JP5040083B2 - Method for producing core-shell type polymer particles - Google Patents

Method for producing core-shell type polymer particles Download PDF

Info

Publication number
JP5040083B2
JP5040083B2 JP2005240253A JP2005240253A JP5040083B2 JP 5040083 B2 JP5040083 B2 JP 5040083B2 JP 2005240253 A JP2005240253 A JP 2005240253A JP 2005240253 A JP2005240253 A JP 2005240253A JP 5040083 B2 JP5040083 B2 JP 5040083B2
Authority
JP
Japan
Prior art keywords
polymer particles
core
monomer
type polymer
shell type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005240253A
Other languages
Japanese (ja)
Other versions
JP2007056077A (en
Inventor
義哲 姜
敦彦 小倉
崇 岩田
慎吾 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2005240253A priority Critical patent/JP5040083B2/en
Publication of JP2007056077A publication Critical patent/JP2007056077A/en
Application granted granted Critical
Publication of JP5040083B2 publication Critical patent/JP5040083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、DDS坦体、集積材料素材、医薬診断薬、粉体塗料、化粧品等の用途が期待されるシャープな粒子分布を有する、単分散のコア−シェル型ポリマー粒子の製造方法に関する。   The present invention relates to a method for producing monodisperse core-shell polymer particles having a sharp particle distribution expected to be used for DDS carriers, integrated material materials, pharmaceutical diagnostics, powder paints, cosmetics and the like.

従来、親水性マクロモノマーと疎水性ビニルモノマーとのラジカル共重合により、親水性シェル−疎水性コア型ポリマー微粒子が得られることが知られている。例えば、非特許文献1及び2には、水溶性マクロモノマーとスチレンとを、水/エタノール混合溶媒中でラジカル共重合させると、球状のコア−シェル構造を有するポリマー微粒子が生成することが報告されている。しかし、これら文献に記載された方法では、80%以上の収率を得るために12時間以上の反応を行わなければならず、しかもシャープな粒度分布を有するコア−シェル型ポリマー微粒子を製造することが困難であった。   Conventionally, it is known that hydrophilic shell-hydrophobic core type polymer fine particles can be obtained by radical copolymerization of a hydrophilic macromonomer and a hydrophobic vinyl monomer. For example, Non-Patent Documents 1 and 2 report that when a water-soluble macromonomer and styrene are radically copolymerized in a water / ethanol mixed solvent, polymer fine particles having a spherical core-shell structure are generated. ing. However, in the methods described in these documents, in order to obtain a yield of 80% or more, the reaction must be performed for 12 hours or more, and core-shell type polymer fine particles having a sharp particle size distribution are produced. It was difficult.

一方、非特許文献3には、スチレンモノマーを用い、マイクロ波照射によりポリスチレン微粒子を合成する方法が初めて報告されている。しかし、スチレンモノマーのみを用いるこの方法では、モノマー濃度が3質量%以上になると粒子径分布が広がる傾向にあり、単分散のポリスチレン微粒子を得ることが困難であって、良質のポリマー微粒子は得られていない。
明石満、上野真路、芹沢武、馬場昌範、化学工業、52,705 (2001) M. Akashi, D. Chao, E. Yashima, N. Miyauchi, J. Appl. Polym. Sci., 39, 2027 (1990) W. Zhang, J. Gao, C. Wu, Macromolecules, 30, 6388 (1997)
On the other hand, Non-Patent Document 3 reports for the first time a method for synthesizing polystyrene fine particles by microwave irradiation using a styrene monomer. However, in this method using only a styrene monomer, the particle size distribution tends to widen when the monomer concentration is 3% by mass or more, and it is difficult to obtain monodisperse polystyrene fine particles, and high-quality polymer fine particles are obtained. Not.
Akashi Mitsuru, Ueno Shinji, Serizawa Takeshi, Baba Masanori, Chemical Industry, 52,705 (2001) M. Akashi, D. Chao, E. Yashima, N. Miyauchi, J. Appl. Polym. Sci., 39, 2027 (1990) W. Zhang, J. Gao, C. Wu, Macromolecules, 30, 6388 (1997)

本発明の課題は、親水性のシェルと疎水性のコア構造を有する単分散粒子を、簡易かつ再現性よく、短時間でしかも高い収率性で得ることができる、コア−シェル型ポリマー粒子の製造方法を提供することにある。   An object of the present invention is to provide a core-shell type polymer particle capable of obtaining monodisperse particles having a hydrophilic shell and a hydrophobic core structure in a simple and reproducible manner in a short time and with a high yield. It is to provide a manufacturing method.

本発明者らは、上記課題を解決するために鋭意検討した結果、重合性材料として、特定の親水性モノマーと、それらと共重合可能な疎水性モノマーとを選択し、且つ溶媒中に特定濃度で溶解又は分散させた重合性溶液に、マイクロ波照射を行うことにより、短時間で効率良く、平均粒子径0.05〜10μmの単分散のコア−シェル型ポリマー粒子が製造できることを見いだし、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have selected a specific hydrophilic monomer and a hydrophobic monomer copolymerizable therewith as the polymerizable material, and have a specific concentration in the solvent. It was found that monodisperse core-shell type polymer particles having an average particle diameter of 0.05 to 10 μm can be produced efficiently in a short time by performing microwave irradiation on the polymerizable solution dissolved or dispersed in The invention has been completed.

即ち本発明によれば、ポリエチレングリコール鎖又はホスホリルコリン基を有する親水性モノマーと、それらと共重合可能な、スチレン、アクリル酸エステル、メタクリル酸エステル又はこれらの2種以上の混合物からなる疎水性モノマーとからなる重合性材料を、前記親水性モノマー及び前記疎水性モノマーを溶解又は分散可能であり、かつ次の工程(B)で生成するコア−シェル型ポリマー粒子を溶解しない、水、メタノール、エタノール、プロパノール又はエチレングリコールからなる溶媒、もしくは水と、メタノール、エタノール、プロパノール又はエチレングリコールとからなる混合溶媒に溶解又は分散させ、濃度1〜40質量%の重合性溶液を調製する工程(A)、該重合性溶液にマイクロ波を照射して共重合させる工程(B)、及び得られた共重合物から平均粒径0.05〜10μmの単分散のコア−シェル型ポリマー粒子を精製する工程(C)とを含むことを特徴とするコア−シェル型ポリマー粒子の製造方法が提供される。 That is, according to the present invention, a hydrophilic monomer having a polyethylene glycol chain or a phosphorylcholine group, and a hydrophobic monomer that is copolymerizable therewith and is composed of styrene, acrylic acid ester, methacrylic acid ester, or a mixture of two or more thereof. Water, methanol, ethanol, which can dissolve or disperse the hydrophilic monomer and the hydrophobic monomer and does not dissolve the core-shell type polymer particles produced in the next step (B). the solvent consisting of propanol, or ethylene glycol or water, methanol, ethanol, propanol or a mixed solvent composed of ethylene glycol dissolved or dispersed, preparing a concentration of 1 to 40% by weight of the polymerizable solution (a), the A step (B) of copolymerizing the polymerizable solution by irradiating with microwaves, and the obtained And a step (C) of purifying monodisperse core-shell type polymer particles having an average particle size of 0.05 to 10 μm from the copolymer, and a method for producing core-shell type polymer particles is provided. .

本発明のコア−シェル型ポリマー粒子の製造方法は、ポリエチレングリコール鎖又はホスホリルコリン基を有する、特定の親水性モノマーと、それらと共重合可能な疎水性モノマーとからなる重合性材料を用い、該重合性材料を濃度1〜40質量%で含む重合性溶液に、高エネルギーのマイクロ波を照射して共重合させるので、短時間で収率性良く、平均粒子径0.05〜10μmの単分散のコア−シェル型ポリマー粒子を簡易に製造することができる。得られるポリマー粒子は、親水性のシェルと疎水性のコア構造を有する微粒子であるので、DDS坦体、集積材料素材、医薬診断薬、粉体塗料材料、化粧品材料等への使用が期待できる。   The method for producing core-shell type polymer particles of the present invention uses a polymerizable material comprising a specific hydrophilic monomer having a polyethylene glycol chain or a phosphorylcholine group and a hydrophobic monomer copolymerizable therewith, and the polymerization. Since a polymerizable solution containing a functional material at a concentration of 1 to 40% by mass is irradiated with a high-energy microwave and copolymerized, the yield is high and the monodisperse with an average particle diameter of 0.05 to 10 μm Core-shell type polymer particles can be easily produced. Since the polymer particles obtained are fine particles having a hydrophilic shell and a hydrophobic core structure, they can be expected to be used for DDS carriers, integrated material materials, pharmaceutical diagnostics, powder coating materials, cosmetic materials, and the like.

以下、本発明を更に詳細に説明する。
本発明の製造方法は、ポリエチレングリコール鎖又はホスホリルコリン基を有する親水性モノマーと、それらと共重合可能な特定の疎水性モノマーとからなる重合性材料を、特定の溶媒に溶解又は分散させ、特定濃度の重合性溶液を調製する工程(A)を行う。
工程(A)に用いる親水性モノマーは、ポリエチレングリコール鎖又はホスホリルコリン基を有する重合性モノマーであれば特に限定されず、例えば、2−メタクリロイルオキシエチルホスホリルコリン、ポリエチレングリコールモノメタクリレート、ポリエチレングリコールモノスチレン等を挙げることができる。特に、ポリエチレングリコール鎖を有するモノマーの場合、該ポリエチレングリコール鎖の数平均分子量は、得られるコア−シェル型ポリマー粒子の分散安定性を高める点から300〜5000とすることが好ましい。
Hereinafter, the present invention will be described in more detail.
The production method of the present invention comprises dissolving or dispersing a polymerizable material composed of a hydrophilic monomer having a polyethylene glycol chain or a phosphorylcholine group and a specific hydrophobic monomer copolymerizable therewith in a specific solvent, and having a specific concentration. The step (A) for preparing the polymerizable solution is performed.
The hydrophilic monomer used in the step (A) is not particularly limited as long as it is a polymerizable monomer having a polyethylene glycol chain or a phosphorylcholine group. For example, 2-methacryloyloxyethyl phosphorylcholine, polyethylene glycol monomethacrylate, polyethylene glycol monostyrene, etc. Can be mentioned. In particular, in the case of a monomer having a polyethylene glycol chain, the number average molecular weight of the polyethylene glycol chain is preferably 300 to 5000 from the viewpoint of enhancing the dispersion stability of the obtained core-shell type polymer particles.

工程(A)に用いる疎水性モノマーは、前記親水性モノマーとラジカル共重合可能な、スチレン、アクリル酸エステル、メタクリル酸エステル又はこれらの2種以上の混合物からなり、特に好ましくは、入手性の点からスチレン、メタクリル酸メチルが挙げられる。 Hydrophobic monomers used in step (A), the hydrophilic monomer and a radical copolymerization possible scan styrene, acrylic acid ester, methacrylic acid ester le also consist of two or more of these mixtures, particularly preferably obtained From the viewpoint of properties, styrene and methyl methacrylate are exemplified.

工程(A)において重合性材料は、前記親水性モノマー及び疎水性モノマーからなる限り、組成は特に限定されないが、得られるポリマーの粒度分布をより狭い範囲に、即ち、シャープな粒度分布に限定するためには、親水性モノマー1〜95モル%、疎水性モノマー5〜99モル%からなることが好ましい。   In step (A), the composition of the polymerizable material is not particularly limited as long as it is composed of the hydrophilic monomer and the hydrophobic monomer, but the particle size distribution of the obtained polymer is limited to a narrower range, that is, a sharp particle size distribution. For this purpose, it is preferably composed of 1 to 95 mol% of a hydrophilic monomer and 5 to 99 mol% of a hydrophobic monomer.

工程(A)において、前記重合性材料を溶解又は分散させて重合性溶液を調製するための溶媒は、前記親水性モノマー及び疎水性モノマーを溶解又は分散し、且つ共重合後に生成するコア−シェル型ポリマー粒子を溶解しない溶媒であって、後述する工程(B)におけるマイクロ波照射により加熱され易い性質を持つ、水;メタノール、エタノール、プロパノール、エチレングリコール等のアルコール類;前記アルコール類から選ばれる1種と水との混合溶媒が好ましく挙げられ、最も好ましくは、生成するポリマー粒子の分散性や未反応モノマーの除去し易さという理由から、水単独、又は水とエタノールとの混合溶媒が挙げられる。
In step (A), the solvent for preparing the polymerizable solution by dissolving or dispersing the polymerizable material is a core-shell that dissolves or disperses the hydrophilic monomer and the hydrophobic monomer, and is formed after copolymerization. a solvent that does not dissolve the mold polymer particles, one lifting the property of easily being heated by microwave irradiation in a step which will be described later (B), water; selected from the alcohols, methanol, ethanol, propanol, alcohols such as ethylene glycol Preferred is a mixed solvent of one kind of water and water, and most preferably, water alone or a mixed solvent of water and ethanol is used because of the dispersibility of the produced polymer particles and the ease of removing unreacted monomers. Can be mentioned.

工程(A)において、前記重合性溶液中における、親水性モノマーと疎水性モノマーとの混合物からなる重合性材料の濃度は、生成するポリマー粒子同士の凝集を抑制し、微粒子の分散安定性を増加させ、収率を向上させるという理由から1〜40質量%、好ましくは1〜30質量%、最も好ましくは1〜20質量%である。
前記重合性溶液には、溶媒及び重合性材料の他に、ラジカル重合開始剤を含有させることができる。ラジカル重合開始剤としては、例えば、2,2'−アゾビスイソブチロニトリル、2,2'−アゾビス(2,4−ジメチルバレロニトリル)、2,2'−アゾビス−2−アミジノプロパン塩酸塩、4,4'−アゾビス−4−シアノ吉草酸ナトリウム塩等のアゾ化合物;ベンゾイルパーオキシド、ラウリルパーオキシド、t−ブチルハイドロパーオキシド等の過酸化物が好ましく挙げられ、水への溶解性やラジカル重合開始剤の分解温度の点からは、2,2'−アゾビス−2−アミジノプロパン塩酸塩が最も好ましく挙げられる。
ラジカル重合開始剤を含有させる場合の配合割合は、適宜決定できるが、通常、重合性溶液中の重合性材料100質量部に対して、通常0.1〜5.0質量部程度である。
In the step (A), the concentration of the polymerizable material comprising a mixture of hydrophilic monomer and hydrophobic monomer in the polymerizable solution suppresses aggregation of the generated polymer particles and increases the dispersion stability of the fine particles. 1 to 40% by mass, preferably 1 to 30% by mass, and most preferably 1 to 20% by mass for the reason of improving the yield.
The polymerizable solution may contain a radical polymerization initiator in addition to the solvent and the polymerizable material. Examples of radical polymerization initiators include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), and 2,2′-azobis-2-amidinopropane hydrochloride. Azo compounds such as sodium salt of 4,4′-azobis-4-cyanovaleric acid; peroxides such as benzoyl peroxide, lauryl peroxide, t-butyl hydroperoxide, and the like. From the viewpoint of the decomposition temperature of the radical polymerization initiator, 2,2′-azobis-2-amidinopropane hydrochloride is most preferred.
The mixing ratio in the case of containing a radical polymerization initiator can be appropriately determined, but is usually about 0.1 to 5.0 parts by mass with respect to 100 parts by mass of the polymerizable material in the polymerizable solution.

本発明の製造方法においては、工程(A)で調製した重合性溶液にマイクロ波を照射して共重合させる工程(B)を行う。
マイクロ波の照射は、市販のマイクロ波発生装置を用いて行うことができる。例えば、前記重合性溶液をフラスコや試験管等の容器に入れ、マイクロ波を照射することにより行うことができる。
マイクロ波の照射強度は、重合性溶液中のラジカル重合開始剤がラジカルを発生できる程度の照射強度であれば特に限定されず、例えば、得られるポリマー粒子の粒度分布をより狭い範囲に限定するためには、マイクロ波強度を0.001〜30W/cm3に制御することが好ましい。また、短時間でラジカル重合開始剤からラジカルを発生させるためには、0.05W/cm3以上の照射強度とすることが好ましい。
In the production method of the present invention, the step (B) is carried out by irradiating the polymerizable solution prepared in the step (A) with microwaves for copolymerization.
Microwave irradiation can be performed using a commercially available microwave generator. For example, it can be carried out by placing the polymerizable solution in a container such as a flask or test tube and irradiating with microwaves.
The irradiation intensity of the microwave is not particularly limited as long as the radical polymerization initiator in the polymerizable solution can generate radicals. For example, to limit the particle size distribution of the obtained polymer particles to a narrower range. For this, it is preferable to control the microwave intensity to 0.001 to 30 W / cm 3 . In order to generate radicals from the radical polymerization initiator in a short time, it is preferable to set the irradiation intensity to 0.05 W / cm 3 or more.

工程(B)において、前記マイクロ波を照射して共重合させるには、重合性溶液の温度を、通常、0〜150℃の範囲、特に40〜100℃の範囲に保持して行うことが好ましい。この際、40℃以上とすることにより共重合時間をより短時間とすることができる。
共重合させるためのマイクロ波の照射時間は、本発明の目的を損なわない限り限定されないが、通常、10〜120分間、好ましくは20〜120分間である。照射時間が10分間より短いと、共重合反応が十分に進行せず、得られるポリマー粒子の分散度が大きくなり、該粒子の粒径制御が困難になる場合があり、また、反応転化率が減少する原因になる。また、共重合は、通常、撹拌下で行うことができる。
In the step (B), in order to carry out the copolymerization by irradiating the microwave, it is preferable that the temperature of the polymerizable solution is usually maintained in the range of 0 to 150 ° C, particularly in the range of 40 to 100 ° C. . At this time, the copolymerization time can be shortened by setting the temperature to 40 ° C. or higher.
The microwave irradiation time for copolymerization is not limited as long as the object of the present invention is not impaired, but is usually 10 to 120 minutes, preferably 20 to 120 minutes. If the irradiation time is shorter than 10 minutes, the copolymerization reaction does not proceed sufficiently, the degree of dispersion of the resulting polymer particles increases, and it may be difficult to control the particle size of the particles, and the reaction conversion rate may be low. Causes to decrease. In addition, the copolymerization can usually be performed with stirring.

本発明の製造方法においては、工程(B)により得られた共重合物から平均粒径0.5〜10μmの単分散のコア−シェル型ポリマー粒子を精製する工程(C)を行なうことにより所望のポリマー粒子を得ることができる。
工程(C)において精製は、工程(B)により得られた共重合物を含む溶液から透析等により未反応モノマー等を除去して、凍結乾燥する方法等により行うことができる。
得られるポリマー粒子としては、例えば、親水性モノマーにポリエチレングリコールモノメタクリレートを用い、疎水性モノマーにスチレンを用い、溶媒に水を用いた場合には、スチレンコア−ポリエチレングリコールモノメタクリレートシェル型ポリマー粒子が得られ、親水性モノマーにポリエチレングリコールモノメタクリレートを用い、疎水性モノマーにメタクリル酸メチルを用い、溶媒に水を用いた場合には、メタクリル酸メチルコア−ポリエチレングリコールモノメタクリレートシェル型ポリマー粒子が得られ、親水性モノマーに2−メタクリロイルオキシエチルホスホリルコリンを用い、疎水性モノマーにスチレンを用いた場合には、スチレンコア−メタクリロイルオキシエチルホスホリルコリンシェル型ポリマー粒子が得られる。
In the production method of the present invention, the step (C) for purifying monodisperse core-shell polymer particles having an average particle diameter of 0.5 to 10 μm from the copolymer obtained in the step (B) is desired. The polymer particles can be obtained.
Purification in the step (C) can be performed by a method of removing unreacted monomers from the solution containing the copolymer obtained in the step (B) by dialysis or the like and freeze-drying.
As the polymer particles obtained, for example, when polyethylene glycol monomethacrylate is used as a hydrophilic monomer, styrene is used as a hydrophobic monomer, and water is used as a solvent, a styrene core-polyethylene glycol monomethacrylate shell type polymer particle is obtained. When polyethylene glycol monomethacrylate is used as the hydrophilic monomer, methyl methacrylate is used as the hydrophobic monomer, and water is used as the solvent, methyl methacrylate core-polyethylene glycol monomethacrylate shell type polymer particles are obtained, When 2-methacryloyloxyethyl phosphorylcholine is used as the hydrophilic monomer and styrene is used as the hydrophobic monomer, styrene core-methacryloyloxyethyl phosphorylcholine shell-type polymer particles are obtained. .

尚、本発明において平均粒径とは、動的光散乱測定装置により測定される値であり、単分散であるとは、合成されたコア−シェル型ポリマー粒子の粒子径の均一性が高く、動的光散乱測定装置を用いて測定した際に粒度分布が10%以内のシャープな粒度分布を示すことを意味する。   In the present invention, the average particle diameter is a value measured by a dynamic light scattering measurement device, and being monodispersed means that the uniformity of the particle diameter of the synthesized core-shell type polymer particles is high, It means that the particle size distribution shows a sharp particle size distribution of 10% or less when measured using a dynamic light scattering measuring apparatus.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
実施例1〜6
30mlのガラス管に、表1に示す組成のモノマー及び開始剤と、水10mlとを入れて重合性溶液を調製した。得られた重合性溶液に、マイクロ波照射装置(グリーン・モチーフ・I、東京電子社製)を用いて、重合性溶液が反応温度の70℃となるまで300Wのマイクロ波を照射した後、続いて、20Wのマイクロ波を1時間照射して共重合反応させた。得られた溶液を冷却後、透析により未反応モノマーを除去し、凍結乾燥によって生成ポリマーを調製した。
得られたポリマーの粒度分布及び粒径を、動的光散乱測定装置(NICOMP 380ZLS Particle Sizer、Particle sizing system社製)により測定し、また収率を測定した。結果を表1及び図1〜4に示す。
更に、得られたポリマー粒子の構造を、X線光電子分析装置(ESCA−3300、島津社製)により測定したところ、疎水性モノマー単位がコアに、親水性モノマー単位がシェルとなった、コア−シェル型ポリマー粒子であることが判った。
尚、表1中のMA-PEG350は、ポリエチレングリコールモノメタクリレート(日本油脂社製、商品名:Blemmer PE-350、数平均分子量439)を示し、Stはスチレンを示し、V−50は、2,2'−アゾビス−2−アミジノプロパンの塩酸塩を示す。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
Examples 1-6
A monomer and initiator having the composition shown in Table 1 and 10 ml of water were placed in a 30 ml glass tube to prepare a polymerizable solution. The resulting polymerizable solution was irradiated with 300 W of microwave until the polymerizable solution reached a reaction temperature of 70 ° C. using a microwave irradiation device (Green Motif I, manufactured by Tokyo Denshi Co., Ltd.). Then, a 20 W microwave was irradiated for 1 hour to cause a copolymerization reaction. After cooling the resulting solution, unreacted monomers were removed by dialysis, and the resulting polymer was prepared by lyophilization.
The particle size distribution and particle size of the obtained polymer were measured by a dynamic light scattering measuring device (NICOMP 380ZLS Particle Sizer, manufactured by Particle Sizing System), and the yield was measured. The results are shown in Table 1 and FIGS.
Furthermore, when the structure of the obtained polymer particles was measured by an X-ray photoelectron analyzer (ESCA-3300, manufactured by Shimadzu Corporation), the hydrophobic monomer unit became the core and the hydrophilic monomer unit became the shell. It was found to be shell type polymer particles.
In Table 1, MA-PEG350 represents polyethylene glycol monomethacrylate (Nippon Yushi Co., Ltd., trade name: Blemmer PE-350, number average molecular weight 439), St represents styrene, V-50 represents 2, 2'-Azobis-2-amidinopropane hydrochloride is shown.

Figure 0005040083
Figure 0005040083

実施例7〜9
実施例1〜6において、モノマー及び開始剤の組成を表2に示す組成のモノマー及び開始剤に代えた以外は実施例1と同様にポリマー粒子を調製した。要するに、実施例7〜9は、実施例1〜6の親水性モノマーとしてのポリエチレングリコールモノメタクリレートの代わりに、親水性モノマーとして2−メタクリロイルオキシエチルホスオリルコリンを用いた例である。収率及び粒径を実施例1と同様に測定した。結果を表2及び図5に示す。
尚、表2中のMPCは2−メタクリロイルオキシエチルホスオリルコリンを示し、他の略号は表1と同じ意味である。
Examples 7-9
In Examples 1 to 6, polymer particles were prepared in the same manner as in Example 1 except that the monomer and initiator compositions were changed to the monomer and initiator compositions shown in Table 2. In short, Examples 7 to 9 are examples in which 2-methacryloyloxyethyl phosphorylcholine was used as a hydrophilic monomer instead of the polyethylene glycol monomethacrylate as the hydrophilic monomer of Examples 1 to 6. The yield and particle size were measured as in Example 1. The results are shown in Table 2 and FIG.
In Table 2, MPC represents 2-methacryloyloxyethyl phosphorylcholine, and other abbreviations have the same meaning as in Table 1.

Figure 0005040083
Figure 0005040083

実施例10及び11
実施例1〜6において、モノマー及び開始剤の組成を表3に示す組成のモノマー及び開始剤に代えた以外は実施例1と同様にポリマー粒子を調製した。要するに、実施例10及び11は、実施例1〜6の親水性モノマーとしてのポリエチレングリコールモノメタクリレートとは数平均分子量が異なるポリエチレングリコールモノメタクリレートを用いた例である。収率及び粒径を実施例1と同様に測定した。結果を表3及び図6に示す。
尚、表1中のMA-PEG2000は、ポリエチレングリコールモノメタクリレート(日本油脂社製、商品名:Blemmer PE-2000、数平均分子量2000)を示し、他の略号は表1と同じ意味である。
Examples 10 and 11
In Examples 1 to 6, polymer particles were prepared in the same manner as in Example 1 except that the monomer and initiator compositions were changed to the monomers and initiators having the compositions shown in Table 3. In short, Examples 10 and 11 are examples using polyethylene glycol monomethacrylate having a number average molecular weight different from that of polyethylene glycol monomethacrylate as the hydrophilic monomer of Examples 1-6. The yield and particle size were measured as in Example 1. The results are shown in Table 3 and FIG.
In Table 1, MA-PEG2000 indicates polyethylene glycol monomethacrylate (manufactured by NOF Corporation, trade name: Blemmer PE-2000, number average molecular weight 2000), and other abbreviations have the same meaning as in Table 1.

Figure 0005040083
Figure 0005040083

比較例1及び2
実施例1〜6において、モノマー及び開始剤の組成を表2に示す組成のモノマー及び開始剤に代えた以外は実施例1と同様にポリマー粒子を調製した。要するに、比較例1及び2は、実施例1〜6の親水性モノマーとしてのポリエチレングリコールモノメタクリレートの代わりに、親水性モノマーとしてメタクリル酸2−ヒドロキシエチルエステルを用いた例である。収率及び粒径を実施例1と同様に測定した。結果を表4及び図7に示す。
尚、表4中のHEMAはメタクリル酸2−ヒドロキシエチルエステルを示し、他の略号は表1と同じ意味である。
Comparative Examples 1 and 2
In Examples 1 to 6, polymer particles were prepared in the same manner as in Example 1 except that the monomer and initiator compositions were changed to the monomer and initiator compositions shown in Table 2. In short, Comparative Examples 1 and 2 are examples in which methacrylic acid 2-hydroxyethyl ester was used as the hydrophilic monomer instead of polyethylene glycol monomethacrylate as the hydrophilic monomer of Examples 1 to 6. The yield and particle size were measured as in Example 1. The results are shown in Table 4 and FIG.
In Table 4, HEMA represents methacrylic acid 2-hydroxyethyl ester, and other abbreviations have the same meaning as in Table 1.

Figure 0005040083
Figure 0005040083

表1〜表4並びに図1〜図7より、実施例1〜11では、1時間のマイクロ波照射による共重合で、収率良く目的のコア−シェル型ポリマー粒子が得られることが判る。また、実施例に係る方法では、比較例の方法に比して、得られるポリマーの粒度分布が狭く、単分散の粒子が得られることが判る。   It can be seen from Tables 1 to 4 and FIGS. 1 to 7 that in Examples 1 to 11, the target core-shell type polymer particles can be obtained with good yield by copolymerization by microwave irradiation for 1 hour. In addition, it can be seen that in the method according to the example, the particle size distribution of the obtained polymer is narrow and monodisperse particles are obtained as compared with the method of the comparative example.

実施例2によって得られたコア−シェル型ポリマー粒子の粒度分布を示すグラフである。3 is a graph showing the particle size distribution of core-shell type polymer particles obtained in Example 2. FIG. 実施例3によって得られたコア−シェル型ポリマー粒子の粒度分布を示すグラフである。4 is a graph showing the particle size distribution of core-shell type polymer particles obtained in Example 3. FIG. 実施例5によって得られたコア−シェル型ポリマー粒子の粒度分布を示すグラフである。6 is a graph showing the particle size distribution of core-shell type polymer particles obtained in Example 5. FIG. 実施例6によって得られたコア−シェル型ポリマー粒子の粒度分布を示すグラフである。7 is a graph showing the particle size distribution of core-shell type polymer particles obtained in Example 6. FIG. 実施例8によって得られたコア−シェル型ポリマー粒子の粒度分布を示すグラフである。6 is a graph showing the particle size distribution of core-shell type polymer particles obtained in Example 8. FIG. 実施例11によって得られたコア−シェル型ポリマー粒子の粒度分布を示すグラフである。3 is a graph showing the particle size distribution of core-shell type polymer particles obtained in Example 11. FIG. 比較例1によって得られたコア−シェル型ポリマー粒子の粒度分布を示すグラフである。3 is a graph showing the particle size distribution of core-shell type polymer particles obtained in Comparative Example 1. FIG.

Claims (5)

ポリエチレングリコール鎖又はホスホリルコリン基を有する親水性モノマーと、それらと共重合可能な、スチレン、アクリル酸エステル、メタクリル酸エステル又はこれらの2種以上の混合物からなる疎水性モノマーとからなる重合性材料を、前記親水性モノマー及び前記疎水性モノマーを溶解又は分散可能であり、かつ次の工程(B)で生成するコア−シェル型ポリマー粒子を溶解しない、水、メタノール、エタノール、プロパノール又はエチレングリコールからなる溶媒、もしくは水と、メタノール、エタノール、プロパノール又はエチレングリコールとからなる混合溶媒に溶解又は分散させ、濃度1〜40質量%の重合性溶液を調製する工程(A)、該重合性溶液にマイクロ波を照射して共重合させる工程(B)、及び得られた共重合物から平均粒径0.05〜10μmの単分散のコア−シェル型ポリマー粒子を精製する工程(C)とを含むことを特徴とするコア−シェル型ポリマー粒子の製造方法。 A polymerizable material comprising a hydrophilic monomer having a polyethylene glycol chain or a phosphorylcholine group, and a hydrophobic monomer that is copolymerizable therewith and is composed of styrene, acrylic acid ester, methacrylic acid ester, or a mixture of two or more thereof . A solvent composed of water, methanol, ethanol, propanol or ethylene glycol, which can dissolve or disperse the hydrophilic monomer and the hydrophobic monomer and does not dissolve the core-shell type polymer particles produced in the next step (B). Or a step (A) of preparing a polymerizable solution having a concentration of 1 to 40% by mass by dissolving or dispersing in a mixed solvent consisting of water and methanol, ethanol, propanol or ethylene glycol, and applying a microwave to the polymerizable solution Step (B) of copolymerization by irradiation, and average particles from the obtained copolymer Monodisperse core 0.05 to 10 [mu] m - core, characterized in that it comprises a step (C) to purify the shell polymer particles - method of manufacturing shell-type polymer particles. 前記ポリエチレングリコール鎖の数平均分子量が、300〜5000である請求項1記載の製造方法。   The method according to claim 1, wherein the polyethylene glycol chain has a number average molecular weight of 300 to 5,000. 重合性材料が、前記親水性モノマー1〜95モル%と、前記疎水性モノマー99〜5モル%からなる請求項1記載の製造方法。   The production method according to claim 1, wherein the polymerizable material comprises 1 to 95 mol% of the hydrophilic monomer and 99 to 5 mol% of the hydrophobic monomer. 工程(B)において、マイクロ波の照射強度が0.05〜30W/cm3である請求項1〜3のいずれか1項記載の製造方法。 The process according to any one of claims 1 to 3 , wherein in the step (B), the irradiation intensity of the microwave is 0.05 to 30 W / cm 3 . 工程(B)において、マイクロ波の照射時間が10〜120分である請求項1〜4のいずれか1項記載の製造方法。   The process according to any one of claims 1 to 4, wherein in the step (B), the microwave irradiation time is 10 to 120 minutes.
JP2005240253A 2005-08-22 2005-08-22 Method for producing core-shell type polymer particles Active JP5040083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005240253A JP5040083B2 (en) 2005-08-22 2005-08-22 Method for producing core-shell type polymer particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005240253A JP5040083B2 (en) 2005-08-22 2005-08-22 Method for producing core-shell type polymer particles

Publications (2)

Publication Number Publication Date
JP2007056077A JP2007056077A (en) 2007-03-08
JP5040083B2 true JP5040083B2 (en) 2012-10-03

Family

ID=37919839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005240253A Active JP5040083B2 (en) 2005-08-22 2005-08-22 Method for producing core-shell type polymer particles

Country Status (1)

Country Link
JP (1) JP5040083B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9296851B2 (en) 2010-04-01 2016-03-29 Dpx Holdings B.V. Process for continuous emulsion polymerization
KR101828605B1 (en) * 2011-03-31 2018-02-13 주식회사 케이씨씨 Microgel and method for manufacturing the same, and water-soluble paint composition
JP2018150500A (en) * 2016-06-07 2018-09-27 三菱ケミカル株式会社 Amphiphilic copolymer, hair cosmetic composition
CN106380542B (en) * 2016-08-27 2018-04-20 西安科技大学 A kind of preparation method of photocurable phosphoryl choline polymer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173079A (en) * 1992-12-22 1995-07-11 Nippon Oil & Fats Co Ltd Amphiphatic polyethylene glycol derivative and its use
JP3802656B2 (en) * 1997-07-16 2006-07-26 日本油脂株式会社 Method for producing polymer containing hydrophobic group and phosphorylcholine group
JP2001288064A (en) * 2000-04-10 2001-10-16 Kao Corp Cosmetic

Also Published As

Publication number Publication date
JP2007056077A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
Cai et al. Morphology transitions in RAFT polymerization
Ye et al. Formation of monodisperse polyacrylamide particles by radiation-induced dispersion polymerization: particle size and size distribution
Semsarilar et al. Semi-crystalline diblock copolymer nano-objects prepared via RAFT alcoholic dispersion polymerization of stearyl methacrylate
Tan et al. Monodisperse highly cross-linked “living” microspheres prepared via photoinitiated RAFT dispersion polymerization
JP5040083B2 (en) Method for producing core-shell type polymer particles
KR102151956B1 (en) Fluorescent resin particles and their uses
US20150051310A1 (en) Water Compatible Nanogel Compositions
Slater et al. Architecture-driven aqueous stability of hydrophobic, branched polymer nanoparticles prepared by rapid nanoprecipitation
Wen et al. Investigating the influence of solvent quality on RAFT-mediated PISA of sulfonate-functional diblock copolymer nanoparticles
JP2010053171A (en) Method for preparing nano-particle composite
Yu et al. A facile approach preparing PMMA nanospheres through in-situ surfactant miniemulsion photopolymerization under green LED irradiation
Ratanajanchai et al. Visible light-induced surfactant-free emulsion polymerization using camphorquinone/tertiary amine as the initiating system for the synthesis of amine-functionalized colloidal nanoparticles
JP5281938B2 (en) Method for producing monodisperse polymer particles
JP2005015623A (en) Organic solvent swelling microgel and its preparation method
Nahi et al. A facile method for generating worm-like micelles with controlled lengths and narrow polydispersity
EP3328908B1 (en) Oligomer seed for synthesis of unimodal acrylic bead particles
KR100772931B1 (en) Process for preparing fully crosslinked polymer particles using block copolymer synthesized by the living free radical polymerization
Zhang et al. Efficient and “green” fabrication of pH-responsive poly (methacrylic acid) nano-hydrogels in water
Stouten et al. Micellar drug delivery vehicles formed from amphiphilic block copolymers bearing photo-cross-linkable cyclopentenone side groups
Alaimo et al. A photocleavable stabilizer for the preparation of PHEMA nanogels by dispersion polymerization in supercritical carbon dioxide
JP2006137951A (en) Polymer particle and method of producing the same
CN104530316B (en) A kind of preparation method of polymethyl methacrylate glycol ester microballoon
KR100519661B1 (en) Method for Preparing Monodisperse Macro-Porous Polymer Particle
JP3101022B2 (en) Method for producing polymer fine particles
Xiao et al. Transitioning from Photoinitiation to Thermal Initiation in RAFT Dispersion Polymerization via a Small Modification of the Macro-RAFT Agent: A Scalable Approach for Monodisperse Surface-Functional Polymeric Microspheres

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

R150 Certificate of patent or registration of utility model

Ref document number: 5040083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250