In the piezoelectric material, a plurality of piezoelectric particles are dispersed in a medium, and the direction of the electric field applied to the medium and the direction of polarization of the piezoelectric particles are the same so that the piezoelectric particles Are oriented,
The piezoelectric particles are held on the medium by curing the medium while applying a voltage to the uncured medium so that the plurality of piezoelectric particles are aligned in the medium in a plurality of rows. That
A drive device characterized by the above.
請求項10に記載の駆動装置において、
前記圧電材は、第1の電極と第2の電極との間に配置され、これらの電極間に加わる電圧に応じて弾性変形して前記可動部材を駆動すること、
を特徴とする駆動装置。
The drive device according to claim 10, wherein
The piezoelectric material is disposed between the first electrode and the second electrode, and elastically deforms according to a voltage applied between these electrodes to drive the movable member;
A drive device characterized by the above.
請求項11に記載の駆動装置において、
前記圧電材は、ゴム中に前記複数の圧電粒子が配向されており
前記複数の圧電粒子が複数列に並んだ状態で前記ゴム中に配向するように、未硬化の前記ゴムに電圧を加えながらこのゴムを硬化させることによって、これらの圧電粒子がこのゴムに保持されていること、
を特徴とする駆動装置。
The drive device according to claim 11, wherein
The piezoelectric material is oriented the plurality of piezoelectric particles in the rubber,
By curing the rubber while applying a voltage to the uncured rubber so that the plurality of piezoelectric particles are aligned in a plurality of rows in a row, the piezoelectric particles are held by the rubber. That
A drive device characterized by the above.
請求項10から請求項12までのいずれか1項に記載の駆動装置において、
前記圧電材に加える電圧を制御する電圧制御部を備えること、
を特徴とする駆動装置。
The drive device according to any one of claims 10 to 12,
A voltage control unit for controlling a voltage applied to the piezoelectric material;
A drive device characterized by the above.
JP2006287180A 2006-10-23 2006-10-23 Piezoelectric material, method for manufacturing the same, vibration damping device, and driving device Expired - Fee Related JP5046367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006287180A JP5046367B2 (en) 2006-10-23 2006-10-23 Piezoelectric material, method for manufacturing the same, vibration damping device, and driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006287180A JP5046367B2 (en) 2006-10-23 2006-10-23 Piezoelectric material, method for manufacturing the same, vibration damping device, and driving device

Publications (2)

Publication Number Publication Date
JP2008108762A JP2008108762A (en) 2008-05-08
JP5046367B2 true JP5046367B2 (en) 2012-10-10

Family

ID=39441894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006287180A Expired - Fee Related JP5046367B2 (en) 2006-10-23 2006-10-23 Piezoelectric material, method for manufacturing the same, vibration damping device, and driving device

Country Status (1)

Country Link
JP (1) JP5046367B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5039685B2 (en) * 2008-12-05 2012-10-03 公益財団法人鉄道総合技術研究所 Train detector
WO2014155997A1 (en) * 2013-03-29 2014-10-02 旭化成株式会社 Angular velocity sensor
JP6275018B2 (en) * 2014-11-25 2018-02-07 公益財団法人鉄道総合技術研究所 Piezoelectric material and manufacturing method thereof, contact detection device, load detection device, and abnormal state detection device
CN104638103A (en) * 2015-02-04 2015-05-20 兰州大学 Transparent film capable of generating electricity and preparing method
DE112016000917B4 (en) * 2015-07-16 2020-12-31 Sumitomo Riko Company Limited Piezoelectric sensor
JP7036753B6 (en) * 2016-07-05 2022-05-30 コーニンクレッカ フィリップス エヌ ヴェ Shape deformer
JP6886266B2 (en) * 2016-09-28 2021-06-16 住友理工株式会社 Transducer using flexible piezoelectric material
CN114858316B (en) * 2022-04-27 2023-09-01 电子科技大学 Dynamic and static whole-course sensitive human-computer interface sensor and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042430A (en) * 1983-08-17 1985-03-06 Murata Mfg Co Ltd Composite composition
JPS6051750A (en) * 1983-08-30 1985-03-23 Murata Mfg Co Ltd Vibration-proofing composite material
JPH0245846B2 (en) * 1983-11-09 1990-10-12 Murata Manufacturing Co BOSHINFUKUGOTAIOMOCHIITAATSUDENSHINDOBUHIN
JPS6146083A (en) * 1984-08-10 1986-03-06 Sumitomo Bakelite Co Ltd Particle dispersion type composite piezoelectric body
JPS62255135A (en) * 1986-04-28 1987-11-06 日新製鋼株式会社 Vibration-damping material
JPS62194950U (en) * 1986-06-03 1987-12-11
JPH0750803B2 (en) * 1986-12-26 1995-05-31 日本特殊陶業株式会社 Method for manufacturing composite piezoelectric body
JPH0694074A (en) * 1992-09-11 1994-04-05 Toto Ltd Piezoelectric vibrationproof material, vibro-isolating construction therewith and usage thereof
JPH06126910A (en) * 1992-10-20 1994-05-10 Mitsui Eng & Shipbuild Co Ltd Damping composite materials
JPH09271136A (en) * 1996-03-29 1997-10-14 Chichibu Onoda Cement Corp Protective circuit for piezoelectric-actuator driving power supply
JP2005072042A (en) * 2003-08-25 2005-03-17 Fuji Photo Film Co Ltd Piezoelectric conversion composite material and manufacturing method thereof
US7530676B2 (en) * 2004-03-05 2009-05-12 Panasonic Corporation Piezoelectric element, inkjet head, angular velocity sensor, methods for manufacturing them and inkjet recording device

Also Published As

Publication number Publication date
JP2008108762A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
JP5046367B2 (en) Piezoelectric material, method for manufacturing the same, vibration damping device, and driving device
Dong Review on piezoelectric, ultrasonic, and magnetoelectric actuators
US7911115B2 (en) Monolithic electroactive polymers
US20010026165A1 (en) Monolithic electroactive polymers
US7888846B2 (en) Actuator
RU2675080C1 (en) Construction of external circuit of piezoelectric bimorph disk and method of optimizing its operational performance
EP1522140B1 (en) Fine control of electromechanical motors
WO2001058973A2 (en) Energy efficient electroactive polymers and electroactive polymer devices
KR20130045130A (en) Method of generating 3d haptic feedback and an associated handheld electronic device
EP1620939B1 (en) Near-resonance wide-range operating electromechanical motor
JP2018117512A (en) Inertial haptic actuators having cantilevered beam and smart material
KR20130030704A (en) Transducer and transducer module
Uchino Recent trend of piezoelectric actuator developments
Ci et al. A square-plate piezoelectric linear motor operating in two orthogonal and isomorphic face-diagonal-bending modes
RU2636255C2 (en) Bending type piezoactuator
JP2013039016A (en) Energy conversion module
Hemsel et al. A novel approach for high power ultrasonic linear motors
KR100759075B1 (en) Apparatus for actuator using piezoelectric material
JPH03293980A (en) Magnetostrictive actuator
Luo et al. A Cylinder-shaped Miniature Ultrasonic Motor Based on Pb (Mg1/3Nb 2/3) O3-PbTiO3 Single Crystals
CN116404901A (en) Piezoelectric driver with symmetrical motion output and symmetrical force generation functions and piezoelectric motor
King et al. Piezoelectric materials
Wang Design, fabrication and experimental analysis of piezoelectric energy harvesters with non-traditional geometries
Rubio et al. Toward design of functionally graded piezoelectric ultrasonic motors using topology optimization
Janocha Unconventional actuators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees