JP5043771B2 - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
JP5043771B2
JP5043771B2 JP2008200280A JP2008200280A JP5043771B2 JP 5043771 B2 JP5043771 B2 JP 5043771B2 JP 2008200280 A JP2008200280 A JP 2008200280A JP 2008200280 A JP2008200280 A JP 2008200280A JP 5043771 B2 JP5043771 B2 JP 5043771B2
Authority
JP
Japan
Prior art keywords
electrostatic chuck
substrate
layer
groove
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008200280A
Other languages
Japanese (ja)
Other versions
JP2008263241A (en
Inventor
裕 奥村
俊久 野沢
和基 茂山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Research Corp filed Critical Lam Research Corp
Priority to JP2008200280A priority Critical patent/JP5043771B2/en
Publication of JP2008263241A publication Critical patent/JP2008263241A/en
Application granted granted Critical
Publication of JP5043771B2 publication Critical patent/JP5043771B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

この発明は、ICやLCDなど高精度の製造工程における基板処理に好適な静電チャックに関し、詳しくは、真空チャンバ内で発熱を伴う又は加熱を要するような処理を施す際に処理対象基板を放熱等の熱伝達可能な状態で保持する静電チャックに関する。   The present invention relates to an electrostatic chuck suitable for substrate processing in high-precision manufacturing processes such as ICs and LCDs. More specifically, the present invention dissipates heat from a substrate to be processed when a process that generates heat or requires heating is performed in a vacuum chamber. The present invention relates to an electrostatic chuck that holds the heat transferable state.

真空チャンバ内で発熱を伴う処理を施すものとしては、エッチングやアッシング等のプラズマ処理が挙げられ、加熱を要するものとしてはプラズマCVD等の成膜処理が挙げられる。そして、これらの処理に用いられるプラズマ処理装置の例としては、対向電極となる一対の平行平板を設けておいてこれらの平行平板間にプラズマ処理空間を形成してシリコンウエハ等の基板を対象にエッチング処理を行ういわゆる平行平板形エッチャー(RIE)や成膜処理を行う平行平板形PCVD等が知られている。   Examples of processing that generates heat in the vacuum chamber include plasma processing such as etching and ashing, and examples of processing that requires heating include film formation processing such as plasma CVD. As an example of a plasma processing apparatus used for these processes, a pair of parallel plates serving as counter electrodes is provided, and a plasma processing space is formed between the parallel plates to target a substrate such as a silicon wafer. A so-called parallel plate type etcher (RIE) that performs an etching process, a parallel plate type PCVD that performs a film forming process, and the like are known.

図2(a)に縦断面構造図を示したが、平行平板形のプラズマ処理装置は、一対の平行平板が真空チャンバ内に設けられていて、両平板間に形成されたプラズマ処理空間にプラズマを発生させ又は導入するとともにそのプラズマ処理空間内に所定の処理ガス等も導入する。そして、プラズマ処理空間にてプラズマ反応を行わせ、これによってプラズマ処理空間内の基板表面に対してエッチング処理等を施すようになっている。   FIG. 2 (a) shows a longitudinal cross-sectional structure diagram. In a parallel plate type plasma processing apparatus, a pair of parallel plates are provided in a vacuum chamber, and plasma is formed in a plasma processing space formed between both plates. Is generated or introduced, and a predetermined processing gas or the like is also introduced into the plasma processing space. Then, a plasma reaction is performed in the plasma processing space, whereby an etching process or the like is performed on the substrate surface in the plasma processing space.

エッチャーを例に詳述すると、この装置は、真空チャンバ本体部2の上に真空チャンバ蓋部3が開閉可能に取着された真空チャンバを備えており、プラズマ処理の対象物である基板1が平板状をしていることから、水平に置かれたカソード部12が真空チャンバ本体部2内のほぼ中央に設けられ、このカソード部12の上面が平坦に形成されていて、基板1を乗載しておくことが可能なようになっている。真空チャンバ本体部2の内底中央には筒状のローアーサポート12aが貫通して立設されており、カソード部12はこのローアーサポート12aの上端に固着して支持されており、これらによって構成された基板支持体は、真空チャンバ内に植設され上面が基板乗載可能に形成されたものとなっている。   An etcher will be described in detail. This apparatus includes a vacuum chamber in which a vacuum chamber lid 3 is attached on a vacuum chamber main body 2 so as to be openable and closable, and a substrate 1 that is an object of plasma processing is provided. Since it has a flat plate shape, the horizontally placed cathode portion 12 is provided in the center of the vacuum chamber main body 2, the upper surface of the cathode portion 12 is formed flat, and the substrate 1 is mounted thereon. It is possible to keep it. A cylindrical lower support 12a is vertically provided through the center of the inner bottom of the vacuum chamber main body 2. The cathode portion 12 is fixedly supported at the upper end of the lower support 12a and is constituted by these. The substrate support is implanted in a vacuum chamber and has an upper surface formed so that the substrate can be mounted.

真空チャンバ蓋部3内のほぼ中央であってカソード部12の上方にはアノード部11が筒状のアッパーサポート11aによって真空チャンバ蓋部3に垂設されており、アノード部11とカソード部12とを互いに対向した電極としてRF電源31によって高周波が印加されると所定の真空圧の下でアノード部11とカソード部12との間にプラズマが発生する。そこに、所定の処理ガスが供給されるとカソード部12上面に載置された基板1にガス状態等に応じたプラズマ処理がなされる。これにより、アノード部11の下面とカソード部12の上面との間にプラズマ処理空間13が形成され、そこに置かれた基板1の表面に対してプラズマ処理が施されるようになっている。   An anode portion 11 is suspended from the vacuum chamber lid portion 3 by a cylindrical upper support 11a at a substantially central position in the vacuum chamber lid portion 3 and above the cathode portion 12, and the anode portion 11, the cathode portion 12, When a high frequency is applied by the RF power source 31 with the electrodes facing each other, plasma is generated between the anode portion 11 and the cathode portion 12 under a predetermined vacuum pressure. When a predetermined processing gas is supplied thereto, plasma processing corresponding to the gas state or the like is performed on the substrate 1 placed on the upper surface of the cathode portion 12. As a result, a plasma processing space 13 is formed between the lower surface of the anode portion 11 and the upper surface of the cathode portion 12, and the plasma processing is performed on the surface of the substrate 1 placed there.

真空チャンバ本体部2には真空チャンバ内ガスを吸い出して適度な真空度を保つために内外貫通した吸引口2aが加工形成され、この吸引口2aに対し順にゲートバルブ4a、可変バルブ4、真空ポンプ5が連結されている。ゲートバルブ4aは保守時等に仕切るための手動弁であり通常動作時には開状態にされる。これとターボポンプ等の真空ポンプ5とに介挿された可変バルブ4は、バルブ開度を可変駆動するモータ等が付設されていてこれを電気信号で制御することで遠隔制御可能な通過流体の可変絞りとして機能する。そして、図示しない適宜のPID制御回路等の制御に従って可変バルブ4による絞り量が可変駆動されることで、真空チャンバ内の真空圧がプラズマ処理に適した設定圧力になるように自動制御される。   The vacuum chamber main body 2 is formed with a suction port 2a penetrating the inside and outside in order to suck out the gas in the vacuum chamber and maintain an appropriate degree of vacuum. A gate valve 4a, a variable valve 4 and a vacuum pump are sequentially formed with respect to the suction port 2a. 5 are connected. The gate valve 4a is a manual valve for partitioning during maintenance or the like, and is opened during normal operation. The variable valve 4 inserted between this and a vacuum pump 5 such as a turbo pump is provided with a motor or the like that variably drives the valve opening, and is controlled by an electric signal to control the flow of fluid that can be remotely controlled. Functions as a variable aperture. Then, the throttle amount by the variable valve 4 is variably driven according to control of an appropriate PID control circuit or the like (not shown), so that the vacuum pressure in the vacuum chamber is automatically controlled to be a set pressure suitable for plasma processing.

このような処理に際しては、均一な処理結果を得るために、プラズマ処理空間13の真空圧だけでなく、基板1の温度も適宜の設定温度に維持する必要がある。しかも、基板1全体の温度をできるだけ均一な分布状態に保つ必要がある。ところが、真空状態の下では、気体を媒介とした対流等による熱伝達がほとんど行われない。しかも、微視的にみると、基板1とカソード部12との真実接触面積が少ないばかりか、接触部はランダムに点在している。このため、直接的な熱伝導と僅かな輻射に頼っていたのでは、放熱量等が不足するうえ、熱分布も不均一となってしまう。   In such processing, in order to obtain a uniform processing result, it is necessary to maintain not only the vacuum pressure of the plasma processing space 13 but also the temperature of the substrate 1 at an appropriate set temperature. Moreover, it is necessary to keep the temperature of the entire substrate 1 as uniform as possible. However, under vacuum conditions, heat transfer by gas-mediated convection is hardly performed. Moreover, when viewed microscopically, not only the real contact area between the substrate 1 and the cathode portion 12 is small, but also the contact portions are randomly scattered. For this reason, relying on direct heat conduction and slight radiation results in insufficient heat dissipation and non-uniform heat distribution.

そこで、真空チャンバ内のプラズマ処理空間等に設置される処理対象基板乗載用電極の基板乗載面に、すなわち図2の例で言えばカソード部12の上面に、基板1をカソード部12側へ静電力によって引きつける静電チャック50が、薄く広がった膜状に設けられるとともに(図2(b)参照)、この静電チャック50とその上の基板1との間にヘリウム(He)等の冷却ガス(伝熱用ガス)が供給されるようになっている。   Accordingly, the substrate 1 is placed on the substrate mounting surface of the processing substrate mounting electrode installed in the plasma processing space or the like in the vacuum chamber, that is, on the upper surface of the cathode portion 12 in the example of FIG. An electrostatic chuck 50 attracted by electrostatic force is provided in a thin and wide film shape (see FIG. 2B), and helium (He) or the like is provided between the electrostatic chuck 50 and the substrate 1 thereon. Cooling gas (heat transfer gas) is supplied.

その冷却ガス供給手段は、真空チャンバ本体部2の外部から送り込んだ冷却ガスが静電チャック50側から基板1の下面・裏面へ向けて吹き出すように、ローアーサポート12aの内腔を通ってカソード部12内へ延びた又は連通した冷却ガス送給管41と、基板乗載面に対応した広がりを持ってカソード部12内に形成された冷却ガス送給腔42と、静電チャック50を貫いて冷却ガス送給腔42に届くように穿孔され而も多数穿孔されてカソード部12上面に点在・散在する冷却ガス送給孔43とを具える。これにより、静電チャック50は、冷却ガス供給孔43の形成された電極12の基板乗載面(上面)に設けられたものとなっている。   The cooling gas supply means includes a cathode portion through the inner cavity of the lower support 12a so that the cooling gas sent from the outside of the vacuum chamber main body 2 is blown out from the electrostatic chuck 50 side toward the lower surface and the back surface of the substrate 1. A cooling gas supply pipe 41 extending into or communicating with the substrate 12, a cooling gas supply cavity 42 formed in the cathode portion 12 having a width corresponding to the substrate mounting surface, and the electrostatic chuck 50. The cooling gas supply holes 43 are perforated so as to reach the cooling gas supply cavity 42, and are provided with cooling gas supply holes 43 scattered and scattered on the upper surface of the cathode portion 12. Thus, the electrostatic chuck 50 is provided on the substrate mounting surface (upper surface) of the electrode 12 in which the cooling gas supply hole 43 is formed.

このような従来の静電チャック50は、図3(a)に平面図を示したが、多数の冷却ガス送給孔43のうち最外周のもの同士を連ねるように溝51が形成されている。溝51は、幾つかの円弧部分に分割・分離して設けられ、全体でほぼ一周分をカバーするようになっている。図3(b)に、溝51のうち冷却ガス送給孔43の穿孔された部分について縦断面拡大模式図を示したが、静電チャック50は、静電気を帯びさせるための導電層と、その静電気を逃がさないようにするためにその導電層を上下両側から挟む一対の絶縁層とを有している。   FIG. 3A shows a plan view of such a conventional electrostatic chuck 50, but grooves 51 are formed so as to connect the outermost peripheral ones among the many cooling gas supply holes 43. . The groove 51 is provided by being divided and separated into several arc portions so as to cover almost one round as a whole. FIG. 3B shows an enlarged schematic longitudinal sectional view of the portion of the groove 51 in which the cooling gas feed hole 43 is drilled. The electrostatic chuck 50 includes a conductive layer for charging static electricity, In order to prevent the static electricity from escaping, it has a pair of insulating layers that sandwich the conductive layer from above and below.

このような静電チャック50は、一般に次のようにして作られる。先ず、銅箔等の導電層55の上面に対してポリイミドフィルム等の絶縁性樹脂シートからなる上部絶縁層57を接着層56にて貼り付けるとともに、その導電層55の下面に対してもやはりポリイミドフィルム等の絶縁性樹脂シートからなる下部絶縁層53を接着層54にて貼り付けて、一枚の絶縁シートを形成しておく。次に、プレス等によって、溝51のところを打ち抜く。それから、溝51と冷却ガス送給孔43との相対位置を整合させながら、接着層52にてカソード部12の上面に貼り付ける。こうして、幅Wが1〜2mmで深さDが150μm程度の溝51を持つ静電チャック50ができあがる。   Such an electrostatic chuck 50 is generally manufactured as follows. First, an upper insulating layer 57 made of an insulating resin sheet such as a polyimide film is attached to the upper surface of a conductive layer 55 such as a copper foil by an adhesive layer 56, and polyimide is also applied to the lower surface of the conductive layer 55. A lower insulating layer 53 made of an insulating resin sheet such as a film is attached with an adhesive layer 54 to form a single insulating sheet. Next, the groove 51 is punched out by a press or the like. Then, the adhesive layer 52 is attached to the upper surface of the cathode portion 12 while aligning the relative positions of the groove 51 and the cooling gas supply hole 43. Thus, the electrostatic chuck 50 having the groove 51 having a width W of 1 to 2 mm and a depth D of about 150 μm is completed.

このような構造の静電チャック50を持ったカソード部12の上に基板1が乗せられると、導電層55に帯電させることで或いはプラズマ処理に伴う帯電が基板1に生じることで、基板1は静電チャック50を介してカソード部12の上面に付勢力を伴って保持される。そして、冷却ガス送給管41に冷却ガスを送り込むと、その冷却ガスは、冷却ガス送給腔42及び多数の冷却ガス送給孔43を介して基板1の下側へ供給される。   When the substrate 1 is placed on the cathode portion 12 having the electrostatic chuck 50 having such a structure, the substrate 1 is charged by charging the conductive layer 55 or charging due to the plasma processing. It is held with an urging force on the upper surface of the cathode portion 12 via the electrostatic chuck 50. When the cooling gas is sent into the cooling gas supply pipe 41, the cooling gas is supplied to the lower side of the substrate 1 through the cooling gas supply cavity 42 and the numerous cooling gas supply holes 43.

こうして、真空雰囲気中であっても、カソード部12上面における静電チャック50の上に基板1が保持されるととも、基板1の裏面・下面と静電チャック50との隙間に冷却ガスが充填される。この冷却ガスは、その隙間内で外向き半径方向へ広がり、基板1の最外周直下のところからプラズマ処理空間13へ放出されるので、真空状態に影響しないよう、少量だけ供給される。   Thus, even in a vacuum atmosphere, the substrate 1 is held on the electrostatic chuck 50 on the upper surface of the cathode portion 12, and the gap between the back surface and the lower surface of the substrate 1 and the electrostatic chuck 50 is filled with the cooling gas. Is done. This cooling gas spreads outward in the gap in the radial direction and is discharged into the plasma processing space 13 from a position immediately below the outermost periphery of the substrate 1, so that only a small amount is supplied so as not to affect the vacuum state.

そのような流れに際して、冷却ガスは、溝51のところで同一の圧力にされ、基板1及び静電チャック50間に広がる隙間において、ほぼ均一に分布することとなる。そして、この冷却ガスを媒体として、基板1の裏面ほぼ全域に亘って、基板1とカソード部12との熱伝達が行われる。   In such a flow, the cooling gas is set to the same pressure in the groove 51 and is distributed almost uniformly in the gap extending between the substrate 1 and the electrostatic chuck 50. Then, heat transfer is performed between the substrate 1 and the cathode portion 12 over almost the entire back surface of the substrate 1 using this cooling gas as a medium.

しかしながら、このような従来の静電チャックでは、静電チャックにおける上部絶縁層に用いられる樹脂シートにボイドや傷等があると、そこを起点に絶縁破壊が発生し易く、しかも一旦生じた絶縁破壊はたちまち広がって、使用に耐えない状態に至ってしまうことがある。かかるボイドや傷を持ったシートは使用されないが検査で微小なものまで見つけだすことは難しいうえ、絶縁特性に優れているシートは傷つきやすくて取り扱いが困難であった。そこで、ボイドや傷が全く無い完全無欠な静電チャックを望むのは無理としても、ボイドや傷等の欠損が例え有ったとしても、絶縁破壊が起こり難いような静電チャックを案出することが課題となる。   However, in such a conventional electrostatic chuck, if there are voids or scratches in the resin sheet used for the upper insulating layer in the electrostatic chuck, the dielectric breakdown is likely to occur from that point, and once the dielectric breakdown has occurred. It can spread quickly and become unusable. Sheets having such voids and scratches are not used, but it is difficult to find even minute ones by inspection, and sheets having excellent insulating properties are easily damaged and difficult to handle. Therefore, even if it is impossible to desire a perfect electrostatic chuck with no voids or scratches, an electrostatic chuck that does not easily cause dielectric breakdown even if there are defects such as voids or scratches is devised. Is a problem.

また、上述のような従来の静電チャックでは、冷却ガス等の伝熱用ガスの充填状態の均一化のために溝が打ち抜き形成されているが、この溝の深さは溝の無いところの間隙に比べれば大きすぎることから、溝のところでは、伝熱用ガスによる熱伝導が悪くなるので、基板の熱分布の均一性・一様性が損なわれていた。しかも、溝底には、良電導体である電極面が露出しているため、溝内で異常放電が発生したり、バイアス電圧にばらつきが生じたり、プラズマ処理等に用いる反応性ガスの種類によっては電極面が腐食するといった問題もあった。そこで、溝深さが従来より浅くなり且つ電極面が露出しないような溝を如何にして形成するかが、課題となる。   Further, in the conventional electrostatic chuck as described above, a groove is formed by punching in order to make the filling state of a heat transfer gas such as a cooling gas uniform. Since it is too large compared to the gap, the heat conduction by the heat transfer gas is deteriorated at the groove, so that the uniformity and uniformity of the heat distribution of the substrate is impaired. Moreover, since the electrode surface, which is a good conductor, is exposed at the bottom of the groove, abnormal discharge occurs in the groove, the bias voltage varies, and depending on the type of reactive gas used for plasma processing, etc. There was also a problem that the electrode surface was corroded. Therefore, how to form a groove that has a shallower groove depth and does not expose the electrode surface is a problem.

さらに、溝が打ち抜き形成される静電チャックでは、溝が完全に一周していると溝で囲まれた部分が分離してバラバラになってしまうのを回避するために、溝の方を幾つかに分割して形成しなければならない。このため、溝の形状に関する設計自由度が制約されることから、電極への貼り付け等に際して取り扱い難いばかりか、伝熱用ガスの圧力分布の均一化についても、例えば中心部と辺縁部とで相違しやすい等、不満があった。しかも、そのような圧力分布の不均一性は、溝の深さを従来より浅くすると、悪化しがちである。そこで、溝の深さを従来より浅くしても、伝熱用ガス圧の均一度を悪化させないどころか、むしろ均一度を向上させるように工夫することも、更なる課題となる。   Furthermore, in an electrostatic chuck in which grooves are formed by punching, some of the grooves are separated in order to avoid separation and separation of the portions surrounded by the grooves when the grooves are completely circled. It must be divided and formed. For this reason, the degree of freedom in design regarding the shape of the groove is limited, so that it is difficult to handle when attaching to the electrode, etc. There was dissatisfaction such as being easy to be different. Moreover, such non-uniform pressure distribution tends to be exacerbated when the depth of the groove is shallower than in the prior art. Thus, it is a further problem to improve the uniformity of the heat transfer gas pressure even if the depth of the groove is shallower than that of the prior art.

この発明は、このような課題を解決するためになされたものであり、絶縁破壊し難い静電チャックを実現することを目的とする。また、本発明は、溝が浅くて被覆性も良い静電チャックを実現することも目的とする。さらに、本発明は、溝が浅くても伝熱用ガス圧の均一度が良い静電チャックを実現することをも目的とする。   The present invention has been made to solve such a problem, and an object of the present invention is to realize an electrostatic chuck that is difficult to break down. Another object of the present invention is to realize an electrostatic chuck having a shallow groove and good coverage. Another object of the present invention is to realize an electrostatic chuck with good uniformity of heat transfer gas pressure even if the groove is shallow.

このような課題を解決するために発明された第1乃至第3の解決手段について、その構成および作用効果を以下に説明する。   About the 1st thru | or 3rd solution means invented in order to solve such a subject, the structure and effect are demonstrated below.

[第1の解決手段]
第1の解決手段の静電チャックは、(真空チャンバ内のプラズマ処理空間等の真空雰囲気中に設置される処理対象基板乗載用)電極の基板乗載面に設けられ、導電層およびこれを挟む絶縁層を有する静電チャックにおいて、前記絶縁層のうち前記基板側のものが複数の薄膜層を含んだものである。
[First Solution]
The electrostatic chuck of the first solving means is provided on a substrate mounting surface of an electrode (for mounting a substrate to be processed installed in a vacuum atmosphere such as a plasma processing space in a vacuum chamber), and includes a conductive layer and the conductive layer. In the electrostatic chuck having an insulating layer to be sandwiched, the insulating layer on the substrate side includes a plurality of thin film layers.

このような第1の解決手段の静電チャックにあっては、基板側の絶縁層は、それに含まれている複数の薄膜層の何れかにボイドや傷等の欠損があっても、それが局所的な小さいものであれば、共に積層された他の薄膜層における同様の欠損部分と重なり合うことが滅多に無いので、表裏を貫通するような欠損を生じることがほとんど無い。   In such an electrostatic chuck of the first solving means, even if the substrate-side insulating layer has a defect such as a void or a flaw in any of the plurality of thin film layers included in the insulating layer, If it is locally small, it rarely overlaps with a similar defect portion in other thin film layers laminated together, so that there is almost no defect that penetrates the front and back.

これにより、絶縁特性に優れたシートを用いて静電チャックを作った場合でも、傷つきにくく、絶縁耐性に優れた静電チャックができあがり、その寿命が大幅に伸びることとなる。したがって、この発明によれば、絶縁破壊し難い静電チャックを実現することができる。   As a result, even when an electrostatic chuck is made using a sheet having excellent insulating properties, an electrostatic chuck that is not easily damaged and has excellent insulation resistance is completed, and its life is greatly extended. Therefore, according to the present invention, it is possible to realize an electrostatic chuck that is difficult to break down.

[第2の解決手段]
第2の解決手段の静電チャックは、(真空チャンバ内のプラズマ処理空間等の真空雰囲気中に設置される処理対象基板乗載用電極であって)伝熱用ガス供給孔の形成された電極の基板乗載面に設けられ、導電層およびこれを挟む絶縁層を有する静電チャックにおいて、前記電極は、前記伝熱用ガス送給孔に通じる溝が前記基板乗載面に形成されたものであり、前記導電層および前記絶縁層は、前記溝の底も含めて前記基板乗載面に対し密着しており且つ前記伝熱用ガス供給孔によって貫通されたものである。
[Second Solution]
The electrostatic chuck of the second solving means is an electrode on which a heat transfer gas supply hole is formed (which is an electrode for mounting a processing target substrate installed in a vacuum atmosphere such as a plasma processing space in a vacuum chamber). In the electrostatic chuck having a conductive layer and an insulating layer sandwiching the conductive layer provided on the substrate mounting surface of the substrate, the electrode has a groove communicating with the gas transfer hole for heat transfer formed on the substrate mounting surface. The conductive layer and the insulating layer are in close contact with the substrate mounting surface including the bottom of the groove and are penetrated by the heat transfer gas supply hole.

このような第2の解決手段の静電チャックにあっては、電極の基板乗載面に形成された溝に対しても溝の無いところと同じように密着して、導電層および絶縁層からなる静電チャックが設けられることから、その電極表面の溝とほぼ同じ形状の溝が静電チャックの表面に現れる。そして、溝に、伝熱用ガス供給孔を介して伝熱用ガスが供給される。   In the electrostatic chuck of the second solving means, the conductive layer and the insulating layer are in close contact with the groove formed on the substrate mounting surface of the electrode in the same manner as in the absence of the groove. Therefore, a groove having substantially the same shape as the groove on the electrode surface appears on the surface of the electrostatic chuck. The heat transfer gas is supplied to the groove through the heat transfer gas supply hole.

これにより、電極表面に彫り込む溝を浅く形成しておけば容易に、静電チャック表面の溝を静電チャックの厚さよりも浅くすることができるうえ、その溝底には、打ち抜かれること無く溝形に沿って屈曲・曲折した静電チャックの層が、伝熱用ガス送給孔の貫通部分を除いて、残ることとなる。したがって、この発明によれば、浅くて被覆性も良い静電チャックを実現することができる。   This makes it easy to make the groove on the surface of the electrostatic chuck shallower than the thickness of the electrostatic chuck if the groove to be carved into the electrode surface is shallow, and the groove bottom is not punched out. The layer of the electrostatic chuck that is bent and bent along the groove shape remains except for the through portion of the gas transfer hole for heat transfer. Therefore, according to the present invention, an electrostatic chuck that is shallow and has good coverage can be realized.

[第3の解決手段]
第3の解決手段の静電チャックは、上記の第2の解決手段の静電チャックであって、前記溝が網状に(分布して形成されたものと)なっていることを特徴とする。
[Third Solution]
The electrostatic chuck of the third solving means is the electrostatic chuck of the second solving means described above, characterized in that the grooves are formed in a net shape (distributed and formed).

このような第3の解決手段の静電チャックにあっては、静電チャックのシートを打ち抜く必要が無いため、溝の分布形状等に関する制約から解放されたことに基づいて、溝が網状に分布して設けられる。そして、網状に分布した溝のところで伝熱用ガスが同圧にされることから、いたるところで圧力が等しくなるので、伝熱用ガスの均一度が向上する。その働きは、溝が浅くなったことによる圧力傾斜の増加を補って余りあるものとなる。したがって、この発明によれば、溝が浅くても伝熱用ガス圧の均一度が良い静電チャックを実現することができる。   In the electrostatic chuck of the third solving means, since it is not necessary to punch out the sheet of the electrostatic chuck, the grooves are distributed in a mesh shape based on the release from the restrictions on the distribution shape and the like of the grooves. Provided. And since the heat transfer gas is made the same pressure at the grooves distributed in a mesh shape, the pressure is equal everywhere, so the uniformity of the heat transfer gas is improved. Its function more than compensates for the increase in pressure gradient due to shallow grooves. Therefore, according to the present invention, it is possible to realize an electrostatic chuck with good uniformity of heat transfer gas pressure even if the groove is shallow.

以上の説明から明らかなように、本発明の第1の解決手段の静電チャックにあっては、一部の薄膜層に欠損があってもその貫通を他の薄膜層で抑制するようにしたことにより、絶縁破壊し難い静電チャックを実現することができたという有利な効果が有る。
また、本発明の第2の解決手段の静電チャックにあっては、電極表面に彫り込んだ溝形状が静電チャック表面に転写されるようにしたことにより、溝が浅くて被覆性も良い静電チャックを実現することができたという有利な効果を奏する。
As is clear from the above description, in the electrostatic chuck of the first solving means of the present invention, even if a part of the thin film layer is defective, the penetration is suppressed by the other thin film layer. Thus, there is an advantageous effect that an electrostatic chuck that is difficult to break down can be realized.
In the electrostatic chuck of the second solving means of the present invention, the groove shape carved on the electrode surface is transferred to the electrostatic chuck surface, so that the groove is shallow and the covering property is good. There is an advantageous effect that an electric chuck can be realized.

さらに、本発明の第3の解決手段の静電チャックにあっては、圧力勾配が解消されるような分布状態に溝を形成したことにより、溝が浅くても伝熱用ガス圧の均一度が良い静電チャックを実現することができたという有利な効果が有る。   Furthermore, in the electrostatic chuck of the third solving means of the present invention, since the grooves are formed in such a distributed state that the pressure gradient is eliminated, evenness of the heat transfer gas pressure can be achieved even if the grooves are shallow. However, there is an advantageous effect that a good electrostatic chuck can be realized.

このような解決手段で達成された本発明の静電チャックについて、これを実施するための形態を実施例により具体的に説明する。   With regard to the electrostatic chuck of the present invention achieved by such a solution, a mode for carrying out the electrostatic chuck will be specifically described by way of examples.

図1は、実施例1の構成を示す模式図であり、(a)が平面図、(b)が縦断面拡大図である。なお、背景の技術の欄にて既述したこと及び図2はこの例についても同様に言えることであり、また、図1は従来例の図3に対応していて、同様の構成要素には同一の符号を付して示したので、重複する再度の説明は割愛し、以下、従来例との相違点を中心に説明する。   1A and 1B are schematic views illustrating the configuration of the first embodiment, in which FIG. 1A is a plan view and FIG. 1B is an enlarged longitudinal sectional view. 2 and FIG. 2 are also applicable to this example, and FIG. 1 corresponds to FIG. 3 of the conventional example. Since the same reference numerals are given, the repeated description is omitted, and hereinafter, the description will focus on differences from the conventional example.

この静電チャック500が従来の静電チャック50と相違するのは、複数の同心円に複数の放射状直線が交差しあい連通しあって網状に分布した溝510を具える点と(図1(a)参照)、従来は一枚であった上部絶縁層57が第1薄膜層571と第2薄膜層573との二枚を含むものとなっている点(図1(b)参照)である。   This electrostatic chuck 500 is different from the conventional electrostatic chuck 50 in that a plurality of radial straight lines intersect and communicate with each other in a plurality of concentric circles and have grooves 510 distributed in a net shape (FIG. 1A). (See FIG. 1 (b)). The upper insulating layer 57, which has conventionally been a single sheet, includes two sheets of a first thin film layer 571 and a second thin film layer 573.

このような静電チャック500は、次のようにしてカソード部12の上面(電極の基板乗載面)に作られる。先ず、銅箔等の導電層55の上面に対してポリイミドフィルム等の絶縁性樹脂シート望ましくは上部絶縁層57の半分以下の厚さのものからなる第1薄膜層571を接着層56にて貼り付ける。次に、その上面に対して、さらに、もう一枚の薄いポリイミドフィルム等の絶縁性樹脂シートからなる第2薄膜層573を層間接着層572にて貼り付ける。これにより、第1薄膜層571におけるボイドや傷等の欠損部は第2薄膜層573によって塞がれる一方、第2薄膜層573におけるボイドや傷等の欠損部は第1薄膜層571によって塞がれる。後は従来同様に下部絶縁層53も貼り付けて、多層の絶縁シートを一枚に形成しておく。なお、従来行っていたプレス等による打ち抜きは、行わない。こうして出来た絶縁シート(53〜573)は、上下の絶縁層のうち上の基板1側のものが複数の薄膜層571,573を含んだものとなる。   Such an electrostatic chuck 500 is formed on the upper surface (electrode mounting surface of the electrode) of the cathode portion 12 as follows. First, a first thin film layer 571 made of an insulating resin sheet such as a polyimide film, preferably less than half the thickness of the upper insulating layer 57 is attached to the upper surface of the conductive layer 55 such as copper foil by the adhesive layer 56. wear. Next, a second thin film layer 573 made of another insulating resin sheet such as a thin polyimide film is attached to the upper surface with an interlayer adhesive layer 572. As a result, voids and scratches in the first thin film layer 571 are closed by the second thin film layer 573, while voids and scratches in the second thin film layer 573 are closed by the first thin film layer 571. It is. Thereafter, the lower insulating layer 53 is also pasted as in the prior art, and a multilayer insulating sheet is formed in one sheet. In addition, the punching by the press etc. which was performed conventionally is not performed. In the insulating sheets (53 to 573) thus obtained, the upper insulating layer on the upper substrate 1 side includes a plurality of thin film layers 571 and 573.

一方、カソード部12に対しては、その上面を平坦に磨きあげた後、そこに彫り込みを入れて、幅Wが1〜2mmで深さDが10〜50μm程度の浅い溝を形成しておく。それも網状になるよう多数形成しておく。それから、上記の絶縁シート(53〜573)を接着層52にてカソード部12の上面に貼り付けるとともに、上方から高圧気体で押しつける。この貼り付け作業は、絶縁シートに打ち抜き跡等の切れ目が無いので、楽に行える。これにより、導電層55および絶縁層53,571,573を有する静電チャック500は、溝の底も含めてカソード部12の基板乗載面に対し密着したものとなる。   On the other hand, the upper surface of the cathode portion 12 is polished flat and then engraved therein to form a shallow groove having a width W of 1 to 2 mm and a depth D of about 10 to 50 μm. A large number of them are formed so as to form a net. Then, the insulating sheets (53 to 573) are attached to the upper surface of the cathode portion 12 with the adhesive layer 52 and pressed with high-pressure gas from above. This pasting operation can be easily performed because the insulating sheet has no cuts such as punch marks. As a result, the electrostatic chuck 500 having the conductive layer 55 and the insulating layers 53, 571, and 573 comes into close contact with the substrate mounting surface of the cathode portion 12 including the bottom of the groove.

そして、接着層52が固まったときには、カソード部12上面の溝が静電チャック500の表面に転写されて、同じ網状に分布した溝510ができあがる。このような溝510は、やはり幅Wが1〜2mmで深さが20〜50μm程度の浅いものとなっている。しかも、溝底までカソード部12を覆うものにもなっている。   When the adhesive layer 52 is solidified, the grooves on the upper surface of the cathode portion 12 are transferred to the surface of the electrostatic chuck 500, and the grooves 510 distributed in the same net shape are formed. The groove 510 is shallow with a width W of 1 to 2 mm and a depth of about 20 to 50 μm. In addition, the cathode portion 12 is covered to the bottom of the groove.

最後に、溝510のところに対して上方から静電チャック500を貫いてカソード部12内の冷却ガス送給腔42に至る多数の冷却ガス送給孔43(伝熱用ガス送給孔)を穿つ。これにより、カソード部12の基板乗載面における溝が冷却ガス送給孔43に通じるとともに、静電チャック500の導電層および絶縁層が冷却ガス送給孔43によって貫通されて、静電チャック500表面の溝510も、至る所で冷却ガス送給孔43に通じたものとなる。   Finally, a large number of cooling gas supply holes 43 (heat transfer gas supply holes) that penetrate the electrostatic chuck 500 from above to the groove 510 and reach the cooling gas supply cavity 42 in the cathode portion 12 are formed. Wear. As a result, the groove on the substrate mounting surface of the cathode portion 12 communicates with the cooling gas supply hole 43, and the conductive layer and the insulating layer of the electrostatic chuck 500 are penetrated by the cooling gas supply hole 43. The surface groove 510 also leads to the cooling gas supply hole 43 everywhere.

この実施例の静電チャックについて、その使用態様及び動作を説明する。上述した構造の静電チャック500を持ったカソード部12の上に基板1が乗せられると、導電層55に帯電させることで或いはプラズマ処理に伴う帯電が基板1に生じることで、基板1は静電チャック500を介してカソード部12の上面に付勢力を伴って保持される。そして、冷却ガス送給管41に冷却ガス(伝熱用ガス)を送り込むと、その冷却ガスは、冷却ガス送給腔42及び多数の冷却ガス送給孔43を介して基板1の下側へ供給される。そして、真空雰囲気中であっても、カソード部12上面における静電チャック500の上に基板1が保持されるとともに、基板1の裏面・下面と静電チャック500との隙間に冷却ガスが充填される。   The use mode and operation of the electrostatic chuck of this embodiment will be described. When the substrate 1 is placed on the cathode portion 12 having the electrostatic chuck 500 having the above-described structure, the substrate 1 is statically charged by charging the conductive layer 55 or charging caused by the plasma treatment. It is held with an urging force on the upper surface of the cathode portion 12 via the electric chuck 500. Then, when the cooling gas (heat transfer gas) is fed into the cooling gas feed pipe 41, the cooling gas passes to the lower side of the substrate 1 through the cooling gas feed cavity 42 and the numerous cooling gas feed holes 43. Supplied. Even in a vacuum atmosphere, the substrate 1 is held on the electrostatic chuck 500 on the upper surface of the cathode portion 12, and a cooling gas is filled in the gap between the back and bottom surfaces of the substrate 1 and the electrostatic chuck 500. The

このようにして基板1及び静電チャック500間における隙間に冷却ガスが冷却ガス送給孔43を介して充填されるのは従来通りであるが、その充填に際し、冷却ガスは溝510に各所から供給され、溝510内を縦横無尽に流れて、圧力勾配を解消する。 そして、冷却ガスは、基板1及び静電チャック500間に広がる隙間において、充分均一な状態で分布することとなる。   As described above, the cooling gas is filled in the gap between the substrate 1 and the electrostatic chuck 500 through the cooling gas feed hole 43 in the conventional manner. However, when filling the cooling gas, the cooling gas enters the groove 510 from various places. Supplied and flows in the groove 510 in length and width to eliminate the pressure gradient. The cooling gas is distributed in a sufficiently uniform state in the gap extending between the substrate 1 and the electrostatic chuck 500.

その結果、この均一な冷却ガスを媒体として、基板1の裏面ほぼ全域に亘って、基板1とカソード部12との均一な熱伝達が行われる。また、溝510のところでも、溝の深さDが従来より浅くなっているので、その部分での熱伝達特性も改善され、そこでもほぼ均一な熱伝達が行われる。こうして、基板1の全体に亘って温度分布が均一にされる。   As a result, uniform heat transfer is performed between the substrate 1 and the cathode portion 12 over almost the entire back surface of the substrate 1 using the uniform cooling gas as a medium. Further, since the depth D of the groove is shallower than that in the conventional case at the groove 510, the heat transfer characteristic in the portion is improved, and almost uniform heat transfer is performed there. In this way, the temperature distribution is made uniform over the entire substrate 1.

また、カソード部12の上面は、溝510内でも露出することが無く絶縁性の静電チャック500によって覆われているので、基板1の裏面との間で異常放電が誘発されることが無い。例え異常放電が発生しても速やかに消滅する。さらに、溝510内に腐食性ガス等が紛れ込んだときでも、カソード部12の上面がそのガスに直接曝されることが無くて、カソード部12の上面が腐食性ガスによって侵されるという不都合は防止されているので、任意の反応性ガスを用いた多様なプラズマ処理等を自由に選択することもできる。   Further, since the upper surface of the cathode portion 12 is not exposed even in the groove 510 and is covered with the insulating electrostatic chuck 500, abnormal discharge is not induced between the back surface of the substrate 1. Even if an abnormal discharge occurs, it disappears quickly. Further, even when a corrosive gas or the like is mixed into the groove 510, the upper surface of the cathode portion 12 is not directly exposed to the gas, and the inconvenience that the upper surface of the cathode portion 12 is corroded by the corrosive gas is prevented. Therefore, various plasma treatments using any reactive gas can be freely selected.

本発明の静電チャックの一実施例について、その構成を示す模式図であり、(a)が平面図、(b)が縦断面拡大図である。It is a schematic diagram which shows the structure about one Example of the electrostatic chuck of this invention, (a) is a top view, (b) is a longitudinal cross-sectional enlarged view. 静電チャックの使用例を示す縦断面模式図であり、(a)が真空チャンバの全体図、(b)が静電チャックを装着した下部電極である。It is a longitudinal cross-sectional schematic diagram which shows the usage example of an electrostatic chuck, (a) is a general view of a vacuum chamber, (b) is a lower electrode equipped with the electrostatic chuck. 従来の静電チャックである。This is a conventional electrostatic chuck.

符号の説明Explanation of symbols

1 基板(ウエハ、被処理物、処理対象基板)
2 真空チャンバ本体部(真空チャンバ)
2a 吸引口
3 真空チャンバ蓋部(真空チャンバ)
4 可変バルブ(可変絞り、圧力制御機構、圧力制御手段)
4a ゲートバルブ(仕切弁)
5 真空ポンプ
11 アノード部(平行平板の一方、上部電極)
11a アッパーサポート
12 カソード部(平行平板の他方、下部電極、基板乗載用電極)
12a ローアーサポート
13 プラズマ処理空間
31 RF電源
41 冷却ガス送給管(熱媒,媒体,伝熱用ガス充満手段、供給手段)
42 冷却ガス送給腔(熱媒,媒体,伝熱用ガス充満手段、供給手段)
43 冷却ガス送給孔(熱媒ガス充満、媒体ガス供給、伝熱用ガス供給孔)
50 静電チャック
51 溝(窪み、凹部、伝熱用ガス均一化手段)
52 接着層
53 下部絶縁層(電極側絶縁層)
54 接着層
55 導電層(中間層)
56 接着層
57 上部絶縁層(基板側絶縁層)
500 静電チャック
510 溝(窪み、凹部、伝熱用ガス圧均一化手段)
571 第1薄膜層(積層形絶縁層、上部絶縁層、基板側絶縁層)
572 層間接着層(積層形絶縁層、上部絶縁層、基板側絶縁層)
573 第2薄膜層(積層形絶縁層、上部絶縁層、基板側絶縁層)
1 Substrate (wafer, workpiece, target substrate)
2 Vacuum chamber body (vacuum chamber)
2a Suction port 3 Vacuum chamber lid (vacuum chamber)
4 Variable valves (variable throttle, pressure control mechanism, pressure control means)
4a Gate valve (gate valve)
5 Vacuum pump 11 Anode (one of parallel plates, upper electrode)
11a Upper support 12 Cathode part (the other parallel plate, lower electrode, substrate mounting electrode)
12a Lower support 13 Plasma processing space 31 RF power supply 41 Cooling gas supply pipe (heating medium, medium, gas transfer means for heat transfer, supply means)
42 Cooling gas supply cavity (heating medium, medium, gas transfer means for heat transfer, supply means)
43 Cooling gas supply hole (heat medium gas filling, medium gas supply, heat transfer gas supply hole)
50 Electrostatic chuck 51 Groove (dent, recess, means for uniformizing gas for heat transfer)
52 Adhesive layer 53 Lower insulating layer (electrode-side insulating layer)
54 Adhesive layer 55 Conductive layer (intermediate layer)
56 Adhesive layer 57 Upper insulating layer (substrate-side insulating layer)
500 Electrostatic chuck 510 Groove (recess, recess, means for equalizing gas pressure for heat transfer)
571 First thin film layer (laminated insulating layer, upper insulating layer, substrate-side insulating layer)
572 Interlayer adhesive layer (laminated insulation layer, upper insulation layer, substrate side insulation layer)
573 Second thin film layer (laminated insulating layer, upper insulating layer, substrate side insulating layer)

Claims (2)

伝熱用ガス供給孔の形成された電極の基板面に設けられ、導電層およびこれを挟む絶縁層を有する静電チャックにおいて、
前記絶縁層は前記導電層下側に配置されている下部絶縁層と、前記導電層上側に配置されている複数の上部絶縁層とを含み、前記複数の上部絶縁層はそれぞれ接着層を介して接着されており、前記下部絶縁層および前記上部絶縁層の最下層はそれぞれ接着層を介して前記導電層に接着されており、
前記電極は、前記伝熱用ガス給孔に通じる幅1〜2mm、深さ10〜50μmの浅溝が前記基板面に形成されており、前記導電層および前記絶縁層は、前記浅溝の表面全部を含めて前記基板面に配置されており、且つ前記伝熱用ガス供給孔が前記導電層および前記絶縁層を貫通していることを特徴とする静電チャック。
Provided on the substrate side surface of the formed electrode of the heat transfer gas supply holes, the electrostatic chuck having a conductive layer and insulating layers sandwiching it,
The insulating layer includes a lower insulating layer disposed below the conductive layer and a plurality of upper insulating layers disposed above the conductive layer, wherein the plurality of upper insulating layers are respectively interposed via an adhesive layer. And the lowermost layer of the lower insulating layer and the upper insulating layer are respectively bonded to the conductive layer via an adhesive layer,
The electrode, the heat transfer gas supply holes width leads to 1 to 2 mm, Ri Contact the shallow groove depth 10~50μm formed on the substrate side surface, the conductive layer and the insulating layer, the including all surfaces of the shallow grooves are arranged on the substrate side surface, and an electrostatic chuck wherein the heat transfer gas supply holes is characterized in that through said conductive layer and the insulating layer.
記浅溝は網状に連結している、請求項1記載の静電チャック。 The electrostatic chuck before Kiasamizo is that connects to network, according to claim 1.
JP2008200280A 2008-08-02 2008-08-02 Electrostatic chuck Expired - Lifetime JP5043771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008200280A JP5043771B2 (en) 2008-08-02 2008-08-02 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008200280A JP5043771B2 (en) 2008-08-02 2008-08-02 Electrostatic chuck

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16643598A Division JP2000003953A (en) 1998-06-15 1998-06-15 Electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2008263241A JP2008263241A (en) 2008-10-30
JP5043771B2 true JP5043771B2 (en) 2012-10-10

Family

ID=39985438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008200280A Expired - Lifetime JP5043771B2 (en) 2008-08-02 2008-08-02 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP5043771B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5946365B2 (en) * 2012-08-22 2016-07-06 株式会社アルバック Electrostatic adsorption device, residual adsorption removal method
WO2014046840A1 (en) * 2012-09-19 2014-03-27 Applied Materials, Inc. Methods for bonding substrates
CN105706351B (en) 2013-11-22 2019-07-19 应用材料公司 Pad for electrostatic chuck surface designs
CN111668152A (en) * 2020-06-29 2020-09-15 昀智科技(北京)有限责任公司 Vacuum adsorption type circular tail end clamp holder

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539609A (en) * 1992-12-02 1996-07-23 Applied Materials, Inc. Electrostatic chuck usable in high density plasma
JPH07130828A (en) * 1993-10-28 1995-05-19 Sony Corp Semiconductor manufacturing apparatus
WO1995020838A1 (en) * 1994-01-31 1995-08-03 Applied Materials, Inc. Electrostatic chuck with conformal insulator film
JPH09205133A (en) * 1996-01-24 1997-08-05 Hitachi Ltd Electrostatic attracting apparatus

Also Published As

Publication number Publication date
JP2008263241A (en) 2008-10-30

Similar Documents

Publication Publication Date Title
TWI605539B (en) Electrostatic chuck
JP5960384B2 (en) Electrostatic chuck substrate and electrostatic chuck
KR101826695B1 (en) Electrostatic chuck and wafer processing device
JP4819411B2 (en) Plasma processing equipment
JP5102706B2 (en) Baffle plate and substrate processing apparatus
US8361271B2 (en) Ceramic-metal bonded body and method of producing the same
CN109075059B (en) Gas distribution plate assembly for high power plasma etching process
KR20040098551A (en) Upper electrode and plasma processing apparatus
US20160035610A1 (en) Electrostatic chuck assemblies having recessed support surfaces, semiconductor fabricating apparatuses having the same, and plasma treatment methods using the same
US20130068750A1 (en) Heating plate with diode planar heater zones for semiconductor processing
TWI644393B (en) Electrostatic chuck
JP5043771B2 (en) Electrostatic chuck
JP2009302508A (en) Substrate holding apparatus
JP2003504871A (en) Electrostatic chuck and method of manufacturing the same
KR20070009448A (en) Electrostatic adsorption electrode, substrate processing apparatus and method for manufacturing an electrostatic adsorption electrode
JP2010157559A (en) Plasma processing apparatus
KR20180018335A (en) Substrate fixing device and method of manufacturing thereof
JP4082720B2 (en) Substrate surface treatment equipment
TWI547591B (en) Plasma treatment apparatus and plasma cvd apparatus and manufacturing method for forming a film in a plasma treatment apparatus
KR20110082166A (en) Substrate managing method
JP2000003953A (en) Electrostatic chuck
US11174554B2 (en) Substrate tray for use in thin-film formation device
TWI276173B (en) Plasma processing device and plasma processing method
JP5235033B2 (en) Electrode assembly and plasma processing apparatus
JP5785862B2 (en) Electrostatic chuck and manufacturing method thereof, substrate temperature control fixing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100730

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110608

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110922

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120110

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120611

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term