JP5044814B2 - Electrochemical element - Google Patents

Electrochemical element Download PDF

Info

Publication number
JP5044814B2
JP5044814B2 JP2007047662A JP2007047662A JP5044814B2 JP 5044814 B2 JP5044814 B2 JP 5044814B2 JP 2007047662 A JP2007047662 A JP 2007047662A JP 2007047662 A JP2007047662 A JP 2007047662A JP 5044814 B2 JP5044814 B2 JP 5044814B2
Authority
JP
Japan
Prior art keywords
container
sealing plate
convex portion
opening
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007047662A
Other languages
Japanese (ja)
Other versions
JP2008211056A (en
Inventor
俊二 渡邊
英晴 小野寺
涼 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2007047662A priority Critical patent/JP5044814B2/en
Publication of JP2008211056A publication Critical patent/JP2008211056A/en
Application granted granted Critical
Publication of JP5044814B2 publication Critical patent/JP5044814B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

本発明は、非水電解質電池や電気二重層キャパシタ等の電気化学素子に関する。   The present invention relates to an electrochemical element such as a nonaqueous electrolyte battery or an electric double layer capacitor.

非水電解質電池や電気二重層キャパシタ等の電気化学素子は、時計機能のバックアップ電源、半導体のメモリのバックアップ電源、マイクロコンピュータやICメモリ等の電子装置の予備電源、ソーラ時計の電池、モータ駆動用の電源等として使用されている。さらに、近年は、電気自動車の電源やエネルギー変換・貯蔵システムの補助システム等としても注目されている。   Electrochemical elements such as non-aqueous electrolyte batteries and electric double layer capacitors are used for clock function backup power supplies, semiconductor memory backup power supplies, standby power supplies for electronic devices such as microcomputers and IC memories, solar watch batteries, and motor drives. It is used as a power source. Furthermore, in recent years, it has attracted attention as a power source for electric vehicles and an auxiliary system for an energy conversion / storage system.

半導体メモリは不揮発化、時計機能素子の低消費電力化により、電気化学素子は、容量、電流ともそれほど大きなものの必要性が減少している。むしろ、薄型化やリフローハンダ付けにより基板上への実装化の要求が強く望まれている。   Due to the non-volatility of semiconductor memories and the reduction in power consumption of timepiece functional elements, the need for electrochemical elements that are both large in capacity and current is decreasing. Rather, there is a strong demand for mounting on a substrate by thinning or reflow soldering.

そこで、コインまたはボタンのような丸い形状や、特許文献1に示すような四角形状の電気化学素子が提案されている。四角形状の電気化学素子は、丸い形状のものと違って、四角箱状の容器をかしめて(クリンプして)封口することができない。そのため、四角形状の電気化学素子は、四角箱状の容器の上部に封口板を載置し抵抗溶接にて封口していた。詳述すると、四角箱状の容器内に、正極及び負極からなる対電極、セパレータ、電解質等を収容した後に、封口板をその上部に載せ、抵抗溶接法を用いたシーム溶接を行っていた。
特開2001−216952号 公報
Thus, a round electrochemical element such as a coin or a button or a rectangular electrochemical element as shown in Patent Document 1 has been proposed. Unlike a round-shaped electrochemical element, a square-shaped electrochemical element cannot be sealed by crimping (crimping) a rectangular box-shaped container. For this reason, the rectangular electrochemical element has been sealed by resistance welding with a sealing plate placed on top of a square box-shaped container. More specifically, after a counter electrode composed of a positive electrode and a negative electrode, a separator, an electrolyte, and the like are accommodated in a rectangular box-shaped container, a sealing plate is placed on the upper portion, and seam welding is performed using a resistance welding method.
JP 2001-216852 A

ところで、抵抗溶接法を用いたシーム溶接を行う場合、封止性を確保するためには封口板を、容器に対して、正確に位置決めして行わなければならなかった。しかしながら、近年の、電子デバイスの益々の小型化に伴う電気化学素子の小型化によってサイズが益々小さくなり、封口板を容器の上に位置決めするのは益々困難になってきている。   By the way, when performing seam welding using the resistance welding method, the sealing plate must be accurately positioned with respect to the container in order to ensure sealing performance. However, due to the recent miniaturization of electrochemical devices accompanying the further miniaturization of electronic devices, the size has become smaller and it has become increasingly difficult to position the sealing plate on the container.

また、封口後の、電極間距離を確保するための、封口する際に封口板にて、正極及び負極からなる対電極、セパレータ等に適度な圧力を加えるようにしている。従って、封口板は、容器と位置合わせする際、封口前の正極及び負極からなる対電極や、セパレータ等によって持ち上げられ、容器から少し離間した位置に、即ち、浮いた状態に配置されてしまい不安定な状態にあった。その結果、封口板を容器に対して、封口板を正確な位置決めを行うことは、難しくなっていている。これは、サイズが小さくなるほど困難になり、生産効率を図る上で問題となっていた。また、押圧が不足すれば、電気化学素子の内部抵抗が上昇する原因となる。   Further, after sealing, an appropriate pressure is applied to the counter electrode composed of the positive electrode and the negative electrode, the separator, and the like by the sealing plate when sealing to ensure the distance between the electrodes. Therefore, when the sealing plate is aligned with the container, the sealing plate is lifted by the counter electrode consisting of the positive electrode and the negative electrode before sealing, a separator, etc., and placed at a position slightly away from the container, that is, in a floating state. It was in a stable state. As a result, it is difficult to accurately position the sealing plate with respect to the container. This becomes more difficult as the size becomes smaller, and has been a problem in terms of production efficiency. Moreover, if the pressing is insufficient, the internal resistance of the electrochemical element increases.

本発明は、上記問題点を解決するためになされたものであって、その目的は、容器と封口板との正確な位置決めが容易に行え、容器と封口板の溶接が簡単でき生産効率の向上を図ることができる電気化学素子を提供するにある。   The present invention has been made to solve the above-described problems, and its purpose is to facilitate accurate positioning of the container and the sealing plate, simplify welding of the container and the sealing plate, and improve production efficiency. It is in providing the electrochemical element which can aim at.

請求項1の発明は、上方が開口した容器と、前記容器の開口部に形成した金属膜に当接し、その当接部分を、溶接して前記容器を封口する封口板とを有し、前記封口板にて封口される前記容器内に、少なくとも正極及び負極からなる対電極、セパレータ、電解質を収容した電気化学素子であって、前記封口板に、前記容器の開口部に嵌合する凸部突出形成され、前記凸部は、前記凸部から前記対電極に向けて圧を加えるThe invention of claim 1 comprises a container having an upper opening, a sealing plate that contacts a metal film formed in the opening of the container and welds the contact portion to seal the container, In the container sealed with a sealing plate, an electrochemical element containing at least a counter electrode composed of a positive electrode and a negative electrode, a separator, and an electrolyte, the convex portion fitting into the opening of the container on the sealing plate Is formed so that the convex portion applies pressure from the convex portion toward the counter electrode .

請求項2の発明は、請求項1に記載の電気化学素子において、前記凸部は、前記封口板の上面を凹ませて、下面を突出させて形成した。
請求項3の発明は、請求項2に記載の電気化学素子において、前記凸部の突出量は、前記容器の深さに対して、4%〜20%である。
According to a second aspect of the present invention, in the electrochemical device according to the first aspect, the convex portion is formed by denting the upper surface of the sealing plate and projecting the lower surface.
According to a third aspect of the present invention, in the electrochemical device according to the second aspect, the protruding amount of the convex portion is 4% to 20% with respect to the depth of the container.

請求項4の発明は、請求項3に記載の電気化学素子において、前記封口板に形成した凸部の面積は、前記容器の開口部の開口面積に対して、20%以上である。
請求項5の発明は、請求項4に記載の電気化学素子において、前記凸部の平面形状は、前記容器の開口部に平面形状と相似形である。
According to a fourth aspect of the present invention, in the electrochemical element according to the third aspect, the area of the convex portion formed on the sealing plate is 20% or more with respect to the opening area of the opening of the container.
According to a fifth aspect of the present invention, in the electrochemical element according to the fourth aspect, the planar shape of the convex portion is similar to the planar shape at the opening of the container.

請求項1の発明によれば、封口板に凸部を形成したため、凸部がガイドとなって容器の開口部に嵌合することから、容器の上に載置される封口板の位置決めが容易で確実となる。その結果、容器への封口板の溶接は、容易でしかも隙間を生じることなく溶接することができる。   According to the first aspect of the present invention, since the convex portion is formed on the sealing plate, the convex portion serves as a guide and fits into the opening of the container, so that the sealing plate placed on the container can be easily positioned. It will be certain. As a result, the sealing plate can be easily welded to the container without causing a gap.

しかも、凸部によって、正極、負極等に適度な圧を加えることができことから、電極間距離を適正に保つことができ、内部抵抗の低減を図ることができる。
請求項2の発明によれば、凹ませて形成したことから、封口板の剛性が上がり、溶接やリフローハンダ付け時において膨らみや変形が生じ難くなる。また、封口板の強度アップにより、封口板を薄くでき材料費の削減や軽量化を図ることができる。
In addition, since an appropriate pressure can be applied to the positive electrode, the negative electrode, and the like by the convex portion, the distance between the electrodes can be maintained appropriately, and the internal resistance can be reduced.
According to the second aspect of the present invention, since the recess is formed, the rigidity of the sealing plate is increased, and it is difficult for swelling and deformation to occur during welding or reflow soldering. Further, by increasing the strength of the sealing plate, the sealing plate can be made thinner, and the material cost can be reduced and the weight can be reduced.

請求項3の発明によれば、漏液もなく、内部抵抗のバラツキを抑えることができる。
請求項4の発明によれば、内部抵抗を小さくでき、製造バラツキを低く抑えることができる。
According to the invention of claim 3, there is no leakage, and variations in internal resistance can be suppressed.
According to the invention of claim 4, the internal resistance can be reduced, and the manufacturing variation can be suppressed low.

請求項5の発明によれば、容器内の対電極等に対して均一に圧を加えることができる。   According to invention of Claim 5, a pressure can be uniformly applied with respect to the counter electrode etc. in a container.

以下、本発明の電気化学素子を電気二重層キャパシタに具体化した第1実施形態を、図1及び図2に従って説明する。
図1は、直方体形状の電気化学素子としての電気二重層キャパシタの断面図を示す。図1において、電気二重層キャパシタ10は、上方が開放した四角箱状の容器11を有するとともに、その容器11に溶接されその開口部を封口する封口板12を有している。封口板12にて封口された容器11内には、対電極を構成する正極活物質13、セパレータ14、対電極を構成する負極活物質15、電解液16等からなるキャパシタセルが配設されるようになっている。容器11のサイズは、本実施形態では、3.6(縦)×5.6(横)×0.7(高さ)mmとしている。容器11の凹部のサイズは、本実施形態では、3(縦)×5(横)×0.5(深さ)mmとしている。
Hereinafter, a first embodiment in which an electrochemical element of the present invention is embodied in an electric double layer capacitor will be described with reference to FIGS. 1 and 2.
FIG. 1 shows a cross-sectional view of an electric double layer capacitor as a rectangular parallelepiped electrochemical element. In FIG. 1, an electric double layer capacitor 10 has a rectangular box-shaped container 11 that is open at the top, and a sealing plate 12 that is welded to the container 11 and seals the opening. In the container 11 sealed by the sealing plate 12, a capacitor cell made up of a positive electrode active material 13 constituting a counter electrode, a separator 14, a negative electrode active material 15 constituting a counter electrode, an electrolyte solution 16 and the like is disposed. It is like that. In the present embodiment, the size of the container 11 is 3.6 (vertical) × 5.6 (horizontal) × 0.7 (height) mm. In this embodiment, the size of the concave portion of the container 11 is 3 (vertical) × 5 (horizontal) × 0.5 (depth) mm.

容器11は、その内底面11aの全面に耐電圧性の高いタングステンの層よりなる正極集電体17が形成されているとともに、四方の側壁11bの上面11cにコバール(コバルト:17、ニッケル:29、鉄:残の比率の合金)製の金属リング18が四角環状に形成されている。正極集電体17の右側は、側壁11bを貫通し、容器11の底面11dの右側に形成した第1外部端子T1と電気的に接続されている。一方、金属リング18は、左側側壁11bの外面に形成されたタングステンの層よりなる導電膜19を介して、容器11の底面11dの左側に形成した第2外部端子T2と電気的に接続されている。   The container 11 has a positive electrode current collector 17 made of a tungsten layer having high voltage resistance formed on the entire inner bottom surface 11a, and Kovar (cobalt: 17, nickel: 29 on the upper surface 11c of the four side walls 11b. A metal ring 18 made of (iron: remaining ratio alloy) is formed in a square ring shape. The right side of the positive electrode current collector 17 penetrates the side wall 11b and is electrically connected to a first external terminal T1 formed on the right side of the bottom surface 11d of the container 11. On the other hand, the metal ring 18 is electrically connected to the second external terminal T2 formed on the left side of the bottom surface 11d of the container 11 through the conductive film 19 made of a tungsten layer formed on the outer surface of the left side wall 11b. Yes.

容器11は、本実施形態では、アルミナ製であって、グリーンシートを複数枚積層し焼成して成形される。詳述すると、焼成前のグリーンシートに、正極集電体17、導電膜19となるタングステンを印刷するとともに、金属リング18となるコバールを側壁11bの上面11cに載せて焼成することによって、容器11に正極集電体17、金属リング18、導電膜19が形成される。   In the present embodiment, the container 11 is made of alumina, and is formed by stacking and firing a plurality of green sheets. More specifically, the positive electrode current collector 17 and the tungsten serving as the conductive film 19 are printed on the green sheet before firing, and the Kovar serving as the metal ring 18 is placed on the upper surface 11c of the side wall 11b and fired, whereby the container 11 A positive electrode current collector 17, a metal ring 18, and a conductive film 19 are formed.

なお、コバールからなる金属リング18の熱膨張係数(5.2×10−16/℃)とアルミナ製の容器11の熱膨張係数(6.8×10−16/℃)は、非常に近い値となり、熱膨張による体積変化のズレが非常に小さくなっている。 Note that the thermal expansion coefficient (5.2 × 10 −16 / ° C.) of the metal ring 18 made of Kovar and the thermal expansion coefficient (6.8 × 10 −16 / ° C.) of the alumina container 11 are very close values. Thus, the displacement of the volume change due to thermal expansion is very small.

また、第1外部端子T1及び第2外部端子T2は、焼成された容器11に対して、ニッケル、金メッキを施すことによって形成される。同様に、その金属リング18の上部には、ニッケル及び金メッキにて形成された接合剤(ロウ材)20が形成されている。   The first external terminal T1 and the second external terminal T2 are formed by applying nickel or gold plating to the fired container 11. Similarly, a bonding agent (brazing material) 20 formed by nickel and gold plating is formed on the upper portion of the metal ring 18.

ここで、金属リング18の厚さは、本実施形態では、0.15mm、接合剤(ロウ材20)の厚さは、本実施形態では、0.05mmとしている。従って、本実施形他では、金属リング18及び接合剤(ロウ材)20を含む容器11の外壁の高さは、0.9mmとなり、金属リング18及び接合剤(ロウ材)20を含む容器11の凹部の深さは0.7mmとなる。   Here, the thickness of the metal ring 18 is 0.15 mm in this embodiment, and the thickness of the bonding agent (the brazing material 20) is 0.05 mm in this embodiment. Therefore, in the present embodiment and the like, the height of the outer wall of the container 11 including the metal ring 18 and the bonding agent (brazing material) 20 is 0.9 mm, and the container 11 including the metal ring 18 and the bonding agent (brazing material) 20. The depth of the recess is 0.7 mm.

封口板12は、外形が直方体をなし、外周部を除く内側部分を、容器11側に凹ませて図2(a)に示すように、凹部21を形成している。上面12aを凹ませたことにより、図2(b)に示すように、下面12bに凸部22を突出形成させている。そして、上面12a側の凹部21の平面形状はコーナー部が面取りされた四角形状になり、図2に示すように、下面12b(容器11側に面)側の凸部22も平面形状が、コーナー部22aが面取りされた四角形状となる。封口板12は、前記金属リング18と同じ材質のコバールで形成され、金属リング18との熱膨張係数を同じにしている。封口板12は、容器11側の面全体(凸部22も含む)にニッケルよりなる接合剤(ロウ材)23がメッキにて形成されている。   The outer shape of the sealing plate 12 is a rectangular parallelepiped, and an inner portion excluding the outer peripheral portion is recessed toward the container 11 to form a recess 21 as shown in FIG. By recessing the upper surface 12a, as shown in FIG. 2B, a convex portion 22 is formed to protrude from the lower surface 12b. Then, the planar shape of the concave portion 21 on the upper surface 12a side is a quadrangular shape with a corner portion chamfered, and the convex portion 22 on the lower surface 12b (surface on the container 11 side) side also has a planar shape as shown in FIG. The portion 22a is a chamfered square shape. The sealing plate 12 is made of Kovar made of the same material as the metal ring 18 and has the same thermal expansion coefficient as that of the metal ring 18. The sealing plate 12 is formed by plating a bonding agent (brazing material) 23 made of nickel on the entire surface (including the convex portion 22) on the container 11 side.

封口板12の外形のサイズは、本実施形態では、2(縦)×4(横)×0.10(厚さ)mmとしている。また、凸部22の縦・横の寸法は、本実施形他では、容器11の凹部の縦・横の寸法より、それぞれ0.05mm短い寸法であって、2.95(縦)×4.95(横)mmとしている。また、四角形状の凸部22の面取りしたコーナー部22aの半径は0.5mmとした。又、凸部22の下面12bからの突出量は、本実施形態では、0.02〜0.10mmとした。   In this embodiment, the size of the outer shape of the sealing plate 12 is 2 (vertical) × 4 (horizontal) × 0.10 (thickness) mm. The vertical and horizontal dimensions of the convex portion 22 are 0.05 mm shorter than the vertical and horizontal dimensions of the concave portion of the container 11 in the present embodiment and the like, respectively, and are 2.95 (vertical) × 4. 95 (width) mm. The radius of the chamfered corner portion 22a of the quadrangular convex portion 22 was 0.5 mm. Moreover, the protrusion amount from the lower surface 12b of the convex part 22 was 0.02-0.10 mm in this embodiment.

従って、凸部22を容器11の開口部に向けて封口板12を、容器11を封口するとき、凸部22が、容器11の開口部内に嵌合し、凸部22の外周部に位置する封口板12の下面12bが、側壁11bの上面11c(接合剤20)に当接する。従って、凸部22が容器11の開口部内に嵌合することによって、封口板12は、容器11に対して位置決めされ保持された状態となる。つまり、封口板12は、凸部22がガイドになって容器11に位置決め載置され、しかも、載置された後は、凸部22が容器11の開口部内に嵌合することから容易にその位置からズレない。   Therefore, when sealing the sealing plate 12 and the container 11 with the convex portion 22 facing the opening of the container 11, the convex portion 22 fits into the opening of the container 11 and is positioned on the outer peripheral portion of the convex portion 22. The lower surface 12b of the sealing plate 12 contacts the upper surface 11c (bonding agent 20) of the side wall 11b. Accordingly, the sealing plate 12 is positioned and held with respect to the container 11 by fitting the convex portion 22 into the opening of the container 11. That is, the sealing plate 12 is positioned and placed on the container 11 with the convex portion 22 serving as a guide, and after being placed, the convex portion 22 easily fits into the opening of the container 11. There is no deviation from the position.

正極集電体17の上面には正極活物質13が配置されている。正極活物質13は炭素を含有する導電性接着剤24を介して正極集電体17と接着し、該正極集電体17と電気的に接続されている。正極活物質13は、本実施形態では、活性炭シートを使用し、サイズを2(縦)×4(横)×0.25(厚さ)mmとしている。   A positive electrode active material 13 is disposed on the upper surface of the positive electrode current collector 17. The positive electrode active material 13 is bonded to the positive electrode current collector 17 via a conductive adhesive 24 containing carbon, and is electrically connected to the positive electrode current collector 17. In this embodiment, the positive electrode active material 13 uses an activated carbon sheet and has a size of 2 (vertical) × 4 (horizontal) × 0.25 (thickness) mm.

正極活物質13の上側には、厚さ0.2mmのセパレータ14が配置されるとともに、容器11内に電解液16が注入される。セパレータ14は、耐熱性の不織布であることが好ましい。つまり、ロール圧延したポーラスフィルム等のセパレータにおいては、耐熱性があるものの、抵抗溶接法を利用したシーム溶接時の熱で圧延方向に縮んでしまい、内部ショートを起こし易いため好ましくない。耐熱性のある樹脂又はガラス繊維を用いたセパレータの場合、縮みが少なく良好であった。樹脂としては、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)が良好であった。特に、ガラス繊維が有効である。また、セパレータ14を、セラミックスの多孔質体で成形しても良い。   A separator 14 having a thickness of 0.2 mm is disposed above the positive electrode active material 13, and an electrolyte solution 16 is injected into the container 11. The separator 14 is preferably a heat resistant nonwoven fabric. That is, a separator such as a roll-rolled porous film is not preferable because it has heat resistance but is shrunk in the rolling direction due to heat during seam welding using a resistance welding method and easily causes an internal short circuit. In the case of a separator using a heat-resistant resin or glass fiber, shrinkage was good with little shrinkage. As the resin, polyphenylene sulfide (PPS) and polyether ether ketone (PEEK) were good. In particular, glass fiber is effective. Alternatively, the separator 14 may be formed of a ceramic porous body.

また、電解液16は、本実施形態では、プロピレンカーボネイト(PC)に(C2H5)4NBF4を1mol/L加えた電解液であって、5マイクロリットル注入した。
そのセパレータ14の上側には、負極活物質15が配置されている。具体的には、負極活物質15は、予め封口板12の凸部22の平面22b(接合剤20)に対して、導電性接着剤25を介して、接着されている。そのため、本実施形態では、封口板12の凸部22を容器11の開口部に嵌合させることにより、負極活物質15は、セパレータ14の上側に配置されるようになっている。負極活物質15は、本実施形態では、正極活物質13と同様に、活性炭シートを使用し、サイズを2(縦)×4(横)×0.25(厚さ)mmとしている。
In the present embodiment, the electrolytic solution 16 is an electrolytic solution obtained by adding 1 mol / L of (C2H5) 4NBF4 to propylene carbonate (PC), and 5 microliters thereof was injected.
A negative electrode active material 15 is disposed on the upper side of the separator 14. Specifically, the negative electrode active material 15 is bonded in advance to the flat surface 22 b (bonding agent 20) of the convex portion 22 of the sealing plate 12 via the conductive adhesive 25. Therefore, in the present embodiment, the negative electrode active material 15 is arranged on the upper side of the separator 14 by fitting the convex portion 22 of the sealing plate 12 into the opening of the container 11. In the present embodiment, the negative electrode active material 15 uses an activated carbon sheet in the same manner as the positive electrode active material 13 and has a size of 2 (vertical) × 4 (horizontal) × 0.25 (thickness) mm.

そして、封口板12を容器11に載せると、凸部22が容器11の開口部内に嵌合して、封口板12は容器11に対して位置決めされ保持された状態となる。この状態から、封口板12を容器11側に押圧して、凸部22の外周部の封口板12の下面12bと、側壁11bの上面11c(接合剤20)に当接させる。このとき、容器11内に収容された正極活物質13、セパレータ14、負極活物質15は、適度の圧力により、内部抵抗が軽減される。   When the sealing plate 12 is placed on the container 11, the convex portion 22 is fitted into the opening of the container 11, and the sealing plate 12 is positioned and held with respect to the container 11. From this state, the sealing plate 12 is pressed toward the container 11 so as to contact the lower surface 12b of the sealing plate 12 on the outer peripheral portion of the convex portion 22 and the upper surface 11c (bonding agent 20) of the side wall 11b. At this time, the internal resistance of the positive electrode active material 13, the separator 14, and the negative electrode active material 15 accommodated in the container 11 is reduced by an appropriate pressure.

そして、凸部22の外周部の封口板12の下面12bと、側壁11bの上面11c(接合剤20)に当接させた状態で、封口板12は、容器11に対して溶接され、容器11を封口する。溶接は、本実施形態では、抵抗溶接の原理を利用したパラレルシーム溶接機を使用し、封口板12の向かい合う2辺を、それぞれ同時に溶接を行う。そして、溶接により、金属リング18は、封口板12の接合剤(ロウ材)23と接合し、同接合剤(ロウ材)23及び接着剤25を介して負極活物質15と電気的に接続される。この結果、負極活物質15は、導電膜19を介して、第2外部端子T2と電気的に接続されることになる。   And the sealing board 12 is welded with respect to the container 11 in the state contact | abutted to the lower surface 12b of the sealing board 12 of the outer peripheral part of the convex part 22, and the upper surface 11c (bonding agent 20) of the side wall 11b, and the container 11 To seal. In the present embodiment, the welding is performed by simultaneously welding two opposing sides of the sealing plate 12 using a parallel seam welding machine using the principle of resistance welding. The metal ring 18 is joined to the bonding agent (brazing material) 23 of the sealing plate 12 by welding, and is electrically connected to the negative electrode active material 15 via the bonding agent (brazing material) 23 and the adhesive 25. The As a result, the negative electrode active material 15 is electrically connected to the second external terminal T2 through the conductive film 19.

そして、容器11と封口板12を溶接して製造された電気二重層キャパシタ10は、電子機器の基板に表面実装される。表面実装は、リフローハンダ付けで行われる。例えば、200〜260℃に設定された高温雰囲気の炉内を、電気二重層キャパシタ10を搭載した基板を通過させ、ハンダを溶融させて、第1外部端子T1及び第2外部端子T2がハンダ付けされ、電気二重層キャパシタ10は基板に実装される。   And the electric double layer capacitor 10 manufactured by welding the container 11 and the sealing board 12 is surface-mounted on the board | substrate of an electronic device. Surface mounting is performed by reflow soldering. For example, the first external terminal T1 and the second external terminal T2 are soldered by passing a substrate mounted with the electric double layer capacitor 10 through a furnace in a high temperature atmosphere set to 200 to 260 ° C. and melting the solder. The electric double layer capacitor 10 is mounted on the substrate.

次に、本実施形態のものも含み各種条件の電気二重層キャパシタを、100個1組として複数組作製し、それぞれを、最高温度260℃のリフローハンダ付けを用の炉内を通過させて加熱し、漏液の有無と内部抵抗の測定を1kHzの交流法にて実施した。その後、70℃、2.6Vの電圧を印加した状態で、40日保管して内部抵抗の変化を測定し、どの程度、電気二重層キャパシタが劣化するか調べた。その結果を、表に1に示す。尚、一般に、70℃、10日の保存は、1年に相当すると考えらえている。   Next, a plurality of sets of 100 electric double layer capacitors of various conditions including those of the present embodiment are manufactured, and each is heated by passing through a furnace for reflow soldering at a maximum temperature of 260 ° C. Then, the presence / absence of leakage and the measurement of internal resistance were carried out by an alternating current method of 1 kHz. Then, with the voltage of 70 ° C. and 2.6 V applied, it was stored for 40 days and the change in internal resistance was measured to determine how much the electric double layer capacitor deteriorated. The results are shown in Table 1. In general, storage at 70 ° C. for 10 days is considered to correspond to one year.

Figure 0005044814


表1で示した封口板の凹み量は、凸部22の下面12bからの突出量に相当する。そして、容器11の凹部の深さは0.7mmに対する封口板の凹み量の割合を%で示した。
Figure 0005044814


The amount of depression of the sealing plate shown in Table 1 corresponds to the amount of protrusion from the lower surface 12 b of the convex portion 22. And the depth of the recessed part of the container 11 showed the ratio of the recessed amount of the sealing board with respect to 0.7 mm in%.

表1から明らかなように、リフロー加熱後の内部抵抗は、凹み量が大きいほど若干低くなる傾向はあるが、大きな差はない。
比較例1,2において、漏液が発生しているのは、凸部22の段差(突出量)が小さく、位置決めとしてのガイドが十分でなく溶接時に位置ズレを起こし、漏液してしまったと考えられる。
As is clear from Table 1, the internal resistance after reflow heating tends to be slightly lower as the dent amount is larger, but there is no significant difference.
In Comparative Examples 1 and 2, the leakage occurred because the level difference (projection amount) of the convex portion 22 was small, the guide for positioning was not sufficient, the position was shifted during welding, and the leakage occurred. Conceivable.

比較例3において、凹み量が大きいにもかかわらず内部抵抗が大きくなっている。これは、封口板に設けた凹み量(凸部22の突出量)が大きすぎて、電気二重層キャパシタの内容積を圧迫したためと考えられる。また、封口板に設けた凹み(凸部22)が、中に入れた電極(正極活物質13及び負極活物質15)や電解液16を外に押し出しことになり、電解液不足に陥ったものと考えられる。また、漏液は、電極(正極活物質13及び負極活物質15)の一部が溶接部分からはみ出し、溶接が十分でなくなり発生したものと考えられる。   In Comparative Example 3, the internal resistance is large despite the large dent amount. This is presumably because the amount of dent provided in the sealing plate (the amount of protrusion of the convex portion 22) was too large, and the internal volume of the electric double layer capacitor was compressed. Moreover, the dent (convex part 22) provided in the sealing plate pushed out the electrodes (the positive electrode active material 13 and the negative electrode active material 15) and the electrolyte solution 16 which were put inside, and the electrolyte solution was insufficient. it is conceivable that. In addition, it is considered that the leakage occurred because part of the electrodes (the positive electrode active material 13 and the negative electrode active material 15) protruded from the welded portion and welding was not sufficient.

この結果から、封口板12に設けた凹みは、凹状の容器11の凹部の深さに対して4%以上20%以下が好ましいことがわかる。
70℃、2.6Vの電圧を印加し続けて40日経過後の内部抵抗は、凹み量が、0.03mm以上の実施例1〜4において、凹み量が大きいほど低くバラツキも小さく良好な結果を示した。
From this result, it is understood that the recess provided in the sealing plate 12 is preferably 4% or more and 20% or less with respect to the depth of the recess of the concave container 11.
The internal resistance after 40 days has passed after applying a voltage of 70 ° C. and 2.6 V, and in Examples 1 to 4 where the dent amount is 0.03 mm or more, the smaller the dent amount, the lower the variation and the better. Indicated.

一方、凹み量のない、或いは、小さい比較例1,2は、凹みによる圧が小さく、正極(正極活物質13)、負極(負極活物質15)に適度な圧を加えて、電極間距離を適正の保つことができなかったためと考えられる。ただし、凹み量が大きすぎる比較例3においては、内部抵抗が高めでバラツキも大きい。   On the other hand, in Comparative Examples 1 and 2 having no dent amount or a small dent pressure, the pressure due to the dent is small, and an appropriate pressure is applied to the positive electrode (positive electrode active material 13) and the negative electrode (negative electrode active material 15) to reduce the distance between the electrodes. This is probably due to the failure to maintain the appropriateness. However, in Comparative Example 3 in which the dent amount is too large, the internal resistance is high and the variation is large.

次に、封口板以外は、前記実施例1〜4と同様として、実施例5〜8と比較例4をおこ
なった。封口板12に設けた凹みの形状(凸部22の平面22b形状に相当)は、上面12aからみた開口部内側の四角形と相似形とし、開口部内側の四角形の面積に対して、10%〜90%まで変化させた。尚、凹みの量は0.05mmとした。
Next, Examples 5 to 8 and Comparative Example 4 were performed in the same manner as in Examples 1 to 4 except for the sealing plate. The shape of the recess provided in the sealing plate 12 (corresponding to the shape of the flat surface 22b of the convex portion 22) is similar to the square inside the opening viewed from the upper surface 12a, and is 10% to the area of the square inside the opening. Changed to 90%. The amount of dents was 0.05 mm.

そして、各種条件の電気二重層キャパシタを、100個1組として複数組作製し、最高温度260℃のリフローハンダ付けを用の炉内を通過させて加熱した。その後、70℃、2.6Vの電圧を印加した状態で、40日保管して内部抵抗の変化を測定し、どの程度、電気二重層キャパシタが劣化するか調べた。その結果を、表に2に示す。   Then, a plurality of sets of 100 electric double layer capacitors under various conditions were produced, and reflow soldering at a maximum temperature of 260 ° C. was passed through the furnace for heating. Then, with the voltage of 70 ° C. and 2.6 V applied, it was stored for 40 days and the change in internal resistance was measured to determine how much the electric double layer capacitor deteriorated. The results are shown in Table 2.

Figure 0005044814
70℃、2.6Vの電圧を印加した状態で、40日保管して内部抵抗は、開口部内側の四角形の面積に対する凹みの面積(平面22bの面積に相当)の割合が20%以上である実施例5〜8においては、凹み面積が大きいほど低くバラツキも小さく良好な結果を示した。凹み面積の小さい比較例4は、実効的に圧を加え電極(負極活物質15)と接している面積が小さくなり、内部抵抗が上がったものと考えられる。
Figure 0005044814
Stored for 40 days with a voltage of 70 ° C. and 2.6 V applied, the internal resistance is such that the ratio of the area of the recess (corresponding to the area of the plane 22b) to the area of the square inside the opening is 20% or more. In Examples 5 to 8, the larger the dent area, the lower the variation and the better the results. In Comparative Example 4 having a small dent area, it is considered that the area in contact with the electrode (negative electrode active material 15) by effectively applying pressure was reduced, and the internal resistance was increased.

次に、上記のように構成した本実施形態の効果を以下に記載する。
(1)本実施形態では、封口板12を凹ませて下面12bに凸部22を形成したため、凸部22がガイドとなって容器11に対する封口板12の位置決めは容易となり、容器11と封口板12の溶接において隙間が生じることなく十分な封止性を得ることができる。(2)本実施形態では、凸部22により、封口後に、正極、負極に適度な圧を加えて、電極間距離を適正に保つことができ、電気二重層キャパシタ10の電気的特性の安定化を図ることができる。特に、重要な特性となる内部抵抗のバラツキを小さくすることができ、作成するにあたって歩留まりが高く生産性の高いものとなる。
Next, effects of the present embodiment configured as described above will be described below.
(1) In this embodiment, since the convex part 22 was formed in the lower surface 12b by denting the sealing board 12, the convex part 22 became a guide and positioning of the sealing board 12 with respect to the container 11 became easy, and the container 11 and the sealing board A sufficient sealing property can be obtained without causing a gap in the welding of 12. (2) In the present embodiment, the convex portion 22 can apply an appropriate pressure to the positive electrode and the negative electrode after sealing to keep the distance between the electrodes appropriate, and stabilize the electrical characteristics of the electric double layer capacitor 10. Can be achieved. In particular, variation in internal resistance, which is an important characteristic, can be reduced, resulting in a high yield and high productivity.

しかも、凸部22の平面形状を、容器11の開口部に平面形状と相似形にしたので、容器11内の負極活物質15等をより均一に圧を加えることができ、内部抵抗のバラツキをより小さくすることができる。
(3)本実施形態では、封口板12を凹ませて凸部22を形成することにより、封口板12の剛性が上がり、溶接やリフローハンダ付け時において膨らみや変形が生じ難くなる。これにより、実装基板や他の部品に対して悪影響を与えることや、膨らみによる電極間距離が広がり、内部抵抗が増大するといった問題を解消させることができる。また、封口板
12の強度アップにより、封口板12を薄くでき材料費の削減や軽量化を図ることができる。
(3)本実施形態では、凸部22の突出量を、容器11の深さに対して、4%〜20%にしたことにより、漏液もなく、内部抵抗のバラツキを抑えることができる。
(4)本実施形態では、封口板12に形成した凸部22の面積は、容器11の開口部の開口面積に対して、20%以上にしたことにより、内部抵抗を小さくでき、製造バラツキを低く抑えることができる。
In addition, since the planar shape of the convex portion 22 is similar to the planar shape at the opening of the container 11, the negative electrode active material 15 and the like in the container 11 can be more uniformly applied, and variations in internal resistance can be achieved. It can be made smaller.
(3) In this embodiment, by forming the convex portion 22 by denting the sealing plate 12, the rigidity of the sealing plate 12 is increased, and swelling and deformation are less likely to occur during welding or reflow soldering. As a result, it is possible to solve problems such as adversely affecting the mounting substrate and other components, increasing the distance between the electrodes due to swelling, and increasing the internal resistance. Further, the strength of the sealing plate 12 can be increased, so that the sealing plate 12 can be made thinner and the material cost can be reduced and the weight can be reduced.
(3) In this embodiment, since the protrusion amount of the convex portion 22 is 4% to 20% with respect to the depth of the container 11, there is no leakage and the variation in internal resistance can be suppressed.
(4) In this embodiment, the area of the convex portion 22 formed on the sealing plate 12 is set to 20% or more with respect to the opening area of the opening of the container 11, whereby the internal resistance can be reduced and manufacturing variation is reduced. It can be kept low.

尚、上記実施形態は、以下のように変更してもよい。
・上記実施形態では、封口板12を凹ませて下面12bに形成した四角形状の凸部22は、1つであった。これを、図3及び図4(a)(b)に示すように、凹みを2個形成し、封口板12の下面12bに四角形状の凸部22を、2つ設けて実施してもよい。これによれば、さらに封口板12の強度アップを図ることができる。
In addition, you may change the said embodiment as follows.
-In the said embodiment, the square-shaped convex part 22 which dented the sealing board 12 and was formed in the lower surface 12b was one. As shown in FIGS. 3 and 4 (a) and 4 (b), this may be carried out by forming two dents and providing two rectangular convex portions 22 on the lower surface 12b of the sealing plate 12. . According to this, the strength of the sealing plate 12 can be further increased.

・上記実施形態では、下面12bに形成した凸部22であったが、図5(a)(b)に示すように、封口板12の上面12aを十字形状に凹ませて、封口板12の下面12bに十字形状の凸部22を形成して実施してもよい。この場合にも、封口板12の強度アップを図ることができる。さらに、図6(a)(b)に示すように、封口板12の上面12aを「×印」形状(クロス形状)に凹ませて、封口板12の下面12bに「×印」形状の凸部22を形成して実施してもよい。この場合、さらに、封口板12の強度アップを図ることができる。   In the above embodiment, the convex portion 22 is formed on the lower surface 12b. However, as shown in FIGS. 5A and 5B, the upper surface 12a of the sealing plate 12 is recessed in a cross shape, You may implement by forming the cross-shaped convex part 22 in the lower surface 12b. Also in this case, the strength of the sealing plate 12 can be increased. Further, as shown in FIGS. 6A and 6B, the upper surface 12a of the sealing plate 12 is recessed in an “X” shape (cross shape), and the “X” shape is projected on the lower surface 12b of the sealing plate 12. The portion 22 may be formed for implementation. In this case, the strength of the sealing plate 12 can be further increased.

・上記実施形態では、封口板12の上面12aを凹ませて下面12bに四角形状の凸部22を形成したが、封口板12を凹ませないで、下面12bの四角形状の凸部22に相当する領域に、例えば、ホトリソによって成膜を施してその下面に12bに積層した膜によって凸部22としてもよい。   In the above embodiment, the upper surface 12a of the sealing plate 12 is recessed and the quadrangular convex portion 22 is formed on the lower surface 12b. However, the sealing plate 12 is not recessed and corresponds to the quadrangular convex portion 22 of the lower surface 12b. For example, the convex portion 22 may be formed by forming a film on the region to be formed by photolithography and laminating the lower surface thereof on 12b.

・上記実施形態では、電気二重層キャパシタ10は、直方体であったが、特に容器及び封口板の形状は限定されず、コイン形又はボタン形の電気二重層キャパシタ10、即ち、円板状の封口板にも応用してもよい。   In the above embodiment, the electric double layer capacitor 10 has a rectangular parallelepiped shape. However, the shape of the container and the sealing plate is not particularly limited, and the coin-shaped or button-shaped electric double layer capacitor 10, that is, a disk-shaped sealing member. You may apply also to a board.

・上記実施形態では、電気化学素子として電気二重層キャパシタ10に具体化したが、非水電解質電池に応用してもよい。   In the above embodiment, the electric double layer capacitor 10 is embodied as an electrochemical element, but may be applied to a nonaqueous electrolyte battery.

本実施形態の電気二重層キャパシタの断面図。Sectional drawing of the electric double layer capacitor of this embodiment. 封口板を説明するための説明図であって、(a)は封口板を上側からみた斜視図、(b)は封口板を下側からみた斜視図。It is explanatory drawing for demonstrating a sealing board, Comprising: (a) is the perspective view which looked at the sealing board from the upper side, (b) is the perspective view which looked at the sealing board from the lower side. 封口板の別例を説明するための電気二重層キャパシタの断面図。Sectional drawing of the electrical double layer capacitor for demonstrating another example of a sealing board. 同じく封口板を説明する説明図であって、(a)は封口板を上側からみた斜視図、(b)は封口板を下側からみた斜視図。It is explanatory drawing explaining a sealing plate similarly, Comprising: (a) is the perspective view which looked at the sealing plate from the upper side, (b) is the perspective view which looked at the sealing plate from the lower side. 封口板の別例を説明するための説明図であって、(a)は封口板を上側からみた斜視図、(b)は封口板を下側からみた斜視図。It is explanatory drawing for demonstrating another example of a sealing board, Comprising: (a) is the perspective view which looked at the sealing board from the upper side, (b) is the perspective view which looked at the sealing board from the lower side. 封口板の別例を説明するための説明図であって、(a)は封口板を上側からみた斜視図、(b)は封口板を下側からみた斜視図。It is explanatory drawing for demonstrating another example of a sealing board, Comprising: (a) is the perspective view which looked at the sealing board from the upper side, (b) is the perspective view which looked at the sealing board from the lower side.

符号の説明Explanation of symbols

10…電気二重層キャパシタ、11…容器、12…封口板、12a…上面、12b…下面、13…正極活物質、14…セパレータ、15…負極活物質、16…電解液、21…凹部、22…凸部、22b…平面。   DESCRIPTION OF SYMBOLS 10 ... Electric double layer capacitor, 11 ... Container, 12 ... Sealing plate, 12a ... Upper surface, 12b ... Lower surface, 13 ... Positive electrode active material, 14 ... Separator, 15 ... Negative electrode active material, 16 ... Electrolytic solution, 21 ... Recessed part, 22 ... convex part, 22b ... plane.

Claims (5)

上方が開口した容器と、前記容器の開口部に形成した金属膜に当接し、その当接部分を、溶接して前記容器を封口する封口板とを有し、前記封口板にて封口される前記容器内に、少なくとも正極及び負極からなる対電極、セパレータ、電解質を収容した電気化学素子であって、
前記封口板に、前記容器の開口部に嵌合する凸部突出形成され、
前記凸部は、前記凸部から前記対電極に向けて圧を加える
ことを特徴とする電気化学素子。
The container has an opening at the top, and a sealing plate that contacts the metal film formed at the opening of the container and welds the contact portion to seal the container, and is sealed by the sealing plate. An electrochemical element containing at least a counter electrode composed of a positive electrode and a negative electrode, a separator, and an electrolyte in the container,
On the sealing plate, a convex part that fits into the opening of the container is formed to protrude ,
The electrochemical device , wherein the convex portion applies pressure from the convex portion toward the counter electrode .
請求項1に記載の電気化学素子において、
前記凸部は、前記封口板の上面を凹ませて、下面を突出させて形成したことを特徴とする電気化学素子。
The electrochemical device according to claim 1,
The electrochemical element, wherein the convex portion is formed by denting the upper surface of the sealing plate and projecting the lower surface.
請求項2に記載の電気化学素子において、
前記凸部の突出量は、前記容器の深さに対して、4%〜20%であることを特徴とする電気化学素子。
The electrochemical device according to claim 2,
The amount of protrusion of the convex part is 4% to 20% with respect to the depth of the container.
請求項3に記載の電気化学素子において、
前記封口板に形成した凸部の面積は、前記容器の開口部の開口面積に対して、20%以上であることを特徴とする電気化学素子。
The electrochemical device according to claim 3,
The area of the convex part formed in the said sealing board is 20% or more with respect to the opening area of the opening part of the said container, The electrochemical element characterized by the above-mentioned.
請求項4に記載の電気化学素子において、
前記凸部の平面形状は、前記容器の開口部に平面形状と相似形であることを特徴とする電気化学素子。
The electrochemical device according to claim 4,
The electrochemical device according to claim 1, wherein the planar shape of the convex portion is similar to the planar shape at the opening of the container.
JP2007047662A 2007-02-27 2007-02-27 Electrochemical element Expired - Fee Related JP5044814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007047662A JP5044814B2 (en) 2007-02-27 2007-02-27 Electrochemical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007047662A JP5044814B2 (en) 2007-02-27 2007-02-27 Electrochemical element

Publications (2)

Publication Number Publication Date
JP2008211056A JP2008211056A (en) 2008-09-11
JP5044814B2 true JP5044814B2 (en) 2012-10-10

Family

ID=39787094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007047662A Expired - Fee Related JP5044814B2 (en) 2007-02-27 2007-02-27 Electrochemical element

Country Status (1)

Country Link
JP (1) JP5044814B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11830672B2 (en) 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5076034B1 (en) 2012-06-08 2012-11-21 太陽誘電株式会社 Electrochemical devices
JP5155488B2 (en) * 2012-09-06 2013-03-06 太陽誘電株式会社 Electrochemical devices

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3959220B2 (en) * 2000-02-04 2007-08-15 株式会社エスアイアイ・マイクロパーツ Non-aqueous electrolytic battery for surface mounting and electric double layer capacitor for surface mounting
JP2004227959A (en) * 2003-01-23 2004-08-12 Sii Micro Parts Ltd Nonaqueous electrolyte battery and electric double layer capacitor
JP2005191455A (en) * 2003-12-26 2005-07-14 Tdk Corp Electrochemical device
JP4694855B2 (en) * 2005-02-09 2011-06-08 セイコーインスツル株式会社 Electrochemical cell and method for producing the same
JP2007095455A (en) * 2005-09-28 2007-04-12 Kyocera Corp Ceramic vessel, and battery or electric double layer capacitor using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11830672B2 (en) 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process

Also Published As

Publication number Publication date
JP2008211056A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
JP4941653B2 (en) Method for producing electrochemical element
JP5013772B2 (en) Electric double layer capacitor
JP5268488B2 (en) Electrochemical cell with terminal
US20100119934A1 (en) Container for Electric Energy Storage Device, and Battery and Electric Double Layer Capacitor Using the Same
KR101578794B1 (en) Battery Cell Having Lead-Tap Joint of Improved Coupling Force
JP2008294001A5 (en)
JP4845388B2 (en) Electrochemical cell
JP4894543B2 (en) Capacitors
JP2016085875A (en) Power storage device, power-supply module, and method for manufacturing power storage device
JP5044814B2 (en) Electrochemical element
CN108604710B (en) Laminated nonaqueous electrolyte secondary battery
JP2010118374A (en) Capacitor
JP5050519B2 (en) Surface mount square storage cell
JPWO2013094423A1 (en) Power storage device
JP2014090039A (en) Electrochemical device
JP2012185982A (en) Package for electrochemical cell, and electrochemical cell
JP2010114365A (en) Electric double layer capacitor and method of manufacturing the same
JP2009224237A (en) Battery
JP2015103737A (en) Electrochemical cell
WO2024029466A1 (en) All-solid-state battery
KR101634959B1 (en) Electrical Energy Storing Device and Manufacturing Method thereof
JP2005209640A (en) Battery housing and battery, and housing for battery and electric double-layer capacitor and electric double-layer capacitor
JP4665513B2 (en) Method for producing coin-type electrochemical device
KR101297093B1 (en) Wiring substrate and super capacitor of surface mount type using the same
JP2008153268A (en) Surface mounting square electric storage cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5044814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees