JP5045053B2 - System parallel insertion device for synchronous motor - Google Patents

System parallel insertion device for synchronous motor Download PDF

Info

Publication number
JP5045053B2
JP5045053B2 JP2006274662A JP2006274662A JP5045053B2 JP 5045053 B2 JP5045053 B2 JP 5045053B2 JP 2006274662 A JP2006274662 A JP 2006274662A JP 2006274662 A JP2006274662 A JP 2006274662A JP 5045053 B2 JP5045053 B2 JP 5045053B2
Authority
JP
Japan
Prior art keywords
motor
voltage
phase
phase difference
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006274662A
Other languages
Japanese (ja)
Other versions
JP2008099349A (en
Inventor
深志 上原
博 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2006274662A priority Critical patent/JP5045053B2/en
Publication of JP2008099349A publication Critical patent/JP2008099349A/en
Application granted granted Critical
Publication of JP5045053B2 publication Critical patent/JP5045053B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、同期電動機を所定のタイミングで電力系統に投入するための同期電動機用系統並入装置に関するものである。   The present invention relates to a synchronous motor system paralleling device for charging a synchronous motor to a power system at a predetermined timing.

図7は、従来の同期電動機用系統並入装置の構成図である。
図7において、10は同期電動機SMが投入される電力系統、11は電力系統10に一次側が接続されたトランス、20はトランス11の二次側に接続されて電動機SMの界磁巻線13に所定の界磁電流を供給する界磁変換器、CB−Sは電力系統10に接続された遮断器、12はトランス、30はトランス12の二次側に接続された始動装置、CB−6は始動装置30と電動機SMの電機子巻線との間に接続された遮断器、CB−42は電動機SMを電力系統10に投入するための遮断器、PT,PTは計器用変圧器、40はこれら計器用変圧器PT,PTの間に接続された同期投入装置、50は同期投入装置40に並列に接続されたAVR(自動電圧調節)回路である。
FIG. 7 is a configuration diagram of a conventional system parallel insertion device for a synchronous motor.
In FIG. 7, 10 is a power system into which the synchronous motor SM is inserted, 11 is a transformer connected to the primary side of the power system 10, and 20 is connected to the secondary side of the transformer 11 to the field winding 13 of the motor SM. A field converter for supplying a predetermined field current, CB-S is a circuit breaker connected to the power system 10, 12 is a transformer, 30 is a starter connected to the secondary side of the transformer 12, and CB-6 is A circuit breaker connected between the starter 30 and the armature winding of the electric motor SM, CB-42 is a circuit breaker for charging the electric motor SM into the electric power system 10, PT 1 and PT 2 are instrument transformers, Reference numeral 40 denotes a synchronizing device connected between the instrument transformers PT 1 and PT 2 , and 50 denotes an AVR (automatic voltage regulator) circuit connected in parallel to the synchronous device 40.

次に、図7の動作を図8のタイミングチャートを参照しつつ説明する。まず、初期状態において、遮断器CB−S,CB−6,CB−42は全て開放している。
始めに、界磁変換器20から界磁巻線13に電流を流し、同期電動機SMを励磁する。次に、図8の時刻tにおいて遮断器CB−S,CB−6を投入し、始動装置30により電動機SMの電機子巻線に電流を流してトルクを発生させ、同期電動機SMを始動する。
Next, the operation of FIG. 7 will be described with reference to the timing chart of FIG. First, in the initial state, the circuit breakers CB-S, CB-6, and CB-42 are all open.
First, a current is passed from the field converter 20 to the field winding 13 to excite the synchronous motor SM. Next, the circuit breaker CB-S, a CB-6 was charged at time t 1 in FIG. 8, by applying a current to the armature winding of the motor SM to generate a torque by the starting device 30 to start the synchronous motor SM .

そして、電動機SMの運転周波数と系統周波数との差が0.3Hz程度の微小な値になるまで電動機SMを加速した後、計器用変圧器PT,PTの間に接続されたAVR回路50の出力信号により、界磁変換器20を介して界磁電流を操作し、電動機の端子電圧(電動機電圧)及び系統電圧の振幅を一致させるように制御を行う。 Then, after accelerating the motor SM until the difference between the operating frequency of the motor SM and the system frequency becomes a minute value of about 0.3 Hz, the AVR circuit 50 connected between the instrument transformers PT 1 and PT 2 In response to the output signal, the field current is manipulated through the field converter 20 to control the motor terminal voltage (motor voltage) and the system voltage to coincide with each other.

このとき、電動機SMの運転周波数と系統周波数との差は0.3Hz程度であって微小であることから、数秒周期間隔で電動機電圧と系統電圧との位相が一致する。
同期投入装置40には、計器用変圧器PT,PTを介して系統電圧と電動機電圧とが入力されており、各々交流電圧の振幅及び位相を監視している。そして、同期投入装置40は、電動機電圧と系統電圧との位相が一致するタイミングより所定時間だけ早く、図8の時刻tにおいて、遮断器CB−42に投入指令を出力する。その後、両電圧の位相が一致する時刻において、遮断器CB−42の主接点が接触することとなる。
つまり、同期投入装置40が遮断器CB−42に投入指令を出力して投入コイルを励磁してから、実際に主接点が接触するまでには遅れ時間(遮断器投入時間)がある。
At this time, since the difference between the operating frequency of the motor SM and the system frequency is about 0.3 Hz and is very small, the phases of the motor voltage and the system voltage coincide with each other at intervals of several seconds.
A system voltage and an electric motor voltage are input to the synchronization input device 40 via instrument transformers PT 1 and PT 2 , and the amplitude and phase of the AC voltage are monitored. The synchronization inserting device 40 is earlier by a predetermined time than the timing of the phase matches the motor voltage and the system voltage, at time t 2 in FIG. 8, it outputs a closing command to the circuit breaker CB-42. Thereafter, at the time when the phases of both voltages coincide, the main contact of the circuit breaker CB-42 comes into contact.
That is, there is a delay time (breaker closing time) from when the synchronous closing device 40 outputs a closing command to the circuit breaker CB-42 to excite the closing coil until the main contact actually contacts.

なお、図9は、遮断器CB−42の動作を示すタイミングチャートである。
図9における時刻tで同期投入装置40から遮断器CB−42の投入指令が出力され、時刻tから遮断器投入時間Δtだけ遅れた時刻t(系統電圧と電動機電圧との位相差が零となる時刻)に、遮断器CB−42の主接点が実際にオンすることになる。
FIG. 9 is a timing chart showing the operation of the circuit breaker CB-42.
Closing command of the circuit breaker CB-42 from the synchronization inserting device 40 at time t 4 in FIG. 9 is output, the phase difference between the delayed time t 5 (system voltage and motor voltage circuit breaker on time Δt from the time t 4 is At the time of zero), the main contact of the circuit breaker CB-42 is actually turned on.

その後、図8の時刻tから一定時間経過した時刻tにおいて、遮断器CB−42の主接点の投入を確認した後に、遮断器CB−6へ遮断指令が出力されてこれを遮断することにより、始動装置30を介した電機子電流の供給が停止され、以後は電力系統10から電動機SMに電力が供給されることとなる。 Then, at time t 3 when a predetermined time has elapsed from the time t 2 in FIG. 8, after confirming the insertion of the main contacts of the circuit breaker CB-42, the opening command to the circuit breaker CB-6 to block it is outputted Thus, the supply of the armature current through the starter 30 is stopped, and thereafter, the electric power is supplied from the power system 10 to the electric motor SM.

なお、上述したような同期電動機用系統並入装置は、例えば下記の特許文献1,2に記載されている。   In addition, the system parallel insertion apparatus for synchronous motors as described above is described in, for example, Patent Documents 1 and 2 below.

特開昭62−247776号公報(第2頁左上欄第10行〜右下欄第18行、第3図等)JP-A-62-247776 (page 2, upper left column, line 10 to lower right column, line 18, FIG. 3 etc.) 特開昭57−88881号公報(第1頁右下欄第9行〜第18行)JP-A-57-88881 (the first page, lower right column, lines 9 to 18)

前述の如く、遮断器CB−42には、投入コイルを励磁してから主接点が接触するまでの遅れ時間として投入時間Δtが存在し、この投入時間Δtは、遮断器の投入実績回数や経年により変化する。しかし、投入時間Δtが変化すると、系統電圧と電動機電圧との位相がずれた状態で主接点が接触してしまうおそれがあり、これによって電力系統10に対する電源擾乱を引き起こしてしまう。
このため、遮断器の投入時間Δtを定期的に測定し、その測定値を同期投入装置40に設定し直す必要があり、多くの手間や労力を必要としていた。
As described above, the breaker CB-42 has a closing time Δt as a delay time from the excitation of the closing coil to the contact of the main contact. It depends on. However, if the charging time Δt changes, the main contact may come into contact with the system voltage and the motor voltage being out of phase, which causes power supply disturbance to the power system 10.
For this reason, it is necessary to periodically measure the closing time Δt of the circuit breaker and reset the measured value in the synchronous closing device 40, which requires a lot of labor and labor.

そこで、本発明の解決課題は、投入時間Δtの再設定に煩わされることなく、メンテナンスフリーにて同期電動機を系統に投入可能とした同期電動機用系統並入装置を提供することにある。   Therefore, a problem to be solved by the present invention is to provide a synchronous motor system paralleling apparatus that allows a synchronous motor to be input into the system without maintenance, without being troubled by resetting the input time Δt.

上記課題を解決するため、本発明は、系統投入時の同期電動機の電圧位相制御方法に着目してなされたものである。
すなわち、請求項1に記載した発明は、同期電動機の端子電圧と系統電圧との周波数差、振幅差及び位相差がほぼ零になったタイミングで電力系統と前記電動機との間に設けられた遮断器を投入して前記電動機を電力系統に同期投入する同期電動機用系統並入装置において、
系統電圧及び電動機電圧をそれぞれ相変換し、系統電圧位相を用いて座標変換して電動機電圧の直交2軸成分を演算する第1の演算手段と、
前記直交2軸成分から系統電圧と電動機電圧との位相差を演算する第2の演算手段と、
前記位相差が零になるように前記電動機の速度指令値の補正信号を生成する位相調節手段と、
前記補正信号により補正された速度指令値と速度検出値との偏差を零にするように調節動作を行って前記電動機の電流指令値を出力する速度調節手段と、
前記電流指令値と電流検出値との偏差を零にするように調節動作を行ってPWM指令を出力する電流調節手段と、
前記PWM指令に従って、前記電動機を始動するPWMインバータのスイッチング素子に対する駆動信号を生成するPWM手段と、を備え、
前記電動機の始動時には、前記インバータにより、前記電動機を系統電圧周波数よりも僅かに低い駆動周波数にて始動し、第2の演算手段により演算した前記位相差が零になったタイミングで前記位相調節手段を動作させ、系統電圧と電動機電圧との振幅差及び記位相差が零になったタイミングで前記遮断器に対する投入指令を出力し、その後、前記インバータによる前記電動機への電力供給を遮断するものである。
In order to solve the above problems, the present invention has been made paying attention to a voltage phase control method for a synchronous motor when a system is turned on.
That is, the invention described in claim 1 is a circuit breaker provided between the electric power system and the electric motor at the timing when the frequency difference, amplitude difference and phase difference between the terminal voltage of the synchronous motor and the system voltage become substantially zero. In the system paralleling device for synchronous motors, in which the electric motor is inserted and the electric motor is synchronously inserted into the electric power system,
A first calculation means for phase-converting each of the system voltage and the motor voltage and performing coordinate conversion using the system voltage phase to calculate an orthogonal biaxial component of the motor voltage;
Second computing means for computing a phase difference between the system voltage and the motor voltage from the orthogonal two-axis component;
A phase adjusting means for generating a correction signal of a speed command value of the electric motor so that the phase difference becomes zero;
Speed adjusting means for adjusting the deviation between the speed command value corrected by the correction signal and the speed detection value to zero and outputting the current command value of the motor;
Current adjusting means for performing an adjustment operation so as to make the deviation between the current command value and the current detection value zero and outputting a PWM command;
PWM means for generating a drive signal for a switching element of a PWM inverter that starts the electric motor according to the PWM command,
At the time of starting the electric motor, the inverter is started at a driving frequency slightly lower than the system voltage frequency by the inverter, and the phase adjusting means is at a timing when the phase difference calculated by the second calculating means becomes zero. operating the amplitude difference and previous SL phase difference between the system integrated voltage and the motor voltage outputs closing command for the circuit breaker at a timing becomes zero, then cuts off the power supply to the motor by the inverter Is.

請求項2に記載した発明は、請求項1に記載した同期電動機用系統並入装置において、前記電動機を電力系統に同期投入する際に、前記インバータの制御が不安定にならないように前記電流調節手段の定数を切り替えるものである。
According to a second aspect of the present invention, in the synchronous motor system parallel insertion device according to the first aspect, the current adjustment is performed so that the control of the inverter does not become unstable when the electric motor is synchronously input to the electric power system. a shall switch the constant means.

本発明によれば、従来のように予め設定された遮断器投入時間を考慮して同期投入指令を出力する同期投入装置を不要にすると共に、制御装置により、系統電圧と電動機電圧との位相差を簡単な方法により検出し、その位相差を零にする調節手段の出力に基づいてインバータを制御するようにしたので、所定の同期投入条件を満足したタイミングで同期電動機を電力系統に投入することができる。従って、遮断器投入時間の再設定に煩わされることなく、メンテナンスフリーにて同期電動機を投入可能な並入装置を実現することができる。
また、位相調節手段を構成するPLL回路を所定のタイミングで活かすことにより、同期電動機を常に力行動作させることができ、回生機能のないインバータにも適用することが可能である。
更に、電流調節手段の定数を切り替えれば、同期投入の前後でインバータの制御が不安定になるのを防止することができる。
According to the present invention, there is no need for a synchronous closing device that outputs a synchronous closing command in consideration of a preset circuit breaker closing time as in the prior art, and a phase difference between the system voltage and the motor voltage is controlled by the control device. Is detected by a simple method, and the inverter is controlled based on the output of the adjusting means that makes the phase difference zero, so that the synchronous motor is input to the power system at a timing satisfying a predetermined synchronous input condition. Can do. Therefore, it is possible to realize a parallel insertion device capable of supplying a synchronous motor without maintenance without being bothered by resetting the breaker closing time.
Further, by utilizing the PLL circuit constituting the phase adjusting means at a predetermined timing, the synchronous motor can always be operated in power, and can be applied to an inverter having no regenerative function.
Furthermore, if the constant of the current adjusting means is switched, it is possible to prevent the inverter control from becoming unstable before and after the synchronization is turned on.

以下、図に沿って本発明の実施形態を説明する。
まず、図1はこの実施形態の構成を示す制御ブロック図であり、図7と同一の構成要素には同一の参照符号を付して説明を省略し、以下では異なる部分を中心に説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, FIG. 1 is a control block diagram showing the configuration of this embodiment. The same components as those in FIG. 7 are denoted by the same reference numerals and the description thereof will be omitted. Hereinafter, different portions will be mainly described.

図1において、31はトランス12の二次側に接続された静止型起動装置としてのPWMインバータである。このPWMインバータ31から出力される交流電圧は、遮断器CB−6を介して同期電動機SMの電機子巻線に供給可能であり、インバータ31は電動機SMの始動時及び加速時に使用されるものである。
また、電力系統10と同期電動機SMの電機子巻線とは遮断器CB−42を介して接続可能であると共に、計器用変圧器PT,PTを介して制御装置100に接続されている。この制御装置100は、計器用変圧器PT,PTの二次側電圧を入力として、界磁電流指令値と、PWMインバータ31のスイッチング素子に対するゲート信号を出力するものである。
In FIG. 1, reference numeral 31 denotes a PWM inverter as a stationary starter connected to the secondary side of the transformer 12. The AC voltage output from the PWM inverter 31 can be supplied to the armature winding of the synchronous motor SM via the circuit breaker CB-6, and the inverter 31 is used when starting and accelerating the motor SM. is there.
The power system 10 and the armature winding of the synchronous motor SM can be connected via the circuit breaker CB-42 and are connected to the control device 100 via the instrument transformers PT 1 and PT 2 . . The control device 100 outputs the field current command value and the gate signal for the switching element of the PWM inverter 31 by using the secondary voltages of the instrument transformers PT 1 and PT 2 as inputs.

次に、制御装置100の構成及び作用について述べる。
計器用変圧器PT,PTの二次側電圧の偏差が加減算器121によって求められ、この偏差はAVR回路103に入力される。AVR回路103では磁束指令値の補設定信号Δφを求めると共に、この補設定信号Δφは加減算器122により磁束設定値に加算され、この加算結果である磁束指令値は加減算器123に入力されて磁束検出値との偏差が求められる。磁束調節器104では、上記偏差をなくすような界磁電流指令値が演算され、この界磁電流指令値が界磁変換器20に入力されている。
Next, the configuration and operation of the control device 100 will be described.
The deviation of the secondary voltage of the instrument transformers PT 1 and PT 2 is obtained by the adder / subtractor 121, and this deviation is input to the AVR circuit 103. In the AVR circuit 103, a complementary setting signal Δφ of the magnetic flux command value is obtained, and this complementary setting signal Δφ is added to the magnetic flux setting value by the adder / subtractor 122. Deviation from the detected value is obtained. The magnetic flux adjuster 104 calculates a field current command value that eliminates the deviation, and the field current command value is input to the field converter 20.

計器用変圧器PT,PTの二次側電圧は位相差演算回路101にも入力されており、その出力である位相差は、PLL回路102及び遮断器投入条件演算回路105に入力されている。ここで、PLL回路102は位相調節手段を構成している。なお、前記演算回路105には、前記加減算器121の出力も入力されている。
遮断器投入条件演算回路105は、位相差演算回路101の出力と加減算器121の出力とから遮断器CB−42の投入条件が成立したことを判断し、同期電動機SMの系統10側の遮断器CB−42に対する投入指令を出力する。
The secondary voltages of the instrument transformers PT 1 and PT 2 are also input to the phase difference calculation circuit 101, and the phase difference as the output is input to the PLL circuit 102 and the circuit breaker closing condition calculation circuit 105. Yes. Here, the PLL circuit 102 constitutes phase adjusting means. Note that the output of the adder / subtractor 121 is also input to the arithmetic circuit 105.
The circuit breaker closing condition calculation circuit 105 determines that the closing condition of the circuit breaker CB-42 is satisfied from the output of the phase difference calculation circuit 101 and the output of the adder / subtractor 121, and the circuit breaker on the system 10 side of the synchronous motor SM. The input command for CB-42 is output.

前記PLL回路102の出力は、電動機SMの速度設定値に対する補正信号として加減算器124により速度設定値に加算され、その出力である速度指令値と速度検出値との偏差が加減算器125により演算される。この偏差はASR(自動速度調節)回路106に入力されて上記偏差をなくすような電流指令値が演算され、この電流指令値と電動機SMの電流検出値との偏差が加減算器126によって演算される。
ACR(自動電流調節)回路107は電流指令値と電流検出値との偏差をなくすように調節動作を行い、その出力がPWM指令としてPWM回路108に与えられる。PWM回路108では、PWMインバータ31のスイッチング素子に対するゲート信号を生成し、このゲート信号を前記PWMインバータ31に与えてスイッチング素子をオンオフさせる。
The output of the PLL circuit 102 is added to the speed setting value by the adder / subtractor 124 as a correction signal for the speed setting value of the motor SM, and the deviation between the output speed command value and the speed detection value is calculated by the adder / subtractor 125. The This deviation is input to an ASR (automatic speed adjustment) circuit 106, and a current command value that eliminates the deviation is calculated, and a deviation between the current command value and the current detection value of the motor SM is calculated by the adder / subtractor 126. .
An ACR (automatic current adjustment) circuit 107 performs an adjustment operation so as to eliminate the deviation between the current command value and the current detection value, and its output is given to the PWM circuit 108 as a PWM command. The PWM circuit 108 generates a gate signal for the switching element of the PWM inverter 31 and supplies the gate signal to the PWM inverter 31 to turn on / off the switching element.

次に、この実施形態の動作を説明する。
まず、前記同様に、初期状態では遮断器CB−S,CB−6,CB−42は全て開放しており、界磁変換器20から界磁巻線13に電流を流して同期電動機SMを励磁する。次に、遮断器CB−S,CB−6を投入してPWMインバータ31により同期電動機SMを加速する。この時、同期電動機SMの速度設定値は、系統周波数より僅かに低い周波数として加減算器124に与えられている。
Next, the operation of this embodiment will be described.
First, as described above, in the initial state, the circuit breakers CB-S, CB-6, and CB-42 are all open, and a current is passed from the field converter 20 to the field winding 13 to excite the synchronous motor SM. To do. Next, the circuit breakers CB-S and CB-6 are turned on, and the synchronous motor SM is accelerated by the PWM inverter 31. At this time, the speed set value of the synchronous motor SM is given to the adder / subtractor 124 as a frequency slightly lower than the system frequency.

同期電動機SMの実際の速度が前記速度設定値に一致した後、AVR回路103により磁束指令値の補設定信号Δφが演算され、この補設定信号Δφが加減算器122において磁束設定値に加算される。そして、この加算結果である磁束指令値と磁束検出値との偏差を零にするように磁束調節器104が界磁電流指令値を演算して出力する。この指令値に従って界磁変換器20が界磁電流を調整することで、電動機電圧の大きさが系統電圧の大きさに一致し、AVR回路103の入力偏差は零となる。   After the actual speed of the synchronous motor SM coincides with the speed setting value, the AVR circuit 103 calculates a complementary setting signal Δφ of the magnetic flux command value, and the auxiliary setting signal Δφ is added to the magnetic flux setting value in the adder / subtractor 122. . The magnetic flux regulator 104 calculates and outputs the field current command value so that the deviation between the magnetic flux command value and the detected magnetic flux value, which is the addition result, is zero. The field converter 20 adjusts the field current according to the command value, so that the magnitude of the motor voltage matches the magnitude of the system voltage, and the input deviation of the AVR circuit 103 becomes zero.

図2は、前記位相差演算回路101の構成を示すブロック図である。
計器用変圧器PT,PTから入力された系統電圧(線間電圧)Vrs,Vst及び電動機電圧(線間電圧)Vuv,Vvwは、各々3相量に変換された後、3相/2相変換器101a,101bにより2相量に変換され、更に、ベクトル回転器(VD)101c,101dにより座標変換されて、交流信号から直流信号Vms,Vts,Vmm,Vtmがそれぞれ演算される。これらの直流信号Vms,Vts,Vmm,VtmはVδ,Vγ演算器101eに入力され、電動機電圧Vのδ軸成分Vδ及びγ軸成分Vγが演算される。
ここで、3相/2相変換器101a,101b、ベクトル回転器101c,101d及びVδ,Vγ演算器101eは、第1の演算手段を構成している。
FIG. 2 is a block diagram showing a configuration of the phase difference calculation circuit 101.
After the system voltage (line voltage) V rs , V st and the motor voltage (line voltage) V uv , V vw input from the instrument transformers PT 1 , PT 2 are respectively converted into three-phase quantities, The signal is converted into a two-phase quantity by the three-phase / two-phase converters 101a and 101b, further coordinate-converted by the vector rotators (VD) 101c and 101d, and the DC signals V ms , V ts , V mm , V from the AC signal. Each tm is calculated. These DC signals V ms , V ts , V mm , and V tm are input to the V δ and V γ calculator 101e, and the δ-axis component V δ and the γ-axis component V γ of the motor voltage V m are calculated.
Here, the three-phase / two-phase converters 101a and 101b, the vector rotators 101c and 101d, and the V δ and V γ arithmetic units 101e constitute first arithmetic means.

いま、図3に示すように系統電圧Vと同一位相の軸をγ軸とし、γ軸に対して90°el(電気角)進んだ軸をδ軸と考えると、電動機電圧Vのδ軸成分Vδ及びγ軸成分Vγは下記の数式1,2のような簡単な演算によって求めることができる。なお、θは系統電圧位相、φは系統電圧Vと電動機電圧Vとの位相差を示す。 Assuming that the axis having the same phase as the system voltage V s is the γ axis and the axis advanced by 90 ° el (electrical angle) with respect to the γ axis is the δ axis as shown in FIG. 3, the δ of the motor voltage V m The axial component V δ and the γ-axis component V γ can be obtained by a simple calculation such as the following formulas 1 and 2. Note that θ s represents the system voltage phase, and φ represents the phase difference between the system voltage V s and the motor voltage V m .

[数式1]
δ=V×sinφ=V×sin(φ+θ−θ
=V×{sin(φ+θ)cos(−θ)+sin(−θ)cos(φ+θ)}
=V×{sin(φ+θ)×Vms/V−Vts/V×cos(φ+θ)}
=Vtm×Vms/V−Vmm×Vts/V
=1/V×(Vtm×Vms−Vmm×Vts
[Formula 1]
V δ = V m × sinφ = V m × sin (φ + θ s -θ s)
= V m * {sin (φ + θ s ) cos (−θ s ) + sin (−θ s ) cos (φ + θ s )}
= V m × {sin (φ + θ s) × V ms / V s -V ts / V s × cos (φ + θ s)}
= V tm × V ms / V s -V mm × V ts / V s
= 1 / V s × (V tm × V ms −V mm × V ts )

[数式2]
γ=V×cosφ=V×cos(φ+θ−θ
=V×{cos(φ+θ)cos(−θ)+sin(−θ)sin(φ+θ)}
=V×{cos(φ+θ)×Vms/V+Vts/V×sin(φ+θ)}
=Vmm×Vms/V+Vtm×Vts/V
=1/V×(Vmm×Vms+Vtm×Vts
[Formula 2]
V γ = V m × cos φ = V m × cos (φ + θ s −θ s )
= V m × {cos (φ + θ s ) cos (−θ s ) + sin (−θ s ) sin (φ + θ s )}
= V m × {cos (φ + θ s) × V ms / V s + V ts / V s × sin (φ + θ s)}
= V mm × V ms / V s + V tm × V ts / V s
= 1 / V s × (V mm × V ms + V tm × V ts )

上記の数式1,2において、系統電圧Vの大きさは数式3により演算することができる。
[数式3]
=√(Vms +Vts
In the above formulas 1 and 2, the magnitude of the system voltage V s can be calculated by formula 3.
[Formula 3]
V s = √ (V ms 2 + V ts 2 )

図2のVδ,Vγ演算器101eは上記数式1〜数式3によりVδ,Vγを演算し、第2の演算手段としての位相差演算器101fは、これらのVδ,Vγを使用して、系統電圧Vと電動機電圧Vとの位相差φをφ=tan−1(Vδ/Vγ)により演算する。 Of V [delta] Figure 2, V gamma calculator 101e is V [delta] by the equation 1 Equation 3 calculates the V gamma, phase difference calculator 101f as a second arithmetic means, these V [delta], the V gamma Then, the phase difference φ between the system voltage V s and the motor voltage V m is calculated by φ = tan −1 (V δ / V γ ).

再び図1において、遮断器投入条件演算回路105は、系統電圧Vと電動機電圧Vとの偏差が零になり、かつ、位相差演算回路101(位相差演算器101f)により位相差φが零になった時点で投入条件が成立したと判断して遮断器CB−42に投入指令を送り、遮断器CB−42を投入する。そして、その後、従来と同様に遮断器CB−42の主接点の投入を確認した後に、遮断器CB−6へ遮断指令が出力されてこれを遮断することにより、PWMインバータ31からの電機子電流の供給が停止され、以後は電力系統10から電動機SMに電力が供給されることとなる。 In FIG. 1 again, the circuit breaker closing condition calculation circuit 105 has zero deviation between the system voltage V s and the motor voltage V m, and the phase difference φ is set by the phase difference calculation circuit 101 (phase difference calculation unit 101f). When it becomes zero, it is determined that the closing condition is satisfied, a closing command is sent to the breaker CB-42, and the breaker CB-42 is turned on. After that, after confirming that the main contact of the circuit breaker CB-42 is turned on as in the conventional case, a circuit break command is output to the circuit breaker CB-6, and this is cut off, whereby the armature current from the PWM inverter 31 is output. Then, power is supplied from the power system 10 to the motor SM.

ここで、PLL回路102は、上記位相差φが零になるように速度設定値を補正する補正信号を出力し、電動機電圧の位相を系統電圧の位相に一致させるように動作する。
なお、PLL回路102を活かす(動作させる)前は、前述したようにPWMインバータ31による電動機SMの駆動周波数は系統周波数より僅かに低く設定されている。このため、駆動周波数と系統周波数との差をΔfとすると、1/Δfの周期で電動機電圧と系統電圧との位相が一致し、その後、系統電圧は電動機電圧に対して位相が進み方向でずれていくことを繰り返す。
Here, the PLL circuit 102 outputs a correction signal for correcting the speed set value so that the phase difference φ becomes zero, and operates so that the phase of the motor voltage matches the phase of the system voltage.
Before using (operating) the PLL circuit 102, the drive frequency of the electric motor SM by the PWM inverter 31 is set slightly lower than the system frequency as described above. For this reason, if the difference between the drive frequency and the system frequency is Δf, the phase of the motor voltage and the system voltage coincide with each other at a period of 1 / Δf, and then the system voltage is shifted in the advance direction with respect to the motor voltage. Repeat the process.

この場合、任意のタイミングでPLL回路102を活かすと、その動作により速度設定値が補正されて系統周波数よりも低い値となり、その結果、ASR回路106の動作によって電流指令値が負になる場合がある。つまり、電動機SMが回生動作となってしまい、PWMインバータ31が回生機能を持たない場合には問題を生じる。
これを防止するため、言い換えれば、PLL回路102を活かした時に電動機SMを必ず力行動作させるために、以下のような方法でPLL回路102を活かすタイミングを決定することが望ましい。
In this case, if the PLL circuit 102 is utilized at an arbitrary timing, the speed setting value is corrected by the operation and becomes a value lower than the system frequency. As a result, the current command value may become negative due to the operation of the ASR circuit 106. is there. That is, when the electric motor SM is in a regenerative operation and the PWM inverter 31 does not have a regenerative function, a problem occurs.
In order to prevent this, in other words, in order to make the electric motor SM always perform a power running operation when the PLL circuit 102 is utilized, it is desirable to determine the timing for utilizing the PLL circuit 102 by the following method.

図4は、系統電圧と電動機電圧との位相差、Vδ,Vγの波形、及びPLL回路102を活かすタイミングを示した図である。
PLL回路102を活かしたときに電動機SMを必ず力行動作させるには、電動機SMの駆動周波数よりも系統周波数の方が高いので、系統電圧と電動機電圧との位相が一致した点でPLL回路102を活かすようにすれば、PWMインバータ31から供給される電動機電圧が系統電圧を追いかける動作となり、必ず力行動作となる。
このため、図4におけるVδ,Vγの波形に基づいて系統電圧と電動機電圧との位相差が零になるタイミングtを検出し、このタイミングtにてPLL回路102を活かすようにすればよい。
FIG. 4 is a diagram showing the phase difference between the system voltage and the motor voltage, the waveforms of V δ and V γ , and the timing at which the PLL circuit 102 is utilized.
In order to make the electric motor SM perform a power running operation when the PLL circuit 102 is utilized, the system frequency is higher than the driving frequency of the electric motor SM, so that the phase of the system voltage is equal to the phase of the electric motor voltage. By making use of this, the motor voltage supplied from the PWM inverter 31 follows the system voltage, and is always a power running operation.
Therefore, based on the waveforms of V δ and V γ in FIG. 4, the timing t 0 when the phase difference between the system voltage and the motor voltage becomes zero is detected, and the PLL circuit 102 is utilized at this timing t 0 . That's fine.

図5は、上述したPLL回路102を活かすタイミングtを生成するための回路構成であり、91,92,94は入力信号の正負を判定するコンパレータ、93,95はアンドゲートを示している。
図5において、図4に示した如く変化するVδの今回演算値及び前回演算値がコンパレータ91,92にそれぞれ入力されるため、Vδのゼロクロス点でアンドゲート93の出力信号が「High」レベルとなる。
同時に、Vγ≧0の時にコンパレータ94の出力信号が「High」レベルとなり、この信号と上記アンドゲート93の出力信号とが入力されるアンドゲート95の出力信号が「High」レベルとなってPLL回路102を活かすタイミングtが生成される。
ここで、Vγ≧0の条件が必要な理由は、図4から明らかなようにVδのゼロクロス点は2箇所存在するので、位相差零のタイミングを確実に検出するためである。
Figure 5 is a circuit configuration for generating a timing t 0 to utilize the PLL circuit 102 described above, 91, 92, 94 is a comparator determines the sign of the input signal, 93 and 95 show an AND gate.
In FIG. 5, the current calculation value and the previous calculation value of V δ that change as shown in FIG. 4 are respectively input to the comparators 91 and 92, so that the output signal of the AND gate 93 is “High” at the zero cross point of V δ. Become a level.
At the same time, when V γ ≧ 0, the output signal of the comparator 94 becomes the “High” level, and the output signal of the AND gate 95 to which this signal and the output signal of the AND gate 93 are input becomes the “High” level and the PLL. A timing t 0 that makes use of the circuit 102 is generated.
Here, the reason why the condition of V γ ≧ 0 is necessary is that there are two zero cross points of V δ as apparent from FIG.

なお、図6は、PWMインバータ31の制御が不安定にならないように、ACR回路107の定数を切り替えるためのACR定数選択手段の構成を示している。
系統遮断器CB−42が投入された場合、電動機SMが系統に並列に接続され、PWMインバータ31の出力インピーダンスが低下するので、ACR回路107(電流制御系)の定数(比例ゲインや積分ゲイン)を適当な値に自動的に切り替える必要がある。
FIG. 6 shows the configuration of ACR constant selection means for switching the constants of the ACR circuit 107 so that the control of the PWM inverter 31 does not become unstable.
When the system breaker CB-42 is turned on, the motor SM is connected in parallel to the system, and the output impedance of the PWM inverter 31 decreases, so the constant (proportional gain or integral gain) of the ACR circuit 107 (current control system) Must be automatically switched to an appropriate value.

このため、図6に示すように加速時のACR定数と同期投入時のACR定数とを予め保持しておき、加速完了を確認したタイミングで切替手段96の動作により加速時のACR定数から同期投入時のACR定数に切り替える。但し、ACR回路107の動作をショックレスで行わせるため、同期投入時のACR定数側には、ランプ関数HLRを介在させてACR定数を徐々に変化させることが望ましい。   For this reason, as shown in FIG. 6, the ACR constant at the time of acceleration and the ACR constant at the time of synchronizing are held in advance, and the switching means 96 is operated to synchronize from the ACR constant at the time of acceleration when the completion of acceleration is confirmed. Switch to the hour ACR constant. However, in order to perform the operation of the ACR circuit 107 in a shockless manner, it is desirable to gradually change the ACR constant by interposing the ramp function HLR on the ACR constant side when the synchronization is turned on.

本発明の実施形態を示す制御ブロック図である。It is a control block diagram which shows embodiment of this invention. 図1における位相差演算回路の構成図である。It is a block diagram of the phase difference calculating circuit in FIG. 実施形態における系統電圧、電動機電圧等のベクトル図である。It is a vector diagram, such as a system voltage in an embodiment, and a motor voltage. 系統電圧と電動機電圧との位相差、Vδ,Vγの波形、及びPLL回路を活かすタイミングを示した図である。Phase difference between the system voltage and the motor voltage, V [delta], is a diagram showing a timing to make use of the waveform of V gamma, and a PLL circuit. PLL回路を活かすタイミングを生成するための回路構成図である。It is a circuit block diagram for producing | generating the timing which utilizes a PLL circuit. ACR定数選択手段の構成図である。It is a block diagram of an ACR constant selection means. 従来の同期電動機用系統並入装置の構成図である。It is a block diagram of the conventional system | straining apparatus for synchronous motors. 図7における遮断器の動作を示すタイミングチャートである。It is a timing chart which shows operation | movement of the circuit breaker in FIG. 図7における遮断器CB−42の投入時間を説明するタイミングチャートである。FIG. 8 is a timing chart for explaining a closing time of the circuit breaker CB-42 in FIG. 7.

符号の説明Explanation of symbols

10:電力系統
11,12:トランス
13:界磁巻線
20:界磁変換器
31:PWMインバータ
91,92,94:コンパレータ
93,95:アンドゲート
96:切替手段
100:制御装置
101:位相差演算回路
101a,101b:3相/2相変換器
101c,101d:ベクトル回転器
101e:Vδ,Vγ演算器
101f:位相差演算器
102:PLL回路
103:AVR回路
104:磁束調節器
105:遮断器投入条件演算回路
106:ASR回路
107:ACR回路
108:PWM回路
SM:同期電動機
CB−S,CB−6,CB−42:遮断器
PT,PT:計器用変圧器
HLR:ランプ関数
10: Power system 11, 12: Transformer 13: Field winding 20: Field converter 31: PWM inverter 91, 92, 94: Comparator 93, 95: AND gate 96: Switching means 100: Control device 101: Phase difference Arithmetic circuits 101a, 101b: 3-phase / 2-phase converters 101c, 101d: vector rotators 101e: V δ , V γ computing units 101f: phase difference computing units 102: PLL circuits 103: AVR circuits 104: magnetic flux regulators 105: circuit breaker closing condition calculating circuit 106: ASR circuit 107: ACR circuit 108: PWM circuit SM: synchronous motor CB-S, CB-6, CB-42: breaker PT 1, PT 2: potential transformer HLR: ramp

Claims (2)

同期電動機の端子電圧と系統電圧との周波数差、振幅差及び位相差がほぼ零になったタイミングで電力系統と前記電動機との間に設けられた遮断器を投入して前記電動機を電力系統に同期投入する同期電動機用系統並入装置において、
系統電圧及び電動機電圧をそれぞれ相変換し、系統電圧位相を用いて座標変換して電動機電圧の直交2軸成分を演算する第1の演算手段と、
前記直交2軸成分から系統電圧と電動機電圧との位相差を演算する第2の演算手段と、
前記位相差が零になるように前記電動機の速度指令値の補正信号を生成する位相調節手段と、
前記補正信号により補正された速度指令値と速度検出値との偏差を零にするように調節動作を行って前記電動機の電流指令値を出力する速度調節手段と、
前記電流指令値と電流検出値との偏差を零にするように調節動作を行ってPWM指令を出力する電流調節手段と、
前記PWM指令に従って、前記電動機を始動するPWMインバータのスイッチング素子に対する駆動信号を生成するPWM手段と、を備え、
前記電動機の始動時には、前記インバータにより、前記電動機を系統電圧周波数よりも僅かに低い駆動周波数にて始動し、第2の演算手段により演算した前記位相差が零になったタイミングで前記位相調節手段を動作させ、系統電圧と電動機電圧との振幅差及び記位相差が零になったタイミングで前記遮断器に対する投入指令を出力し、その後、前記インバータによる前記電動機への電力供給を遮断することを特徴とする同期電動機用系統並入装置。
A circuit breaker provided between the electric power system and the motor is inserted at the timing when the frequency difference, amplitude difference and phase difference between the terminal voltage of the synchronous motor and the system voltage become almost zero, and the electric motor is made into the electric power system. In the system parallel input device for synchronous motors to be synchronized,
A first calculation means for phase-converting each of the system voltage and the motor voltage and performing coordinate conversion using the system voltage phase to calculate an orthogonal biaxial component of the motor voltage;
Second computing means for computing a phase difference between the system voltage and the motor voltage from the orthogonal two-axis component;
A phase adjusting means for generating a correction signal of a speed command value of the electric motor so that the phase difference becomes zero;
Speed adjusting means for adjusting the deviation between the speed command value corrected by the correction signal and the speed detection value to zero and outputting the current command value of the motor;
Current adjusting means for performing an adjustment operation so as to make the deviation between the current command value and the current detection value zero and outputting a PWM command;
PWM means for generating a drive signal for a switching element of a PWM inverter that starts the electric motor according to the PWM command,
At the time of starting the electric motor, the inverter is started at a driving frequency slightly lower than the system voltage frequency by the inverter, and the phase adjusting means is at a timing when the phase difference calculated by the second calculating means becomes zero. operating the amplitude difference and previous SL phase difference between the system integrated voltage and the motor voltage outputs closing command for the circuit breaker at a timing becomes zero, then cuts off the power supply to the motor by the inverter The system parallel installation apparatus for synchronous motors characterized by the above-mentioned.
請求項1に記載した同期電動機用系統並入装置において、
前記電動機を電力系統に同期投入する際に、前記インバータの制御が不安定にならないように前記電流調節手段の定数を切り替えることを特徴とする同期電動機用系統並入装置。
In the synchronous motor system parallel insertion device according to claim 1,
It said electric motor when synchronizing charged to the power grid, the synchronous motor for line parallel input and wherein the control is a to switch between the constant of the current regulating means so as not to unstable the inverter.
JP2006274662A 2006-10-06 2006-10-06 System parallel insertion device for synchronous motor Active JP5045053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006274662A JP5045053B2 (en) 2006-10-06 2006-10-06 System parallel insertion device for synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006274662A JP5045053B2 (en) 2006-10-06 2006-10-06 System parallel insertion device for synchronous motor

Publications (2)

Publication Number Publication Date
JP2008099349A JP2008099349A (en) 2008-04-24
JP5045053B2 true JP5045053B2 (en) 2012-10-10

Family

ID=39381610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006274662A Active JP5045053B2 (en) 2006-10-06 2006-10-06 System parallel insertion device for synchronous motor

Country Status (1)

Country Link
JP (1) JP5045053B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235595A1 (en) 2018-06-07 2019-12-12 日立三菱水力株式会社 Variable-speed power generation electric device
WO2020013015A1 (en) 2018-07-09 2020-01-16 日立三菱水力株式会社 Variable-speed generator-motor device
US11539215B2 (en) 2021-03-16 2022-12-27 Kabushiki Kaisha Toshiba Voltage control inverter, power source apparatus, and control method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6192230B2 (en) * 2014-06-27 2017-09-06 東芝三菱電機産業システム株式会社 Flow control device
CN104300872A (en) * 2014-10-09 2015-01-21 台州市百施度工贸有限公司 Constant-power output intelligent frequency modulating and speed regulating frequency conversion system and control method thereof
JP7412309B2 (en) * 2020-09-04 2024-01-12 三菱電機株式会社 Grid integration device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4531180B2 (en) * 1999-12-27 2010-08-25 三菱電機株式会社 Synchronous motor and method for starting synchronous motor
JP4337438B2 (en) * 2003-07-17 2009-09-30 富士電機システムズ株式会社 AC motor synchronous operation control device
JP4651074B2 (en) * 2003-11-28 2011-03-16 東芝三菱電機産業システム株式会社 AC motor control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235595A1 (en) 2018-06-07 2019-12-12 日立三菱水力株式会社 Variable-speed power generation electric device
US11223310B2 (en) 2018-06-07 2022-01-11 Hitachi Mitsubishi Hydro Corporation Variable speed generator/motor device
WO2020013015A1 (en) 2018-07-09 2020-01-16 日立三菱水力株式会社 Variable-speed generator-motor device
US11539215B2 (en) 2021-03-16 2022-12-27 Kabushiki Kaisha Toshiba Voltage control inverter, power source apparatus, and control method

Also Published As

Publication number Publication date
JP2008099349A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JP5045053B2 (en) System parallel insertion device for synchronous motor
EP0757432B1 (en) Starting of synchronous machine without rotor position of speed measurement
EP1774646B1 (en) Apparatus and method to control torque and voltage of an ac machine
JP4721801B2 (en) Control device for synchronous motor
US20090251083A1 (en) Control Apparatus for AC Rotary Machine
US7501787B2 (en) Method for controlling AC motor
US6301136B1 (en) Floating flame controller
JP2008277129A (en) Power switching control device
US20180351497A1 (en) Systems and method for controlling electrodynamic machines with a variable frequency drive
JP4651087B2 (en) Electric motor control device
JP2008148546A (en) Controller for synchronous machine, and method of controlling the synchronous machine
US9467075B2 (en) Process for switching power supply of electric engine and associated device for controlling power supply
JP4648848B2 (en) Synchronizing device
JP2019062661A (en) Control apparatus of synchronous motor
JP2008220035A (en) Brushless motor starter
KR100949397B1 (en) Control Method for Voltage Phase Synchronization of Doubly Fed Induction Generator
JP2004282948A (en) Synchronous input system for synchronous motor
JP2007228662A (en) Controller for induction motors
JP4604679B2 (en) Synchronous control device for switching drive power
JP2010259181A (en) Controller of motor
EP3683958A1 (en) Control device and control method for synchronous electric motor
JP2007336704A (en) Method and device for synchronous input
WO2018012260A1 (en) Synchronous motor control device and method for controlling same
JP4702094B2 (en) Inverter synchronous control device
KR20090064980A (en) Controlling methode driving apparatus for bldc motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090817

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5045053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250