JP5042541B2 - Method for producing polyamide resin composition, and polyamide resin composition - Google Patents

Method for producing polyamide resin composition, and polyamide resin composition Download PDF

Info

Publication number
JP5042541B2
JP5042541B2 JP2006177147A JP2006177147A JP5042541B2 JP 5042541 B2 JP5042541 B2 JP 5042541B2 JP 2006177147 A JP2006177147 A JP 2006177147A JP 2006177147 A JP2006177147 A JP 2006177147A JP 5042541 B2 JP5042541 B2 JP 5042541B2
Authority
JP
Japan
Prior art keywords
polyamide resin
polyamide
copper
acid
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006177147A
Other languages
Japanese (ja)
Other versions
JP2008007563A (en
Inventor
政昭 荒巻
洋 小山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2006177147A priority Critical patent/JP5042541B2/en
Publication of JP2008007563A publication Critical patent/JP2008007563A/en
Application granted granted Critical
Publication of JP5042541B2 publication Critical patent/JP5042541B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、成形加工中の金属析出の問題点を解消し、耐熱エージング性に優れたポリアミド成形品を提供し得るポリアミド樹脂に関する。   The present invention relates to a polyamide resin capable of solving the problem of metal precipitation during molding and providing a polyamide molded article having excellent heat aging resistance.

ポリアミド樹脂は、種々の熱履歴を受けた場合、熱劣化及び酸化劣化が起こり、黄色度が増加したり、分子量が変化したり、靭性や耐久性等の機械物性が低下する。種々の熱履歴とは、重合、溶融混練、成形加工(射出、押出、ブロー、紡糸、フィルム等)あるいは高温環境での使用等である。   When subjected to various thermal histories, the polyamide resin undergoes thermal degradation and oxidative degradation, increasing yellowness, changing molecular weight, and lowering mechanical properties such as toughness and durability. Various heat histories include polymerization, melt kneading, molding (injection, extrusion, blow, spinning, film, etc.) or use in a high temperature environment.

該熱履歴での劣化の程度を減少させるために、熱安定剤として作用する次亜リン酸ナトリウム等のリン化合物をポリアミド樹脂に添加する方法は良く知られており、またよく用いられる方法である。   In order to reduce the degree of deterioration in the thermal history, a method of adding a phosphorus compound such as sodium hypophosphite that acts as a heat stabilizer to a polyamide resin is well known and is a well-used method. .

一方、耐熱エージング性の向上のために、長期高温環境下での熱安定剤としてヨウ化銅及びヨウ化カリウム等の銅化合物及びハロゲン化合物をポリアミドに添加する方法も良く知られており、またよく用いられる方法である。   On the other hand, in order to improve heat aging resistance, a method of adding a copper compound such as copper iodide and potassium iodide and a halogen compound to a polyamide as a heat stabilizer in a long-term high-temperature environment is also well known. This is the method used.

また、特開平8−333511号公報(特許文献1)には、上記熱安定剤を組み合わせた技術、すなわち次亜リン酸又はこの酸のアルカリ金属もしくはアルカリ土類金属塩、ハロゲン化銅及びハロゲン化合物との3元安定剤を添加した耐候に優れたポリアミドが開示されている。特許文献1では、この3元安定剤の添加方法について、例えば、重合前又は中に単量体に添加できること、押出し機等を用いて重合体溶融物中に混入しうること、粒状物等として固体重合体の表面あるいは固体成形組成物の表面に適用しうること、好ましくは押出し機を用いて重合体溶融物に導入されること、等が述べられている。   Japanese Patent Application Laid-Open No. 8-333511 (Patent Document 1) discloses a technique in which the above heat stabilizer is combined, that is, hypophosphorous acid or alkali metal or alkaline earth metal salt of this acid, copper halide and halogen compound. A polyamide excellent in weather resistance to which a ternary stabilizer is added is disclosed. In Patent Document 1, as for the method of adding the ternary stabilizer, for example, it can be added to the monomer before or during the polymerization, it can be mixed into the polymer melt using an extruder, etc. It is mentioned that it can be applied to the surface of a solid polymer or the surface of a solid molding composition, preferably introduced into the polymer melt using an extruder.

しかしながら、本発明者らが、次亜リン酸ナトリウム等の還元性リン化合物、銅化合物及びハロゲン化合物を併用してポリアミドに添加したところ、銅化合物が金属銅となる酸化還元反応が起こりやすく、重合、押出機あるいは成形機の配管内、装置内、スクリュー表面あるいはシリンダー表面に金属銅が析出する現象も見受けられた。また、析出した金属銅がポリアミド樹脂あるいはその成形品の中に混入し、耐熱エージング性が十分改良されない等の問題を発生させることがわかった。
特開平8−333511号公報
However, when the present inventors added a reducing phosphorus compound such as sodium hypophosphite, a copper compound, and a halogen compound to the polyamide in combination, an oxidation-reduction reaction in which the copper compound becomes metallic copper is likely to occur. There was also a phenomenon in which metallic copper was deposited in the piping of the extruder or molding machine, in the apparatus, on the screw surface or on the cylinder surface. Further, it has been found that the deposited metal copper is mixed in the polyamide resin or the molded product thereof, and problems such as the heat aging property being not sufficiently improved are generated.
JP-A-8-333511

そこで、本発明は、ポリアミドにリン化合物、銅化合物及びハロゲン化合物の3元熱安定剤を添加するポリアミド樹脂組成物の製造方法であって、押出機や成形機内でも金属銅が析出し難く、耐熱エージング性が向上されたポリアミド樹脂組成物を得ることのできる製造方法を提供することを目的とする。   Therefore, the present invention is a method for producing a polyamide resin composition in which a ternary heat stabilizer of a phosphorus compound, a copper compound and a halogen compound is added to polyamide, and the metal copper hardly precipitates even in an extruder or a molding machine. It aims at providing the manufacturing method which can obtain the polyamide resin composition in which aging property was improved.

本発明者らは、前記課題を解決するために鋭意検討を重ねた結果、ポリアミド樹脂重合工程において還元性リン化合物を添加することにより、ポリアミド樹脂中に残存する還元性リン元素を特定の量まで低減させることができること、こうして得られたポリアミド樹脂に特定量の銅化合物及びハロゲン化合物(ハロゲン化銅は除く)を添加して得られるポリアミド樹脂組成物は、金属銅が析出し難く、耐熱エージング性にも優れていることを見出した。   As a result of intensive investigations to solve the above problems, the present inventors have added a reducing phosphorus compound in the polyamide resin polymerization step, thereby reducing the reducing phosphorus element remaining in the polyamide resin to a specific amount. The polyamide resin composition obtained by adding a specific amount of a copper compound and a halogen compound (excluding copper halide) to the polyamide resin thus obtained is less susceptible to precipitation of metal copper and has a heat aging resistance. Also found it to be excellent.

すなわち本発明は、
〔1〕ポリアミド樹脂組成物の製造方法であって、少なくとも一種の還元性リン化合物を添加し、ポリアミド樹脂を得るポリアミド重合工程と、前記ポリアミド樹脂に、銅化合物及びハロゲン化合物(但し、ハロゲン化銅を除く)を添加してポリアミド樹脂組成物を得るポリアミド樹脂組成物製造工程と、を含む製造方法;
〔2〕前記ポリアミド重合工程において、該ポリアミド樹脂中に残存する還元性リン元素の量を該ポリアミド樹脂中のポリアミド10gあたりXモルとしたとき、Xが下記式(I)を満たすように、還元性リン元素の量を低減させる、上記〔1〕に記載の製造方法、
0≦X≦0.3・・・(I);
〔3〕前記ポリアミド重合工程において、前記ポリアミド樹脂に添加する銅元素の量を該ポリアミド樹脂中のポリアミド10gあたりYモルとしたとき、Yが下記式(II)を満たす、上記〔1〕または〔2〕に記載の製造方法、
0.3≦Y≦5・・・(II);
〔4〕前記還元性リン化合物は、亜リン酸類、次亜リン酸類、亜リン酸金属塩類、次亜リン酸金属塩類、及び亜リン酸エステル類からなる群から選ばれる少なくとも1種類である、
上記〔1〕から〔3〕のいずれか1項に記載の製造方法;
〔5〕前記ポリアミド樹脂組成物製造工程において、前記銅化合物及びハロゲン化合物を溶融混練法によって前記ポリアミド樹脂に添加する、上記〔1〕から〔4〕のいずれか1項に記載の製造方法;
〔6〕前記ポリアミド樹脂組成物製造工程において、ハロゲン元素と銅元素とのモル比(ハロゲン/銅)が3〜30となるように、前記銅化合物及び前記ハロゲン化合物を前記ポリアミド樹脂に添加する、上記〔1〕から〔5〕のいずれか1項に記載のポリアミド樹脂組成物の製造方法;
〔7〕上記〔1〕から〔6〕のいずれか1項に記載の製造方法により製造される、ポリアミド樹脂組成物、に関するものである。
That is, the present invention
[1] A method for producing a polyamide resin composition, comprising at least one reducing phosphorus compound added to obtain a polyamide resin, a polyamide polymerization step, a copper compound and a halogen compound (provided that the copper halide is added) A polyamide resin composition production process for obtaining a polyamide resin composition by adding
[2] In the polyamide polymerization step, when the amount of reducing phosphorus element remaining in the polyamide resin is X mol per 10 6 g of polyamide in the polyamide resin, X satisfies the following formula (I): Reducing the amount of reducing phosphorus element, the production method according to the above [1],
0 ≦ X ≦ 0.3 (I);
[3] In the polyamide polymerization step, when the amount of copper element added to the polyamide resin is Y mol per 10 6 g of polyamide in the polyamide resin, Y satisfies the following formula (II): [1] Or the production method according to [2],
0.3 ≦ Y ≦ 5 (II);
[4] The reducing phosphorus compound is at least one selected from the group consisting of phosphorous acid, hypophosphorous acid, metal phosphite, metal hypophosphite, and phosphite.
The production method according to any one of [1] to [3] above;
[5] The production method according to any one of [1] to [4], wherein in the polyamide resin composition production step, the copper compound and the halogen compound are added to the polyamide resin by a melt kneading method;
[6] In the polyamide resin composition manufacturing process, the copper compound and the halogen compound are added to the polyamide resin so that the molar ratio of halogen element to copper element (halogen / copper) is 3 to 30; The method for producing a polyamide resin composition according to any one of [1] to [5] above;
[7] A polyamide resin composition produced by the production method according to any one of [1] to [6].

本発明にかかる製造方法によれば、長期耐熱エージング性に優れ、かつ押出機や成形機内での金属銅の析出が少ないポリアミド樹脂組成物を提供することができる。   According to the production method of the present invention, it is possible to provide a polyamide resin composition having excellent long-term heat aging resistance and less precipitation of metallic copper in an extruder or molding machine.

以下、本発明の内容を詳細に説明する。   Hereinafter, the contents of the present invention will be described in detail.

上述のように、本発明に係るポリアミド樹脂組成物の製造方法は、ポリアミド原料に少なくとも一種の還元性リン化合物を添加してポリアミド樹脂を得るポリアミド重合工程と、前記ポリアミド樹脂に、銅化合物及びハロゲン化合物(但し、ハロゲン化銅を除く)を添加してポリアミド樹脂組成物を得る工程と、を含むことを特徴とする。そこで、まず、各工程に用いられる物質及び各工程において製造される物質について以下に述べる。   As described above, the method for producing a polyamide resin composition according to the present invention includes a polyamide polymerization step of obtaining a polyamide resin by adding at least one reducing phosphorus compound to a polyamide raw material, a copper compound and a halogen in the polyamide resin. And a step of adding a compound (excluding copper halide) to obtain a polyamide resin composition. Therefore, first, substances used in each process and substances manufactured in each process will be described below.

まず、ポリアミドについて説明する。   First, polyamide will be described.

本発明で用いるポリアミド樹脂は、主鎖中にアミド結合(−NHCO−)を有する重合体であれば特に限定されないが、例えばポリカプロラクタム(ナイロン6)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリウンデカメチレンアジパミド(ナイロン116)、ポリウンデカラクタム(ナイロン11)、ポリドデカラクタム(ナイロン12)、ポリトリメチルヘキサメチレンテレフタルアミド(ナイロンTMHT)、ポリヘキサメチレンイソフタルアミド(ナイロン6I)、ポリノナンメチレンテレフタルアミド(9T)、ポリヘキサメチレンテレフタルアミド(6T)、ポリビス(4−アミノシクロヘキシル)メタンドデカミド(ナイロンPACM12)、ポリビス(3−メチル−アミノシクロヘキシル)メタンドデカミド(ナイロンジメチルPACM12)、ポリメタキシリレンアジパミド(ナイロンMXD6)、ポリウンデカメチレンヘキサヒドロテレフタルアミド(ナイロン11T(H))が挙げられる。また、これらのうち2種類以上の異なるポリアミド成分を含むポリアミド共重合体、あるいは、混合物などであってもよい。アミド結合の有無は、赤外吸収スペクトル(IR)で確認することができる。   The polyamide resin used in the present invention is not particularly limited as long as it is a polymer having an amide bond (—NHCO—) in the main chain. For example, polycaprolactam (nylon 6), polytetramethylene adipamide (nylon 46), Polyhexamethylene adipamide (nylon 66), polyhexamethylene sebamide (nylon 610), polyhexamethylene dodecamide (nylon 612), polyundecamethylene adipamide (nylon 116), polyundecalactam (nylon) 11), polydodecalactam (nylon 12), polytrimethylhexamethylene terephthalamide (nylon TMHT), polyhexamethylene isophthalamide (nylon 6I), polynonanemethylene terephthalamide (9T), polyhexamethylene terephthalamide (6T), Libis (4-aminocyclohexyl) methane dodecamide (nylon PACM12), polybis (3-methyl-aminocyclohexyl) methane dodecamide (nylon dimethyl PACM12), polymetaxylylene adipamide (nylon MXD6), polyundecamethylenehexahydro And terephthalamide (nylon 11T (H)). Moreover, the polyamide copolymer containing 2 or more types of different polyamide components among these, a mixture, etc. may be sufficient. The presence or absence of an amide bond can be confirmed by an infrared absorption spectrum (IR).

本発明で用いるポリアミド原料は、主鎖中にアミド結合(−NHCO−)を有する重合体を製造するために用いられている周知の原料であれば特に限定されないが、重合可能なアミノ酸、重合可能なラクタム、あるいは重合可能なジアミンとジカルボン酸との塩あるいは混合物、および重合可能なオリゴマー等を挙げることができる。これら原料は、原料そのもので用いてもかまわないし、水溶液として用いてもかまわない。   The polyamide raw material used in the present invention is not particularly limited as long as it is a well-known raw material used for producing a polymer having an amide bond (-NHCO-) in the main chain. And a lactam or a salt or mixture of a polymerizable diamine and a dicarboxylic acid, and a polymerizable oligomer. These raw materials may be used as the raw material itself or as an aqueous solution.

ポリアミドの分子量は、本発明の課題を達成するという観点から、JIS−K6810に従って測定した98%硫酸中濃度1%、25℃の相対粘度が、好ましくは2.0〜6.5、より好ましくは2.3〜5.5、更に好ましくは2.5〜5.5である。該範囲にすることにより、各種成形において安定して成形品を得ることが可能となる。   From the viewpoint of achieving the object of the present invention, the molecular weight of the polyamide is such that the relative viscosity at 25 ° C. is preferably 2.0 to 6.5, more preferably 2.0% to 6.5%, more preferably 98% sulfuric acid concentration in accordance with JIS-K6810. It is 2.3 to 5.5, more preferably 2.5 to 5.5. By setting it within this range, it becomes possible to obtain a molded product stably in various moldings.

本発明で用いるポリアミドのカルボキシル基濃度比率は、0.40〜0.85であることが好ましく、より好ましくは0.50〜0.80であり、更に好ましくは0.55〜0.75である。   The carboxyl group concentration ratio of the polyamide used in the present invention is preferably 0.40 to 0.85, more preferably 0.50 to 0.80, and still more preferably 0.55 to 0.75. .

カルボキシル基濃度比率とはポリアミド中のカルボキシル基濃度とアミノ基濃度をそれぞれ〔COOH〕、〔NH〕として{〔COOH〕/(〔COOH〕+〔NH〕)}で計算される値をいう。カルボキシル基濃度比率をこの範囲にすることにより、銅析出や金属腐食を抑制でき、また耐熱エージング性を向上させることができる。 The carboxyl group concentration ratio means a value calculated by {[COOH] / ([COOH] + [NH 2 ])} where the carboxyl group concentration and amino group concentration in the polyamide are [COOH] and [NH 2 ], respectively. . By making the carboxyl group concentration ratio within this range, copper precipitation and metal corrosion can be suppressed, and heat aging resistance can be improved.

カルボキシル基濃度比率は、前記ポリアミド原料に末端調整剤を添加することに調整できる。   The carboxyl group concentration ratio can be adjusted by adding a terminal adjusting agent to the polyamide raw material.

この末端調整剤は、分子構造内にカルボン酸を含有する化合物であれば特に限定されないが、ジカルボン酸とモノカルボン酸が好ましく用いられる。前記ジカルボン酸は、例えばマロン酸、ジメチルマロン酸、コハク酸、グルタル酸、アジピン酸、2−メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2−ジメチルグルタル酸、3,3−ジエチルコハク酸、アゼライン酸、セバシン酸、スベリン酸、ドデカン二酸、エイコジオン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、2−クロロテレフタル酸、2−メチルテレフタル酸、5−メチルイソフタル酸、5−ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロテレフタル酸、ジグリコール酸などを挙げることができる。前記モノカルボン酸は、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチル酸、パルミチン酸、ステアリン酸、ピバリン酸、イソブチル酸などの脂肪族モノカルボン酸、シクロヘキサンカルボン酸などの脂環式モノカルボン酸、安息香酸、トルイル酸、α−ナフタレンカルボン酸、β−ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸などの芳香族モノカルボン酸などを挙げることができる。これらのカルボン酸化合物は単独で用いても良いし、2種類以上組み合わせて用いても良い。   The terminal modifier is not particularly limited as long as it is a compound containing a carboxylic acid in the molecular structure, but dicarboxylic acids and monocarboxylic acids are preferably used. Examples of the dicarboxylic acid include malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, and 3,3-diethylsuccinic acid. , Azelaic acid, sebacic acid, suberic acid, dodecanedioic acid, eicodioic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, 5-sodium sulfoisophthalic acid Examples include acid, hexahydroterephthalic acid, hexahydroterephthalic acid, and diglycolic acid. The monocarboxylic acid is an aliphatic monocarboxylic acid such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecylic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, isobutyric acid, And alicyclic monocarboxylic acids such as cyclohexanecarboxylic acid, benzoic acid, toluic acid, α-naphthalenecarboxylic acid, β-naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, and phenylmonoacetic acid. . These carboxylic acid compounds may be used alone or in combination of two or more.

ポリアミド樹脂を製造する方法は、周知の方法を用いることができる。例えば、ε−カプロラクタムなどのラクタム類をポリアミド原料とする開環重縮合法、ヘキサメチレンアジパミドなどのジアミン・ジカルボン酸塩あるいはその混合物を原料とする熱溶融法などを用いることができる。また、ポリアミド原料の固体塩あるいはポリアミドの融点以下の温度で行う固相重合法、ジカルボン酸ハライド成分とジアミン成分を用いた溶液法なども用いることができる。これらの方法は必要に応じて組み合わせてもかまわない。中でも熱溶融法、熱溶融法と固相重合を組み合わせた方法が最も効率的である。   As a method for producing the polyamide resin, a known method can be used. For example, a ring-opening polycondensation method using a lactam such as ε-caprolactam as a polyamide raw material, a heat melting method using a diamine / dicarboxylate such as hexamethylene adipamide or a mixture thereof as a raw material can be used. Further, a solid salt of a polyamide raw material or a solid phase polymerization method performed at a temperature below the melting point of the polyamide, a solution method using a dicarboxylic acid halide component and a diamine component, or the like can also be used. These methods may be combined as necessary. Among them, the most efficient method is a heat melting method or a method combining a heat melting method and solid phase polymerization.

また、重合形態としては、バッチ式でも連続式でもかまわない。また、重合装置も特に制限されるものではなく、公知の装置、例えば、オートクレーブ型の反応器、タンブラー型反応器、ニーダーなどの押出機型反応器などを用いることができる。   The polymerization form may be a batch type or a continuous type. The polymerization apparatus is not particularly limited, and a known apparatus such as an autoclave type reactor, a tumbler type reactor, an extruder type reactor such as a kneader, or the like can be used.

次に、還元性リン化合物について説明する。   Next, the reducing phosphorus compound will be described.

本発明で用いられる還元性リン化合物は、(1)亜リン酸類および次亜リン酸類、(2)亜リン酸金属塩類および次亜リン酸金属塩類、および(3)亜リン酸エステル類等の亜リン酸化合物、次亜リン酸化合物から選ぶことができる。   The reducing phosphorus compound used in the present invention includes (1) phosphorous acid and hypophosphorous acid, (2) phosphorous acid metal salt and hypophosphorous acid metal salt, and (3) phosphorous acid ester. It can be selected from phosphorous acid compounds and hypophosphorous acid compounds.

前記(1)の亜リン酸類および次亜リン酸類は、例えば亜リン酸、次亜リン酸、ピロ亜リン酸、二亜リン酸が挙げられる。前記(2)の亜リン酸金属塩類および次亜リン酸金属塩類とは、前記(1)亜リン酸類および次亜リン酸類と周期律表第1族及び第2族、マンガン、亜鉛、アルミニウム、アンモニア、アルキルアミン、シクロアルキルアミン、ジアミンとの塩が挙げられる。前記(3)の亜リン酸エステル類とは下記一般式で表される。   Examples of (1) phosphorous acid and hypophosphorous acid include phosphorous acid, hypophosphorous acid, pyrophosphorous acid, and diphosphorous acid. (2) The metal phosphite and hypophosphite metal salts of (2) are the above (1) phosphorous acids and hypophosphorous acids and groups 1 and 2 of the periodic table, manganese, zinc, aluminum, Examples include salts with ammonia, alkylamines, cycloalkylamines, and diamines. The phosphites of (3) are represented by the following general formula.

亜リン酸エステル;(OR)P(OH)3−n
ここで、nは1、2あるいは3を表し、Rはアルキル基、フェニル基、あるいはそれらの基の一部が炭化水素基などで置換された置換基アルキル基を表す。nが2以上の場合、前記一般式内の複数の(RO)基は同じでも異なっていてもよい。前記Rとしては、例えばメチル基、エチル基、n−プロピル基、n−ブチル基、t−ブチル基、n−ヘキシル基、シクロヘキシル基、n−オクチル基、ノニル基、デシル基、ステアリル基、オレイル基などの脂肪族基、フェニル基、ビフェニル基などの芳香族基、あるいはヒドロキシル基、メチル基、エチル基、プロピル基、メトキシ基、エトキシ基などの置換基を有する芳香族基が挙げられる。
Phosphite; (OR) n P (OH) 3-n
Here, n represents 1, 2 or 3, and R represents an alkyl group, a phenyl group, or a substituted alkyl group in which a part of these groups is substituted with a hydrocarbon group or the like. When n is 2 or more, a plurality of (RO) groups in the general formula may be the same or different. Examples of R include methyl, ethyl, n-propyl, n-butyl, t-butyl, n-hexyl, cyclohexyl, n-octyl, nonyl, decyl, stearyl and oleyl. An aliphatic group such as a group, an aromatic group such as a phenyl group or a biphenyl group, or an aromatic group having a substituent such as a hydroxyl group, a methyl group, an ethyl group, a propyl group, a methoxy group, or an ethoxy group.

還元性リン化合物のポリアミド原料10gに対する添加量は、リン元素にして0.01〜5モルが好ましく、0.03〜4モルがより好ましく、0.05〜3モルが最も好ましい。この範囲にすることにより、耐熱エージング性の向上が達成される。 The addition amount of the reducing phosphorus compound to 10 6 g of the polyamide raw material is preferably 0.01 to 5 mol, more preferably 0.03 to 4 mol, and most preferably 0.05 to 3 mol in terms of phosphorus element. By making it in this range, improvement in heat aging resistance is achieved.

次に、銅化合物とハロゲン化合物について説明する。   Next, a copper compound and a halogen compound will be described.

本発明で用いられる銅化合物としては、ハロゲン化銅、酢酸銅、プロピオン酸銅、安息香酸銅、アジピン酸銅、テレフタル酸銅、イソフタル酸銅、サリチル酸銅、ニコチン酸銅、ステアリン酸銅などや、エチレンジアミン(en)、エチレンジアミン四酢酸などのキレート剤に配位した銅錯塩が挙げられる。これら銅化合物は、単独で用いてもよく、2種以上を混合しても良い。この中でも、好ましいものとしてはヨウ化銅、臭化第一銅、臭化第二銅、塩化第一銅、酢酸銅が挙げられる。   As the copper compound used in the present invention, copper halide, copper acetate, copper propionate, copper benzoate, copper adipate, copper terephthalate, copper isophthalate, copper salicylate, copper nicotinate, copper stearate, etc. Examples thereof include copper complex salts coordinated to a chelating agent such as ethylenediamine (en) and ethylenediaminetetraacetic acid. These copper compounds may be used independently and may mix 2 or more types. Among these, preferred are copper iodide, cuprous bromide, cupric bromide, cuprous chloride, and copper acetate.

本発明で用いられるハロゲン化合物(但し、ハロゲン化銅を除く)としては、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ素、臭素ナトリウム、臭素カリウム、塩化ナトリウム、塩化カリウムが挙げられる。中でもヨウ化カリウムが最も好ましく用いられる。   Examples of the halogen compound (excluding copper halide) used in the present invention include sodium iodide, potassium iodide, iodine, sodium bromine, potassium bromine, sodium chloride, and potassium chloride. Of these, potassium iodide is most preferably used.

ハロゲン化合物の添加量は、ポリアミド中のハロゲン元素と銅元素とのモル比(ハロゲン/Cu)で好ましくは3〜30、より好ましくは5〜25、最も好ましくは5〜22になるように添加する。この範囲にすることにより、銅析出の抑制や耐熱エージング性の向上が達成される。   The addition amount of the halogen compound is preferably 3 to 30, more preferably 5 to 25, and most preferably 5 to 22 in terms of the molar ratio of halogen element to copper element (halogen / Cu) in the polyamide. . By making it into this range, suppression of copper precipitation and improvement of heat aging resistance are achieved.

本発明に係るポリアミド樹脂組成物の製造方法では、上述した材料を用い、まず、ポリアミド重合工程において、少なくとも一種の還元性リン化合物を添加する。   In the method for producing a polyamide resin composition according to the present invention, first, at least one reducing phosphorus compound is added in the polyamide polymerization step using the materials described above.

ここで、本発明においてポリアミド重合工程とは、ポリアミド原料から重合度が約10程度のプレポリマーを製造する工程をいう。本発明においては銅析出の抑制や耐熱エージング性の向上が達成されやすいという観点から、還元性リン化合物をポリアミド原料に添加する方法が最も好ましいが、ポリアミド重合工程内であればいずれの段階で還元性リン化合物を添加してもよい。   Here, the polyamide polymerization step in the present invention refers to a step of producing a prepolymer having a degree of polymerization of about 10 from a polyamide raw material. In the present invention, the method of adding a reducible phosphorus compound to the polyamide raw material is most preferable from the viewpoint that suppression of copper precipitation and improvement in heat aging properties are easily achieved, but the reduction is performed at any stage within the polyamide polymerization process. A phosphorous compound may be added.

ポリアミド重合工程内で添加された還元性リン化合物は、その後の重合工程および溶融混練工程で、その一部は還元性を有した次亜リン酸あるいは亜リン酸化合物として残存するが、その他はリン酸、その金属塩あるいはエステル化合物などの非還元性リン化合物に酸化される。ポリアミド樹脂中に残存する還元性リン元素とは、残存する次亜リン酸化合物及び亜リン酸化合物のリン元素を意味している。ポリアミド樹脂中の還元性及び非還元性リン化合物のリン元素の濃度は、例えば、キャピラリー電気泳動法を用いて測定することができる。より具体的には、まず濃度が既知の次亜リン酸イオン標準液、亜リン酸イオン標準液、リン酸イオン標準液を、キャピラリー電気泳動法を用いて測定してキャリブレーションカーブを作成する。次に、ポリアミド樹脂を水に懸濁させ、室温状態で超音波処理した後、ろ別し、残液を用いてキャピラリー電気泳動法を用いて測定して、キャリブレーションカーブから次亜リン酸イオン、亜リン酸イオン及びリン酸イオン濃度を求めることができる。求まった次亜リン酸イオン及び亜リン酸イオン濃度を、ポリアミド10gに対するリン元素のモル量に換算することにより、ポリアミド樹脂に残存する還元性リン元素濃度を求めることができる。 In the subsequent polymerization process and melt-kneading process, some of the reducing phosphorus compound added in the polyamide polymerization process remains as a hypophosphorous acid or phosphite compound having reducibility, while others are phosphorous compounds. Oxidized to non-reducing phosphorus compounds such as acids, metal salts or ester compounds. The reducible phosphorus element remaining in the polyamide resin means the remaining phosphorous acid compound and the phosphorus element of the phosphorous acid compound. The concentration of the phosphorus element in the reducing and non-reducing phosphorus compounds in the polyamide resin can be measured using, for example, capillary electrophoresis. More specifically, first, a calibration curve is created by measuring a hypophosphite ion standard solution, a phosphite ion standard solution, and a phosphate ion standard solution with known concentrations using capillary electrophoresis. Next, the polyamide resin is suspended in water, sonicated at room temperature, filtered, and measured by capillary electrophoresis using the residual liquid. From the calibration curve, hypophosphite ions The phosphite ion and phosphate ion concentration can be determined. By converting the obtained hypophosphite ion and phosphite ion concentration into the molar amount of phosphorus element with respect to 10 6 g of polyamide, the concentration of reducing phosphorus element remaining in the polyamide resin can be obtained.

ポリアミド樹脂中に残存する還元性リン元素の量をポリアミド10gあたりXモルとすると、0≦X≦0.3の範囲であり、0≦X≦0.27の範囲が好ましく、0≦X≦0.25の範囲が最も好ましい。ここで、ポリアミド10gとは、ポリアミド樹脂中のポリアミド成分10gを意味する。この範囲にすることにより、銅析出の抑制や耐熱エージング性の向上が達成されやすい。 When the amount of the reducing phosphorus element remaining in the polyamide resin is X mole per 10 6 g of polyamide, the range is 0 ≦ X ≦ 0.3, preferably 0 ≦ X ≦ 0.27, and 0 ≦ X. The range of ≦ 0.25 is most preferred. Here, the polyamide 10 6 g means a polyamide component 10 6 g in the polyamide resin. By making it into this range, suppression of copper precipitation and improvement of heat aging resistance are easily achieved.

本発明に係るポリアミド樹脂組成物の製造方法では、ポリアミド樹脂に、銅化合物及びハロゲン化合物(但し、ハロゲン化銅を除く)を添加する。   In the method for producing a polyamide resin composition according to the present invention, a copper compound and a halogen compound (however, excluding copper halide) are added to the polyamide resin.

銅化合物及びハロゲン化合物の添加は、粉状、顆粒状、水溶液状態、マスターバッチのいずれで実施してもかまわない。また、ポリアミド表面にブレンド、コーティングして添加してもかまわないし、溶融混練して添加してもかまわないが、中でも、銅析出の抑制や耐熱エージング性の向上が達成されやすいという観点から、溶融混練する方法が好ましく、特に銅化合物とハロゲン化合物とをマスターバッチにして溶融混練する方法が好ましい。   The addition of the copper compound and the halogen compound may be carried out in any of powder, granule, aqueous solution, and master batch. Also, it may be added by blending and coating on the polyamide surface, or it may be added by melting and kneading. However, from the viewpoint that suppression of copper precipitation and improvement of heat aging resistance are easy to achieve. A method of kneading is preferable, and a method of melt-kneading a copper batch and a halogen compound as a master batch is particularly preferable.

溶融混練としては、一般に実用化されている混練機が適用でき実施できる。例えば一軸または多軸混練押出機、ロール、バンバリーミキサーを用いればよい。   The melt-kneading can be carried out by applying a kneader generally put into practical use. For example, a single-screw or multi-screw kneading extruder, a roll, or a Banbury mixer may be used.

ポリアミド樹脂に添加する銅元素の量を、ポリアミド樹脂中のポリアミド10gあたりYモルとすると、0.3≦Y≦5の範囲であり、0.5≦Y≦4.5が好ましく、0.5≦Y≦4が最も好ましい。この範囲にすることにより、銅析出の抑制や耐熱エージング性の向上が達成される。 Assuming that the amount of copper element added to the polyamide resin is Y mole per 10 6 g of polyamide in the polyamide resin, the range is 0.3 ≦ Y ≦ 5, preferably 0.5 ≦ Y ≦ 4.5. .5 ≦ Y ≦ 4 is most preferable. By making it into this range, suppression of copper precipitation and improvement of heat aging resistance are achieved.

また、ポリアミド樹脂中に残存する還元性リン元素のモル量Xと、銅化合物の添加量Yの関係は、0.25≦(Y−X)≦2.0の範囲が好ましく、0.50≦(Y−X)≦1.5の範囲がより好まし。この範囲にすることにより、銅析出の抑制や耐熱エージング性の向上が達成されやすい。   The relationship between the molar amount X of the reducing phosphorus element remaining in the polyamide resin and the addition amount Y of the copper compound is preferably in the range of 0.25 ≦ (Y−X) ≦ 2.0, and 0.50 ≦ The range of (Y−X) ≦ 1.5 is more preferable. By making it into this range, suppression of copper precipitation and improvement of heat aging resistance are easily achieved.

本発明のポリアミド樹脂組成物を各種部品に成形する場合、本発明のポリアミド樹脂組成物100質量部に対して、好ましくは0.005〜0.5質量部、より好ましくは0.05〜0.5質量部の高級脂肪酸化合物を添加することにより、流動性、可塑化、離型性等の成形性を改良できるとともに、より顕著に本発明の課題である耐熱エージング性の向上、銅析出の抑制をすることが可能である。   When the polyamide resin composition of the present invention is molded into various parts, it is preferably 0.005 to 0.5 parts by mass, more preferably 0.05 to 0.00 parts per 100 parts by mass of the polyamide resin composition of the present invention. By adding 5 parts by mass of a higher fatty acid compound, it is possible to improve moldability such as fluidity, plasticization, releasability and the like, and more prominently improve the heat aging resistance, which is the subject of the present invention, and suppress copper precipitation. It is possible to

高級脂肪酸化合物は、高級脂肪酸、高級脂肪酸金属塩、高級脂肪酸アミド及び高級脂肪酸エステルから選ばれる少なくとも一つの化合物である。中でも好ましい高級脂肪酸化合物は、高級脂肪酸はステアリン酸やエルカ酸、高級脂肪酸金属塩は、ステアリン酸カルシウム、ステアリン酸アルミニウム、モンタン酸カルシウム、モンタン酸ナトリウム、高級脂肪酸アミドは、エルカ酸アミド、オレイン酸アミド、エチレンビスステアリルアミド、N−ステアリルエルカアミド、N−ステアリルステアリルアミド、高級脂肪酸エステルはステアリルステアレートを例示することができる。この中でも、エルカ酸アミド、オレイン酸アミド、エチレンビスステアリルアミド、N−ステアリルエルカアミド、N−ステアリルステアリルアミド等の高級脂肪酸アミドを用いるこが好ましい。   The higher fatty acid compound is at least one compound selected from higher fatty acids, higher fatty acid metal salts, higher fatty acid amides and higher fatty acid esters. Among them, preferred higher fatty acid compounds are higher fatty acid stearic acid and erucic acid, higher fatty acid metal salt is calcium stearate, aluminum stearate, calcium montanate, sodium montanate, higher fatty acid amide is erucic acid amide, oleic acid amide, Ethylene bisstearyl amide, N-stearyl erucamide, N-stearyl stearyl amide and higher fatty acid esters can be exemplified by stearyl stearate. Among these, it is preferable to use higher fatty acid amides such as erucic acid amide, oleic acid amide, ethylene bisstearyl amide, N-stearyl erucamide, and N-stearyl stearyl amide.

ポリアミド樹脂組成物には、本発明の目的を損なわない程度で、ポリアミドに慣用的に用いられる添加剤、例えば顔料、染料、成形性改良剤、有機酸化防止剤、紫外線吸収剤、潤滑剤、可塑化剤、難燃剤、蛍光漂白剤、核剤、ゴム並びに強化材を添加することもできる。   The polyamide resin composition has additives that are conventionally used for polyamides, such as pigments, dyes, moldability improvers, organic antioxidants, ultraviolet absorbers, lubricants, plastics, to the extent that the object of the present invention is not impaired. Agents, flame retardants, fluorescent bleaches, nucleating agents, rubbers and reinforcing materials can also be added.

このようにして得られたポリアミド樹脂組成物は、周知の成形方法で成形品を得ることができる。該成形方法は、例えばプレス成形、射出成形、ガスアシスト射出成形、溶着成形、押出成形、吹込成形、フィルム成形、中空成形、多層成形、溶融紡糸などを挙げることができる。また、得られた成形品は、多くの成形用途(自動車部品、工業用用途部品、電機電子部品、ギア等)や押出用途(チューブ、棒、フィラメント、フィルム、ブロー等)において有用である。   The polyamide resin composition thus obtained can be molded into a molded product by a known molding method. Examples of the molding method include press molding, injection molding, gas assist injection molding, welding molding, extrusion molding, blow molding, film molding, hollow molding, multilayer molding, melt spinning, and the like. The obtained molded product is useful in many molding applications (automobile parts, industrial application parts, electrical and electronic parts, gears, etc.) and extrusion applications (tubes, bars, filaments, films, blows, etc.).

以下、本発明を実施例によって詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に制限されるものではない。以下の実施例、比較例において記載した物性評価は、以下のように行った。
(1)ポリアミドの相対粘度
JIS−K6810に準じて実施した。具体的には、98%硫酸を用いて、1%の濃度の溶解液((ポリアミド樹脂1g)/(98%硫酸100ml)の割合)を作成し、25℃の温度条件下で測定した。
(2)ポリアミドのカルボキシル基濃度比率
カルボキシル基濃度は、ペレットや粉砕した成形品等を、ベンジルアルコールに溶解して測定した。より具体的には試料約4.0gにベンジルアルコール50mlを加え170℃に加熱しフェノールフタレインを加える。溶解させた後、0.1規定NaOH水溶液で滴定し、カルボシキル基濃度を求める。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not restrict | limited to a following example, unless the summary is exceeded. The physical property evaluation described in the following examples and comparative examples was performed as follows.
(1) Relative viscosity of polyamide It implemented according to JIS-K6810. Specifically, a 1% concentration solution ((polyamide resin 1 g) / (98% sulfuric acid 100 ml)) was prepared using 98% sulfuric acid and measured under a temperature condition of 25 ° C.
(2) Carboxyl group concentration ratio of polyamide The carboxyl group concentration was measured by dissolving pellets or pulverized molded articles in benzyl alcohol. More specifically, 50 ml of benzyl alcohol is added to about 4.0 g of a sample, heated to 170 ° C., and phenolphthalein is added. After dissolving, titrate with 0.1 N NaOH aqueous solution to determine the carboxyl group concentration.

カルボキシル基濃度[COOH]=(f×0.1×A/S)×100f
但し、f=0.1規定NaOH水溶液のファクター
A=0.1規定NaOH水溶液の消費量(ml)
S=試料質量(g)
一方、アミノ基濃度は、ペレットや粉砕した成形品等を、フェノール水溶液に溶解して測定した。より具体的には試料約3.0を90%フェノール水溶液100mlに溶解させた後、1/40N塩酸を滴下し中和し中和点までに要した塩酸の量を求める。試料を加えない状態で同様の測定をし、ブランクとする。
Carboxyl group concentration [COOH] = (f × 0.1 × A / S) × 100f
However, f = factor of 0.1 N NaOH aqueous solution A = consumption amount of 0.1 N NaOH aqueous solution (ml)
S = Sample mass (g)
On the other hand, the amino group concentration was measured by dissolving pellets or pulverized molded articles in a phenol aqueous solution. More specifically, after dissolving about 3.0 of the sample in 100 ml of 90% aqueous phenol, 1 / 40N hydrochloric acid is added dropwise to neutralize and the amount of hydrochloric acid required up to the neutralization point is determined. The same measurement is performed without adding a sample, and a blank is obtained.

アミノ基濃度[NH]={F×(1/40)×(A−B)/S}×1000F
但し、f=1/40N塩酸のファクターA
A=1/40N塩酸の消費量〔ml〕
B:1/40N塩酸の消費量(ブランク時)〔ml〕
S:試料質量〔g〕
このようにして測定した[COOH]と[NH]とを用いて
カルボキシル基濃度比率(%)=〔COOH〕/(〔COOH〕+〔NH〕)}を算出した。
(3)ポリアミド中のリン元素濃度及び還元性リン元素濃度
(3−1)リン元素の濃度:試料0.5gを秤量し濃硫酸を20ml加え、ヒーター上で湿式分解した。冷却後、過酸化水素5mlを加え、ヒーター上で加熱し、全量が2〜3mlになるまで濃縮した。再び冷却し、純水で500mlとした。装置はThermo Jarrell Ash製IRIS/IPを用いて、高周波誘導結合プラズマ(ICP)発光分析により、波長213.618(nm)にて定量した。リン元素の濃度は、この定量値を用いて、ポリアミド10gに対するリン元素の濃度CP(モル)で表した。
Amino group concentration [NH 2 ] = {F × (1/40) × (A−B) / S} × 1000F
However, f = 1 / 40N hydrochloric acid factor A
A = consumption of 1 / 40N hydrochloric acid [ml]
B: Consumption of 1 / 40N hydrochloric acid (when blank) [ml]
S: Sample mass [g]
Using [COOH] and [NH 2 ] measured in this manner, the carboxyl group concentration ratio (%) = [COOH] / ([COOH] + [NH 2 ])} was calculated.
(3) Phosphorus element concentration and reducing phosphorus element concentration in polyamide (3-1) Phosphorus element concentration: 0.5 g of a sample was weighed, 20 ml of concentrated sulfuric acid was added, and wet decomposition was performed on a heater. After cooling, 5 ml of hydrogen peroxide was added, heated on a heater, and concentrated until the total amount became 2-3 ml. The mixture was cooled again to 500 ml with pure water. The apparatus was quantified at a wavelength of 213.618 (nm) by high frequency inductively coupled plasma (ICP) emission analysis using IRIS / IP manufactured by Thermo Jarrel Ash. The concentration of phosphorus element was expressed as the concentration CP (mol) of phosphorus element with respect to 10 6 g of polyamide using this quantitative value.

(3−2)リン元素の濃度:試料50gに100ccの水を加え、室温で15分間の超音波処理後ろ別し、ろ液を得た後、ヒューレットパッカード社製キャピラリー電気泳動装置HP3Dを用いて、次亜リン酸イオン、亜リン酸イオン及びリン酸イオンの濃度(モル)比率を測定した。濃度比の算出には、濃度が既知の次亜リン酸イオン標準液、亜リン酸イオン標準液、リン酸イオン標準液を同様に測定してキャリブレーションカーブを作成して行った。   (3-2) Phosphorus element concentration: 100 cc of water was added to 50 g of the sample, and after ultrasonic treatment at room temperature for 15 minutes, the filtrate was obtained, and then a capillary electrophoresis apparatus HP3D manufactured by Hewlett Packard was used. The concentration (molar) ratio of hypophosphite ion, phosphite ion and phosphate ion was measured. The concentration ratio was calculated by preparing a calibration curve by measuring hypophosphite ion standard solution, phosphite ion standard solution, and phosphate ion standard solution with known concentrations in the same manner.

還元性リン元素の濃度Xは、以下の式を用いて、ポリアミド10gに対するリンのモル量に換算して求めた。 The concentration X of the reducing phosphorus element was determined by converting to the molar amount of phosphorus with respect to 10 6 g of polyamide using the following formula.

還元性リン元素の濃度X=CP×(CP+CP)/(CP+CP+CP
CP:(3−1)で求めたポリアミド10gに対するリン元素の濃度(モル)
CP:(3−2)で求めた次亜リン酸イオンの濃度(モル)比率
CP:(3−2)で求めた亜リン酸イオンの濃度(モル)比率
CP:(3−2)で求めたリン酸イオンの濃度(モル)比率
(4)ポリアミド中のハロゲン元素、銅元素濃度及びハロゲン元素と銅元素とのモル比(ハロゲン/Cu)
ハロゲン化合物中のハロゲン元素濃度(Z)は、ヨウ素を例にとると、試料を高純度酸素で置換したフラスコ中で燃焼し、発生したガスを吸収液に捕集し、該捕集液中のヨウ素を1/100N硝酸銀溶液による電位差滴定法を用いて定量し、ポリアミド10gに対するモル量に換算した。
Reducing phosphorus element concentration X = CP × (CP 1 + CP 2 ) / (CP 1 + CP 2 + CP 3 )
CP: Concentration (mol) of phosphorus element with respect to 10 6 g of polyamide determined in (3-1)
CP 1 : Concentration (molar) ratio of hypophosphite ion obtained in (3-2) CP 2 : Concentration (molar) ratio of phosphorous acid ion obtained in (3-2) CP 3 : (3-2 ) Phosphate ion concentration (molar) ratio determined in (4) (4) Halogen element in copper, copper element concentration and molar ratio of halogen element to copper element (halogen / Cu)
Taking the iodine as an example, the halogen element concentration (Z) in the halogen compound is combusted in a flask in which the sample is replaced with high-purity oxygen, and the generated gas is collected in an absorbing solution. Iodine was quantified using a potentiometric titration method with a 1 / 100N silver nitrate solution, and converted to a molar amount based on 10 6 g of polyamide.

銅元素濃度(Y)は、試料に硫酸を加え、加熱しながら硝酸を滴下し有機分を分解し、該分解液を純水にて定容してICP発光分析(高周波プラズマ発光分析)法により定量し、ポリアミド10gに対するモル量に換算した。ICP発光分析装置は、SEIKO電子工業社製Vista−Proを用いた。 The copper element concentration (Y) was determined by adding sulfuric acid to the sample, dropping nitric acid while heating, decomposing the organic component, measuring the decomposition solution with pure water, and then using an ICP emission analysis (high frequency plasma emission analysis) method. It quantified and converted into the molar amount with respect to 10 6 g of polyamides. As an ICP emission analyzer, Vista-Pro manufactured by SEIKO ELECTRONIC INDUSTRY CO., LTD. Was used.

ハロゲン元素と銅元素のモル比(ハロゲン/Cu)は、上記それぞれのモル量を用い、(Y+Z)/Yの式に従って算出した。
(5)ポリアミド樹脂の成形機内滞留時の銅析出性
標準成形(a)で得た成形品と滞留成形(b)で得た成形品の銅濃度の差異を成形機内で析出した銅とし、下記式で成形機内滞留時の銅析出性を評価した。
The molar ratio of halogen element to copper element (halogen / Cu) was calculated according to the formula (Y + Z) / Y using the respective molar amounts.
(5) Precipitation of copper during retention of polyamide resin in molding machine The difference in copper concentration between the molded product obtained by standard molding (a) and the molded product obtained by retention molding (b) is defined as copper deposited in the molding machine. The copper precipitation during the stay in the molding machine was evaluated by the formula.

成形機内滞留時の銅析出性=(標準成形品(a)の銅濃度−滞留成形品(b)の銅濃度)×100/標準成形品(a)の銅濃度
なお、標準成形品(a)と滞留成形品(b)は以下の条件で製造した。
Copper precipitation during retention in molding machine = (copper concentration of standard molded product (a) −copper concentration of retained molded product (b)) × 100 / copper concentration of standard molded product (a) Standard molded product (a) The stay molded product (b) was produced under the following conditions.

(a)標準成形品:射出成形機は日精樹脂製PS−40E、金型はASTM−D638型を用いた。シリンダー温度は280℃、金型温度は80℃、可塑化ストロークは63mm、スクリュー回転数は200rpm、射出時間は10秒、冷却時間は15秒の条件で実施し射出成形品を得た。可塑化時の滞留時間は1分とした。   (A) Standard molded product: Nissei Plastic PS-40E was used as the injection molding machine, and ASTM-D638 type was used as the mold. Cylinder temperature was 280 ° C., mold temperature was 80 ° C., plasticizing stroke was 63 mm, screw rotation speed was 200 rpm, injection time was 10 seconds, and cooling time was 15 seconds to obtain an injection molded product. The residence time during plasticization was 1 minute.

(b)滞留成形品:射出成形機は日精樹脂製PS−40E、金型はASTM−D638型を用いた。シリンダー温度は280℃、金型温度は80℃、可塑化ストロークは63mm、スクリュー回転数は200rpm、射出時間は10秒、冷却時間は15秒の条件で実施し射出成形品を得た。可塑化時の滞留時間は60分とした。
(6)ポリアミド樹脂成形品の長期耐熱エージング性
上記(5)の標準成形品(a)を熱風オーブン中で180℃、所定時間処理した後、ASTM−D638に準じて引張強度を測定した。そして熱処理前に測定した引張強度に対する熱処理後の引張強度を引張強度保持率として算出し、引張強度保持率が50%となる熱処理時間を半減期とした。
[実施例1]
<ポリアミド重合工程>
バッチ重合で実施した。ポリアミド66原料(ヘキサメチレンジアミンとアジピン酸との等モル塩)を含有する50質量%水溶液に、次亜リン酸ナトリウムを添加した。この水溶液を濃縮槽に仕込み、約50℃の温度条件で混合し窒素で置換した。次に温度を約50から約150℃まで昇温した。この際濃縮槽内の圧力をゲージ圧にして約0.05〜0.15MPaに保つため水を系外に除去しながら加熱を続け約80%まで濃縮した。該濃縮溶液をオートクレーブに移送し温度を150℃から約220℃まで昇温して圧力をゲージ圧にして約1.77MPaまで上昇させた。その後、温度を約220℃から約260℃まで昇温するが、圧力は約1.77MPaで保つように水を系外に除去しながら加熱を行った。最後に温度を約280℃まで昇温しながら圧力を大気圧までゆっくり降圧した。窒素で加圧し下部ノズルからストランド状にし、水冷、カッティングを行いペレット状で排出した。得られたペレットを窒素気流中150℃の条件下で乾燥しポリアミド樹脂を得た。10gのポリアミド66に対して、リン元素は2.26モル含有されていた。このうち、還元性リン元素は0.23モルであった。
<ポリアミド樹脂組成物製造工程>
得られたポリアミド樹脂に対して、銅化合物としてのヨウ化銅(CuI)とハロゲン化合物としてのヨウ化カリウム(KI)とを、二軸押出機(東芝機械(株)製TEM35)を用いて290℃の温度条件で、溶融混練法で添加した。ヨウ化銅及びヨウ化カリウムの添加量は、ポリアミド10gに対して、それぞれ0.787モルと3.937モルになるように添加した。評価結果を表1に示す。長期エージング性は700時間と長く、また、銅析出性は12%と低く、良好なポリアミド樹脂組成物を得られることがわかった。
[実施例2]
<ポリアミド重合工程>
バッチ重合で実施した。ポリアミド66原料(ヘキサメチレンジアミンとアジピン酸との等モル塩)を含有する50質量%水溶液に、次亜リン酸ナトリウムを添加した。また、末端基調整剤としてアジピン酸を添加した。この水溶液を濃縮槽に仕込み、約50℃の温度条件で混合し窒素で置換した。次に温度を約50から約150℃まで昇温した。この際濃縮槽内の圧力をゲージ圧にして約0.05〜0.15MPaに保つため水を系外に除去しながら加熱を続け約80%まで濃縮した。該濃縮溶液をオートクレーブに移送し温度を150℃から約220℃まで昇温して圧力をゲージ圧にして約1.77MPaまで上昇させた。その後、温度を約220℃から約260℃まで昇温するが、圧力は約1.77MPaで保つように水を系外に除去しながら加熱を行った。最後に温度を約280℃まで昇温しながら圧力を大気圧までゆっくり降圧した。窒素で加圧し下部ノズルからストランド状にし、水冷、カッティングを行いペレット状で排出した。得られたペレットを窒素気流中150℃の条件下で乾燥しポリアミド樹脂を得た。10gのポリアミド66に対して、リン元素は2.26モル含有されていた。このうち、還元性リン元素は0.20モルであった。
<ポリアミド樹脂組成物製造工程>
得られたポリアミド樹脂に対して、ヨウ化銅(CuI)とヨウ化カリウム(KI)とを、二軸押出機(東芝機械(株)製TEM35)を用いて290℃の温度条件で、溶融混練法で添加した。ヨウ化銅及びヨウ化カリウムの添加量は、ポリアミド10gに対して、それぞれ0.787モルと3.937モルになるように添加した。評価結果を表1に示す。長期エージング性は625時間と長く、また、銅析出性は10%と低く、良好なポリアミド樹脂組成物を得られることがわかった。
[実施例3]
<ポリアミド重合工程>
連続重合法で実施した。ポリアミド66原料を含有する50質量%水溶液に、次亜リン酸ナトリウム添加した。この水溶液を約3000Kg/hrの速度で濃縮層/反応器に注入し、約90%まで濃縮した。次いでフラッシャーに排出し、圧力をゆっくり大気圧まで降圧した。次の容器に移送し、約280℃の温度、大気圧以下の条件下で保持した。次いで、樹脂は押し出されてストランドとなり、冷却、カッティングされペレットとなり、ポリアミド樹脂を得た。10gのポリアミド66に対して、リン元素は1.13モル含有されていた。このうち、還元性リン元素は0.03モルであった。
<ポリアミド樹脂組成物製造工程>
得られたポリアミド樹脂に対して、ヨウ化銅(CuI)とヨウ化カリウム(KI)とを、二軸押出機(東芝機械(株)製TEM35)を用いて290℃の温度条件で、溶融混練法で添加した。ヨウ化銅及びヨウ化カリウムの添加量は、ポリアミド10gに対して、それぞれ0.53モルと9.98モルになるように添加した。評価結果を表1に示す。長期エージング性は625時間と長く、また、銅析出性は10%と低く、良好なポリアミド樹脂組成物を得られることがわかった。
[実施例4]
<ポリアミド重合工程>
連続重合法で実施した。ポリアミド66原料を含有する50質量%水溶液に、次亜リン酸ナトリウムとアルミン酸ナトリウム(Na1.42Al0.86)を添加した。この水溶液を約3000Kg/hrの速度で濃縮層/反応器に注入し、約90%まで濃縮した。次いでフラッシャーに排出し、圧力をゆっくり大気圧まで降圧した。次の容器に移送し、約280℃の温度、大気圧以下の条件下で保持した。次いで、樹脂は押し出されてストランドとなり、冷却、カッティングされペレットとなり、ポリアミド樹脂を得た。10gのポリアミド66に対して、リン元素は0.40モル含有されていた。このうち、還元性リン元素は0.00モルであった。また、アルミニウム元素は0.69モルであった。
<ポリアミド樹脂組成物製造工程>
得られたポリアミド樹脂に対して、ヨウ化銅(CuI)とヨウ化カリウム(KI)とを、二軸押出機(東芝機械(株)製TEM35)を用いて290℃の温度条件で、溶融混練法で添加した。ヨウ化銅及びヨウ化カリウムの添加量は、ポリアミド10gに対して、それぞれ0.53モルと9.98モルになるように添加した。評価結果を表2に示す。長期エージング性は650時間と長く、また、銅析出性は8%と低く、良好なポリアミド樹脂組成物を得られることがわかった。
[実施例5]
<ポリアミド重合工程>
連続重合法で実施した。ポリアミド66原料を含有する50質量%水溶液に、次亜リン酸ナトリウムとアルミン酸ナトリウム(Na1.42Al0.86)を添加した。この水溶液を約3000Kg/hrの速度で濃縮層/反応器に注入し、約90%まで濃縮した。次いでフラッシャーに排出し、圧力をゆっくり大気圧まで降圧した。次の容器に移送し、約280℃の温度、大気圧以下の条件下で保持した。次いで、樹脂は押し出されてストランドとなり、冷却、カッティングされペレットとなり、ポリアミド樹脂を得た。10gのポリアミド66に対して、リン元素は0.40モル含有されていた。このうち、還元性リン元素は0.00モルであった。また、アルミニウム元素は0.69モルであった。
<ポリアミド樹脂組成物製造工程>
得られたポリアミド樹脂に対して、ヨウ化銅(CuI)、ヨウ化カリウム(KI)とエチレンビスステアリルアミドを、二軸押出機(東芝機械(株)製TEM35)を用いて290℃の温度条件で、溶融混練法で添加した。ヨウ化銅及びヨウ化カリウムの添加量は、ポリアミド10gに対して、それぞれ1.25モルと6.25モルになるように添加した。また、エチレンビスステアリルアミドはポリアミド100重量部に対して、0.1重量部になるように添加した。評価結果を表2に示す。長期エージング性は750時間と長く、また、銅析出性は12%と低く、良好なポリアミド樹脂組成物を得られることがわかった。
(B) Residual molded product: Nissei Plastic PS-40E was used as the injection molding machine, and ASTM-D638 type was used as the mold. Cylinder temperature was 280 ° C., mold temperature was 80 ° C., plasticizing stroke was 63 mm, screw rotation speed was 200 rpm, injection time was 10 seconds, and cooling time was 15 seconds to obtain an injection molded product. The residence time during plasticization was 60 minutes.
(6) Long-term heat aging resistance of polyamide resin molded product The standard molded product (a) of (5) above was treated in a hot air oven at 180 ° C. for a predetermined time, and then the tensile strength was measured according to ASTM-D638. And the tensile strength after the heat treatment with respect to the tensile strength measured before the heat treatment was calculated as the tensile strength retention, and the heat treatment time at which the tensile strength retention was 50% was defined as the half life.
[Example 1]
<Polyamide polymerization process>
Performed by batch polymerization. Sodium hypophosphite was added to a 50 mass% aqueous solution containing a polyamide 66 raw material (an equimolar salt of hexamethylenediamine and adipic acid). This aqueous solution was charged into a concentration tank, mixed under a temperature condition of about 50 ° C., and replaced with nitrogen. The temperature was then raised from about 50 to about 150 ° C. At this time, in order to keep the pressure in the concentration tank at a gauge pressure of about 0.05 to 0.15 MPa, heating was continued while removing water out of the system and the solution was concentrated to about 80%. The concentrated solution was transferred to an autoclave, the temperature was raised from 150 ° C. to about 220 ° C., and the pressure was increased to about 1.77 MPa using a gauge pressure. Thereafter, the temperature was raised from about 220 ° C. to about 260 ° C., and heating was performed while removing water from the system so as to keep the pressure at about 1.77 MPa. Finally, the pressure was slowly reduced to atmospheric pressure while raising the temperature to about 280 ° C. Pressurized with nitrogen to form a strand from the lower nozzle, cooled with water, cut and discharged as a pellet. The obtained pellet was dried in a nitrogen stream at 150 ° C. to obtain a polyamide resin. The phosphorus element contained 2.26 mol with respect to 10 6 g of polyamide 66. Of these, the reducing phosphorus element was 0.23 mol.
<Polyamide resin composition production process>
For the obtained polyamide resin, copper iodide (CuI) as a copper compound and potassium iodide (KI) as a halogen compound were 290 using a twin screw extruder (TEM35 manufactured by Toshiba Machine Co., Ltd.). The mixture was added by a melt kneading method under a temperature condition of ° C. Addition amounts of copper iodide and potassium iodide were 0.787 mol and 3.937 mol, respectively, with respect to 10 6 g of polyamide. The evaluation results are shown in Table 1. The long-term aging property was as long as 700 hours, and the copper precipitation property was as low as 12%, indicating that a good polyamide resin composition can be obtained.
[Example 2]
<Polyamide polymerization process>
Performed by batch polymerization. Sodium hypophosphite was added to a 50 mass% aqueous solution containing a polyamide 66 raw material (an equimolar salt of hexamethylenediamine and adipic acid). Moreover, adipic acid was added as a terminal group regulator. This aqueous solution was charged into a concentration tank, mixed under a temperature condition of about 50 ° C., and replaced with nitrogen. The temperature was then raised from about 50 to about 150 ° C. At this time, in order to keep the pressure in the concentration tank at a gauge pressure of about 0.05 to 0.15 MPa, heating was continued while removing water out of the system and the solution was concentrated to about 80%. The concentrated solution was transferred to an autoclave, the temperature was raised from 150 ° C. to about 220 ° C., and the pressure was increased to about 1.77 MPa using a gauge pressure. Thereafter, the temperature was raised from about 220 ° C. to about 260 ° C., and heating was performed while removing water from the system so as to keep the pressure at about 1.77 MPa. Finally, the pressure was slowly reduced to atmospheric pressure while raising the temperature to about 280 ° C. Pressurized with nitrogen to form a strand from the lower nozzle, cooled with water, cut and discharged as a pellet. The obtained pellet was dried in a nitrogen stream at 150 ° C. to obtain a polyamide resin. The phosphorus element contained 2.26 mol with respect to 10 6 g of polyamide 66. Of these, the reducing phosphorus element was 0.20 mol.
<Polyamide resin composition production process>
The resulting polyamide resin is melt kneaded with copper iodide (CuI) and potassium iodide (KI) at a temperature of 290 ° C. using a twin screw extruder (TEM35 manufactured by Toshiba Machine Co., Ltd.). Added by the method. Addition amounts of copper iodide and potassium iodide were 0.787 mol and 3.937 mol, respectively, with respect to 10 6 g of polyamide. The evaluation results are shown in Table 1. The long-term aging property was as long as 625 hours, and the copper precipitation property was as low as 10%, indicating that a good polyamide resin composition can be obtained.
[Example 3]
<Polyamide polymerization process>
This was carried out by a continuous polymerization method. Sodium hypophosphite was added to a 50 mass% aqueous solution containing polyamide 66 raw material. This aqueous solution was poured into the concentration layer / reactor at a rate of about 3000 Kg / hr and concentrated to about 90%. Subsequently, it discharged to the flasher and the pressure was slowly reduced to atmospheric pressure. It was transferred to the next container and kept under conditions of a temperature of about 280 ° C. and a pressure below atmospheric pressure. Next, the resin was extruded to form a strand, which was cooled and cut into pellets to obtain a polyamide resin. The phosphorus element contained 1.13 mol with respect to 10 6 g of polyamide 66. Of these, the reducing phosphorus element was 0.03 mol.
<Polyamide resin composition production process>
The resulting polyamide resin is melt kneaded with copper iodide (CuI) and potassium iodide (KI) at a temperature of 290 ° C. using a twin screw extruder (TEM35 manufactured by Toshiba Machine Co., Ltd.). Added by the method. The addition amounts of copper iodide and potassium iodide were 0.53 mol and 9.98 mol, respectively, with respect to 10 6 g of polyamide. The evaluation results are shown in Table 1. The long-term aging property was as long as 625 hours, and the copper precipitation property was as low as 10%, indicating that a good polyamide resin composition can be obtained.
[Example 4]
<Polyamide polymerization process>
This was carried out by a continuous polymerization method. Sodium hypophosphite and sodium aluminate (Na 1.42 Al 0.86 O 2 ) were added to a 50 mass% aqueous solution containing the polyamide 66 raw material. This aqueous solution was poured into the concentration layer / reactor at a rate of about 3000 Kg / hr and concentrated to about 90%. Subsequently, it discharged to the flasher and the pressure was slowly reduced to atmospheric pressure. It was transferred to the next container and kept under conditions of a temperature of about 280 ° C. and a pressure below atmospheric pressure. Next, the resin was extruded to form a strand, which was cooled and cut into pellets to obtain a polyamide resin. 0.46 mol of phosphorus element was contained with respect to 10 6 g of polyamide 66. Of these, the reducing phosphorus element was 0.00 mol. Moreover, the aluminum element was 0.69 mol.
<Polyamide resin composition production process>
The resulting polyamide resin is melt kneaded with copper iodide (CuI) and potassium iodide (KI) at a temperature of 290 ° C. using a twin screw extruder (TEM35 manufactured by Toshiba Machine Co., Ltd.). Added by the method. The addition amounts of copper iodide and potassium iodide were 0.53 mol and 9.98 mol, respectively, with respect to 10 6 g of polyamide. The evaluation results are shown in Table 2. The long-term aging property was as long as 650 hours, and the copper precipitation property was as low as 8%, indicating that a good polyamide resin composition can be obtained.
[Example 5]
<Polyamide polymerization process>
This was carried out by a continuous polymerization method. Sodium hypophosphite and sodium aluminate (Na 1.42 Al 0.86 O 2 ) were added to a 50 mass% aqueous solution containing the polyamide 66 raw material. This aqueous solution was poured into the concentration layer / reactor at a rate of about 3000 Kg / hr and concentrated to about 90%. Subsequently, it discharged to the flasher and the pressure was slowly reduced to atmospheric pressure. It was transferred to the next container and kept under conditions of a temperature of about 280 ° C. and a pressure below atmospheric pressure. Next, the resin was extruded to form a strand, which was cooled and cut into pellets to obtain a polyamide resin. 0.46 mol of phosphorus element was contained with respect to 10 6 g of polyamide 66. Of these, the reducing phosphorus element was 0.00 mol. Moreover, the aluminum element was 0.69 mol.
<Polyamide resin composition production process>
With respect to the obtained polyamide resin, copper iodide (CuI), potassium iodide (KI), and ethylenebisstearylamide were mixed at a temperature of 290 ° C. using a twin screw extruder (TEM35 manufactured by Toshiba Machine Co., Ltd.). And added by melt kneading. The addition amounts of copper iodide and potassium iodide were respectively 1.25 mol and 6.25 mol with respect to 10 6 g of polyamide. Further, ethylenebisstearylamide was added so as to be 0.1 part by weight with respect to 100 parts by weight of polyamide. The evaluation results are shown in Table 2. The long-term aging property was as long as 750 hours, and the copper precipitation property was as low as 12%, indicating that a good polyamide resin composition can be obtained.

Figure 0005042541
Figure 0005042541

[比較例1]
<ポリアミド重合工程>
次亜リン酸ナトリウムを添加しない点を除いて、実施例2と同様の方法でバッチ重合法を実施しポリアミドを得た。
<ポリアミド樹脂組成物製造工程>
得られたポリアミドに対して、次亜リン酸ナトリウム、ヨウ化銅(CuI)及びヨウ化カリウム(KI)を、二軸押出機(東芝機械(株)製TEM35)を用いて290℃の温度条件で、溶融混練法で添加した。次亜リン酸ナトリウム、ヨウ化銅及びヨウ化カリウムの添加量は、ポリアミド10gに対して、それぞれ2.26モル、0.79モル及び3.94モルになるように添加した。
[Comparative Example 1]
<Polyamide polymerization process>
A polyamide was obtained by carrying out a batch polymerization method in the same manner as in Example 2 except that sodium hypophosphite was not added.
<Polyamide resin composition production process>
Sodium hypophosphite, copper iodide (CuI), and potassium iodide (KI) were added to the obtained polyamide at a temperature condition of 290 ° C. using a twin screw extruder (TEM35 manufactured by Toshiba Machine Co., Ltd.). And added by melt kneading. Sodium hypophosphite, copper iodide and potassium iodide were added in amounts of 2.26 mol, 0.79 mol and 3.94 mol, respectively, with respect to 10 6 g of polyamide.

評価結果を表2に示す。本比較例では、ポリアミド樹脂重合工程で還元性リン化合物を添加せず、押出機による溶融混練法の実施時に添加したので、還元性リン化合物がほとんど酸化されず、還元性を持ったまま残存したものと考えられる。その結果、長期エージング性は500時間と短く、また、銅析出性は35%と高く、高品質のポリアミド樹脂組成物を得られないことがわかった。
[比較例2]
<ポリアミド重合工程>
比較例1と同様の方法でポリアミドを得た。
<ポリアミド樹脂組成物製造工程>
得られたポリアミドに次亜リン酸ナトリウムを添加し、二軸押出機で溶融混練してポリアミド樹脂を得た。このポリアミド樹脂中のリン濃度は、10gのポリアミド66に対して、リン元素は2.26モル含有されていた。このうち還元性リン元素は、2.20モルであった。
The evaluation results are shown in Table 2. In this comparative example, the reducing phosphorus compound was not added in the polyamide resin polymerization step, but was added at the time of the melt kneading method using an extruder, so the reducing phosphorus compound was hardly oxidized and remained reducible. It is considered a thing. As a result, the long-term aging property was as short as 500 hours, and the copper precipitation property was as high as 35%, indicating that a high-quality polyamide resin composition could not be obtained.
[Comparative Example 2]
<Polyamide polymerization process>
A polyamide was obtained in the same manner as in Comparative Example 1.
<Polyamide resin composition production process>
Sodium hypophosphite was added to the obtained polyamide and melt-kneaded with a twin screw extruder to obtain a polyamide resin. The phosphorus concentration in this polyamide resin was 2.26 mol of phosphorus element with respect to 10 6 g of polyamide 66. Of these, the reducing phosphorus element was 2.20 mol.

得られたポリアミド樹脂に対して、ヨウ化銅(CuI)及びヨウ化カリウム(KI)を、二軸押出機(東芝機械(株)製TEM35)を用いて290℃の温度条件で、溶融混練法で添加した。ヨウ化銅及びヨウ化カリウムの添加量は、ポリアミド10gに対して、それぞれ0.787モル及び3.937モルになるように添加した。 A melt-kneading method of copper iodide (CuI) and potassium iodide (KI) with respect to the obtained polyamide resin at a temperature condition of 290 ° C. using a twin screw extruder (TEM35 manufactured by Toshiba Machine Co., Ltd.). Added at. Addition amounts of copper iodide and potassium iodide were 0.787 mol and 3.937 mol, respectively, with respect to 10 6 g of polyamide.

評価結果を表2に示す。本比較例においても、ポリアミド樹脂重合工程で還元性リン化合物を添加せず、押出機による溶融混練法の実施時に添加したので、還元性リン化合物がほとんど酸化されず、還元性を持ったまま残存したものと考えられる。その結果、その結果、長期エージング性は500時間と短く、また、銅析出性は30%と高く、高品質のポリアミド樹脂組成物を得られないことがわかった。   The evaluation results are shown in Table 2. Also in this comparative example, the reducing phosphorus compound was not added in the polyamide resin polymerization step, but was added at the time of the melt kneading method by the extruder, so that the reducing phosphorus compound was hardly oxidized and remained reducible. It is thought that. As a result, it was found that the long-term aging property was as short as 500 hours and the copper precipitation property was as high as 30%, so that a high-quality polyamide resin composition could not be obtained.

Figure 0005042541
Figure 0005042541

以上のように、本発明に係る製造方法によれば、長期エージング性に優れ、銅析出性の低いポリアミド樹脂組成物を得られることが確認された。   As described above, according to the production method of the present invention, it was confirmed that a polyamide resin composition having excellent long-term aging properties and low copper precipitation could be obtained.

本発明は、従来のポリアミド樹脂の機械的特性、耐熱性、耐薬品性を損なうことなく、更に耐熱エージング性の向上、銅析出が抑制されたポリアミド樹脂組成物及びその製造方法を提供するものであり、多くの成形用途(自動車部品、工業用途部品、電気電子部品、ギアなど)や押出用途(チューブ、棒、フィラメント、フィルム、ブローなど)において好適に利用される。   The present invention provides a polyamide resin composition in which the mechanical properties, heat resistance, and chemical resistance of conventional polyamide resins are not impaired, and further improved heat aging resistance and copper deposition are suppressed, and a method for producing the same. Yes, it is suitably used in many molding applications (automobile parts, industrial parts, electrical and electronic parts, gears, etc.) and extrusion applications (tubes, rods, filaments, films, blows, etc.).

Claims (6)

ポリアミド樹脂組成物の製造方法であって、
少なくとも一種の還元性リン化合物を添加し、ポリアミド樹脂を得るポリアミド重合工程と、
前記ポリアミド樹脂に、銅化合物及びハロゲン化合物(但し、ハロゲン化銅を除く)を添加してポリアミド樹脂組成物を得るポリアミド樹脂組成物製造工程と、を含み、
前記ポリアミド樹脂重合工程において、該ポリアミド樹脂中に残存する還元性リン元素の量を該ポリアミド樹脂中のポリアミド10 6 gあたりXモルとしたとき、Xが下記式(I)を満たすように、還元性リン元素の量を低減させる、製造方法。
0≦X≦0.3・・・(I)
A method for producing a polyamide resin composition, comprising:
A polyamide polymerization step of adding at least one reducing phosphorus compound to obtain a polyamide resin;
The polyamide resin, saw-containing copper compound and a halogen compound (excluding copper halide) and the polyamide resin composition production process to obtain a polyamide resin composition was added and the,
In the polyamide resin polymerization step, when the amount of the reducing phosphorus element remaining in the polyamide resin is X mol per 10 6 g of polyamide in the polyamide resin , reduction is performed so that X satisfies the following formula (I): The manufacturing method which reduces the quantity of a characteristic phosphorus element .
0 ≦ X ≦ 0.3 (I)
前記ポリアミド重合工程において、前記ポリアミド樹脂に添加する銅元素の量を該ポリアミド樹脂中のポリアミド106gあたりYモルとしたとき、Yが下記式(II)を満たす、請求項1に記載の製造方法。
0.3≦Y≦5・・・(II)
2. The production according to claim 1, wherein, in the polyamide polymerization step, Y satisfies the following formula (II) when the amount of copper element added to the polyamide resin is Y mol per 10 6 g of polyamide in the polyamide resin. Method.
0.3 ≦ Y ≦ 5 (II)
前記還元性リン化合物は、亜リン酸類、次亜リン酸類、亜リン酸金属塩類、次亜リン酸金属塩類、及び亜リン酸エステル類からなる群から選ばれる少なくとも1種類である、請求項1または2に記載の製造方法。 The reducing phosphorus compound is at least one selected from the group consisting of phosphorous acids, hypophosphorous acids, metal phosphites, metal hypophosphites, and phosphites. Or the manufacturing method of 2 . 前記ポリアミド樹脂組成物製造工程において、前記銅化合物及びハロゲン化合物を溶融混練法によって前記ポリアミド樹脂に添加する、請求項1からのいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3 , wherein, in the polyamide resin composition manufacturing step, the copper compound and the halogen compound are added to the polyamide resin by a melt kneading method. 前記ポリアミド樹脂組成物製造工程において、ハロゲン元素と銅元素とのモル比(ハロゲン/銅)が3〜30となるように、前記銅化合物及び前記ハロゲン化合物を前記ポリアミド樹脂に添加する、請求項1からのいずれか1項に記載のポリアミド樹脂組成物の製造方法。 In the said polyamide resin composition manufacturing process, the said copper compound and the said halogen compound are added to the said polyamide resin so that the molar ratio (halogen / copper) of a halogen element and a copper element may be 3-30. 5. The method for producing a polyamide resin composition according to any one of items 1 to 4 . 請求項1からのいずれか1項に記載の製造方法により製造される、ポリアミド樹脂組成物。 The polyamide resin composition manufactured by the manufacturing method of any one of Claim 1 to 5 .
JP2006177147A 2006-06-27 2006-06-27 Method for producing polyamide resin composition, and polyamide resin composition Expired - Fee Related JP5042541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006177147A JP5042541B2 (en) 2006-06-27 2006-06-27 Method for producing polyamide resin composition, and polyamide resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006177147A JP5042541B2 (en) 2006-06-27 2006-06-27 Method for producing polyamide resin composition, and polyamide resin composition

Publications (2)

Publication Number Publication Date
JP2008007563A JP2008007563A (en) 2008-01-17
JP5042541B2 true JP5042541B2 (en) 2012-10-03

Family

ID=39066058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006177147A Expired - Fee Related JP5042541B2 (en) 2006-06-27 2006-06-27 Method for producing polyamide resin composition, and polyamide resin composition

Country Status (1)

Country Link
JP (1) JP5042541B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2976000B1 (en) * 2011-05-31 2014-12-26 Arkema France PROCESS FOR INCREASING THE RECYCLABILITY OF A POLYAMIDE USED IN SINTERING
JP2015040300A (en) * 2013-08-23 2015-03-02 旭化成ケミカルズ株式会社 Polyamide resin composition, and molded product
KR101720723B1 (en) * 2013-09-03 2017-03-28 롯데첨단소재(주) Molded article for automobile using thermoplastic resin composition
KR101738805B1 (en) 2013-09-27 2017-05-22 아사히 가세이 케미칼즈 가부시키가이샤 Polyamide resin composition and molded product
US20170009050A1 (en) 2014-02-21 2017-01-12 Asahi Kasei Kabushiki Kaisha Polyamide resin composition, method for producing polyamide resin composition, and molded product
JP2015199938A (en) * 2014-04-03 2015-11-12 旭化成ケミカルズ株式会社 Polyamide resin composition and molded product
US20160108205A1 (en) * 2014-10-15 2016-04-21 Asahi Kasei Chemicals Corporation Polyamide resin composition and molded article
JP2016079274A (en) * 2014-10-15 2016-05-16 旭化成ケミカルズ株式会社 Polyamide resin composition and molding
US9951202B2 (en) * 2014-10-15 2018-04-24 Asahi Kasei Kabushiki Kaisha Polyamide resin composition and molded article
CN105754331B (en) * 2014-12-18 2019-01-11 旭化成株式会社 Amilan polyamide resin composition and formed body
JP6822766B2 (en) 2015-01-22 2021-01-27 旭化成株式会社 Mold containing polyamide resin composition
JP6457062B2 (en) 2015-02-20 2019-01-23 旭化成株式会社 Polyamide resin composition, method for producing polyamide resin composition, and molded article
JP2017039818A (en) * 2015-08-18 2017-02-23 旭化成株式会社 Polyamide resin composition, method for producing polyamide resin composition, and molded article

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747690B2 (en) * 1989-08-17 1995-05-24 東レ株式会社 Polyamide resin composition
JPH04202357A (en) * 1990-11-29 1992-07-23 Toray Ind Inc Flame retardant polyamide resin composition excellent in thermal stability
DE4103210A1 (en) * 1991-02-02 1992-08-06 Huels Chemische Werke Ag METHOD FOR PRODUCING A THERMOPLASTICALLY PROCESSABLE, AROMATIC POLYAMIDE
JP3384895B2 (en) * 1994-10-31 2003-03-10 株式会社巴川製紙所 Method for producing polyamide resin
JP3560110B2 (en) * 1996-11-18 2004-09-02 三菱化学株式会社 Method for producing polyamide composition
JP2003055549A (en) * 2001-06-05 2003-02-26 Kuraray Co Ltd Polyamide composition
JP4060251B2 (en) * 2002-07-10 2008-03-12 旭化成ケミカルズ株式会社 Polyamide resin composition

Also Published As

Publication number Publication date
JP2008007563A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
JP5042541B2 (en) Method for producing polyamide resin composition, and polyamide resin composition
JP4854977B2 (en) Method for producing polyamide resin composition
US7960451B2 (en) Method for producing polyamide masterbatch
JP5497921B2 (en) Copolyamide
JP4060251B2 (en) Polyamide resin composition
JP5949546B2 (en) Polyamide resin composition
JP5825255B2 (en) Polyamide resin composition
JP5964964B2 (en) Polyamide, polyamide composition and molded article
JP6457062B2 (en) Polyamide resin composition, method for producing polyamide resin composition, and molded article
US7491763B2 (en) Polyamide composition
JP4693435B2 (en) Polyamide resin composition and method for producing the same
JP4112459B2 (en) Polyamide resin composition and method for producing the same
JP5183030B2 (en) Polyamide resin composition and method for producing the same
JP2007246581A (en) Polyamide resin composition and its production method
JP2015129243A (en) Polyamide composition and molded product
JP2007302880A (en) Method for producing polyamide masterbatch
JP6034074B2 (en) Copolyamide
JP2011057932A (en) Transportation equipment element
JP6042114B2 (en) Copolymerized polyamide and copolymerized polyamide composition
JP6290591B2 (en) Method for producing polyamide resin composition
JP6042110B2 (en) Copolyamide
JPH11130959A (en) Polyamide resin composition
JP2011057930A (en) Impact-resistant polyamide resin composition
JP2023086896A (en) Polyamide composition and molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120711

R150 Certificate of patent or registration of utility model

Ref document number: 5042541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees