JP5042581B2 - Detection method of light distribution pattern center - Google Patents

Detection method of light distribution pattern center Download PDF

Info

Publication number
JP5042581B2
JP5042581B2 JP2006273538A JP2006273538A JP5042581B2 JP 5042581 B2 JP5042581 B2 JP 5042581B2 JP 2006273538 A JP2006273538 A JP 2006273538A JP 2006273538 A JP2006273538 A JP 2006273538A JP 5042581 B2 JP5042581 B2 JP 5042581B2
Authority
JP
Japan
Prior art keywords
light
light receiving
cut line
region
distribution pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006273538A
Other languages
Japanese (ja)
Other versions
JP2008089525A (en
Inventor
正夫 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Original Assignee
Koito Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd filed Critical Koito Manufacturing Co Ltd
Priority to JP2006273538A priority Critical patent/JP5042581B2/en
Publication of JP2008089525A publication Critical patent/JP2008089525A/en
Application granted granted Critical
Publication of JP5042581B2 publication Critical patent/JP5042581B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は車両の前照灯の光軸調整において必要とされる配光パターンの中心を検出する方法に関するものである。   The present invention relates to a method for detecting the center of a light distribution pattern required for adjusting the optical axis of a vehicle headlamp.

自動車の前照灯(ヘッドランプ)として、対向車を眩惑することがないように光軸を下方に向けた所要の配光パターンを有するロービームランプがある。このロービームランプの光軸を所定の方向に向くように光軸調整する際には、ロービームランプで照射される光の配光パターンの中心を検出する必要がある。すなわち、日本のような左側通行におけるロービームパターンは配光パターンの右側領域は水平なカットラインを有し、左側領域には左上方に傾斜したカットラインを有しており、これら水平カットラインと斜めカットラインとの交点をエルボポイントと称して配光パターンの中心としている。そして、ロービームランプの光軸調整では、このエルボポイントが所定範囲内に方向付けされるように光軸調整を行っている。なお、配光パターンにおけるカットラインは、一般には配光パターン上の光度の勾配が最大となる点を結んだ線として定義している。   As a headlight of an automobile, there is a low beam lamp having a required light distribution pattern in which an optical axis is directed downward so as not to dazzle an oncoming vehicle. When adjusting the optical axis so that the optical axis of the low beam lamp is directed in a predetermined direction, it is necessary to detect the center of the light distribution pattern of the light irradiated by the low beam lamp. In other words, the low beam pattern in left-hand traffic like Japan has a horizontal cut line in the right area of the light distribution pattern, and a cut line inclined in the upper left direction in the left area. The intersection with the cut line is called the elbow point and is the center of the light distribution pattern. In the optical axis adjustment of the low beam lamp, the optical axis adjustment is performed so that the elbow point is oriented within a predetermined range. Note that the cut line in the light distribution pattern is generally defined as a line connecting points on the light distribution pattern where the gradient of light intensity is maximum.

このような光軸調整に際してエルボポイントを検出するには、実際にロービームランプを点灯して照射された光の配光パターンを検出し、検出した配光パターンの水平カットラインと斜めカットラインを検出し、これら水平カットラインと斜めカットラインの交点を求め、その交点をエルボポイントとして認識する。このようなエルボポイントを認識する手法として、例えば、特許文献1の技術が提案されている。特許文献1は、ヘッドランプの配光パターンを受光手段によって受光し、その受光した照度に基づいてエルボポイントを演算して求める技術であり、水平カットラインを含む一部領域で得られた照度から水平カットラインの座標軸上の近似線を演算し、また斜めカットラインを含む一部領域で得られた照度から斜めカットラインの座標軸上の近似線を演算し、これら水平カットラインと斜めカットラインの交点をエルボポイントとして検出する技術である。これにより、複数の光源ユニットで構成されるヘッドランプにおけるエルボポイントの検出が可能になり、ヘッドランプのテストが可能になる。
特開2000−146761号公報
In order to detect the elbow point when adjusting the optical axis, the light distribution pattern of the irradiated light is detected by actually turning on the low beam lamp, and the horizontal cut line and the oblique cut line of the detected light distribution pattern are detected. Then, an intersection point between the horizontal cut line and the oblique cut line is obtained, and the intersection point is recognized as an elbow point. As a technique for recognizing such an elbow point, for example, the technique of Patent Document 1 has been proposed. Patent Document 1 is a technique for receiving a light distribution pattern of a headlamp by a light receiving means and calculating an elbow point based on the received illuminance, and from the illuminance obtained in a partial region including a horizontal cut line. The approximate line on the coordinate axis of the horizontal cut line is calculated, and the approximate line on the coordinate axis of the oblique cut line is calculated from the illuminance obtained in the partial area including the oblique cut line. This is a technique for detecting an intersection as an elbow point. Accordingly, it is possible to detect an elbow point in a headlamp composed of a plurality of light source units, and it is possible to test the headlamp.
JP 2000-146761 A

特許文献1の技術では、水平カットラインと斜めカットラインの各近似線を求める演算においては、各カットラインを含む領域内の複数の箇所での照度に基づいて演算を行うために演算が複雑であり、演算を行うための工程数が多く、コンピュータソフトが複雑になる。特に、ヘッドランプの種類によって斜めカットラインの傾斜角度が相違する場合や、配光パターンにおける照度分布が相違する場合等においては、これら傾斜角度や照度分布の相違を考慮してそれぞれに適した演算式のソフトを設計しなければならずソフトが複雑になるとともに、ソフトの設計も煩雑なものになる。また、演算工程数が多いため演算時間が長くなり、エルボポイントの検出に時間がかかる。さらに、水平カットラインと斜めカットラインの近似線はあくまでも近似値であるため、これらカットラインの交点であるエルボポイントの検出精度も低くならざるを得ない。特に、実際のランプの配光パターンではランプを構成するリフレクタやレンズ等の構成部品での製造誤差等によってカットラインにカットぼけと称する波状のパターン(以下、波状部と称する)が生じることが多く、この波状部によってカットラインの近似線に誤差が生じ、エルボポイントの検出誤差が顕著なものになるという問題も生じる。   In the technique of Patent Document 1, in the calculation for obtaining each approximate line of the horizontal cut line and the oblique cut line, the calculation is complicated because the calculation is performed based on the illuminance at a plurality of locations in the area including each cut line. In addition, the number of processes for performing calculations is large, and the computer software becomes complicated. In particular, when the inclination angle of the oblique cut line differs depending on the type of headlamp, or when the illuminance distribution in the light distribution pattern is different, the calculation suitable for each is taken into account. The software of the formula must be designed, and the software becomes complicated and the design of the software becomes complicated. In addition, since the number of calculation processes is large, the calculation time becomes long, and it takes time to detect the elbow point. Furthermore, since the approximate lines of the horizontal cut line and the oblique cut line are approximate values, the detection accuracy of the elbow point that is the intersection of these cut lines must be lowered. In particular, in an actual lamp light distribution pattern, a wavy pattern (hereinafter referred to as a wavy portion) often occurs in a cut line due to a manufacturing error in a component such as a reflector or a lens constituting the lamp. The wavy portion causes an error in the approximate line of the cut line, and there is a problem that the elbow point detection error becomes remarkable.

本発明の目的は、簡易かつ迅速に、しかも高い精度で配光パターン中心(エルボポイント)を検出することを可能にした配光パターン中心の検出方法を提供するものである。   An object of the present invention is to provide a light distribution pattern center detection method capable of detecting a light distribution pattern center (elbow point) simply and quickly with high accuracy.

本発明は、配光パターンの中心を通りほぼ水平方向に延びる水平カットラインと、当該中心を通り水平方向に対して所要の角度方向に延びる斜めカットラインとを有する配光パターンの中心を検出する検出方法であって、当該水平カットラインに生じるカットぼけによる波状部の高さ寸法と同程度の上下幅寸法をした上下中間領域を挟んで上下方向に対向配置された第1受光領域と第2受光領域を備える受光手段を用い、当該受光手段を上下方向に位置変化させながら配光パターンを受光するとともに第1受光領域と第2受光領域で検出される受光量の受光比を求め、当該受光比に基づいて水平カットラインの上下方向の位置を検出する工程を含むことを特徴とする。特に、受光比の極値が得られたときの上下中間領域の上下方向の中間点を水平カットラインの上下方向の位置として検出する。 The present invention detects the center of a light distribution pattern having a horizontal cut line that extends substantially horizontally through the center of the light distribution pattern and an oblique cut line that extends through the center in a required angular direction with respect to the horizontal direction. A first light-receiving region and a second light-receiving region, which are opposed to each other in the vertical direction across an upper and lower intermediate region having a vertical width dimension similar to the height dimension of the wavy portion due to the cut blur generated in the horizontal cut line . Using a light receiving means having a light receiving area, the light distribution pattern is received while changing the position of the light receiving means in the vertical direction, and the light receiving ratio of the amount of received light detected in the first light receiving area and the second light receiving area is obtained. The method includes a step of detecting a vertical position of the horizontal cut line based on the ratio. In particular, the middle point in the vertical direction of the vertical middle region when the extreme value of the light reception ratio is obtained is detected as the vertical position of the horizontal cut line.

本発明によれば、上下中間領域を挟んで対向配置された第1受光領域と第2受光領域の各受光量を検出し、これらの受光比に基づいて水平カットラインの上下方向の位置を検出しているので、水平カットラインにカットぼけによる波状部が生じている場合でも水平カットラインを高い精度で検出することができる。理論的には上下中間領域の上下幅寸法が水平カットラインのカットぼけにより生じる波状部の高さ寸法と一致するときには、検出される受光比のピークとなる位置をそのまま水平カットラインの位置として検出できる。一致していない場合には受光比のピークとなる領域の中間位置を水平カットラインの位置として検出できる。また、単純に第1受光領域と第2受光領域の受光量の受光比の変化に基づいて水平カットラインを検出するので、受光量を演算するための処理が簡略化でき、検出装置の簡易化、検出処理の高速化が実現できる。 According to the present invention, the light receiving amounts of the first light receiving region and the second light receiving region arranged opposite to each other with the upper and lower intermediate regions interposed therebetween are detected, and the vertical position of the horizontal cut line is detected based on these light receiving ratios. As a result, the horizontal cut line can be detected with high accuracy even when the horizontal cut line has a wavy portion due to cut blur. Theoretically, when the vertical width of the upper and lower middle region matches the height of the wavy portion caused by the cut blur of the horizontal cut line, the detected peak position of the light reception ratio is detected as it is as the position of the horizontal cut line. it can. If they do not match, the intermediate position of the region where the peak of the light reception ratio can be detected as the position of the horizontal cut line. Further, since the horizontal cut line is simply detected based on the change in the light receiving ratio of the light receiving amount of the first light receiving region and the second light receiving region, the processing for calculating the light receiving amount can be simplified, and the detection device can be simplified. The detection process can be speeded up.

本発明において、上下中間領域を第3受光領域として構成し、第1受光領域と第3受光領域の各受光量の和と、第2受光領域と第3受光領域の各受光量の和との受光比を求め、受光比の極値の上下方向の中間点を水平ラットラインの上下方向の位置として検出してもよい。水平カットラインに生じている波状部の波高の高低差が上下中間領域の上下幅よりも大きい場合でも、受光手段の位置変化に伴う受光比の変動を抑制し、当該波状部による影響を緩和してより高い精度の検出が可能になる。   In the present invention, the upper and lower intermediate regions are configured as a third light receiving region, and the sum of the respective light receiving amounts of the first light receiving region and the third light receiving region and the sum of the respective light receiving amounts of the second light receiving region and the third light receiving region. The light reception ratio may be obtained, and the vertical middle point of the extreme value of the light reception ratio may be detected as the vertical position of the horizontal rat line. Even if the difference in the height of the wavy part generated in the horizontal cut line is larger than the vertical width of the upper and lower intermediate areas, fluctuation of the light reception ratio due to the change in the position of the light receiving means is suppressed, and the influence of the wavy part is reduced. Detection with higher accuracy.

本発明において、受光手段を2次元撮像素子で構成し、この撮像素子を構成する多数の受光セルを各受光領域及び上下中間領域に区画し、各領域に属する受光セルの受光量を加算して前記各受光領域の受光量を検出するようにしてもよい。受光手段を位置変化させるための手段が不要になり、検出装置の簡略化、低コスト化が実現できる。   In the present invention, the light receiving means is constituted by a two-dimensional image pickup device, a large number of light receiving cells constituting the image pickup device are divided into respective light receiving regions and upper and lower intermediate regions, and the received light amounts of the light receiving cells belonging to each region are added. You may make it detect the light reception amount of each said light reception area | region. A means for changing the position of the light receiving means becomes unnecessary, and the detection apparatus can be simplified and the cost can be reduced.

次に、本発明の実施例を図面を参照して説明する。図1は本発明の検出方法でエルボポイントを検出しようとするヘッドランプHL、ここでは自動車の前部右側に配設する右側のヘッドランプRHLの概略構成を示す斜視図である。ランプボディ11と、このランプボディ11の前面開口に取着された透明カバー12とで構成される灯室13内にハイビームランプHBLとロービームランプLBLが構成されている。ハイビームランプHBLはここでは放電バルブを光源とする単一のプロジェクタ型ランプで構成されており、この放電バルブを光源としたプロジェクタ型ランプは既に広く知られている。ロービームランプLBLは複数個、ここではそれぞれ半導体発光素子を光源とする4個の光源ユニットLU1〜LU4を配列した多光源型ランプとして構成されている。前記4つの光源ユニットLU1〜LU4は、3つのプロジェクタ型光源ユニットLU1〜LU3と、1つの拡散型光源ユニットLU4とで構成され、前記灯室13内の上段に3つのプロジェクタ型光源ユニットLU1〜LU3が水平方向に並んで配設され、その下段に拡散型光源ユニットLU4が配設されている。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a schematic configuration of a headlamp HL for detecting an elbow point by the detection method of the present invention, here, a right headlamp RHL disposed on the front right side of an automobile. A high beam lamp HBL and a low beam lamp LBL are configured in a lamp chamber 13 including a lamp body 11 and a transparent cover 12 attached to the front opening of the lamp body 11. Here, the high beam lamp HBL is composed of a single projector type lamp using a discharge bulb as a light source, and a projector type lamp using this discharge bulb as a light source is already widely known. The low beam lamp LBL is configured as a multi-light source lamp in which a plurality of light source units LU1 to LU4 each having a semiconductor light emitting element as a light source are arranged. The four light source units LU1 to LU4 are composed of three projector type light source units LU1 to LU3 and one diffusion type light source unit LU4. Are arranged side by side in the horizontal direction, and a diffusion type light source unit LU4 is arranged at the lower stage.

前記ロービームランプLBLにおいて、各光源ユニットLU1〜LU4の詳細な説明は省略するが、図2に示すように各光源ユニットLU1〜LU4の各配光パターンP1〜P4を重畳することでロービームパターンLBPが形成される。このロービームパターンLBPでは、水平方向に延びる水平カットラインHCと、この水平カットラインHCに対して所要の角度で交差する斜めカットラインDCとを有しており、配光パターンの基準となる水平基準線Hと鉛直基準線Vが交差する光軸点HVを含むその近傍において前記水平カットラインHCと斜めカットラインDCとが交差し、この交差点が配光パターン中心となり、いわゆるエルボポイントEPとなる。   In the low beam lamp LBL, a detailed description of each of the light source units LU1 to LU4 is omitted, but as shown in FIG. 2, the low beam pattern LBP is formed by superimposing the light distribution patterns P1 to P4 of the light source units LU1 to LU4. It is formed. The low beam pattern LBP has a horizontal cut line HC extending in the horizontal direction and an oblique cut line DC that intersects the horizontal cut line HC at a predetermined angle, and serves as a reference for a light distribution pattern. In the vicinity including the optical axis point HV where the line H and the vertical reference line V intersect, the horizontal cut line HC and the oblique cut line DC intersect, and this intersection becomes the center of the light distribution pattern and becomes a so-called elbow point EP.

このようなロービームランプLBLの配光パターンのエルボポイントEPを検出するためにエルボポイント検出装置100が設けられる。このエルボポイント検出装置100は、図3に概念構成を示すように、エルボポイントを検出するヘッドランプHLを装着した自動車CARを所定位置に停車させたときに、当該ヘッドランプHLの正面に対向配置され、自動車に対して水平左右方向及び鉛直上下方向に移動可能な撮像装置110を備えている。この撮像装置110を上下・左右に移動させるための機構としては、ここでは、水平左右方向に延長されて両端が支柱によって支持されたHバー101と、このHバー101上で左右方向に移動可能な左右移動体103と、この左右移動体103に上端部が連結されて鉛直上下方向に延長されたVバー102と、このVバー103上で上下方向に移動可能な上下移動体104とを備えており、この上下移動体104に前記撮像装置110が搭載されている。また、前記エルボポイント検出装置100にはヘッドランプHLの光を投射させるためのスクリーンSCも設けられている。   In order to detect the elbow point EP of the light distribution pattern of the low beam lamp LBL, an elbow point detection device 100 is provided. As shown in the conceptual configuration of FIG. 3, the elbow point detection device 100 is disposed so as to face the front of the headlamp HL when the car CAR equipped with the headlamp HL for detecting the elbow point is stopped at a predetermined position. In addition, the image pickup apparatus 110 is provided that can move in a horizontal horizontal direction and a vertical vertical direction with respect to the automobile. Here, as a mechanism for moving the imaging device 110 up and down, left and right, here, the H bar 101 extended in the horizontal left and right direction and supported at both ends by the support, and the H bar 101 can be moved in the left and right direction. A left and right moving body 103, a V bar 102 having an upper end connected to the left and right moving body 103 and extending vertically and a vertical moving body 104 movable on the V bar 103 in the vertical direction. The imaging device 110 is mounted on the vertically moving body 104. The elbow point detection device 100 is also provided with a screen SC for projecting the light of the headlamp HL.

前記撮像装置110は、ヘッドランプHLから照射される光を受光して配光パターンを顕像化させるための受光板111と、この受光板111に顕像化された配光パターンを撮像する撮像カメラ112を備えている。撮像カメラ112には図には表れないが、撮像した配光パターンに基づいて受光信号を出力するCCD等の半導体光電変換素子からなる撮像素子を備えている。図4(a)に概念構成を示すように、この撮像素子113は撮像面(受光面)113aに左右方向及び上下方向にマトリクス配列された多数のセル(受光素子)114を備えた二次元CCD撮像素子で構成されており、各セル114は撮像した配光パターンの明るさに応じた電気信号を受光信号として出力する。この撮像素子113から出力される受光信号は図3に示した信号処理部120に出力されており、信号処理部120は入力された受光信号に基づいて所要のアルゴリズムで信号処理を行い、エルボポイントの位置を演算するための演算を実行する。   The imaging device 110 receives the light emitted from the headlamp HL and visualizes the light distribution pattern, and imaging for imaging the light distribution pattern visualized on the light receiving plate 111. A camera 112 is provided. Although not shown in the drawing, the imaging camera 112 includes an imaging element made of a semiconductor photoelectric conversion element such as a CCD that outputs a light reception signal based on the captured light distribution pattern. As shown in the conceptual configuration in FIG. 4A, the image sensor 113 is a two-dimensional CCD having a large number of cells (light receiving elements) 114 arranged in a matrix in the left and right directions and the vertical direction on an imaging surface (light receiving surface) 113a. Each cell 114 is configured by an image sensor, and outputs an electrical signal corresponding to the brightness of the captured light distribution pattern as a light reception signal. The light reception signal output from the image sensor 113 is output to the signal processing unit 120 shown in FIG. 3, and the signal processing unit 120 performs signal processing with a required algorithm based on the input light reception signal, and the elbow point The calculation for calculating the position of is performed.

ここで、前記撮像素子113では、図4(b)に示すように、マトリクス配列された多数のセル114について、撮像素子113の撮像面113aの中心点(上下左右の中央点)Cを含んで上下方向に所要の幅寸法をした上下中間領域A3を定義し、この上下中間領域A3を挟んで上下に対称配置された上側の第1受光領域A1と下側の第2受光領域A2を定義する。実施例1では、これら第1受光領域A1と第2受光領域A2は撮像素子113の撮像面の左右方向の全幅にわたって形成されており、しかも第1受光領域A1と第2受光領域A2の上下方向の幅寸法は等しく設定されているので第1受光領域A1と第2受光領域A2のセル数は同じ数に、換言すれば第1受光領域A1と第2受光領域A2の各受光面積は等しくされている。また、前記上下中間領域A3は後述するように実施例2では第3受光領域として定義されることになるが、この上下中間領域A3の上下方向の幅寸法は、後述する説明から判るようにロービーム配光パターンLBPにおける水平カットラインHCに生じるカットぼけによる上下方向の波状部の高さ寸法と同程度の寸法に設定されている。   Here, in the imaging device 113, as shown in FIG. 4B, the center point (upper and lower left and right center points) C of the imaging surface 113a of the imaging device 113 is included for many cells 114 arranged in a matrix. An upper and lower intermediate region A3 having a required width dimension in the vertical direction is defined, and an upper first light receiving region A1 and a lower second light receiving region A2 that are symmetrically arranged vertically with respect to the upper and lower intermediate region A3 are defined. . In the first embodiment, the first light receiving area A1 and the second light receiving area A2 are formed over the entire width in the left-right direction of the imaging surface of the image sensor 113, and the vertical direction of the first light receiving area A1 and the second light receiving area A2. Are set equal to each other, the number of cells in the first light receiving region A1 and the second light receiving region A2 is the same, in other words, the respective light receiving areas of the first light receiving region A1 and the second light receiving region A2 are equalized. ing. In addition, the upper and lower intermediate area A3 is defined as a third light receiving area in the second embodiment as will be described later. The vertical width of the upper and lower intermediate area A3 is a low beam as can be seen from the description to be described later. The height is set to be approximately the same as the height of the wavy portion in the vertical direction due to the blurring generated in the horizontal cut line HC in the light distribution pattern LBP.

また、図4(c)に示すように、前記撮像素子113では、撮像面113aの前記中心点Cを含んで左右方向に接して並列配置された左側の第4受光領域A4と右側の第5受光領域A5を定義する。これら第4受光領域A4と第5受光領域A5は撮像素子113の上下方向の全長にわたって形成されており、しかも第4受光領域A4と第5受光領域A5の左右方向の幅寸法は等しく設定されているので第4受光領域A4と第5受光領域A5のセル数は同じ数に、換言すれば第4受光領域A4と第5受光領域A5の受光面積は等しくされている。   As shown in FIG. 4C, in the image sensor 113, the left fourth light receiving area A4 and the right fifth light receiving area A4 arranged in parallel in contact with the left and right directions including the center point C of the imaging surface 113a. A light receiving area A5 is defined. The fourth light receiving region A4 and the fifth light receiving region A5 are formed over the entire length in the vertical direction of the imaging element 113, and the width dimensions in the horizontal direction of the fourth light receiving region A4 and the fifth light receiving region A5 are set equal. Therefore, the number of cells in the fourth light receiving region A4 and the fifth light receiving region A5 is the same, in other words, the light receiving areas of the fourth light receiving region A4 and the fifth light receiving region A5 are equal.

前記信号処理部120は前記撮像素子113から出力される受光信号に基づいてエルボポイントEPの左右方向の位置(座標)と上下方向の位置(座標)を演算する。この演算を行うために、信号処理部120は前記撮像素子の第1ないし第5の各領域の各セルからの受光信号に基づいて各領域毎の受光量を演算し、さらに得られた受光量に基づいて所要の演算を行なうことが可能に構成されている。ここでは、撮像素子113はCCD素子で構成されているので、撮像素子113を構成しているセル114のそれぞれで受光して得られた受光信号としての電荷を順次転送して各セルの電荷を読み出し、読み出した各電荷の値を1ビットないし数ビットのデジタル信号として量子化した階調信号とする。この場合、信号処理部120の処理能力や要求される精度に応じてビット数を適宜に設定することが可能であり、特に1ないし数ビットの階調信号にすれば信号処理部120での信号処理速度が向上でき、反対にビット数を複数ビットの多階調信号とすることにより検出精度を高めることが可能になる。第1ないし第5の各領域A1〜A5に属するセルについてこの検出を行ない、各セルの受光量、すなわち多階調信号を加算することで各領域A1〜A5の受光量を得ている。   The signal processing unit 120 calculates the left-right position (coordinates) and the vertical position (coordinates) of the elbow point EP based on the light reception signal output from the image sensor 113. In order to perform this calculation, the signal processing unit 120 calculates the amount of received light for each region based on the received light signal from each cell of each of the first to fifth regions of the image sensor, and the obtained received light amount. Based on the above, it is possible to perform a required calculation. Here, since the image sensor 113 is composed of a CCD element, the charge as a light reception signal obtained by receiving light in each of the cells 114 constituting the image sensor 113 is sequentially transferred to obtain the charge of each cell. It is assumed that a gradation signal is obtained by quantizing the value of each read-out charge and the read-out charge as a 1-bit to several-bit digital signal. In this case, the number of bits can be appropriately set according to the processing capability of the signal processing unit 120 and the required accuracy. In particular, if the gradation signal is 1 to several bits, the signal in the signal processing unit 120 The processing speed can be improved, and conversely, the detection accuracy can be increased by using a multi-gradation signal having a plurality of bits. This detection is performed for the cells belonging to the first to fifth regions A1 to A5, and the received light amount of each cell, that is, the multi-tone signal is added to obtain the received light amount of each region A1 to A5.

以上のエルボポイント検出装置100を用いてヘッドランプHLのロービーム配光パターンLBPにおけるエルボポイントEPを検出する方法を説明する。まず、図3に示したように、撮像装置110に対向する位置に自動車CARを停車させる。次いで、ヘッドランプHLを点灯するとともに、ヘッドランプHLから出射された光を撮像装置110で撮像する。撮像装置110では受光板111にヘッドランプの配光パターンを顕像化し、これを撮像カメラ112で撮像する。撮像カメラ112内の撮像素子113では各セル114で受光した受光信号をセル毎に出力し、コントローラ120は各セルの受光信号に基づいて各領域、ここでは第1受光領域A1と第2受光領域A2の各受光量を演算する。この演算では、第1受光領域A1を構成する全てのセルの各受光信号としての階調信号、すなわち受光量を加算した第1受光量P1と、同様に第2受光領域A2を構成する全てのセルの各受光信号から得られる受光量を全て加算した第2受光量P2とを演算し、しかる上で第2受光量P2を第1受光量P1で除算して得られる値を上下EP(エルボポイント)値VEPxとする。すなわち、次式となる。
VEPx(上下EP値)=P2÷P1
A method for detecting the elbow point EP in the low beam light distribution pattern LBP of the headlamp HL using the elbow point detection apparatus 100 described above will be described. First, as shown in FIG. 3, the automobile CAR is stopped at a position facing the imaging device 110. Next, the headlamp HL is turned on, and the light emitted from the headlamp HL is imaged by the imaging device 110. In the imaging device 110, the light distribution pattern of the headlamp is visualized on the light receiving plate 111, and this is captured by the imaging camera 112. The image sensor 113 in the imaging camera 112 outputs the light reception signal received by each cell 114 for each cell, and the controller 120, based on the light reception signal of each cell, each region, here the first light reception region A1 and the second light reception region. Each received light amount of A2 is calculated. In this calculation, the gradation signal as each received light signal of all the cells constituting the first light receiving region A1, that is, the first received light amount P1 obtained by adding the received light amount, and all the second light receiving regions A2 are similarly configured. The second received light amount P2 obtained by adding all the received light amounts obtained from the respective received light signals of the cell is calculated, and then the value obtained by dividing the second received light amount P2 by the first received light amount P1 is set to the vertical EP (elbow). Point) Value VEPx. That is, the following equation is obtained.
VEPx (upper and lower EP values) = P2 ÷ P1

このようにして撮像装置110の所定の高さ位置において上下EP値VEPxを求めた後に、次いでVバー102に沿って上下移動体104を駆動して撮像装置110を上方向に向けて、あるいは下方向に向けて微小距離だけ移動し、その移動位置において同様にロービーム配光パターンLBPを撮像装置110で撮像し、撮像素子113から得られた受光信号に基づいてコントローラ120での演算を行ない、当該高さ位置での上下EP値VEPxを演算する。この処理を撮像装置110を上下方向に移動させながら多数の位置について行なう。得られた上下EP値VEPxについて、図5(a)に示すように、横軸に撮像装置110の上下方向の位置Vxをとり、縦軸に上下EP値VEPxをとったグラフを描く。ここで撮像装置110の上下方向の位置は撮像素子113の撮像面の中心点Cの上下方向の位置となる。   After obtaining the vertical EP value VEPx at the predetermined height position of the imaging device 110 in this way, the vertical moving body 104 is then driven along the V bar 102 to turn the imaging device 110 upward or downward. The image is moved by a small distance toward the direction, the low beam distribution pattern LBP is similarly imaged by the imaging device 110 at the movement position, and the controller 120 performs the calculation based on the received light signal obtained from the imaging element 113. An upper and lower EP value VEPx at the height position is calculated. This process is performed for a number of positions while moving the imaging device 110 in the vertical direction. For the obtained vertical EP value VEPx, as shown in FIG. 5A, a graph is drawn with the horizontal axis indicating the vertical position Vx of the imaging device 110 and the vertical axis indicating the vertical EP value VEPx. Here, the vertical position of the imaging device 110 is the vertical position of the center point C of the imaging surface of the imaging element 113.

図5(a)から、撮像素子113の上下方向の位置変化に伴って上下EP値VEPxが変化するので、その最大値のしかも上下方向の中間位置PVEPを求めると、この位置VEPがエルボポイントEPが含まれる水平カットラインHCの上下方向の位置となる。すなわち、図5(b)〜(e)はこれを説明するための模式図であり、同図(b)〜(e)は図5(a)の横座標位置における状態を示している。同図(b)のように水平カットラインHCが撮像素子113の第1受光領域A1よりも上側にあるときには、第2受光領域A2と第1受光領域A1のほぼ全部が水平カットラインHCの下側のロービーム配光パターンの領域LBPにあるため、上下EP値VEPxは低い値にある。(c)のように、撮像素子113を上方に移動して水平カットラインHCが第1受光領域A1の下部近傍にあるときには第1受光領域A1の受光量が低減するため上下EP値VEPxは増加し始める。(d)のように、撮像素子113をさらに上方に移動して水平カットラインHCが上下中間領域A3内にあるときには第1受光領域A1の受光量はほぼ0であり、第2受光領域A2の受光量は最大であるため、上下EP値VEPxは最大値を保持する。(e)のように、水平カットラインHCが第2受光領域A2に入ると第2受光領域A2の受光量が低減するため、上下EP値VEPxは低減し始める。これから、上下EP値VEPxが最大となるのは、水平カットラインHCが第1受光領域A1の下縁を越えた位置V1と第2受光領域A2の上縁を越えた位置V2との間であり、これら位置V1とV2の中間位置を水平カットラインHCの上下方向の位置として検出する。なお、図5(b)〜(e)においては水平カットラインHCよりも上側の領域に点描を示してないが、実際には若干の光は存在しており第1受光領域A1にも有限の受光量が存在するため上下EP値VEPxが無限値になることはない。   From FIG. 5A, the vertical EP value VEPx changes with the vertical position change of the image sensor 113. Therefore, when the maximum value and the vertical intermediate position PVEP are obtained, this position VEP becomes the elbow point EP. Is the vertical position of the horizontal cut line HC. That is, FIGS. 5B to 5E are schematic diagrams for explaining this, and FIGS. 5B to 5E show the states at the abscissa position in FIG. 5A. When the horizontal cut line HC is above the first light receiving area A1 of the image sensor 113 as shown in FIG. 5B, almost all of the second light receiving area A2 and the first light receiving area A1 are below the horizontal cut line HC. The upper and lower EP values VEPx are low because they are in the region LBP of the low beam distribution pattern on the side. As shown in (c), when the image sensor 113 is moved upward and the horizontal cut line HC is in the vicinity of the lower part of the first light receiving area A1, the amount of light received in the first light receiving area A1 is reduced, so that the vertical EP value VEPx increases. Begin to. As shown in (d), when the image sensor 113 is moved further upward and the horizontal cut line HC is in the upper and lower intermediate region A3, the amount of light received by the first light receiving region A1 is almost zero, and the second light receiving region A2 Since the amount of received light is the maximum, the upper and lower EP values VEPx hold the maximum value. As shown in (e), when the horizontal cut line HC enters the second light receiving area A2, the amount of light received in the second light receiving area A2 decreases, and therefore the upper and lower EP values VEPx begin to decrease. From this, the maximum vertical EP value VEPx is between the position V1 where the horizontal cut line HC exceeds the lower edge of the first light receiving area A1 and the position V2 where the upper edge of the second light receiving area A2 exceeds. The intermediate position between these positions V1 and V2 is detected as the vertical position of the horizontal cut line HC. In FIGS. 5B to 5E, although not illustrated in the area above the horizontal cut line HC, in practice, some light is present and the first light receiving area A1 is also finite. Since there is a received light amount, the upper and lower EP values VEPx do not become infinite values.

このとき、水平カットラインHCにおいては、ヘッドランプHLを構成しているリフレクタやレンズ等の要因によってカットぼけによる上下方向の波状部HWが生じる。仮に、第1受光領域A1と第2受光領域A2との上下間に上下中間領域A3が存在していないとすると、水平カットラインHCの波状部HWのうち上波部の一部が第1受光領域A1で受光され、下波部の一部が第2受光領域A2で受光されない状況が生じ、これにより上下EP値VEPxに微小な変動が生じ、水平カットラインHCの位置検出の精度が低下するおそれがある。実施例1では、波状部HWの高さとほぼ同程度の寸法の上下中間領域A3が存在していることにより、波状部HWの上波部と下波部が上下中間領域A3で受光され、あるいは受光されなくても第1受光領域A1と第2受光領域A2の受光には影響を与えないため、波状部HWによる影響を解消することができ、水平カットラインHCの位置検出の精度を高めることができる。   At this time, in the horizontal cut line HC, a vertical wavy portion HW is generated due to cut blur due to factors such as a reflector and a lens constituting the headlamp HL. If the upper and lower intermediate region A3 does not exist between the first light receiving region A1 and the second light receiving region A2, a part of the upper wave portion of the wavy portion HW of the horizontal cut line HC is the first light receiving portion. There is a situation in which light is received in the area A1 and a part of the lower wave portion is not received in the second light receiving area A2, thereby causing a slight fluctuation in the upper and lower EP values VEPx, and the accuracy in detecting the position of the horizontal cut line HC is lowered. There is a fear. In the first embodiment, the upper and lower intermediate areas A3 having dimensions approximately the same as the height of the corrugated part HW are present, so that the upper and lower wave parts of the corrugated part HW are received by the upper and lower intermediate areas A3, or Even if the light is not received, the light reception of the first light receiving region A1 and the second light receiving region A2 is not affected, so that the influence of the wavy portion HW can be eliminated, and the position detection accuracy of the horizontal cut line HC is improved. Can do.

次いで、検出した水平カットラインHC上に撮像装置110の中心点Cが位置するように撮像装置110の上下方向の位置を固定した上で撮像装置110でのロービーム配光パターンLBPの撮像を行い、その上でコントローラ120は第4受光領域A4と第5受光領域A5の各セルで受光した受光信号をセル毎に出力し、各セルの受光信号に基づいて所要の演算を行う。この演算は、第4受光領域A4を構成する全てのセルの各受光信号から得られる受光量を加算した第4受光量P4と、第5受光領域A5を構成する全てのセルの各受光信号から得られる受光量を全て加算した第5受光量P5との除算を行い、得られた値を左右EP値HEPxとする。すなわち、次式となる。
HEPx(左右EP値)=P4÷P5
Next, after fixing the vertical position of the imaging device 110 so that the center point C of the imaging device 110 is positioned on the detected horizontal cut line HC, the imaging device 110 captures the low beam light distribution pattern LBP, After that, the controller 120 outputs a light reception signal received by each cell of the fourth light reception region A4 and the fifth light reception region A5 for each cell, and performs a required calculation based on the light reception signal of each cell. This calculation is based on the fourth light reception amount P4 obtained by adding the light reception amounts obtained from the light reception signals of all the cells constituting the fourth light reception region A4 and the light reception signals of all the cells constituting the fifth light reception region A5. A division with the fifth received light amount P5 obtained by adding all the received light amounts is performed, and the obtained value is set as a left and right EP value HEPx. That is, the following equation is obtained.
HEPx (left and right EP value) = P4 ÷ P5

このようにして撮像装置110の所定の左右位置において左右EP値HEPxを求めた後、次いでHバー101に沿ってVバー102と一体の左右移動体103を駆動して撮像装置110を右方向に向けて、あるいは左方向に向けて微小距離だけ移動して撮像装置110でロービーム配光パターンLBPの撮像を行い、得られた受光信号に基づいてコントローラ120での演算を行ない、当該移動位置での左右EP値HEPxを演算する。この処理を撮像装置110を左右方向に移動させながら多数の位置について行なう。得られた左右EP値HEPxについて、図6(a)に示すように、横軸に撮像装置の左右方向の位置Hxをとり、縦軸に左右EP値HEPxをとったグラフを描く。ここで撮像装置110の左右方向の位置は撮像素子113の中心点Cの左右方向の位置である。   After obtaining the left and right EP values HEPx at the predetermined left and right positions of the imaging device 110 in this way, the left and right moving body 103 integrated with the V bar 102 is then driven along the H bar 101 to move the imaging device 110 to the right. The image pickup device 110 picks up the low beam light distribution pattern LBP by moving a small distance toward the left direction or toward the left direction, performs the calculation in the controller 120 based on the obtained light reception signal, and at the moving position The left and right EP values HEPx are calculated. This process is performed for a number of positions while moving the imaging device 110 in the left-right direction. For the obtained left and right EP value HEPx, as shown in FIG. 6A, a graph is drawn with the horizontal axis indicating the position Hx in the horizontal direction of the imaging apparatus and the vertical axis indicating the left and right EP value HEPx. Here, the horizontal position of the imaging device 110 is the horizontal position of the center point C of the imaging element 113.

図6(a)から、撮像素子113の左右方向の位置変化に伴って左右EP値HEPxが変化するので、撮像素子113を右から左に位置変化させたときに最大値の位置H1が斜めカットラインDCが水平カットラインHCに交差している位置、すなわちエルボポイントEPの左右方向の位置となる。図6(b)〜(d)はこれを説明するための模式図であるが、配光パターンは水平カットラインHCと斜めカットラインDCが交差したエルボポイントEPの近傍の光度が最も高く、エルボイントEPから下方及び左方に向けて光度が徐々に低下する特性となっており、同図には光度等高線の一部を付記している。また、水平カットラインHC及び斜めカットラインDCよりも上側の領域には点描を示してないが、実際には若干の光は存在している。(b)のようにエルボポイントEPが撮像素子113の第4受光領域A4よりも左側にあるときには、第5受光領域A4の受光量と第4受光領域A4の受光量はほぼ等しくなるため、左右EP値HEPxはほぼ「1」となる。これから(c)のように撮像素子113が左に移動してエルボポイントEPが第4受光領域A4に入ってくると、第4受光領域A4の受光量が増大するため左右EP値HEPxは徐々に増加する。さらに、(d)のように撮像素子113が左に移動してエルボポイントEPが第4受光領域A4と第5受光領域A5の境界位置、すなわち撮像素子113の中心がエルボポイントEPに一致したH1のときに第4受光領域A4は配光パターンの最大光度の領域に入るため左右EP値HEPxは最大になる。さらに左に移動すると、図示は省略するが、第4受光領域A4の受光量は飽和し、第5受光領域A5の受光量さらに増加するため左右EP値HEPxは徐々に低下する。このとき、波状部によって両受光領域A4,A5の受光量に若干の変動はあるが、両受光領域A4,A5の変動はほぼ同じであるので相殺され、ほとんど無視できる状態にある。さらに左に移動し、(e)のように第5受光領域A5も斜めカットラインDCの下側に入ると第4受光領域A4と第5受光領域A5との受光量はほぼ等しくなり、左右EP値HEPx値はほぼ「1」になる。したがって、得られた受光比の特性において受光比が最大値となる位置H1における撮像素子113の中心位置CをエルボポイントEPの左右方向の位置HEPxとして検出する。   From FIG. 6A, the left and right EP values HEPx change in accordance with the change in position of the image sensor 113 in the left and right direction. Therefore, when the position of the image sensor 113 is changed from right to left, the maximum position H1 is cut obliquely. A position where the line DC intersects the horizontal cut line HC, that is, a position in the left-right direction of the elbow point EP. FIGS. 6B to 6D are schematic diagrams for explaining this, but the light distribution pattern has the highest luminous intensity in the vicinity of the elbow point EP where the horizontal cut line HC and the oblique cut line DC intersect, and the elbow point. The light intensity gradually decreases downward and leftward from the EP, and a part of the light intensity contour line is added to the figure. In addition, although no stippling is shown in the region above the horizontal cut line HC and the oblique cut line DC, there is actually some light. When the elbow point EP is on the left side of the fourth light receiving region A4 of the image sensor 113 as shown in (b), the received light amount of the fifth light receiving region A4 and the received light amount of the fourth light receiving region A4 are substantially equal. The EP value HEPx is almost “1”. When the image sensor 113 moves to the left as shown in (c) and the elbow point EP enters the fourth light receiving area A4, the amount of light received in the fourth light receiving area A4 increases, so that the left and right EP values HEPx gradually increase. To increase. Further, as shown in (d), the image sensor 113 moves to the left, and the elbow point EP is at the boundary position between the fourth light receiving area A4 and the fifth light receiving area A5, that is, the center of the image sensor 113 coincides with the elbow point EP. At this time, since the fourth light receiving area A4 enters the area of the maximum luminous intensity of the light distribution pattern, the left and right EP values HEPx are maximized. When moving further to the left, although not shown, the amount of light received in the fourth light receiving region A4 is saturated and the amount of light received in the fifth light receiving region A5 further increases, so the left and right EP value HEPx gradually decreases. At this time, although there are slight fluctuations in the light receiving amounts of both the light receiving areas A4 and A5 due to the wavy portion, the fluctuations in both the light receiving areas A4 and A5 are almost the same, so they are canceled out and almost negligible. When the fifth light receiving area A5 also enters the lower side of the oblique cut line DC as shown in (e), the received light amounts of the fourth light receiving area A4 and the fifth light receiving area A5 are substantially equal, and the right and left EP The value HEPx value is almost “1”. Therefore, the center position C of the image sensor 113 at the position H1 at which the light reception ratio is the maximum in the obtained light reception ratio characteristic is detected as the position HEPx in the left-right direction of the elbow point EP.

以上のように、実施例1では、上下中間領域A3を挟んで対向配置された第1受光領域A1と第2受光領域A2の各受光量P1,P2を検出し、これらの受光比に基づいて水平カットラインHCの上下方向の位置を検出しているので、水平カットラインHCにカットぼけによる波状部HWが生じている場合でも水平カットラインHCを高い精度で検出できる。また、左右方向に接して並列配置された第4受光領域A4と第5受光領域A5との受光比に基づいて水平カットラインHCと斜めカットラインDCとが交差する点、すなわち、エルボポイントEPを検出することができる。結果としてカットラインに波状部が生じている場合でも高い精度でエルボポイントEPが検出できる。このように、実施例1では単純に各領域の受光比に基づいてエルボポイントを検出するので、信号処理部120における演算処理が簡略化でき、エルボポイント検出装置の構成の簡易化、検出処理の高速化が実現できる。   As described above, in the first embodiment, the respective light receiving amounts P1 and P2 of the first light receiving region A1 and the second light receiving region A2 that are arranged to face each other with the upper and lower intermediate region A3 interposed therebetween are detected, and based on these light receiving ratios. Since the vertical position of the horizontal cut line HC is detected, the horizontal cut line HC can be detected with high accuracy even when the horizontal cut line HC has wavy portions HW due to cut blurring. Further, the point where the horizontal cut line HC and the oblique cut line DC intersect based on the light receiving ratio of the fourth light receiving region A4 and the fifth light receiving region A5 arranged in parallel in the left-right direction, that is, the elbow point EP is defined as Can be detected. As a result, the elbow point EP can be detected with high accuracy even when a wavy portion is generated in the cut line. As described above, in the first embodiment, since the elbow point is simply detected based on the light reception ratio of each region, the calculation processing in the signal processing unit 120 can be simplified, the configuration of the elbow point detection device can be simplified, and the detection processing can be simplified. High speed can be realized.

ここで、実施例1の変形例として上下中間領域で構成されている第3受光領域A3の受光量を加えて水平カットラインHCの上下方向の位置を検出するようにしてもよい。この場合には、信号処理部120においては第2受光領域A2と第3受光領域A3の受光量P2とP3を加算した第2+3受光量(P2+P3)と、第1受光領域A1と第3受光領域A3の受光量P1とP3を加算した第1+3受光量(P1+P3)の比を上下EP値VEPyとする。
VEPy(上下EP値)=(P2+P3)÷(P1+P3)
Here, as a modification of the first embodiment, the light receiving amount of the third light receiving region A3 configured by the upper and lower intermediate regions may be added to detect the vertical position of the horizontal cut line HC. In this case, in the signal processing unit 120, a second light receiving amount (P2 + P3) obtained by adding the light receiving amounts P2 and P3 of the second light receiving region A2 and the third light receiving region A3, and the first light receiving region A1 and the third light receiving region. The ratio of the first +3 received light amount (P1 + P3) obtained by adding the received light amounts P1 and P3 of A3 is defined as an upper and lower EP value VEPy.
VEPy (up and down EP value) = (P2 + P3) ÷ (P1 + P3)

この変形例では、撮像素子113の上下方向の位置変化に伴って図5に示した場合とほぼ同様に上下EP値VEPyが変化するので、その最大値が得られる上下方向の範囲を求め、この範囲の中間位置が水平カットラインHCの上下方向の位置となる。水平カットラインHCが撮像素子113の第3受光領域A3よりも上側にあるときには、第2受光領域A2と第1受光領域A1の一部と第3受光領域A3が水平カットラインHCの下側の配光パターンの領域にあるため、第1+3受光量P1+P3は少なく、第2+3受光量P2+P3は多く、したがって上下EP値VEPyは低い値にある。また、反対に、水平カットラインHCが撮像素子113の第3受光領域A3よりも下側にあるときには、第1受光領域A1と第2受光領域A2の一部と第3受光領域A3が水平カットラインの上側の配光パターン以外の領域にあるため、第1+3受光量P1+P3は少なく、第2+3受光量P2+P3はやや少ないため上下EP値VEPyは低い値にある。水平カットラインHCが撮像素子113の第3受光領域A3にあるときには、第1受光領域A1は配光パターン以外の領域にあり、第2受光領域A2は配光パターンの領域にあり、第3受光領域A3は下部が配光パターンの領域にあり上部が配光パターン以外の領域にあるため、上下EP値VEPyが大きな値となる。そして、演算された上下EP値のうち最大の値が得られる位置の撮像素子113の中心点Cを水平カットラインHCの上下方向の位置として検出する。   In this modification, the vertical EP value VEPy changes in the same manner as shown in FIG. 5 in accordance with the vertical position change of the image sensor 113. Therefore, the vertical range in which the maximum value can be obtained is obtained. The middle position of the range is the vertical position of the horizontal cut line HC. When the horizontal cut line HC is above the third light receiving area A3 of the image sensor 113, the second light receiving area A2, a part of the first light receiving area A1, and the third light receiving area A3 are below the horizontal cut line HC. Since it is in the region of the light distribution pattern, the first +3 received light amount P1 + P3 is small, the second +3 received light amount P2 + P3 is large, and therefore the upper and lower EP values VEPy are low. On the other hand, when the horizontal cut line HC is below the third light receiving area A3 of the image sensor 113, the first light receiving area A1, a part of the second light receiving area A2, and the third light receiving area A3 are horizontally cut. Since it is in a region other than the light distribution pattern on the upper side of the line, the first +3 received light amount P1 + P3 is small, and the second +3 received light amount P2 + P3 is slightly small, so that the vertical EP value VEPy is low. When the horizontal cut line HC is in the third light receiving area A3 of the image sensor 113, the first light receiving area A1 is in an area other than the light distribution pattern, the second light receiving area A2 is in the area of the light distribution pattern, and the third light receiving area In the area A3, since the lower part is in the area of the light distribution pattern and the upper part is in the area other than the light distribution pattern, the upper and lower EP values VEPy are large values. Then, the center point C of the image sensor 113 at the position where the maximum value among the calculated vertical EP values is obtained is detected as the vertical position of the horizontal cut line HC.

水平カットラインHCの上下方向の位置を検出した後は、実施例1と同様にエルボポイントEPの左右方向の位置を検出することが可能である。この変形例の場合においても、第3受光領域A3を挟んで上下に対向配置された第1受光領域A1と第2受光領A2域の各受光量を検出し、これらの受光比に基づいて水平カットラインHCの上下方向の位置を検出しているので、水平カットラインHCにカットぼけによる波状部HWが生じている場合でも、受光比を演算する際の分子と分母に第3受光領域A3で受光した同じ波状部HWの受光量が加えられるので、波状部でHWの受光が相殺されることになり、水平カットラインHCを高い精度で検出することができる。また、信号処理部120においては単純に各領域の受光量の比に基づいて水平カットラインHCを検出するので演算処理が簡略化でき、エルボポイント検出装置の構成の簡易化、検出処理の高速化が実現できることも同じである。   After detecting the vertical position of the horizontal cut line HC, the horizontal position of the elbow point EP can be detected as in the first embodiment. Also in the case of this modification, the received light amounts of the first light receiving area A1 and the second light receiving area A2 which are arranged vertically opposite to each other with the third light receiving area A3 interposed therebetween are detected, and the horizontal direction is determined based on these light receiving ratios. Since the vertical position of the cut line HC is detected, even when the wavy portion HW due to the cut blur occurs in the horizontal cut line HC, the third light receiving region A3 is used as the numerator and denominator when calculating the light receiving ratio. Since the received light amount of the same received wave portion HW is added, the received light of HW is canceled by the wave portion, and the horizontal cut line HC can be detected with high accuracy. In addition, since the signal processing unit 120 simply detects the horizontal cut line HC based on the ratio of the amount of light received in each region, the calculation process can be simplified, the configuration of the elbow point detection device is simplified, and the detection process is speeded up. The same can be achieved.

実施例1においては、第1ないし第5の各領域A1〜A5の光量を検出することができるものであれば、撮像素子としてフォトダイオード等の受光センサを用いた構成としてもよい。例えば、図7に示すように、複数の受光センサをそれぞれ第1ないし第5受光領域A1〜A5に対応する6個の受光センサS1〜S6で構成し、これら6個の各受光センサS1〜S6の受光量を選択的に加算することで第1ないし第5の各領域A1〜A5の受光量を得ることができる。例えば、第1の受光領域A1は受光センサS1+S2となり、第2の受光領域A2は受光センサS3+S4となる。同様に第4の受光領域A4は受光センサS1+S3+S5となり、第5の受光領域A5は受光センサS2+S4+S6となる。あるいは、図示は省略するが、第1ないし第5の各領域A1〜A5内にそれぞれ複数個の受光センサを配置し、各受光センサの受光出力に基づいて受光量を得るようにすればよい。この場合には、受光センサの前面に乳白色フィルタ等の拡散フィルタを配設することが好ましく、拡散フィルタを配設することで、各領域における平均的な受光量を得ることができる。   In the first embodiment, a light receiving sensor such as a photodiode may be used as the imaging element as long as the light quantity in each of the first to fifth areas A1 to A5 can be detected. For example, as shown in FIG. 7, each of the plurality of light receiving sensors includes six light receiving sensors S1 to S6 corresponding to the first to fifth light receiving regions A1 to A5, and each of the six light receiving sensors S1 to S6. By selectively adding the received light amounts, the received light amounts of the first to fifth regions A1 to A5 can be obtained. For example, the first light receiving area A1 is the light receiving sensor S1 + S2, and the second light receiving area A2 is the light receiving sensor S3 + S4. Similarly, the fourth light receiving area A4 is the light receiving sensor S1 + S3 + S5, and the fifth light receiving area A5 is the light receiving sensor S2 + S4 + S6. Or although illustration is abbreviate | omitted, what is necessary is just to arrange | position a some light reception sensor in each of 1st thru | or 5th area | region A1-A5, and to obtain light reception amount based on the light reception output of each light reception sensor. In this case, it is preferable to dispose a diffusion filter such as a milky white filter on the front surface of the light receiving sensor. By disposing the diffusion filter, an average amount of received light in each region can be obtained.

また、実施例1では第1受光領域A1と第2受光領域A2を同じ形状及び面積に形成しているが、必ずしもこのようにする必要はない。両受光領域A1,A2の受光比を予め任意の値に設定しておけば、図5(a)における特性において、上下EP値VEPxの値は実施例1とは異なる値となるものの、上下EP値の特性自体は同様な傾向を示すので、実施例1と同様にして水平カットラインHCを求めることができる。したがって、第1受光領域A1と第2受光領域A2は必ずしも実施例1のように同一面積、あるいは対称形に形成する必要はない。   In the first embodiment, the first light receiving region A1 and the second light receiving region A2 are formed in the same shape and area, but it is not always necessary to do so. If the light receiving ratio of both light receiving areas A1 and A2 is set to an arbitrary value in advance, the vertical EP value VEPx in the characteristics shown in FIG. Since the value characteristic itself shows a similar tendency, the horizontal cut line HC can be obtained in the same manner as in the first embodiment. Therefore, the first light receiving region A1 and the second light receiving region A2 do not necessarily have to be formed in the same area or symmetrically as in the first embodiment.

図8は実施例2の撮像素子を示す図である。実施例2では、図3に示したエルボポイント検出装置100のように撮像装置110を上下、左右に移動させる必要はなく、撮像装置110を固定配置した構成としている。すなわち、図8のように撮像素子113ではロービーム配光パターンLBPのエルポボイントEPを含む水平カットラインHCと斜めカットラインDCの比較的に広い領域を一括して撮像できるように構成する。しかる上で、信号処理部120において撮像素子113の各セル114から出力される受光信号を処理するに際し、当該信号処理部120でのソフト処理によって、セル114の一部を選択し、選択したセルの受光信号を取り込むことによって実施例1の図5及び図6に示したと同様に第1ないし第5の各受光領域A1〜A5に相当する受光量を得るようにしている。   FIG. 8 is a diagram illustrating the image sensor of the second embodiment. In the second embodiment, it is not necessary to move the imaging device 110 up and down, left and right like the elbow point detection device 100 shown in FIG. 3, and the imaging device 110 is fixedly arranged. That is, as shown in FIG. 8, the image sensor 113 is configured to be able to collectively image a relatively wide area of the horizontal cut line HC including the elbow point EP of the low beam light distribution pattern LBP and the oblique cut line DC. Accordingly, when processing the light reception signal output from each cell 114 of the image sensor 113 in the signal processing unit 120, a part of the cell 114 is selected by the soft processing in the signal processing unit 120, and the selected cell is selected. As shown in FIGS. 5 and 6 of the first embodiment, the received light amount corresponding to each of the first to fifth light receiving areas A1 to A5 is obtained.

例えば、図8において、撮像素子113を構成している全てのセル114のうち、所定の矩形領域に含まれるセル群C1を選択し、このセル群C1を構成しているセルを上、中、下に区画してそれぞれの受光量を取り込むことにより、各区画したセルの受光量の合計を図5の第1ないし第3の各受光領域A1〜A3の受光量P1〜P3として得ることができる。信号処理部120において選択するセル群を変更することにより、図8のセル群C2を選択することができ、ロービーム配光パターンLBPに対して受光領域A1〜A3を位置変化させたと同等な受光量P1〜P3を得ることができる。このようにして、信号処理部120では撮像素子113を移動することなくロービーム配光パターンLBPに対して任意の領域の受光量を得ることができるので、得られた受光量に基づいて実施例1と同様な演算を行うことで撮像素子113上での水平カットラインHCの上下方向の位置を検出することができる。   For example, in FIG. 8, a cell group C1 included in a predetermined rectangular area is selected from all the cells 114 constituting the image sensor 113, and the cells constituting the cell group C1 are moved upward, middle, By subtracting the respective received light amounts, the total received light amounts of the divided cells can be obtained as the received light amounts P1 to P3 of the first to third light receiving regions A1 to A3 in FIG. . The cell group C2 in FIG. 8 can be selected by changing the cell group selected in the signal processing unit 120, and the received light amount is equivalent to the position change of the light receiving regions A1 to A3 with respect to the low beam light distribution pattern LBP. P1 to P3 can be obtained. In this way, the signal processing unit 120 can obtain the amount of received light in an arbitrary region with respect to the low beam light distribution pattern LBP without moving the image sensor 113, and therefore, the first embodiment is based on the obtained amount of received light. By performing the same calculation as above, the vertical position of the horizontal cut line HC on the image sensor 113 can be detected.

同様にして、図示は省略するが信号処理部120において選択するセル114を変更することにより、図6に示したと同様に左右方向での受光差を求めることができ、エルボポイントの左右方向の位置を検出することが可能である。このとき、先に求めた水平カットラインHC上に選択するセル群の上下方向の中心を設定させて左右方向に変更させることは言うまでもない。実施例2ではエルボポイント検出装置に移動機構が不要であるので装置の構成及び制御の簡略化が可能になる。また、信号処理部120でのソフト処理によって演算が可能であるので、高速な検出が可能になる。   Similarly, although not shown in the figure, by changing the cell 114 selected in the signal processing unit 120, it is possible to obtain the difference in light reception in the left-right direction as shown in FIG. Can be detected. At this time, it goes without saying that the vertical center of the cell group to be selected is set on the horizontal cut line HC obtained earlier and changed in the left-right direction. In the second embodiment, since the elbow point detection device does not require a moving mechanism, the configuration and control of the device can be simplified. In addition, since calculation can be performed by software processing in the signal processing unit 120, high-speed detection is possible.

実施例1,2では、各領域のセルで受光した信号を多階調のデジタル信号として得ているので、信号処理部120をマイクロコンピュータで構成した場合に受光比や受光差をそのまま演算することができ、処理の高速化に有利である。特に、デジタル信号の階調数を許す限り大きくすることで極めて高い精度の検出が可能になる。また、各セルで受光した受光量をアナログ量として出力し、これらのアナログ量を加算して受光量を得るようにしてもよい。このように受光量をアナログ量で取り扱う場合には、各領域を受光センサで構成した場合には有利である。   In the first and second embodiments, the signals received by the cells in each region are obtained as multi-gradation digital signals, so that when the signal processing unit 120 is configured by a microcomputer, the light reception ratio and the light reception difference are calculated as they are. This is advantageous for speeding up the processing. In particular, detection with extremely high accuracy is possible by increasing the number of gradations of the digital signal as much as possible. Alternatively, the received light amount received by each cell may be output as an analog amount, and these received analog amounts may be added to obtain the received light amount. In this way, when the received light amount is handled as an analog amount, it is advantageous when each region is constituted by a light receiving sensor.

本発明の検出方法は実施例1で示したような多光源型ヘッドランプでの配光パターン中心の検出にのみ適用できるのではなく、従来の単一光源のヘッドランプについても同様に適用できることは言うまでもない。また、本発明では、ヘッドランプから出射した光を直接受光する場合に限られるものではなく、図3に示したようにヘッドランプHLから出射した光をスクリーンSCに投射したものを撮像することによっても同様に配光パターンの中心を検出することが可能である。   The detection method of the present invention can be applied not only to the detection of the center of the light distribution pattern in the multi-light source headlamp as shown in the first embodiment, but also to the conventional single light source headlamp. Needless to say. Further, the present invention is not limited to the case where the light emitted from the headlamp is directly received, but by imaging the light emitted from the headlamp HL projected onto the screen SC as shown in FIG. Similarly, it is possible to detect the center of the light distribution pattern.

実施例1で検出を行うヘッドランプの外観斜視図である。1 is an external perspective view of a headlamp that performs detection in Example 1. FIG. ヘッドランプのロービームパターンを示す図である。It is a figure which shows the low beam pattern of a headlamp. エルボポイント検出装置の概念図である。It is a conceptual diagram of an elbow point detection apparatus. 撮像素子の概念構成図である。It is a conceptual lineblock diagram of an image sensor. 水平カットラインの上下方向位置を検出する方法を説明する図である。It is a figure explaining the method to detect the up-down direction position of a horizontal cut line. エルボポイントの左右方向位置を検出する方法を説明する図である。It is a figure explaining the method to detect the left-right direction position of an elbow point. 撮像素子の変形例の概念図である。It is a conceptual diagram of the modification of an image sensor. 実施例2の撮像素子の概念構成図である。FIG. 3 is a conceptual configuration diagram of an image sensor of Example 2.

符号の説明Explanation of symbols

100 エルボポイント検出装置
110 撮像装置
112 撮像カメラ
113 撮像素子
114 受光セル
HL ヘッドランプ
LBP ロービーム配光パターン
EP エルボポイント
HC 水平カットライン
DC 斜めカットライン
HW,DW 波状部
A1〜A6 受光領域
P1〜P5 受光量
VEPx,VEPy 上下EP値
HEPx 左右EP値

100 Elbow Point Detection Device 110 Imaging Device 112 Imaging Camera 113 Imaging Device 114 Light-receiving Cell HL Headlamp LBP Low-beam Light Distribution Pattern EP Elbow Point HC Horizontal Cutline DC Oblique Cutline HW, DW Waveforms A1 to A6 Light-receiving Areas P1 to P5 Light-Reception Quantity VEPx, VEPy Top and bottom EP value HEPx Left and right EP value

Claims (4)

配光パターンの中心を通りほぼ水平方向に延びる水平カットラインと、前記中心を通り水平方向に対して所要の角度方向に延びる斜めカットラインとを有する当該配光パターンの前記中心を検出する検出方法であって、前記水平カットラインに生じるカットぼけによる波状部の高さ寸法と同程度の上下幅寸法をした上下中間領域を挟んで上下方向に対向配置された第1受光領域と第2受光領域を備える受光手段を用い、当該受光手段を上下方向に位置変化させながら前記配光パターンを受光するとともに前記第1受光領域と第2受光領域で検出される受光量の受光比を求め、前記受光比に基づいて前記水平カットラインの上下方向の位置を検出する工程を含むことを特徴とする配光パターン中心の検出方法。 A detection method for detecting the center of the light distribution pattern having a horizontal cut line that extends substantially horizontally through the center of the light distribution pattern and an oblique cut line that extends through the center and in a required angle direction with respect to the horizontal direction. A first light receiving region and a second light receiving region which are disposed opposite to each other in the vertical direction with an upper and lower intermediate region having a vertical width dimension comparable to the height dimension of the wavy portion due to the cut blur generated in the horizontal cut line. The light distribution means is used to receive the light distribution pattern while changing the position of the light reception means in the vertical direction, and the light reception ratio of the light reception amounts detected in the first light reception area and the second light reception area is obtained, A method for detecting the center of a light distribution pattern, comprising: detecting a vertical position of the horizontal cut line based on a ratio. 前記受光比の極値が得られたときの前記上下中間領域の上下方向の中間点を前記水平カットラインの上下方向の位置として検出することを特徴とする請求項1に記載の配光パターン中心の検出方法。   2. The center of the light distribution pattern according to claim 1, wherein a vertical middle point of the vertical middle region when the extreme value of the light reception ratio is obtained is detected as a vertical position of the horizontal cut line. Detection method. 前記上下中間領域は第3受光領域として構成され、前記第1受光領域と第3受光領域の各受光量の和と、前記第2受光領域と第3受光領域の各受光量の和との受光比を求め、前記受光比の極値が得られたときの上下中間領域の中間点を前記水平ラットラインの上下方向の位置として検出することを特徴とする請求項1又は2に記載の配光パターン中心の検出方法。   The upper and lower intermediate region is configured as a third light receiving region, and receives the sum of the received light amounts of the first light receiving region and the third light receiving region and the sum of the received light amounts of the second light receiving region and the third light receiving region. 3. The light distribution according to claim 1, wherein a ratio is obtained, and an intermediate point of the upper and lower intermediate regions when the extreme value of the light reception ratio is obtained is detected as a vertical position of the horizontal rat line. Pattern center detection method. 前記受光手段は2次元撮像素子であり、前記撮像素子を構成する多数の受光セルを前記各受光領域及び各中間領域に区画し、各領域に属する受光セルの受光量を加算して前記各受光領域の受光量を検出することを特徴とする請求項1ないし3のいずれかに記載の配光パターン中心の検出方法。

The light receiving means is a two-dimensional image pickup device, and a plurality of light receiving cells constituting the image pickup device are divided into the light receiving regions and intermediate regions, and the light receiving amounts of the light receiving cells belonging to the regions are added to each of the light receiving devices. 4. The method for detecting the center of a light distribution pattern according to claim 1, wherein the amount of received light in the region is detected.

JP2006273538A 2006-10-05 2006-10-05 Detection method of light distribution pattern center Expired - Fee Related JP5042581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006273538A JP5042581B2 (en) 2006-10-05 2006-10-05 Detection method of light distribution pattern center

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006273538A JP5042581B2 (en) 2006-10-05 2006-10-05 Detection method of light distribution pattern center

Publications (2)

Publication Number Publication Date
JP2008089525A JP2008089525A (en) 2008-04-17
JP5042581B2 true JP5042581B2 (en) 2012-10-03

Family

ID=39373827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006273538A Expired - Fee Related JP5042581B2 (en) 2006-10-05 2006-10-05 Detection method of light distribution pattern center

Country Status (1)

Country Link
JP (1) JP5042581B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6564217B2 (en) * 2015-03-26 2019-08-21 株式会社Subaru Vehicle headlamp inspection device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59214731A (en) * 1983-05-20 1984-12-04 Anzen Jidosha Kk Device for checking looked-down head lamp beams
JPS608730A (en) * 1983-06-29 1985-01-17 Raito Kogyo Kk Measuring device of cut line of headlight beam
JPH0792423B2 (en) * 1990-05-21 1995-10-09 日産自動車株式会社 Headlight optical axis adjustment method
JP4494342B2 (en) * 2006-01-18 2010-06-30 株式会社小糸製作所 Detection method of light distribution pattern center

Also Published As

Publication number Publication date
JP2008089525A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
JP6709655B2 (en) Vehicle lamp and vehicle equipped with the vehicle lamp
US8345096B2 (en) Sensor and apparatus for vehicle height measurement
US8013901B2 (en) Imaging apparatus and a camera for vehicles
US9944222B2 (en) Vehicle headlamp light distribution control device and method, and storage medium
US9117272B2 (en) Method and device for determining a change in the pitch angle of a camera of a vehicle
JP4494342B2 (en) Detection method of light distribution pattern center
CN110225846B (en) Vehicle lamp system, vehicle lamp control device, and vehicle lamp control method
CN110834580B (en) Light distribution control system, light distribution control device and light distribution control method for head lamp
JP2010166562A (en) Shading correction apparatus, image scanning apparatus, and method of setting adopted areas of shading correction apparatus
JP5042581B2 (en) Detection method of light distribution pattern center
US11704910B2 (en) Vehicle detecting device and vehicle lamp system
JP2003267125A (en) Headlight projecting range controlling method and headlight device
EP3741618A1 (en) Vehicular lamp fitting
JP2011079359A (en) Method and device for detecting elbow point of light distribution pattern
CN209776290U (en) Vehicle detection device and vehicle lamp system
EP3741617A1 (en) Vehicular lamp fitting
US20240083345A1 (en) Headlight device
CN209776291U (en) Vehicle detection device and vehicle lamp system
EP3741616A1 (en) Vehicular lamp fitting
WO2019216020A1 (en) Image capturing device
JP3017705B2 (en) Aiming device for measuring the optical axis of automotive headlamps
JP2017067656A (en) Elbow point detection method, inspection device and method of manufacturing lighting fixture
JP7455620B2 (en) Video processing device and video processing method
JP2013022989A (en) Method for detecting elbow point of headlight
JP6984396B2 (en) Vehicle headlight device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees