JP5036256B2 - Organic inorganic composite material - Google Patents

Organic inorganic composite material Download PDF

Info

Publication number
JP5036256B2
JP5036256B2 JP2006247238A JP2006247238A JP5036256B2 JP 5036256 B2 JP5036256 B2 JP 5036256B2 JP 2006247238 A JP2006247238 A JP 2006247238A JP 2006247238 A JP2006247238 A JP 2006247238A JP 5036256 B2 JP5036256 B2 JP 5036256B2
Authority
JP
Japan
Prior art keywords
organic
inorganic
organic material
film
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006247238A
Other languages
Japanese (ja)
Other versions
JP2008071833A (en
Inventor
拓司 加藤
保 有賀
大輔 後藤
昌史 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006247238A priority Critical patent/JP5036256B2/en
Publication of JP2008071833A publication Critical patent/JP2008071833A/en
Application granted granted Critical
Publication of JP5036256B2 publication Critical patent/JP5036256B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、有機無機複合材料に関する。   The present invention relates to an organic-inorganic composite material.

近年、有機半導体を利用した様々な電子デバイスが提案されている(例えば、特許文献1及び2参照)。それらの電子デバイスの多くは、無機材料の表面に有機材料層が設けられている。有機材料を用いる利点である、大面積に対して均一な層を形成する性質を発揮するには、無機材料及び有機材料界面の均一性及び安定性が重要である。従来、SiOなど無機材料表面に有機材料を塗布する場合、洗浄工程における水酸基の存在により有機材料層の均一性が損なわれてしまっていた。また、無機基板上に形成された水酸基のため、有機材料層及び無機材料層の間に水吸着層が形成され、有機材料層及び無機材料層の界面の密着性の低下が問題とされていた。
特開平5−55568号公報 特開2005−101493号公報
In recent years, various electronic devices using organic semiconductors have been proposed (see, for example, Patent Documents 1 and 2). In many of these electronic devices, an organic material layer is provided on the surface of an inorganic material. In order to exhibit the property of forming a uniform layer over a large area, which is an advantage of using an organic material, the uniformity and stability of the interface between the inorganic material and the organic material are important. Conventionally, when applying an organic material to inorganic material surface such as SiO 2, the uniformity of the organic material layer has fallen into compromised by the presence of hydroxyl groups in the washing step. In addition, due to the hydroxyl group formed on the inorganic substrate, a water adsorption layer is formed between the organic material layer and the inorganic material layer, and a decrease in adhesion at the interface between the organic material layer and the inorganic material layer has been a problem. .
JP-A-5-55568 JP 2005-101493 A

本発明は、上記の点に鑑みてなされたものであり、有機材料層及び無機材料層の界面の耐水性を向上させた有機無機複合材料を提供することを目的とする。   This invention is made | formed in view of said point, and it aims at providing the organic inorganic composite material which improved the water resistance of the interface of an organic material layer and an inorganic material layer.

上記の課題を達成するために本発明では、次に述べる手段を講じたことを特徴とする。   In order to achieve the above object, the present invention is characterized by the following measures.

本発明の有機無機複合材料は、無機材料層及び前記無機材料層上に設けられた有機材料膜を含む有機無機複合材料において、前記無機材料は水酸基を有し、前記有機材料膜の材料はシリコン末端とベンゼン末端とを含み、前記有機材料膜は、前記ベンゼン末端由来ベンゼン環が、前記有機材料膜の表面に露出する膜であり、前記有機材料膜における、前記ベンゼン末端由来のベンゼン環の面間隔は2.8Å以上3.0Å以下であり、前記有機材料膜上に有機材料層をさらに有する、有機無機複合材料である。 The organic-inorganic composite material of the present invention is an organic-inorganic composite material including an inorganic material layer and an organic material film provided on the inorganic material layer, wherein the inorganic material has a hydroxyl group, and the material of the organic material film is silicon The organic material film is a film in which the benzene terminal-derived benzene ring is exposed on the surface of the organic material film, and the surface of the benzene terminal-derived benzene ring in the organic material film interval Ri der than 3.0Å or less 2.8 Å, further comprising an organic material layer on the organic material film, an organic-inorganic composite material.

本発明によれば、有機材料及び無機材料の界面の耐水性を向上させた有機無機複合材料を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the organic inorganic composite material which improved the water resistance of the interface of an organic material and an inorganic material.

次に、本発明を実施するための最良の形態について図面と共に説明する。   Next, the best mode for carrying out the present invention will be described with reference to the drawings.

本発明の有機無機複合材料は、無機材料からなる無機基板上に、2.8Å以上3.0Å以下の面間隔を有するベンゼン環が露出する有機材料膜が設けられている。   In the organic-inorganic composite material of the present invention, an organic material film in which a benzene ring having a surface interval of 2.8 to 3.0 mm is exposed on an inorganic substrate made of an inorganic material.

図1は、本発明の有機無機複合材料の断面図である。   FIG. 1 is a cross-sectional view of the organic-inorganic composite material of the present invention.

図1を参照するに、有機無機複合材料10は、無機基板11及び有機材料膜12からなる。   Referring to FIG. 1, the organic-inorganic composite material 10 includes an inorganic substrate 11 and an organic material film 12.

無機基板11は、具体的には、酸化ケイ素、窒化ケイ素、酸化アルミニウム、窒化アルミニウム、酸化チタン、酸化タンタル、酸化スズ、酸化バナジウム、チタン酸バリウムストロンチウム、ジルコニウム酸化チタン酸バリウム、ジルコニウム酸チタン酸鉛、チタン酸鉛ランタン、チタン酸ストロンチウム、チタン酸バリウム、フッ化バリウムマグネシウム、タンタル酸ニオブ酸ビスマス、及び酸化イットリウムなどの無機絶縁膜などが使用できる。   Specifically, the inorganic substrate 11 includes silicon oxide, silicon nitride, aluminum oxide, aluminum nitride, titanium oxide, tantalum oxide, tin oxide, vanadium oxide, barium strontium titanate, zirconium barium titanate, lead zirconate titanate. Inorganic insulating films such as lead lanthanum titanate, strontium titanate, barium titanate, magnesium barium fluoride, bismuth tantalate niobate, and yttrium oxide can be used.

作製方法としては、例えば、CVD法、プラズマCVD法、プラズマ重合法、蒸着法のドライプロセス、スプレーコート法、スピンコート法、ディップコート法、インクジェット法、キャスト法、ブレードコート法、及びバーコート法などの塗布によるウェットプロセスが挙げられる。さらに、塗布型SiOを用いることもできる。 As a production method, for example, a CVD method, a plasma CVD method, a plasma polymerization method, a vapor deposition dry process, a spray coating method, a spin coating method, a dip coating method, an ink jet method, a casting method, a blade coating method, and a bar coating method. The wet process by application | coating etc. is mentioned. Furthermore, coating type SiO 2 can also be used.

有機材料膜12は、無機基板11上に設けられ、2.8Å以上3.0Å以下の面間隔を有するベンゼン環13が、膜表面に露出する構造とする。   The organic material film 12 is provided on the inorganic substrate 11 and has a structure in which a benzene ring 13 having a surface interval of 2.8 to 3.0 mm is exposed on the film surface.

有機材料膜12の材料は、例えば、トリクロロシラン、ジクロロシラン、モノクロロシラン、トリメトキシシラン、ジメトキシシラン、モノメトキシシラン、トリエトキシシラン、ジエトキシシラン、モノエトキシシラン、モノブトキシシラン、ジブトキシシラン、及びモノブトキシシランなどの、ハロゲン原子及び置換若しくは無置換アルコキシを含むシリコン末端と、他方の末端にベンゼン環とを含む化合物を用いて、化学吸着法により製膜することで形成する。これらの具体的な化合物としては、例えば、フェニルトリクロロシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェノキシトリクロロシラン、フェノキシトリメトキシシラン、フェノキシトリエトキシシラン、フェネチルトリクロロシラン、フェネチルトリメトキシシラン、フェネチルトリエトキシシラン、4−フェニルブチルトリクロロシラン、及び4−フェニルブチルトリエトキシシランなどが挙げられる。   The material of the organic material film 12 is, for example, trichlorosilane, dichlorosilane, monochlorosilane, trimethoxysilane, dimethoxysilane, monomethoxysilane, triethoxysilane, diethoxysilane, monoethoxysilane, monobutoxysilane, dibutoxysilane, And a film containing a halogen atom and a silicon terminal containing a substituted or unsubstituted alkoxy and a compound containing a benzene ring at the other terminal, such as monobutoxysilane, is formed by chemical adsorption. Specific examples of these compounds include phenyltrichlorosilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenoxytrichlorosilane, phenoxytrimethoxysilane, phenoxytriethoxysilane, phenethyltrichlorosilane, phenethyltrimethoxysilane, and phenethyltrimethyl. Examples include ethoxysilane, 4-phenylbutyltrichlorosilane, and 4-phenylbutyltriethoxysilane.

上述の化合物は、化学吸着法により無機基板11上に製膜される。上述の化合物を、例えば、ジクロロメタン、テトラヒドロフラン、クロロホルム、トルエン、ジクロロベンゼン、及びキシレンなどの溶剤に溶解する。無機基板11を上述の化合物の溶液に浸した後、乾燥させることにより、上述の化合物で無機基板11上を製膜する。2.8Å以上3.0Å以下の面間隔を有するベンゼン環13からなる有機材料膜12を形成するためには、無機基板11を溶液に浸した際、超音波照射することが望ましい。   The above-mentioned compound is formed on the inorganic substrate 11 by a chemical adsorption method. The above compound is dissolved in a solvent such as dichloromethane, tetrahydrofuran, chloroform, toluene, dichlorobenzene, and xylene. The inorganic substrate 11 is dipped in the solution of the above compound and then dried to form a film on the inorganic substrate 11 with the above compound. In order to form the organic material film 12 composed of the benzene rings 13 having a surface interval of 2.8 to 3.0 mm, it is desirable to irradiate ultrasonic waves when the inorganic substrate 11 is immersed in a solution.

また、上述のシラン化合物が、0.1mM以上1000mM以下の範囲の濃度になるように上述の溶剤に溶解させることが好ましい。0.1mM以下であれば浸漬時間が長くなりすぎ、100mM以上であれば、シラン化合物同士の自己縮合により、2.8Å以上3.0Å以下の面間隔を有するベンゼン環13からなる膜表面が均一に形成されない。より好ましくは、上述のシラン化合物を1mM以上10mM以下の範囲の濃度にすることである。   Moreover, it is preferable to dissolve the above-mentioned silane compound in the above-mentioned solvent so as to have a concentration in the range of 0.1 mM to 1000 mM. If it is 0.1 mM or less, the immersion time becomes too long, and if it is 100 mM or more, the film surface consisting of the benzene rings 13 having a surface interval of 2.8 to 3.0 mm is uniform due to self-condensation of silane compounds. Not formed. More preferably, the concentration of the silane compound is in the range of 1 mM to 10 mM.

有機材料膜12の構造は、X線光電子分光法による炭素量の定量、赤外吸収分光法による官能基の確認、及びX線回折による単分子膜の周期構造によって確認することができる。例えば、X線回折は、SPring−8 BL13XUにおいて、微小角入射X線回折(GIXD)法を用いて測定することができる。GIXDの測定条件は、X線の入射角を0.1°、取り出し角を0.1°、及び入射光エネルギーを12KeVとする。   The structure of the organic material film 12 can be confirmed by quantitative determination of carbon content by X-ray photoelectron spectroscopy, confirmation of functional groups by infrared absorption spectroscopy, and periodic structure of a monomolecular film by X-ray diffraction. For example, X-ray diffraction can be measured using a grazing incidence X-ray diffraction (GIXD) method in SPring-8 BL13XU. The measurement conditions for GIXD are an X-ray incident angle of 0.1 °, an extraction angle of 0.1 °, and an incident light energy of 12 KeV.

(実施例1)
図2は、本発明の実施例1の微小角入射X線回折測定結果を示す特性図である。
Example 1
FIG. 2 is a characteristic diagram showing the measurement results of the small-angle incident X-ray diffraction of Example 1 of the present invention.

無機基板は、30mm角のBドープシリコン基板表面を熱酸化して、膜厚200nmのSiO絶縁膜を形成することにより製造される。無機基板を、5mMフェニルトリクロロシランを含むトルエン溶液に30分間浸漬させる同時に、超音波照射を行う。その後、無機基板を乾燥させることにより、無機基板上に有機材料膜が設けられた有機無機複合材料を作製した。 The inorganic substrate is manufactured by thermally oxidizing the 30 mm square B-doped silicon substrate surface to form a 200 nm thick SiO 2 insulating film. The inorganic substrate is immersed in a toluene solution containing 5 mM phenyltrichlorosilane for 30 minutes, and at the same time, ultrasonic irradiation is performed. Then, the organic-inorganic composite material in which the organic material film | membrane was provided on the inorganic substrate was produced by drying an inorganic substrate.

図2を参照するに、GIXDの測定により、薄膜の面内周期構造解析が可能である。図1の縦軸は、X線回折強度を、同じく横軸は回折パラメータq(ただし、q=4πsinθ/λ、2θ:回折角、λ:波長)をそれぞれ示している。通常のGIXD解析では、横軸は回折角2θによって示される。しかし、本測定では、サンプルの劣化と測定精度とのバランスを考えて、通常のGIXD測定で使用されるCuKα線ではなく、12KeVの測定波長を使用しているため、同じ面間隔であっても、異なる2θ位置にシグナルが観測されることになるため、横軸には、測定波長に依存しない回折パラメータqを使用した。   Referring to FIG. 2, in-plane periodic structure analysis of a thin film is possible by GIXD measurement. In FIG. 1, the vertical axis represents the X-ray diffraction intensity, and the horizontal axis represents the diffraction parameter q (where q = 4π sin θ / λ, 2θ: diffraction angle, λ: wavelength). In normal GIXD analysis, the horizontal axis is indicated by the diffraction angle 2θ. However, in this measurement, considering the balance between sample degradation and measurement accuracy, the measurement wavelength of 12 KeV is used instead of the CuKα line used in normal GIXD measurement, so even with the same spacing. Since signals are observed at different 2θ positions, a diffraction parameter q that does not depend on the measurement wavelength is used on the horizontal axis.

上述の処理をした基板をGIXDにより構造解析を行った結果、22.31nm−1にX線強度のピークを示した。この結果から、2.9Åの面間隔でベンゼン環の周期構造を有することが確認された。また、上述のピークの半値幅が±0.1Å以下であることから、この無機基板上に高均一な薄膜が形成されていることもまた確認された。 As a result of structural analysis of the substrate treated as described above by GIXD, an X-ray intensity peak was shown at 22.31 nm −1 . From this result, it was confirmed that it has a periodic structure of a benzene ring with a plane spacing of 2.9 mm. Moreover, since the half width of the above-mentioned peak is ± 0.1 mm or less, it was also confirmed that a highly uniform thin film was formed on this inorganic substrate.

図3は、実施例1の有機無機複合材料の断面図である。   3 is a cross-sectional view of the organic-inorganic composite material of Example 1. FIG.

図3を参照するに、有機無機複合材料20は、無機基板21、有機材料膜22、及び有機材料層24からなる。無機基板21及び有機材料膜22については、図1で説明した無機基板11及び有機材料膜12と同様な構成であるため、ここではそれらの詳細な説明を省略する。   Referring to FIG. 3, the organic-inorganic composite material 20 includes an inorganic substrate 21, an organic material film 22, and an organic material layer 24. Since the inorganic substrate 21 and the organic material film 22 have the same configuration as that of the inorganic substrate 11 and the organic material film 12 described in FIG. 1, detailed description thereof is omitted here.

有機材料層24は、下記化合物1で示される[ ]内を繰り返し単位とする平均分子量75000の重合体を用い、約1.0重量%のテトラヒドロフラン/パラキシレン=8/2(体積/体積)の混合溶媒からなる溶液を、有機材料膜12上に露出したベンゼン環13表面にスピンコートして乾燥することにより、膜厚30nmとなるように作製される。   The organic material layer 24 uses a polymer having an average molecular weight of 75,000, which is represented by [1] and represented by the following compound 1, and is about 1.0% by weight of tetrahydrofuran / paraxylene = 8/2 (volume / volume). A solution made of a mixed solvent is spin-coated on the surface of the benzene ring 13 exposed on the organic material film 12 and dried to produce a film thickness of 30 nm.

〈化合物1〉   <Compound 1>

Figure 0005036256
上述の通り作製した有機材料層24を有する無機基板21を、純水中に30分浸漬させた。その結果、無機基板21上からの有機材料層24の剥離は確認されなかった。
Figure 0005036256
The inorganic substrate 21 having the organic material layer 24 produced as described above was immersed in pure water for 30 minutes. As a result, peeling of the organic material layer 24 from the inorganic substrate 21 was not confirmed.

(比較例1)
無機基板は、30mm角のBドープシリコン基板表面を熱酸化して、膜厚200nmのSiO絶縁膜を形成することにより製造される。シリコン基板を、0.05mMフェニルトリクロロシランを含むトルエン溶液に5分間浸漬させる。その後、シリコン基板を乾燥させることにより、有機材料層を作製した。
(Comparative Example 1)
The inorganic substrate is manufactured by thermally oxidizing the 30 mm square B-doped silicon substrate surface to form a 200 nm thick SiO 2 insulating film. The silicon substrate is immersed in a toluene solution containing 0.05 mM phenyltrichlorosilane for 5 minutes. Then, the organic material layer was produced by drying a silicon substrate.

上述の処理をした基板を、GIXDにより実施例1と同様に構造解析を行った結果、2.9Åの面間隔を有するベンゼン環構造は確認されなかった。   The substrate subjected to the above-described treatment was subjected to structural analysis by GIXD in the same manner as in Example 1. As a result, a benzene ring structure having a surface separation of 2.9 mm was not confirmed.

上述の有機材料層を有する無機基板を、純水中に30分浸漬させた。その結果、無機基板上からの有機材料層の剥離が確認された。   The inorganic substrate having the organic material layer described above was immersed in pure water for 30 minutes. As a result, peeling of the organic material layer from the inorganic substrate was confirmed.

実施例1によれば、2.8Å以上3.0Å以下の面間隔を有するベンゼン環が露出する有機材料膜を、無機材料層及び有機材料層界面に設けることにより、有機材料層及び無機材料層の界面の耐水性を向上させることが可能となる。   According to Example 1, the organic material layer and the inorganic material layer are provided by providing, at the interface between the inorganic material layer and the organic material layer, an organic material film in which a benzene ring having a face interval of 2.8 to 3.0 mm is exposed. It becomes possible to improve the water resistance of the interface.

本発明の有機無機複合材料の断面図である。It is sectional drawing of the organic inorganic composite material of this invention. 本発明の実施例1の微小角入射X線回折測定結果を示す特性図である。It is a characteristic view which shows the small angle incident X-ray-diffraction measurement result of Example 1 of this invention. 実施例1の有機無機複合材料の断面図である。1 is a cross-sectional view of an organic-inorganic composite material of Example 1. FIG.

符号の説明Explanation of symbols

10、20 有機無機複合材料
11、21 無機基板
12、22 有機材料膜
13、23 ベンゼン環
14、24 有機材料層
10, 20 Organic-inorganic composite material 11, 21 Inorganic substrate 12, 22 Organic material film 13, 23 Benzene ring 14, 24 Organic material layer

Claims (2)

無機材料及び前記無機材料上に設けられた有機材料膜を含む有機無機複合材料において、
前記無機材料は水酸基を有し、
前記有機材料膜の材料はシリコン末端とベンゼン末端とを含み、
前記有機材料膜は、前記ベンゼン末端由来のベンゼン環が、前記有機材料膜の表面に露出する膜であり、
前記有機材料膜における、前記ベンゼン末端由来のベンゼン環の面間隔は2.8Å以上3.0Å以下であ
前記有機材料膜上に有機材料層をさらに有する、
有機無機複合材料。
In an organic-inorganic composite material including an inorganic material and an organic material film provided on the inorganic material,
The inorganic material has a hydroxyl group;
The material of the organic material film includes a silicon end and a benzene end,
The organic material film is a film in which a benzene ring derived from the benzene terminal is exposed on the surface of the organic material film,
In the organic material film, the surface separation of the benzene-terminus derived from benzene ring Ri der than 3.0Å or less 2.8 Å,
Further comprising an organic material layer on the organic material film,
Organic inorganic composite material.
前記無機材料は、ケイ素の酸化物を含み、且つ前記有機材料膜は、ケイ素原子及びベンゼン環を有する化合物を含むことを特徴とする請求項1に記載の有機無機複合材料。 2. The organic-inorganic composite material according to claim 1, wherein the inorganic material includes an oxide of silicon, and the organic material film includes a compound having a silicon atom and a benzene ring.
JP2006247238A 2006-09-12 2006-09-12 Organic inorganic composite material Expired - Fee Related JP5036256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006247238A JP5036256B2 (en) 2006-09-12 2006-09-12 Organic inorganic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006247238A JP5036256B2 (en) 2006-09-12 2006-09-12 Organic inorganic composite material

Publications (2)

Publication Number Publication Date
JP2008071833A JP2008071833A (en) 2008-03-27
JP5036256B2 true JP5036256B2 (en) 2012-09-26

Family

ID=39293191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006247238A Expired - Fee Related JP5036256B2 (en) 2006-09-12 2006-09-12 Organic inorganic composite material

Country Status (1)

Country Link
JP (1) JP5036256B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2140945T3 (en) * 2003-04-15 2012-12-31 Nippon Soda Co Method for producing organic thin film
JP2005251876A (en) * 2004-03-02 2005-09-15 Tdk Corp Organic semiconductor element, method for manufacturing the same and circuit device using the same
DE102004022603A1 (en) * 2004-05-07 2005-12-15 Infineon Technologies Ag Ultrathin dielectrics and their application in organic field-effect transistors

Also Published As

Publication number Publication date
JP2008071833A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP2591863B2 (en) Coating for microelectronic devices and substrates
TW396391B (en) Electronic coatings
US5387480A (en) High dielectric constant coatings
US5780163A (en) Multilayer coating for microelectronic devices
KR950014274B1 (en) Coating composition containing hydrogen silsesquioxane resin and other metal oxide precursors
JPH0922903A (en) Coating method to substrate for electronics and coating composition
JPH0851271A (en) Method for forming protective covering on electronics base material
JPH11322992A (en) Porous film
JPH10183063A (en) Formation of coating on electronic device
JPH03183675A (en) Coating of air tight substrate in inert gas atmosphere
JPH06306329A (en) Composition and method for coating
JPH07165413A (en) Formation of film containing si-o
JPH06191970A (en) Formation of ceramic coating containing silica
JP2000104017A (en) Coating containing silicone dioxide
KR20190044249A (en) Hard coating composition having excellent anti-fouling and hard coated material using the same
FR2697852A1 (en) A method of forming a ceramic coating on a substrate in the presence of ozone.
JP2001026415A (en) Low dielectric constant porous siliceous film, semiconductor device and coating composition
WO1985004480A1 (en) Method of producing an isfet and same isfet
JP2003100865A (en) Semiconductor substrate and method of manufacturing the same
Kim et al. Densely cross-linked polysiloxane dielectric for organic thin-film transistors with enhanced electrical stability
WO2000015428A1 (en) Functional film and method for preparation thereof, and liquid crystal display element using the same and method for preparation thereof
JP5036256B2 (en) Organic inorganic composite material
WO2001048806A1 (en) Method of forming low-dielectric-constant film, and semiconductor substrate with low-dielectric-constant film
CN1780890A (en) Coating composition, porous siliceous film, method for preparing porous siliceous film, and semiconductor device
JP3939408B2 (en) Low dielectric constant siliceous film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5036256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees