JP5036850B2 - Accident direction indicator - Google Patents

Accident direction indicator Download PDF

Info

Publication number
JP5036850B2
JP5036850B2 JP2010187576A JP2010187576A JP5036850B2 JP 5036850 B2 JP5036850 B2 JP 5036850B2 JP 2010187576 A JP2010187576 A JP 2010187576A JP 2010187576 A JP2010187576 A JP 2010187576A JP 5036850 B2 JP5036850 B2 JP 5036850B2
Authority
JP
Japan
Prior art keywords
accident
voltage
current
short
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010187576A
Other languages
Japanese (ja)
Other versions
JP2012047497A (en
Inventor
英明 工藤
貴浩 佐藤
厚 石川
隼 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Original Assignee
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP2010187576A priority Critical patent/JP5036850B2/en
Publication of JP2012047497A publication Critical patent/JP2012047497A/en
Application granted granted Critical
Publication of JP5036850B2 publication Critical patent/JP5036850B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Locating Faults (AREA)

Description

本発明は、事故方向表示装置に関し、特に、分散型電源が連係されている高圧配電線路上において地絡事故あるいは短絡事故が発生した際に事故点の方向を判定して表示する事故方向表示装置に関する。   The present invention relates to an accident direction display device, and in particular, an accident direction display device that determines and displays the direction of an accident point when a ground fault or short circuit accident occurs on a high-voltage distribution line connected with a distributed power source. About.

変電所から需要先に電気を供給する高圧配電線路(例えば6.6kV)上には、事故点の早期発見や迅速な復旧等を目的とし、地絡事故あるいは短絡事故が発生した際に事故点の方向である事故方向を判定して表示する事故方向表示装置が設置されている(例えば、特許文献1参照)。   On the high-voltage distribution line (for example, 6.6 kV) that supplies electricity to the customer from the substation, the point of the accident when a ground fault or short-circuit accident occurs for the purpose of early detection and quick recovery of the accident point. An accident direction display device that determines and displays an accident direction that is the direction of the vehicle is installed (see, for example, Patent Document 1).

この事故方向表示装置は、地絡事故において零相電圧(V)及び零相電流(I)を監視し、事故により発生する零相電圧と零相電流との位相差により事故方向を判定する。また、短絡事故においては、事故により発生する短絡電流(I)と電圧(V)との位相差により事故方向を判定する。例えば、事故点が事故方向表示装置からみて変電所側に位置する場合には、事故方向を電源側と判定し、逆に、需要先側に位置する場合には、事故方向を負荷側と判定する。 This accident direction display device monitors the zero-phase voltage (V 0 ) and zero-phase current (I 0 ) in the event of a ground fault, and determines the accident direction based on the phase difference between the zero-phase voltage and the zero-phase current generated by the accident To do. In the case of a short circuit accident, the direction of the accident is determined based on the phase difference between the short circuit current (I) and the voltage (V) generated by the accident. For example, if the accident point is located on the substation side when viewed from the accident direction display device, the accident direction is determined as the power source side. Conversely, if the accident point is located on the demand side, the accident direction is determined as the load side. To do.

特開平2−275373号公報JP-A-2-275373

ところが、近年、太陽光発電や風力発電等の分散型電源の普及が進み、その分散型電源が連係された高圧配電線路が増加してきている。この高圧配電線路上で地絡事故あるいは短絡事故が発生すると、その高圧配電線路に連係された分散型電源が原因となり、事故時の電圧又は電流が大きな周波数変動を伴うことがある。この周波数変動は、事故事象が変電所の遮断動作から分散型電源の解列までの瞬間的な間に顕著に生じる。   However, in recent years, the spread of distributed power sources such as solar power generation and wind power generation has progressed, and the number of high-voltage distribution lines connected to the distributed power sources has increased. When a ground fault or short circuit accident occurs on the high-voltage distribution line, a distributed power source linked to the high-voltage distribution line may cause the voltage or current at the time of the accident to be accompanied by a large frequency fluctuation. This frequency variation is prominent during the moment when an accident event occurs from the substation shutdown operation to the disconnection of the distributed power source.

このような周波数変動は事故方向の誤判定の要因になっている。すなわち、前述の位相差による事故方向の判定では、位相差のみを測定していることから、前述のように周波数が大きく変動すると、正しい位相差の計測が困難になる場合がある。正しい位相差が計測されず、誤った位相差が事故方向の判定に用いられると、事故方向の誤判定が生じ、その誤った事故方向が表示されることになる。   Such frequency fluctuation is a cause of misjudgment of accident direction. That is, in the determination of the accident direction based on the above-described phase difference, only the phase difference is measured. Therefore, if the frequency greatly varies as described above, it may be difficult to measure the correct phase difference. If the correct phase difference is not measured and the wrong phase difference is used to determine the accident direction, an erroneous determination of the accident direction occurs, and the erroneous accident direction is displayed.

本発明は上記を鑑みてなされたものであり、その目的は、事故時の電圧又は電流の周波数変動による事故方向判定の精度低下を防止し、事故方向を正確に判定して表示することができる事故方向表示装置を提供することである。   The present invention has been made in view of the above, and an object of the present invention is to prevent a reduction in the accuracy of accident direction determination due to a frequency fluctuation of voltage or current at the time of an accident, and to accurately determine and display the accident direction. It is to provide an accident direction display device.

本発明に係る第1の特徴は、事故方向表示装置において、分散型電源が連係している高圧配電線路の幹線上の地絡事故又は短絡事故により変化する電圧及び電流を検出する検出部と、前記検出部により検出された前記電圧及び前記電流の位相を用いて前記幹線上の事故点の方向である事故方向を判定する処理部と、前記処理部により判定された前記事故方向を報知する表示を行う表示部とを備え、前記検出部は、地絡事故又は短絡事故により変化する電圧又は電流の周波数を検出し、前記処理部は、前記検出部により検出された前記電圧又は前記電流の周波数が許容範囲内であるか否かを判断し、その電圧又は電流の周波数が許容範囲内でないと判断した場合、前記事故方向を判定する処理を停止し、その電圧又は電流の周波数が許容範囲内であると判断した場合、前記事故方向を判定する処理を再開することである。   According to a first aspect of the present invention, in the accident direction display device, a detection unit that detects a voltage and a current that change due to a ground fault or a short-circuit accident on the main line of the high-voltage distribution line to which the distributed power supply is linked, and A processing unit that determines an accident direction that is a direction of an accident point on the main line using the phase of the voltage and the current detected by the detection unit, and a display that notifies the accident direction determined by the processing unit A display unit that performs the detection, the detection unit detects a frequency of a voltage or a current that changes due to a ground fault or a short circuit accident, and the processing unit detects a frequency of the voltage or the current that is detected by the detection unit. If the voltage or current frequency is not within the allowable range, the process for determining the accident direction is stopped, and the voltage or current frequency is within the allowable range. If it is determined that there is to resume the process of determining the accident direction.

本発明に係る第2の特徴は、前述の第1の特徴に係る事故方向表示装置において、前記検出部は、前記電圧及び前記電流として、地絡事故により生じる零相電圧及び零相電流と、短絡事故により生じる短絡電流及び短絡事故前の電圧とを検出し、前記処理部は、前記検出部により検出された前記短絡事故前の電圧と、第1の許容範囲及び第2の許容範囲とを記憶する記憶部を有し、前記検出部により検出された前記零相電圧と前記零相電流との位相差を用いて前記事故方向を判定する第1の判定処理を行い、前記検出部により検出された前記短絡電流と前記記憶部により記憶された前記短絡事故前の電圧との位相差を用いて前記事故方向を判定する第2の判定処理を行う処理部であり、前記検出部により検出された前記零相電圧の周波数が前記記憶部により記憶された第1の許容範囲内であるか否かを判断し、その零相電圧の周波数が前記第1の許容範囲内でないと判断した場合、前記第1の判定処理を停止し、その零相電圧の周波数が前記第1の許容範囲内であると判断した場合、前記第1の判定処理を再開し、前記検出部により検出された前記短絡電流の周波数が前記記憶部により記憶された第2の許容範囲内であるか否かを判断し、その短絡電流の周波数が前記第2の許容範囲内でないと判断した場合、前記第2の判定処理を停止し、その短絡電流の周波数が前記第2の許容範囲内であると判断した場合、前記第2の判定処理を再開することである。   According to a second feature of the present invention, in the accident direction display device according to the first feature described above, the detection unit includes, as the voltage and the current, a zero-phase voltage and a zero-phase current caused by a ground fault, A short circuit current generated by a short circuit accident and a voltage before the short circuit accident are detected, and the processing unit detects the voltage before the short circuit accident detected by the detection unit, and the first allowable range and the second allowable range. A storage unit for storing, performing a first determination process for determining the accident direction using a phase difference between the zero-phase voltage and the zero-phase current detected by the detection unit, and detected by the detection unit; A processing unit that performs a second determination process for determining the accident direction using a phase difference between the short-circuit current that has been performed and the voltage before the short-circuit accident stored in the storage unit, and is detected by the detection unit The frequency of the zero-phase voltage is It is determined whether or not the first allowable range stored in the storage unit is within the first allowable range, and when it is determined that the frequency of the zero-phase voltage is not within the first allowable range, the first determination process is stopped. When the frequency of the zero-phase voltage is determined to be within the first allowable range, the first determination process is resumed, and the frequency of the short-circuit current detected by the detection unit is stored in the storage unit. If the frequency of the short-circuit current is determined not to be within the second allowable range, the second determination process is stopped and the short-circuit current is When it is determined that the frequency is within the second allowable range, the second determination process is restarted.

本発明に係る第1の特徴によれば、検出部により幹線上の電圧又は電流の周波数が検出され、その検出された電圧又は電流の周波数が処理部により監視される。この監視によりその電圧又は電流の周波数が許容範囲外になると、事故方向を判定する処理が停止され、その電圧又は電流の周波数が許容範囲内になると、事故方向を判定する処理が再開される。このように事故方向判定における監視項目として、電圧及び電流の位相に加え、電圧又は電流の周波数が追加され、その周波数に基づいて事故方向判定処理が停止されるので、大きな周波数変動を伴う電圧又は電流を用いて事故方向判定処理を行うことが無くなり、周波数変動に起因する事故方向の誤判定を回避することが可能となる。その結果、事故時の電圧又は電流の周波数変動による事故方向判定の精度低下を防止し、事故方向を正確に判定して表示することができる。   According to the first feature of the present invention, the frequency of the voltage or current on the main line is detected by the detection unit, and the detected frequency of the voltage or current is monitored by the processing unit. When the voltage or current frequency falls outside the allowable range by this monitoring, the process for determining the accident direction is stopped, and when the voltage or current frequency falls within the allowable range, the process for determining the accident direction is resumed. Thus, as a monitoring item in the accident direction determination, in addition to the phase of voltage and current, the frequency of voltage or current is added, and the accident direction determination process is stopped based on the frequency, so the voltage or voltage with a large frequency fluctuation is The accident direction determination process is not performed using the current, and the erroneous determination of the accident direction due to the frequency fluctuation can be avoided. As a result, it is possible to prevent a reduction in the accuracy of the accident direction determination due to the frequency fluctuation of the voltage or current at the time of the accident, and to accurately determine and display the accident direction.

本発明に係る第2の特徴によれば、処理部が地絡事故及び短絡事故のどちらの事故発生にも対応し、その処理部により前述のように事故方向を判定する処理が停止されるので、地絡事故及び短絡事故のどちらの事故が発生した場合でも、事故時の電圧又は電流の周波数変動による事故方向判定の精度低下を防止し、事故方向を正確に判定して表示することができる。   According to the second feature of the present invention, the processing unit responds to both the occurrence of a ground fault and a short-circuit accident, and the processing for determining the accident direction as described above is stopped by the processing unit. Even if a ground fault accident or a short-circuit accident occurs, it is possible to prevent the deterioration of the accuracy of the accident direction judgment due to the frequency fluctuation of the voltage or current at the time of the accident, and to accurately determine and display the accident direction .

本発明の実施形態に係る高圧配電線路上の事故方向表示装置の概略構成を示す図である。It is a figure which shows schematic structure of the accident direction display apparatus on the high voltage distribution line which concerns on embodiment of this invention. 図1に示す事故方向表示装置が行う地絡事故処理を説明するための説明図である。It is explanatory drawing for demonstrating the ground fault accident process which the accident direction display apparatus shown in FIG. 1 performs. 図2に示す地絡事故処理における事故方向判定処理に用いる判定範囲を説明するための説明図である。It is explanatory drawing for demonstrating the determination range used for the accident direction determination process in the ground fault accident process shown in FIG. 図1に示す事故方向表示装置が行う短絡事故処理を説明するための説明図である。It is explanatory drawing for demonstrating the short circuit accident process which the accident direction display apparatus shown in FIG. 1 performs. 図4に示す短絡事故処理における事故方向判定処理に用いる判定範囲を説明するための説明図である。It is explanatory drawing for demonstrating the determination range used for the accident direction determination process in the short circuit accident process shown in FIG.

本発明の実施の一形態について図面を参照して説明する。   An embodiment of the present invention will be described with reference to the drawings.

図1に示すように、本発明の実施形態に係る事故方向表示装置1は、変電所2に接続された高圧配電線路3の幹線3a上に複数個設けられている。この幹線3aには、分岐線3bにより太陽光発電や風力発電等の分散型電源4が連係されている。また、幹線3a上には遮断器5が設けられており、この遮断器5は変電所2と事故方向表示装置1との間に位置付けられている。なお、遮断器5は、地絡事故や短絡事故の発生に応じて変電所2からの指示により高圧配電線路3を変電所2から切り離す。   As shown in FIG. 1, a plurality of accident direction display devices 1 according to an embodiment of the present invention are provided on a main line 3 a of a high-voltage distribution line 3 connected to a substation 2. A distributed power source 4 such as solar power generation or wind power generation is linked to the main line 3a by a branch line 3b. Moreover, the circuit breaker 5 is provided on the trunk line 3 a, and this circuit breaker 5 is positioned between the substation 2 and the accident direction display device 1. The circuit breaker 5 disconnects the high-voltage distribution line 3 from the substation 2 according to an instruction from the substation 2 in response to the occurrence of a ground fault or a short circuit accident.

前述の事故方向表示装置1は、幹線3aの三相の各相電圧及び各相電流を検出する検出部1aと、地絡事故処理や短絡事故処理等の各種処理を行う処理部1bと、作業者等に事故方向を報知する表示を行う表示部1cとを備えている。   The accident direction display device 1 described above includes a detection unit 1a that detects each phase voltage and current of each of the three phases of the main line 3a, a processing unit 1b that performs various processes such as a ground fault process and a short circuit process, And a display unit 1c that performs a display for notifying a person or the like of the accident direction.

検出部1aは、相電圧検出用の複数の結合コンデンサや相電流検出用の複数の変流器等を用いて幹線3aの三相の各相電圧、各相電流及びそれらの周波数を検出し、地絡事故により生じる零相電圧、零相電流及びそれらの周波数を処理部1bに出力し、さらに、短絡事故により生じる短絡電流、電圧及びそれらの周波数も処理部1bに出力する。なお、各結合コンデンサ及び各変流器は三相のR、S及びTの相毎に設けられている。   The detection unit 1a detects each phase voltage of each of the three phases of the trunk line 3a, each phase current, and their frequencies using a plurality of coupling capacitors for phase voltage detection, a plurality of current transformers for phase current detection, and the like. The zero-phase voltage, zero-phase current and their frequency generated by the ground fault are output to the processing unit 1b, and the short-circuit current, voltage and their frequency generated by the short-circuit accident are also output to the processing unit 1b. Each coupling capacitor and each current transformer are provided for each of the three-phase R, S, and T phases.

処理部1bは、検出部1aにより出力された零相電圧及び零相電流を用いて地絡事故の発生を検出し、さらに、その零相電圧及び零相電流の位相を用いて幹線3a上の事故点の方向である事故方向を判定する地絡事故処理を行う(詳しくは、後述する)。また、処理部1bは、検出部1aにより出力された相電流、すなわち短絡電流を用いて短絡事故の発生を検出し、さらに、検出部1aにより出力された短絡電流及び短絡事故前の電圧(正常電圧)の位相を用いて事故方向を判定する短絡事故処理を行う(詳しくは、後述する)。   The processing unit 1b detects the occurrence of a ground fault using the zero-phase voltage and the zero-phase current output by the detection unit 1a, and further uses the phase of the zero-phase voltage and the zero-phase current on the main line 3a. Ground fault processing is performed to determine the direction of the accident, which is the direction of the accident point (details will be described later). Further, the processing unit 1b detects the occurrence of a short-circuit accident using the phase current output by the detection unit 1a, that is, the short-circuit current, and further, the short-circuit current output by the detection unit 1a and the voltage before the short-circuit accident (normal A short-circuit accident process for determining the accident direction using the phase of the voltage is performed (details will be described later).

ここで、前述の事故方向の判定では、事故点が事故方向表示装置1からみて変電所2側に位置する場合に事故方向を電源側と判定し、逆に、需要先側に位置する場合に事故方向を負荷側と判定する。この判定後、処理部1bは事故の発生検出及び事故方向情報を表示部1cに出力する。なお、処理部1bは、前述の各種処理に用いる各種情報を記憶する記憶部11を有している。   Here, in the determination of the accident direction described above, when the accident point is located on the substation 2 side as viewed from the accident direction display device 1, the accident direction is determined as the power source side, and conversely, when the accident point is located on the demand side. Determine the direction of the accident as the load side. After this determination, the processing unit 1b outputs an accident occurrence detection and accident direction information to the display unit 1c. The processing unit 1b includes a storage unit 11 that stores various types of information used for the various types of processing described above.

表示部1cは、処理部1bから出力された事故の発生検出及び事故方向情報に基づいて作業者等に地絡事故又は短絡事故の事故方向を報知する表示を行う。この表示部1cとしては、例えば、磁気反転表示器が用いられる。ただし、事故方向表示装置1が太陽電池や充電地等の電源を備えており、その電源から表示部1cに電力が供給される場合には、表示部1cとして、LEDランプ等の表示灯やLEDディスプレイ等が用いられても良い。   The display unit 1c performs display for notifying the operator of the accident direction of the ground fault or short circuit accident based on the detection of the occurrence of the accident and the accident direction information output from the processing unit 1b. As the display unit 1c, for example, a magnetic reversal display is used. However, when the accident direction display device 1 is provided with a power source such as a solar battery or a charging place, and power is supplied from the power source to the display unit 1c, an indicator lamp such as an LED lamp or LED is used as the display unit 1c. A display or the like may be used.

この表示部1cは、例えば、事故方向が負荷側である場合だけ、その事故発生を報知する表示を行う。高圧配電線路3の幹線3a上には、複数の事故方向表示装置1が設けられているため、事故方向が負荷側である場合だけ表示を行うことで、事故点がどの事故方向表示装置1間に存在するかを作業者に報知することが可能となる。その結果、事故点の早期発見や迅速な復旧を実現することができる。   For example, the display unit 1c performs a display notifying the occurrence of the accident only when the accident direction is the load side. Since a plurality of accident direction display devices 1 are provided on the main line 3a of the high-voltage distribution line 3, the display is performed only when the accident direction is on the load side. It is possible to notify the operator of whether or not it exists. As a result, early detection of accident points and quick recovery can be realized.

次に、前述の処理部1bが行う地絡事故処理について詳しく説明する。   Next, the ground fault accident process performed by the processing unit 1b will be described in detail.

図2に示すように、零相電圧(V)及び零相電流(I)が検出部1aから処理部1bに入力される。零相電圧がその整定値に達し(ステップS1)、さらに、零相電流がその整定値に達すると(ステップS2)、それら零相電圧と零相電流との位相差が算出され、その位相差に基づいて幹線3a上の地絡事故の事故方向が判定され(ステップS3)、さらに、その事故方向の判定結果が所定時間以上維持されたか否かが判断される(ステップS4)。また、前述の零相電圧の周波数が監視され、その零相電圧の周波数が第1の許容範囲(例えば、定格周波数±1.1Hz)以内であるか否かが判定される(ステップS5)。この第1の許容範囲は記憶部11に記憶されており、必要に応じて読み出されて用いられる。 As shown in FIG. 2, the zero-phase voltage (V 0 ) and the zero-phase current (I 0 ) are input from the detection unit 1a to the processing unit 1b. When the zero-phase voltage reaches its set value (step S1), and when the zero-phase current reaches its set value (step S2), the phase difference between these zero-phase voltage and zero-phase current is calculated, and the phase difference Based on the above, the accident direction of the ground fault on the main line 3a is determined (step S3), and it is further determined whether or not the determination result of the accident direction has been maintained for a predetermined time or more (step S4). Further, the frequency of the aforementioned zero-phase voltage is monitored, and it is determined whether or not the frequency of the zero-phase voltage is within a first allowable range (for example, rated frequency ± 1.1 Hz) (step S5). The first allowable range is stored in the storage unit 11, and is read and used as necessary.

なお、地絡事故が発生すると、零相電圧及び零相電流はそれらの整定値以上となるため、零相電圧とその整定値との比較及び零相電流とその整定値との比較により地絡事故の発生を検出することが可能である。例えば、6kVの高圧配電線路3の場合には、零相電圧の整定値を380Vにし、零相電流の整定値を100mAにすると、零相電圧のレベルが380Vに達し、零相電流のレベルが100mAに達したとき、地絡事故の発生が検出されることになる。   If a ground fault occurs, the zero-phase voltage and zero-phase current will be equal to or higher than their settling values, so a comparison between the zero-phase voltage and the settling value and a comparison between the zero-phase current and the settling value will cause a ground fault. It is possible to detect the occurrence of an accident. For example, in the case of the high voltage distribution line 3 of 6 kV, when the set value of the zero phase voltage is 380 V and the set value of the zero phase current is 100 mA, the level of the zero phase voltage reaches 380 V and the level of the zero phase current is When 100 mA is reached, the occurrence of a ground fault will be detected.

その後、前述のステップS4において事故方向の判定結果が所定時間以上維持されたと判断され、さらに、前述のステップS5において零相電圧の周波数が第1の許容範囲内であると判定されると、前述の零相電圧及び零相電流が各整定値に達しているため、AND条件の成立により地絡事故の発生検出及び事故方向情報が表示部1cに出力される(ステップS6)。   After that, it is determined in step S4 that the accident direction determination result has been maintained for a predetermined time or more, and in step S5, if the frequency of the zero-phase voltage is determined to be within the first allowable range, Since the zero-phase voltage and the zero-phase current have reached the respective set values, the occurrence detection of the ground fault and the accident direction information are output to the display unit 1c when the AND condition is satisfied (step S6).

一方、前述のステップS5において零相電圧の周波数が第1の許容範囲内でないと判定されると、前述のステップS3における地絡事故の事故方向判定処理が停止され、AND条件が不成立となる。その後、再び、前述のステップS5において零相電圧の周波数が第1の許容範囲内であると判定されると、前述のステップS3における地絡事故の事故方向判定処理が再開される。これにより、地絡事故の事故方向判定処理において大きな周波数変動を伴う零相電圧及び零相電流を用いることが回避され、事故方向の誤判定が防止される。   On the other hand, if it is determined in step S5 that the frequency of the zero phase voltage is not within the first allowable range, the fault direction determination process for the ground fault in step S3 is stopped, and the AND condition is not satisfied. Thereafter, when it is determined again in step S5 that the frequency of the zero-phase voltage is within the first allowable range, the fault direction determination process for the ground fault in step S3 described above is resumed. This avoids the use of zero-phase voltage and zero-phase current with large frequency fluctuations in the fault direction determination process for ground faults, and prevents erroneous determination of the accident direction.

ここで、前述の地絡事故の事故方向判定処理では、例えば、図3に示すように、零相電圧と零相電流との位相差、すなわち零相電圧の位相角0°が基準にされ、零相電流の位相が−30°〜+150°の範囲内にある場合に、事故方向は負荷側であると判定される。一方、零相電流の位相が−30°〜+150°の範囲内に無い場合、すなわち+150°〜−30°の範囲内にある場合には、事故方向は電源側であると判定される。なお、これらの判定範囲は記憶部11に記憶されており、必要に応じて読み出されて用いられる。   Here, in the above-described fault direction determination process of the ground fault, for example, as shown in FIG. 3, the phase difference between the zero-phase voltage and the zero-phase current, that is, the phase angle 0 ° of the zero-phase voltage is used as a reference. When the phase of the zero-phase current is within a range of −30 ° to + 150 °, it is determined that the accident direction is the load side. On the other hand, when the phase of the zero-phase current is not within the range of −30 ° to + 150 °, that is, within the range of + 150 ° to −30 °, it is determined that the accident direction is the power supply side. These determination ranges are stored in the storage unit 11, and are read and used as necessary.

次いで、処理部1bが行う短絡事故処理について詳しく説明する。   Next, the short-circuit accident process performed by the processing unit 1b will be described in detail.

図4に示すように、相電流(I)及び相電圧(V)が検出部1aから処理部1bに入力される。まず、短絡事故前、すなわち短絡電流発生前の電圧位相が記憶部11に記憶される(ステップS11)。その後、相電流がその整定値に達すると(ステップS12)、その相電流である短絡電流と記憶部11に記憶された電圧との位相差が算出され、その位相差に基づいて短絡事故の事故方向が判定され(ステップS13)、さらに、その事故方向の判定結果が所定時間以上維持されたか否かが判断される(ステップS14)。また、前述の相電流、すなわち短絡事故により生じる短絡電流の周波数が監視され、その短絡電流の周波数が第2の許容範囲(例えば、事故前の周波数±0.6Hz)以内であるか否かが判定される(ステップS15)。この第2の許容範囲は記憶部11に記憶されており、必要に応じて読み出されて用いられる。   As shown in FIG. 4, the phase current (I) and the phase voltage (V) are input from the detection unit 1a to the processing unit 1b. First, the voltage phase before the short-circuit accident, that is, before the occurrence of the short-circuit current is stored in the storage unit 11 (step S11). Thereafter, when the phase current reaches the set value (step S12), the phase difference between the short-circuit current that is the phase current and the voltage stored in the storage unit 11 is calculated, and an accident of a short-circuit accident is calculated based on the phase difference. The direction is determined (step S13), and it is further determined whether or not the determination result of the accident direction has been maintained for a predetermined time or more (step S14). In addition, the frequency of the above-described phase current, that is, the short-circuit current caused by the short-circuit accident is monitored, and whether or not the frequency of the short-circuit current is within a second allowable range (for example, the frequency before the accident ± 0.6 Hz). Determination is made (step S15). The second allowable range is stored in the storage unit 11, and is read and used as necessary.

なお、短絡事故が発生すると、相電流はその整定値以上となるため、相電流とその整定値との比較により短絡事故の発生を検出することが可能である。例えば、小容量の高圧配電線路3の場合には、相電流の整定値を300Aにすると、相電流のレベルが300Aに達したとき、短絡事故の発生が検出されることになる。また、大容量の高圧配電線路3の場合には、相電流の整定値を600Aにすると、相電流のレベルが600Aに達したとき、短絡事故の発生が検出されることになる。   When a short circuit accident occurs, the phase current becomes equal to or higher than the set value, and therefore it is possible to detect the occurrence of the short circuit accident by comparing the phase current with the set value. For example, in the case of the small-capacity high-voltage distribution line 3, if the set value of the phase current is 300A, the occurrence of a short circuit accident is detected when the phase current level reaches 300A. Further, in the case of the high-capacity high-voltage distribution line 3, when the set value of the phase current is set to 600A, the occurrence of a short-circuit accident is detected when the level of the phase current reaches 600A.

その後、前述のステップS14において前述の事故方向の判定結果が所定時間以上維持されたと判断され、さらに、前述のステップS15において短絡電流の周波数が第2の許容範囲内であると判定されると、前述の相電流が整定値に達しているため、AND条件の成立により短絡事故の発生検出及び事故方向情報が表示部1cに出力される(ステップS16)。   After that, it is determined in step S14 that the accident direction determination result is maintained for a predetermined time or more, and in step S15, it is determined that the frequency of the short-circuit current is within the second allowable range. Since the above-described phase current has reached a set value, detection of occurrence of a short circuit accident and accident direction information are output to the display unit 1c when the AND condition is satisfied (step S16).

一方、前述のステップS15において短絡電流の周波数が第2の許容範囲内でないと判定されると、前述のステップS13における短絡事故の事故方向判定処理が停止され、AND条件が不成立となる。その後、再び、前述のステップS15において短絡電流の周波数が第2の許容範囲内であると判定されると、前述のステップS13における短絡事故の事故方向判定処理が再開される。これにより、短絡事故の事故方向判定処理において大きな周波数変動を伴う短絡電流を用いることが回避され、事故方向の誤判定が防止される。   On the other hand, if it is determined in step S15 that the frequency of the short-circuit current is not within the second allowable range, the accident direction determination process for the short-circuit accident in step S13 is stopped, and the AND condition is not satisfied. Thereafter, when it is determined again in step S15 that the frequency of the short-circuit current is within the second allowable range, the accident direction determination process for the short-circuit accident in step S13 described above is resumed. Thereby, it is avoided to use a short-circuit current with a large frequency fluctuation in the accident direction determination process of the short-circuit accident, and erroneous determination of the accident direction is prevented.

ここで、前述の短絡事故の事故方向判定処理では、例えば、図5に示すように、短絡電流と短絡事故前の電圧との位相差、すなわち短絡事故前の電圧の位相角0°が基準にされ、短絡電流の位相が−30°〜+110°の範囲内にある場合に、事故方向は負荷側であると判定される。一方、短絡電流の位相が+150°〜−70°の範囲内にある場合には、事故方向は電源側であると判定される。なお、これらの判定範囲は記憶部11に記憶されており、必要に応じて読み出されて用いられる。   Here, in the accident direction determination process of the short-circuit accident described above, for example, as shown in FIG. 5, the phase difference between the short-circuit current and the voltage before the short-circuit accident, that is, the phase angle 0 ° of the voltage before the short-circuit accident is used as a reference. When the phase of the short circuit current is within the range of −30 ° to + 110 °, it is determined that the accident direction is the load side. On the other hand, when the phase of the short circuit current is within the range of + 150 ° to −70 °, it is determined that the accident direction is the power supply side. These determination ranges are stored in the storage unit 11, and are read and used as necessary.

このような地絡事故処理や短絡事故処理において、地絡事故の事故方向判定処理では、検出部1aにより検出された零相電圧と零相電流との位相差が用いられ、地絡事故の事故方向を判定する第1の判定処理が行われる。また、短絡事故の事故方向判定処理では、検出部1aにより検出された短絡電流と記憶部11により記憶された短絡事故前の電圧との位相差が用いられ、短絡事故の事故方向を判定する第2の判定処理が行われる。これらの第1の判定処理及び第2の判定処理が処理部1bにより事故時の電圧又は電流の周波数変動に応じて停止され、それらの周波数変動に起因する事故方向の誤判定が回避される。   In such ground fault accident processing and short-circuit accident processing, the phase difference between the zero-phase voltage and the zero-phase current detected by the detection unit 1a is used in the fault direction determination processing of the ground fault accident. A first determination process for determining the direction is performed. Further, in the accident direction determination process of the short circuit accident, the phase difference between the short circuit current detected by the detection unit 1a and the voltage before the short circuit accident stored by the storage unit 11 is used to determine the accident direction of the short circuit accident. 2 determination processing is performed. The first determination process and the second determination process are stopped by the processing unit 1b according to the frequency fluctuation of the voltage or current at the time of the accident, and the erroneous determination of the accident direction due to the frequency fluctuation is avoided.

例えば、地絡事故が発生した場合には、検出部1aにより検出された零相電圧の周波数が記憶部11により記憶された第1の許容範囲内であるか否かが判断され、その零相電圧の周波数が第1の許容範囲内でないと判断されたとき、前述の第1の判定処理が停止され、その零相電圧の周波数が第1の許容範囲内であると判断されたとき、前述の第1の判定処理が再開される。また、短絡事故が発生した場合には、検出部1aにより検出された短絡電流の周波数が記憶部11により記憶された第2の許容範囲内であるか否かが判断され、その短絡電流の周波数が第2の許容範囲内でないと判断されたとき、前述の第2の判定処理が停止され、その短絡電流の周波数が第2の許容範囲内であると判断されたとき、前述の第2の判定処理が再開される。   For example, when a ground fault occurs, it is determined whether the frequency of the zero-phase voltage detected by the detection unit 1a is within the first allowable range stored by the storage unit 11, and the zero-phase is detected. When it is determined that the frequency of the voltage is not within the first allowable range, the first determination process described above is stopped, and when the frequency of the zero-phase voltage is determined to be within the first allowable range, The first determination process is resumed. When a short circuit accident occurs, it is determined whether or not the frequency of the short circuit current detected by the detection unit 1a is within the second allowable range stored by the storage unit 11, and the frequency of the short circuit current is determined. Is determined not to be within the second allowable range, the above-described second determination process is stopped, and when it is determined that the frequency of the short-circuit current is within the second allowable range, the above-described second determination process is stopped. The determination process is resumed.

以上説明したように、本発明の実施形態に係る事故方向表示装置1によれば、検出部1aにより幹線3a上の電圧又は電流の周波数が検出され、その検出された電圧又は電流の周波数が処理部1bにより監視される。この監視により電圧又は電流の周波数が許容範囲外となると、事故方向判定処理(第1の判定処理や第2の判定処理)が停止され、その電圧又は電流の周波数が許容範囲内になると、停止中の事故方向判定処理が再開される。このように事故方向判定処理における監視項目として、電圧及び電流の位相に加え、電圧又は電流の周波数が追加され、その周波数に基づいて事故方向判定処理が停止されるので、大きな周波数変動を伴う電圧又は電流を用いて事故方向判定処理を行うことが無くなり、周波数変動に起因する事故方向の誤判定を回避することが可能となる。その結果、事故時の電圧又は電流の周波数変動による事故方向判定の精度低下を防止し、事故方向を正確に判定して表示することができる。   As described above, according to the accident direction display device 1 according to the embodiment of the present invention, the frequency of the voltage or current on the main line 3a is detected by the detection unit 1a, and the detected voltage or current frequency is processed. Monitored by the unit 1b. When the voltage or current frequency falls outside the allowable range due to this monitoring, the accident direction determination process (first determination process or second determination process) is stopped, and when the voltage or current frequency falls within the allowable range, it stops. The accident direction determination process is resumed. As described above, in addition to the voltage and current phases, the voltage or current frequency is added as a monitoring item in the accident direction determination process, and the accident direction determination process is stopped based on the frequency. Alternatively, the accident direction determination process is not performed using the current, and it is possible to avoid erroneous determination of the accident direction due to frequency fluctuation. As a result, it is possible to prevent a reduction in the accuracy of the accident direction determination due to the frequency fluctuation of the voltage or current at the time of the accident, and to accurately determine and display the accident direction.

また、処理部1bは地絡事故及び短絡事故のどちらの事故発生にも対応し、その処理部1bにより前述のように事故方向判定処理(第1の判定処理や第2の判定処理)が停止されるので、地絡事故及び短絡事故のどちらの事故が発生した場合でも、事故時の電圧又は電流の周波数変動による事故方向判定の精度低下を防止し、事故方向を正確に判定して表示することができる。   In addition, the processing unit 1b responds to both occurrences of ground faults and short circuit accidents, and the processing unit 1b stops the accident direction determination processing (first determination processing and second determination processing) as described above. Therefore, in the event of either a ground fault or a short-circuit accident, the accuracy of accident direction determination due to voltage or current frequency fluctuations at the time of the accident is prevented, and the accident direction is accurately determined and displayed. be able to.

なお、本発明に係る前述の実施形態は例示であり、発明の範囲はそれらに限定されない。前述の実施形態は種々変更可能であり、例えば、前述の実施形態に示される全構成要素から幾つかの構成要素が削除されても良く、さらに、異なる実施形態に係る構成要素が適宜組み合わされても良い。前述の実施形態に係る処理部1bを構成する場合には、ハードウェア及びソフトウェアの両方を用いて処理部1bを構成しても良く、あるいは、それらのどちらか一方を用いて処理部1bを構成しても良い。また、前述の実施形態においては、第1の許容範囲及び第2の許容範囲を異なる範囲に設定しても良く、あるいは、同じ範囲に設定しても良い。また、第1の判定処理及び第2の判定処理の両方を同時に並行して行っても良く、あるいは、どちらか一方だけを行っても良い。   In addition, the above-mentioned embodiment which concerns on this invention is an illustration, and the scope of the invention is not limited to them. The above-described embodiment can be variously modified. For example, some components may be deleted from all the components shown in the above-described embodiment, and further, components according to different embodiments may be appropriately combined. Also good. When configuring the processing unit 1b according to the above-described embodiment, the processing unit 1b may be configured using both hardware and software, or the processing unit 1b may be configured using either one of them. You may do it. In the above-described embodiment, the first allowable range and the second allowable range may be set to different ranges, or may be set to the same range. Further, both the first determination process and the second determination process may be performed simultaneously in parallel, or only one of them may be performed.

1 事故方向表示装置
1a 検出部
1b 処理部
1c 表示部
3 高圧配電線路
3a 幹線
4 分散型電源
DESCRIPTION OF SYMBOLS 1 Accident direction display apparatus 1a Detection part 1b Processing part 1c Display part 3 High voltage distribution line 3a Trunk line 4 Distributed type power supply

Claims (2)

分散型電源が連係している高圧配電線路の幹線上の地絡事故又は短絡事故により変化する電圧及び電流を検出する検出部と、
前記検出部により検出された前記電圧及び前記電流の位相を用いて前記幹線上の事故点の方向である事故方向を判定する処理部と、
前記処理部により判定された前記事故方向を報知する表示を行う表示部と、
を備え、
前記検出部は、地絡事故又は短絡事故により変化する電圧又は電流の周波数を検出し、
前記処理部は、前記検出部により検出された前記電圧又は前記電流の周波数が許容範囲内であるか否かを判断し、その電圧又は電流の周波数が許容範囲内でないと判断した場合、前記事故方向を判定する処理を停止し、その電圧又は電流の周波数が許容範囲内であると判断した場合、前記事故方向を判定する処理を再開する
ことを特徴とする事故方向表示装置。
A detection unit for detecting a voltage and a current that change due to a ground fault or a short-circuit accident on a main line of a high-voltage distribution line connected to a distributed power source;
A processing unit that determines an accident direction that is a direction of an accident point on the trunk line using the phase of the voltage and the current detected by the detection unit;
A display unit for displaying the accident direction determined by the processing unit;
With
The detection unit detects the frequency of the voltage or current that changes due to a ground fault or a short circuit accident,
The processing unit determines whether the frequency of the voltage or the current detected by the detection unit is within an allowable range, and determines that the accident occurs when the frequency of the voltage or the current is not within the allowable range. An accident direction display device characterized by stopping the process of determining the direction and restarting the process of determining the accident direction when it is determined that the frequency of the voltage or current is within an allowable range.
前記検出部は、前記電圧及び前記電流として、地絡事故により生じる零相電圧及び零相電流と、短絡事故により生じる短絡電流及び短絡事故前の電圧とを検出し、
前記処理部は、
前記検出部により検出された前記短絡事故前の電圧位相と、第1の許容範囲及び第2の許容範囲とを記憶する記憶部を有し、前記検出部により検出された前記零相電圧と前記零相電流との位相差を用いて前記事故方向を判定する第1の判定処理を行い、前記検出部により検出された前記短絡電流と前記記憶部により記憶された前記短絡事故前の電圧との位相差を用いて前記事故方向を判定する第2の判定処理を行う処理部であり、
前記検出部により検出された前記零相電圧の周波数が前記記憶部により記憶された第1の許容範囲内であるか否かを判断し、その零相電圧の周波数が前記第1の許容範囲内でないと判断した場合、前記第1の判定処理を停止し、その零相電圧の周波数が前記第1の許容範囲内であると判断した場合、前記第1の判定処理を再開し、
前記検出部により検出された前記短絡電流の周波数が前記記憶部により記憶された第2の許容範囲内であるか否かを判断し、その短絡電流の周波数が前記第2の許容範囲内でないと判断した場合、前記第2の判定処理を停止し、その短絡電流の周波数が前記第2の許容範囲内であると判断した場合、前記第2の判定処理を再開する
ことを特徴とする請求項1記載の事故方向表示装置。
The detector detects, as the voltage and the current, a zero-phase voltage and a zero-phase current caused by a ground fault, a short-circuit current caused by a short-circuit accident, and a voltage before the short-circuit accident,
The processor is
The storage unit stores the voltage phase before the short-circuit accident detected by the detection unit, and the first allowable range and the second allowable range, and the zero-phase voltage detected by the detection unit and the A first determination process is performed to determine the accident direction using a phase difference with a zero-phase current, and the short-circuit current detected by the detection unit and the voltage before the short-circuit accident stored by the storage unit A processing unit that performs a second determination process for determining the accident direction using a phase difference;
It is determined whether the frequency of the zero-phase voltage detected by the detection unit is within a first allowable range stored by the storage unit, and the frequency of the zero-phase voltage is within the first allowable range. If it is determined that the frequency of the zero-phase voltage is within the first allowable range, the first determination process is resumed.
It is determined whether the frequency of the short-circuit current detected by the detection unit is within the second allowable range stored by the storage unit, and the frequency of the short-circuit current is not within the second allowable range. When it is determined, the second determination process is stopped, and when it is determined that the frequency of the short-circuit current is within the second allowable range, the second determination process is resumed. The accident direction display device according to 1.
JP2010187576A 2010-08-24 2010-08-24 Accident direction indicator Active JP5036850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010187576A JP5036850B2 (en) 2010-08-24 2010-08-24 Accident direction indicator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010187576A JP5036850B2 (en) 2010-08-24 2010-08-24 Accident direction indicator

Publications (2)

Publication Number Publication Date
JP2012047497A JP2012047497A (en) 2012-03-08
JP5036850B2 true JP5036850B2 (en) 2012-09-26

Family

ID=45902564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010187576A Active JP5036850B2 (en) 2010-08-24 2010-08-24 Accident direction indicator

Country Status (1)

Country Link
JP (1) JP5036850B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107219442A (en) * 2017-05-11 2017-09-29 西安交通大学 Utilize the resonant earthed system singlephase earth fault Section Location of phase voltage jump-value of current phase property

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6246745B2 (en) * 2015-01-09 2017-12-13 中国電力株式会社 CT receiver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107219442A (en) * 2017-05-11 2017-09-29 西安交通大学 Utilize the resonant earthed system singlephase earth fault Section Location of phase voltage jump-value of current phase property
CN107219442B (en) * 2017-05-11 2019-07-23 西安交通大学 Resonant earthed system Earth design method based on phase voltage current phase

Also Published As

Publication number Publication date
JP2012047497A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
US8972209B2 (en) Method and arrangement for detecting an internal failure in H-bridge connected capacitor bank
JP5819602B2 (en) Ground fault detection device, ground fault detection method, solar power generation system, and ground fault detection program
RU2542494C2 (en) Device and method for detection of ground short-circuit
KR100906966B1 (en) When intercept electric leakage, device and power distributor having earth leakage current analysis function
WO2016092871A1 (en) Electric motor diagnosis device
RU2014103627A (en) SYSTEM, COMPUTER SOFTWARE PRODUCT AND METHOD FOR DETECTING INTERNAL MALFUNCTIONS OF WINDING OF THE SYNCHRONOUS GENERATOR
RU2504067C2 (en) System of uninterrupted power supply comprising simplified circuit of voltage availability indication
WO2014167710A1 (en) Electricity storage device abnormality detection circuit, and electricity storage device provided with same
EP2676146A1 (en) Method and arrangement for an internal failure detection in a y-y connected capacitor bank
KR101859068B1 (en) Appratus for detecting electric power line state
US9714974B2 (en) Device for detecting open phase of connection line of standby transformer in nuclear power plant by using Rogowski coil
JP2006204069A (en) Individual operation detecting method and individual operation detecting device
KR101226474B1 (en) Prediction device deterioration of condenser bank and method rhereof
KR101370490B1 (en) The apparatus and method for compensation of voltage-dip
KR20110081008A (en) Fault detecting and predicting apparatus for metering out fit
JP2011137718A (en) Device for monitoring high voltage insulation
JP5036850B2 (en) Accident direction indicator
CN109921103A (en) The maintaining method and system of the maintaining method and system of battery group, battery
Liu et al. Insulation fault detection circuit for ungrounded DC power supply systems
KR101402350B1 (en) Prediction method deterioration of condenser bank using dielectric tangent
KR101297843B1 (en) Distributing board for measuring a capacity of a condenser and measuring method thereof
JP5858236B2 (en) Battery system
KR101976989B1 (en) Leakage current monitoring and alarm system of power supply
US11592498B2 (en) Multi-phase fault identification in capacitor banks
JP2019022264A (en) Open-phase detection device, open-phase detection system, and open-phase detection method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5036850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250