JP5036215B2 - Piezoelectric thin film resonator and method for adjusting resonance frequency of piezoelectric thin film resonator - Google Patents

Piezoelectric thin film resonator and method for adjusting resonance frequency of piezoelectric thin film resonator Download PDF

Info

Publication number
JP5036215B2
JP5036215B2 JP2006139824A JP2006139824A JP5036215B2 JP 5036215 B2 JP5036215 B2 JP 5036215B2 JP 2006139824 A JP2006139824 A JP 2006139824A JP 2006139824 A JP2006139824 A JP 2006139824A JP 5036215 B2 JP5036215 B2 JP 5036215B2
Authority
JP
Japan
Prior art keywords
thin film
piezoelectric thin
film resonator
resonator
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006139824A
Other languages
Japanese (ja)
Other versions
JP2007312157A (en
Inventor
幸久 大杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2006139824A priority Critical patent/JP5036215B2/en
Publication of JP2007312157A publication Critical patent/JP2007312157A/en
Application granted granted Critical
Publication of JP5036215B2 publication Critical patent/JP5036215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、共振周波数を調整可能な圧電薄膜共振子及び圧電薄膜共振子の共振周波数の調整方法に関する。   The present invention relates to a piezoelectric thin film resonator capable of adjusting a resonance frequency and a method for adjusting a resonance frequency of the piezoelectric thin film resonator.

従来、圧電薄膜共振子の共振周波数の調整は、圧電薄膜共振子を構成する駆動電極の上に金属の質量付加膜を重ねて形成して圧電薄膜共振子の共振周波数を低下させることや、圧電薄膜共振子を構成する駆動電極をドライエッチングで除去加工して圧電薄膜共振子の共振周波数を上昇させることにより行われてきた(例えば、特許文献1)。   Conventionally, the resonance frequency of a piezoelectric thin film resonator is adjusted by lowering the resonance frequency of the piezoelectric thin film resonator by forming a metal mass-added film on the drive electrode that constitutes the piezoelectric thin film resonator. This has been performed by removing the drive electrode constituting the thin film resonator by dry etching to increase the resonance frequency of the piezoelectric thin film resonator (for example, Patent Document 1).

特開2002−359534号公報JP 2002-359534 A

しかし、従来の技術では、圧電薄膜共振子の共振周波数を真空中で調整する必要があるため、真空槽を備えた複雑な装置が不可欠となり、圧電薄膜共振子の製造コストや製造時間等の点で問題が多かった。   However, in the conventional technology, it is necessary to adjust the resonance frequency of the piezoelectric thin film resonator in a vacuum, so that a complicated device equipped with a vacuum chamber is indispensable, and the manufacturing cost and manufacturing time of the piezoelectric thin film resonator are required. There were many problems.

一方、圧電薄膜共振子の共振周波数を大気中で調整する方法として、圧電薄膜共振子を構成する駆動電極の上に重ねて形成した金属の質量付加膜をレーザ光で除去加工する方法も考えられる。しかし、この方法では、融解蒸発により質量付加膜がその膜厚方向の全体に渡って除去されるため、質量付加膜の平面的なパターンが変化して圧電薄膜共振子にスプリアスを発生させることがある。   On the other hand, as a method for adjusting the resonance frequency of the piezoelectric thin film resonator in the atmosphere, a method of removing a metal mass-added film formed on the drive electrode constituting the piezoelectric thin film resonator with a laser beam is also conceivable. . However, in this method, the mass-added film is removed by melting and evaporation throughout the film thickness direction, so that the planar pattern of the mass-added film changes and spurious is generated in the piezoelectric thin film resonator. is there.

本発明は、この問題を解決するためになされたもので、圧電薄膜共振子の共振周波数を大気中で調整するとともに、圧電薄膜共振子の共振周波数の調整によるスプリアスの発生を抑制することを目的とする。   The present invention has been made to solve this problem, and aims to adjust the resonance frequency of the piezoelectric thin film resonator in the atmosphere and to suppress the occurrence of spurious due to the adjustment of the resonance frequency of the piezoelectric thin film resonator. And

上記課題を解決するため、請求項1の発明は、質量を付加する質量付加膜を圧電薄膜共振子の上に形成し、圧電薄膜共振子の共振周波数を目標周波数より低下させる形成工程と、電磁波を照射することにより前記質量付加膜をアブレーション加工し前記質量付加膜の平面的なパターンに影響を与えることなく前記質量付加膜の全体を均一に薄肉化することにより、圧電薄膜共振子の共振周波数を目標周波数まで上昇させる照射工程とを備える圧電薄膜共振子の共振周波数の調整方法である。前記圧電薄膜共振子において圧電体薄膜を挟んで電極対が対向する。前記形成工程は、前記圧電体薄膜を挟んで前記電極対が対向する対向領域の全体に前記質量付加膜を形成する。前記形成工程は、前記対向領域のみに前記質量付加膜を形成する。 In order to solve the above-mentioned problems, the invention of claim 1 is characterized in that a mass-added film for adding mass is formed on a piezoelectric thin film resonator, and a resonance step of the piezoelectric thin film resonator is reduced below a target frequency; The mass-added film is ablated by irradiating the film, and the entire mass-added film is uniformly thinned without affecting the planar pattern of the mass-added film. And adjusting the resonance frequency of the piezoelectric thin film resonator with an irradiation step of raising the frequency to a target frequency. In the piezoelectric thin film resonator, electrode pairs face each other with a piezoelectric thin film interposed therebetween. In the forming step, the mass-added film is formed in the entire facing region where the electrode pairs face each other with the piezoelectric thin film interposed therebetween. In the forming step, the mass addition film is formed only in the facing region.

請求項2の発明は、前記形成工程は、感光性樹脂を成膜する成膜工程と、前記感光性樹脂をフォトリソグラフィでパターニングして前記質量付加膜を得るパターニング工程とを備える請求項1に記載の圧電薄膜共振子の共振周波数の調整方法である。   According to a second aspect of the present invention, the forming step includes a film forming step of forming a photosensitive resin, and a patterning step of patterning the photosensitive resin by photolithography to obtain the mass addition film. It is the adjustment method of the resonant frequency of the described piezoelectric thin film resonator.

請求項3の発明は、前記照射工程は、圧電薄膜共振子の共振周波数を測定しながら電磁波を照射し、圧電薄膜共振子の共振周波数が目標周波数まで上昇するのに同期して電磁波の照射を中止する請求項1又は請求項2に記載の圧電薄膜共振子の共振周波数の調整方法である。   According to a third aspect of the present invention, in the irradiation step, the electromagnetic wave is irradiated while measuring the resonance frequency of the piezoelectric thin film resonator, and the electromagnetic wave is irradiated in synchronization with the resonance frequency of the piezoelectric thin film resonator rising to the target frequency. The method for adjusting the resonance frequency of the piezoelectric thin film resonator according to claim 1 or 2 to be stopped.

請求項4の発明は、前記照射工程に先立ち、圧電薄膜共振子の共振周波数と目標周波数との乖離に応じて電磁波の照射条件を決定する決定工程をさらに備える請求項1又は請求項2に記載の圧電薄膜共振子の共振周波数の調整方法である。   The invention of claim 4 further includes a determination step of determining an irradiation condition of the electromagnetic wave in accordance with a deviation between a resonance frequency of the piezoelectric thin film resonator and a target frequency prior to the irradiation step. This is a method for adjusting the resonance frequency of the piezoelectric thin film resonator.

請求項5の発明は、前記形成工程において、圧電薄膜共振子の集合体に含まれる各圧電薄膜共振子の上に前記質量付加膜を形成し、前記照射工程において、前記集合体における圧電薄膜共振子の共振周波数の分布に応じた照射条件の分布を有する電磁波を前記集合体に照射する請求項1又は請求項2に記載の圧電薄膜共振子の共振周波数の調整方法である。   According to a fifth aspect of the present invention, in the forming step, the mass addition film is formed on each piezoelectric thin film resonator included in the piezoelectric thin film resonator assembly, and in the irradiation step, the piezoelectric thin film resonance in the aggregate is formed. The method for adjusting the resonance frequency of the piezoelectric thin film resonator according to claim 1 or 2, wherein the assembly is irradiated with an electromagnetic wave having a distribution of irradiation conditions corresponding to a distribution of the resonance frequency of the child.

請求項6の発明は、前記形成工程において、圧電薄膜共振子の集合体に含まれる各圧電薄膜共振子の上に前記質量付加膜を形成し、前記照射工程において、前記集合体における圧電薄膜共振子の共振周波数の代表値と目標周波数との乖離に応じた照射条件の均一な電磁波を前記集合体に照射する請求項1又は請求項2に記載の圧電薄膜共振子の共振周波数の調整方法である。   According to a sixth aspect of the present invention, in the forming step, the mass-added film is formed on each piezoelectric thin film resonator included in the piezoelectric thin film resonator assembly, and in the irradiation step, the piezoelectric thin film resonance in the aggregate is formed. 3. The method of adjusting a resonance frequency of a piezoelectric thin film resonator according to claim 1, wherein the aggregate is irradiated with an electromagnetic wave having a uniform irradiation condition according to a deviation between a representative value of the resonance frequency of the child and a target frequency. is there.

請求項7の発明は、圧電体薄膜と、前記圧電体薄膜を挟んで対向する電極対と、前記圧電体薄膜及び前記電極対を含む積層構造の上に形成され、前記積層構造の共振周波数と目標周波数との乖離に応じて質量がアブレーション加工で調整された質量付加膜とを備える圧電薄膜共振子である。前記質量付加膜は、前記圧電体薄膜を挟んで前記電極対が対向する対向領域の全体に形成される。前記質量付加膜は、前記対向領域のみに形成される。前記質量付加膜は、前記質量付加膜の平面的なパターンに影響を与えることなく前記質量付加膜の全体を均一に薄肉化される。
According to a seventh aspect of the present invention, there is provided a piezoelectric thin film, an electrode pair opposed to each other with the piezoelectric thin film interposed therebetween, and a laminated structure including the piezoelectric thin film and the electrode pair. A piezoelectric thin-film resonator includes a mass-added film whose mass is adjusted by ablation processing according to a deviation from a target frequency. The mass addition film is formed over the entire facing region where the electrode pair faces each other with the piezoelectric thin film interposed therebetween. The mass addition film is formed only in the facing region. The mass addition film is thinned uniformly throughout the mass addition film without affecting the planar pattern of the mass addition film.

請求項1ないし請求項7の発明によれば、圧電薄膜共振子の共振周波数を大気中で調整することができる。また、請求項1ないし請求項7の発明によれば、質量付加膜の平面的なパターンが変化しないので、圧電薄膜共振子の共振周波数の調整によるスプリアスの発生を抑制することができる。   According to the first to seventh aspects of the invention, the resonance frequency of the piezoelectric thin film resonator can be adjusted in the atmosphere. According to the first to seventh aspects of the invention, since the planar pattern of the mass-added film does not change, the occurrence of spurious due to the adjustment of the resonance frequency of the piezoelectric thin film resonator can be suppressed.

請求項2の発明によれば、所望の領域の上のみに正確に質量付加膜を形成することができる。   According to invention of Claim 2, a mass addition film | membrane can be formed correctly only on a desired area | region.

<1 第1実施形態>
<1.1 ウエハ>
図1は、本発明の望ましい実施形態に係る圧電薄膜共振子の共振周波数の調整方法(以下、「周波数調整方法」)の適用対象となるウエハWを模式的に示す断面図である。以下では、図1を参照しながら本発明の望ましい実施形態に係る周波数調整方法を説明するが、以下の説明は、本発明に係る周波数調整方法の適用対象が図1に示すウエハWに制限されることを意味しない。したがって、本発明に係る周波数調整方法は、下面電極、圧電体薄膜及び上面電極を支持基板の上に順次エピタキシャル成長させた周知の圧電薄膜共振子等にも適用することができる。また、本発明に係る周波数調整方法は、複数の圧電薄膜共振子を組み合わせたフィルタ、デュプレクサ、トリプレクサ及びトラップ等にも適用可能である。
<1 First Embodiment>
<1.1 Wafer>
FIG. 1 is a cross-sectional view schematically showing a wafer W to which a method for adjusting a resonance frequency of a piezoelectric thin film resonator according to a preferred embodiment of the present invention (hereinafter, “frequency adjustment method”) is applied. Hereinafter, a frequency adjustment method according to a preferred embodiment of the present invention will be described with reference to FIG. 1. However, in the following description, the application target of the frequency adjustment method according to the present invention is limited to the wafer W shown in FIG. Does not mean that. Therefore, the frequency adjusting method according to the present invention can also be applied to a known piezoelectric thin film resonator or the like in which the lower surface electrode, the piezoelectric thin film, and the upper surface electrode are sequentially epitaxially grown on the support substrate. The frequency adjusting method according to the present invention can also be applied to a filter, a duplexer, a triplexer, a trap, and the like that combine a plurality of piezoelectric thin film resonators.

図1に示すように、ウエハWは、多数(典型的には、数100個〜数1000個)の圧電薄膜共振子1をその上面に規則的に配列した圧電薄膜共振子1の集合体となっており、図2の断面図に示すように、全部の圧電薄膜共振子1の共振周波数Frの調整が完了した後に、個々の圧電薄膜共振子1に分離されることが予定されている。 As shown in FIG. 1, a wafer W includes an aggregate of piezoelectric thin film resonators 1 in which a large number (typically several hundred to several thousand) of piezoelectric thin film resonators 1 are regularly arranged on the upper surface. As shown in the cross-sectional view of FIG. 2, after the adjustment of the resonance frequency F r of all the piezoelectric thin film resonators 1 is completed, the piezoelectric thin film resonators 1 are expected to be separated. .

ウエハWは、支持基板11の上に、接着層12、キャビティ形成膜13、下面電極15、圧電体薄膜16及び上面電極17(171〜172)をこの順序で積層した構造を有している。   The wafer W has a structure in which an adhesive layer 12, a cavity forming film 13, a lower surface electrode 15, a piezoelectric thin film 16, and an upper surface electrode 17 (171 to 172) are laminated on the support substrate 11 in this order.

圧電体薄膜16は、圧電体基板を除去加工することにより得られる。より具体的には、圧電体薄膜16は、単独で自重に耐え得る厚み(例えば、50μm以上)を有する圧電体基板を、単独で自重に耐え得ない膜厚(例えば、10μm以下)まで除去加工で薄肉化することにより得られる。   The piezoelectric thin film 16 is obtained by removing the piezoelectric substrate. More specifically, the piezoelectric thin film 16 removes a piezoelectric substrate having a thickness that can withstand its own weight (for example, 50 μm or more) to a thickness (for example, 10 μm or less) that cannot withstand its own weight. It can be obtained by thinning.

圧電体薄膜16を構成する圧電材料としては、所望の圧電特性を有する圧電材料を選択することができるが、水晶(SiO2)、ニオブ酸リチウム(LiNbO3)、タンタル酸リチウム(LiTaO3)、四ホウ酸リチウム(Li2B4O7)、酸化亜鉛(ZnO)、ニオブ酸カリウム(KNbO3)及びランガサイト(La3Ga3SiO14)等の粒界を含まない単結晶材料を選択することが望ましい。 As the piezoelectric material constituting the piezoelectric thin film 16, a piezoelectric material having desired piezoelectric characteristics can be selected, but quartz (SiO 2 ), lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), Select single crystal materials that do not contain grain boundaries such as lithium tetraborate (Li 2 B 4 O 7 ), zinc oxide (ZnO), potassium niobate (KNbO 3 ) and langasite (La 3 Ga 3 SiO 14 ) It is desirable.

また、圧電体薄膜16における結晶方位も、所望の圧電特性を有する結晶方位を選択することができる。ここで、圧電体薄膜16における結晶方位は、圧電薄膜共振子1の共振周波数や反共振周波数の温度特性が良好となる結晶方位とすることが望ましく、周波数温度係数が「0」となる結晶方位とすることがさらに望ましい。   In addition, as the crystal orientation in the piezoelectric thin film 16, a crystal orientation having desired piezoelectric characteristics can be selected. Here, the crystal orientation in the piezoelectric thin film 16 is preferably a crystal orientation in which the temperature characteristics of the resonance frequency and antiresonance frequency of the piezoelectric thin film resonator 1 are favorable, and the crystal orientation in which the frequency temperature coefficient is “0”. Is more desirable.

圧電体基板の除去加工は、切削、研削及び研磨等の機械加工並びにエッチング等の化学加工等により行う。ここで、複数の除去加工方法を組み合わせ、加工速度が速い除去加工方法から、加工対象に生じる加工変質が小さい除去加工方法へと除去加工方法を段階的に切り替えながら圧電体基板を除去加工すれば、高い生産性を維持しつつ、圧電体薄膜16の品質を向上し、圧電薄膜共振子1の特性を向上することができる。例えば、圧電体基板を固定砥粒に接触させて削る研削及び圧電体基板を遊離砥粒に接触させて削る研磨を順次行った後に、当該研磨によって圧電体基板に生じた加工変質層を仕上げ研磨により除去するようにすれば、圧電体基板を削る速度が早くなり、圧電薄膜共振子1の生産性を向上することができるとともに、圧電体薄膜16の品質を向上することにより、圧電薄膜共振子1の特性を向上することができる。   The removal processing of the piezoelectric substrate is performed by mechanical processing such as cutting, grinding and polishing, and chemical processing such as etching. Here, if a plurality of removal processing methods are combined and the piezoelectric substrate is removed while switching the removal processing method step by step from the removal processing method with a high processing speed to the removal processing method with a small process alteration occurring on the processing target. The quality of the piezoelectric thin film 16 can be improved and the characteristics of the piezoelectric thin film resonator 1 can be improved while maintaining high productivity. For example, after performing grinding in which a piezoelectric substrate is brought into contact with fixed abrasive grains and polishing in which a piezoelectric substrate is brought into contact with loose abrasive grains in order, a work-affected layer generated on the piezoelectric substrate by the polishing is finished and polished. If it removes by this, the speed at which the piezoelectric substrate is cut can be increased, the productivity of the piezoelectric thin film resonator 1 can be improved, and the quality of the piezoelectric thin film 16 can be improved. 1 characteristic can be improved.

圧電体薄膜16には、上面と下面とを貫通するバイアホールVH1が形成されている。   In the piezoelectric thin film 16, a via hole VH1 penetrating the upper surface and the lower surface is formed.

上面電極17及び下面電極15は、それぞれ、圧電体薄膜16の上面及び下面に導電材料を成膜することにより形成された導電体薄膜である。   The upper surface electrode 17 and the lower surface electrode 15 are conductor thin films formed by depositing a conductive material on the upper surface and the lower surface of the piezoelectric thin film 16, respectively.

上面電極17及び下面電極15を構成する導電材料は、特に制限されないが、アルミニウム(Al)、銀(Ag)、銅(Cu)、白金(Pt)、金(Au)、クロム(Cr)、ニッケル(Ni)、モリブデン(Mo)、タングステン(W)及びタンタル(Ta)等の金属から選択することが望ましい。もちろん、上面電極17及び下面電極15を構成する導電材料として合金を用いてもよい。また、複数種類の導電材料を重ねて成膜することにより、上面電極17及び下面電極15を形成してもよい。   The conductive material constituting the upper surface electrode 17 and the lower surface electrode 15 is not particularly limited, but aluminum (Al), silver (Ag), copper (Cu), platinum (Pt), gold (Au), chromium (Cr), nickel It is desirable to select from metals such as (Ni), molybdenum (Mo), tungsten (W) and tantalum (Ta). Of course, an alloy may be used as the conductive material constituting the upper electrode 17 and the lower electrode 15. Further, the upper surface electrode 17 and the lower surface electrode 15 may be formed by stacking a plurality of types of conductive materials.

上面電極171は、圧電薄膜共振子1の対向領域E1において、圧電体薄膜16を挟んで下面電極15と対向している。上面電極171は、対向領域E1から所定の方向に引き出され、その先端は、外部への配線が接続されるパットP11となっている。   The upper surface electrode 171 faces the lower surface electrode 15 with the piezoelectric thin film 16 in between in the facing region E1 of the piezoelectric thin film resonator 1. The upper surface electrode 171 is drawn out from the facing area E1 in a predetermined direction, and the tip thereof is a pad P11 to which wiring to the outside is connected.

下面電極15は、対向領域E1から上面電極17とは逆方向に引き出されている。   The lower surface electrode 15 is drawn out in the direction opposite to the upper surface electrode 17 from the facing region E1.

上面電極172は、対向領域E1以外において、圧電体薄膜16を挟んで下面電極15と対向している。上面電極172及び下面電極15は、圧電体薄膜16に形成されたバイアホールVH1によって電気的に短絡されており、上面電極172は、外部への配線が接続されるパットP12となっている。   The upper surface electrode 172 is opposed to the lower surface electrode 15 with the piezoelectric thin film 16 in between, except for the opposed region E1. The upper surface electrode 172 and the lower surface electrode 15 are electrically short-circuited by a via hole VH1 formed in the piezoelectric thin film 16, and the upper surface electrode 172 is a pad P12 to which wiring to the outside is connected.

このような上面電極17及び下面電極15のパターンにより、圧電薄膜共振子1においては、パットP11及びP12に励振信号が印加されると、対向領域E1に厚み縦振動(又は厚みすべり振動)が励振される。   With such a pattern of the upper surface electrode 17 and the lower surface electrode 15, in the piezoelectric thin film resonator 1, when an excitation signal is applied to the pads P11 and P12, thickness longitudinal vibration (or thickness shear vibration) is excited in the opposing region E1. Is done.

キャビティ形成膜13は、絶縁材料を成膜することにより得られた絶縁体膜である。キャビティ形成膜13を構成する絶縁材料は、特に制限されないが、二酸化ケイ素(SiO2)等の絶縁材料から選択することが望ましい。 The cavity forming film 13 is an insulator film obtained by forming an insulating material. The insulating material constituting the cavity forming film 13 is not particularly limited, but is preferably selected from insulating materials such as silicon dioxide (SiO 2 ).

キャビティ形成膜13は、圧電体薄膜16の対向領域E1以外に形成され、対向領域E1の圧電体薄膜16を支持基板11から離隔させるキャビティ(空洞)C1を形成している。   The cavity forming film 13 is formed in a region other than the facing region E1 of the piezoelectric thin film 16, and forms a cavity C1 that separates the piezoelectric thin film 16 in the facing region E1 from the support substrate 11.

支持基板11は、圧電薄膜共振子1の製造途上で圧電体基板を除去加工するときに、下面電極15及びキャビティ形成膜13が下面に形成された圧電体基板を接着層12を介して支持する支持体としての役割を有している。加えて、支持基板11は、圧電薄膜共振子1の製造後に、下面電極15及びキャビティ形成膜13が下面に形成され、上面電極17が上面に形成された圧電体薄膜16を接着層12を介して支持する支持体としての役割も有している。したがって、支持基板11には、圧電体基板を除去加工するときに加わる力に耐え得ることと、圧電薄膜共振子1の製造後にも強度が低下しないこととが要請される。   The support substrate 11 supports the piezoelectric substrate on which the lower surface electrode 15 and the cavity forming film 13 are formed on the lower surface via the adhesive layer 12 when the piezoelectric substrate is removed during the manufacturing of the piezoelectric thin film resonator 1. It has a role as a support. In addition, after the piezoelectric thin film resonator 1 is manufactured, the support substrate 11 has the piezoelectric thin film 16 having the lower surface electrode 15 and the cavity forming film 13 formed on the lower surface and the upper surface electrode 17 formed on the upper surface via the adhesive layer 12. It also has a role as a support body that supports. Accordingly, the support substrate 11 is required to be able to withstand the force applied when the piezoelectric substrate is removed, and not to decrease in strength even after the piezoelectric thin film resonator 1 is manufactured.

支持基板11の材料及び厚さは、このような要請を満足するように、適宜選択することができる。ただし、支持基板11の材料を、圧電体薄膜16を構成する圧電材料と近い熱膨張率、より望ましくは、圧電体薄膜16を構成する圧電材料と同じ熱膨張率を有する材料、例えば、圧電体薄膜16を構成する圧電材料と同じ材料とすれば、圧電薄膜共振子1の製造途上において、熱膨張率の差に起因する反りや破損を抑制することができ、圧電薄膜共振子1の製造後において、熱膨張率の差に起因する特性変動や破損を抑制することができる。なお、熱膨張率に異方性がある材料を用いる場合、圧電体薄膜16と支持基板11とで各方向の熱膨張率がともに同じとなるように配慮することが望ましく、支持基板11と圧電体薄膜16とに同じ圧電材料を用いる場合、支持基板11と圧電体薄膜16とで結晶方位を一致させることが望ましい。   The material and thickness of the support substrate 11 can be appropriately selected so as to satisfy such requirements. However, the material of the support substrate 11 is a material having a thermal expansion coefficient close to that of the piezoelectric material constituting the piezoelectric thin film 16, more preferably a material having the same thermal expansion coefficient as the piezoelectric material constituting the piezoelectric thin film 16, for example, a piezoelectric body If the same material as the piezoelectric material constituting the thin film 16 is used, warping and breakage due to the difference in thermal expansion coefficient can be suppressed during the manufacturing of the piezoelectric thin film resonator 1. Thus, characteristic fluctuations and breakage due to the difference in thermal expansion coefficient can be suppressed. When a material having an anisotropic thermal expansion coefficient is used, it is desirable to consider that the piezoelectric thin film 16 and the support substrate 11 have the same thermal expansion coefficient in each direction. When the same piezoelectric material is used for the body thin film 16, it is desirable that the crystal orientations of the support substrate 11 and the piezoelectric thin film 16 are matched.

接着層12は、圧電薄膜共振子1の製造途上で圧電体基板を除去加工するときに、下面電極15及びキャビティ形成膜13が下面に形成された圧電体基板を支持基板11に接着固定する役割を有している。加えて、接着層12は、圧電薄膜共振子1の製造後に、下面電極15及びキャビティ形成膜13が下面に形成され、上面電極17が上面に形成された圧電体薄膜16を支持基板11に接着固定する役割も有している。したがって、接着層12には、圧電体基板を除去加工するときに加わる力に耐え得ることと、圧電薄膜共振子1の製造後にも接着力が低下しないこととが要請される。   The adhesive layer 12 serves to bond and fix the piezoelectric substrate having the lower surface electrode 15 and the cavity forming film 13 formed on the lower surface to the support substrate 11 when the piezoelectric substrate is removed during the manufacturing process of the piezoelectric thin film resonator 1. have. In addition, after the piezoelectric thin film resonator 1 is manufactured, the adhesive layer 12 adheres the piezoelectric thin film 16 having the lower electrode 15 and the cavity forming film 13 formed on the lower surface and the upper electrode 17 formed on the upper surface to the support substrate 11. It also has a fixing role. Therefore, the adhesive layer 12 is required to be able to withstand the force applied when the piezoelectric substrate is removed and that the adhesive force does not decrease even after the piezoelectric thin film resonator 1 is manufactured.

このような要請を満足する接着層12の望ましい例としては、有機接着剤、望ましくは、充填効果を有し、接着対象が完全に平坦ではなくても十分な接着力を発揮するエポキシ接着剤(熱硬化性を利用するエポキシ樹脂の接着剤)やアクリル接着剤(光硬化性及び熱硬化性を併用するアクリル樹脂の接着剤)により形成された接着層12を挙げることができる。このような樹脂を採用することにより、圧電体基板と支持基板11との間に期待しない空隙が生じることを防止し、当該空隙により圧電体基板の除去加工時にクラック等が発生することを防止可能である。ただし、このことは、これ以外の接着層12によって圧電体薄膜16と支持基板11とが接着固定されることを妨げるものではない。   Desirable examples of the adhesive layer 12 satisfying such requirements include an organic adhesive, preferably an epoxy adhesive having a filling effect and exhibiting sufficient adhesive force even if the object to be bonded is not completely flat ( Examples thereof include an adhesive layer 12 formed of an epoxy resin adhesive using thermosetting) and an acrylic adhesive (an acrylic resin adhesive using both photo-curing property and thermosetting property). By adopting such a resin, it is possible to prevent an unexpected gap from being generated between the piezoelectric substrate and the support substrate 11 and to prevent a crack or the like from being generated during the removal processing of the piezoelectric substrate by the gap. It is. However, this does not prevent the piezoelectric thin film 16 and the support substrate 11 from being bonded and fixed by the other adhesive layer 12.

<1.2 圧電薄膜共振子の共振周波数の調整>
図3は、本発明の第1実施形態に係る周波数調整方法を説明するフローチャートである。また、図4〜図6は、周波数調整の途上におけるウエハWを模式的に示す断面図である。第1実施形態では、ウエハWに含まれる圧電薄膜共振子1の共振周波数FRを個別に調整し、ウエハWに含まれる圧電薄膜共振子1の共振周波数FRのバラツキ(以下、「ウエハ内バラツキ」)を抑制している。ここで、目標周波数FTは、特定の周波数(例えば、2GHz)である必要はなく、特定の周波数に一定の偏差を許した特定の周波数範囲(例えば、2GHz±1MHz)であってもよい。
<1.2 Adjustment of Resonant Frequency of Piezoelectric Thin Film Resonator>
FIG. 3 is a flowchart illustrating the frequency adjustment method according to the first embodiment of the present invention. 4 to 6 are cross-sectional views schematically showing the wafer W in the course of frequency adjustment. In the first embodiment, the resonant frequency F R of the piezoelectric thin film resonator 1 contained in the wafer W individually adjusted, variations of the resonant frequency F R of the piezoelectric thin film resonator 1 contained in the wafer W (hereinafter, "the wafer Variation ”). Here, the target frequency F T a particular frequency (e.g., 2 GHz) need not be, the particular frequency range allowed a certain deviation to a particular frequency (e.g., 2 GHz ± 1 MHz) may be.

○ウエハ準備;
図3に従って説明すると、第1実施形態に係る周波数調整方法においては、まず、周波数調整前のウエハ内バラツキを考慮して圧電体薄膜16、上面電極17及び下面電極15の狙い膜厚を設定することにより、略全部の圧電薄膜共振子1の共振周波数FRが目標周波数FTを上回るウエハを準備する(ステップS101)。ここで、「略全部」というのは、ウエハWに含まれる全部の圧電薄膜共振子1の共振周波数FRが目標周波数FTを上回ることが望ましいが、共振周波数FRが他の圧電薄膜共振子1と著しく異なる一部の異常な圧電薄膜共振子1の共振周波数FRが目標周波数FTを下回ることを許容してもよいという趣旨である。
○ Wafer preparation;
Referring to FIG. 3, in the frequency adjustment method according to the first embodiment, first, target film thicknesses of the piezoelectric thin film 16, the upper surface electrode 17, and the lower surface electrode 15 are set in consideration of variations in the wafer before frequency adjustment. it allows almost all of the resonant frequency F R of the piezoelectric thin film resonator 1 prepares a wafer above the target frequency F T (step S101). Here, “substantially all” means that the resonance frequency F R of all the piezoelectric thin film resonators 1 included in the wafer W is preferably higher than the target frequency F T , but the resonance frequency F R is other piezoelectric thin film resonance. it is a effect that the resonant frequency F R of the child 1 and the significantly different part abnormal piezoelectric thin film resonator 1 may allow below the target frequency F T.

○レジスト膜形成;
続いて、図4に示すように、ウエハWの上面の全面にレジスト液膜層18を均一に形成する(ステップS102)。レジスト液膜層18の膜厚は、レジスト膜19の固化を行った時点(後述のステップS105)で、ウエハWに含まれる略全部の圧電薄膜共振子1の共振周波数FRが目標周波数FTを下回るようにすればよく、典型的には、0.5μm程度とすることができる。レジスト液膜層18は、スピンコータやスリットコータで形成することができるが、スピンコータによってレジスト液膜層18を形成する場合、例えば、原液をシクロペンタノン等の溶剤で希釈して適当な粘度に調整したフォトレジスト液を、4000RPM程度で回転するウエハWに滴下すればよい。
○ Resist film formation;
Subsequently, as shown in FIG. 4, a resist liquid film layer 18 is uniformly formed on the entire upper surface of the wafer W (step S102). The film thickness of the resist liquid film layer 18 at the time of performing the solidification of the resist film 19 (step S105 described later), the resonance frequency of the piezoelectric thin film resonator 1 of substantially all contained in the wafer W F R is the target frequency F T The thickness may be set to be less than 0.5 μm, typically about 0.5 μm. The resist liquid film layer 18 can be formed by a spin coater or a slit coater. When the resist liquid film layer 18 is formed by a spin coater, for example, the stock solution is diluted with a solvent such as cyclopentanone and adjusted to an appropriate viscosity. What is necessary is just to dripped the photoresist liquid which it did to the wafer W which rotates at about 4000 RPM.

次に、レジスト液膜層18に含まれる溶剤を蒸発させ、流動性を持たないレジスト膜を得る(ステップS103)。溶剤の蒸発は、例えば、ウエハWをホットプレートに載置して90℃で20分間加熱することにより行うことができる。   Next, the solvent contained in the resist liquid film layer 18 is evaporated to obtain a resist film having no fluidity (step S103). The evaporation of the solvent can be performed, for example, by placing the wafer W on a hot plate and heating it at 90 ° C. for 20 minutes.

さらに、図5に示すように、成膜されたレジスト膜19をフォトリソグラフィによりパターニングして、対向領域E1の上のみにレジスト膜19が残存するウエハWを得る(ステップS104)。レジスト膜19は、例えば、アライナを用いて8mW/cm2の光量の光を30秒間レジスト膜19に照射してフォトマスクパタンをレジスト膜19に転写し、しかる後に、ウエハWを現像液に6〜10分間浸漬してレジスト膜19を現像することによりパターニングすることができる。 Further, as shown in FIG. 5, the formed resist film 19 is patterned by photolithography to obtain a wafer W in which the resist film 19 remains only on the facing region E1 (step S104). For example, the resist film 19 is irradiated with light of 8 mW / cm 2 for 30 seconds using an aligner to transfer the photomask pattern to the resist film 19 for 30 seconds. Patterning can be performed by developing the resist film 19 by immersion for 10 minutes.

続いて、ウエハWの洗浄とレジスト膜19の固化を行う(ステップS105)。ウエハWの洗浄は、例えば、イソプロピルアルコール等のレジストを侵さない溶剤にウエハWを5分間浸漬した後に、ウエハWをスピンドライヤーで乾燥すればよい。また、レジスト膜19の固化は、例えば、オーブンを用いてウエハWを200℃で3時間加熱すればよい。   Subsequently, the wafer W is cleaned and the resist film 19 is solidified (step S105). For example, the wafer W may be cleaned by immersing the wafer W in a solvent that does not attack resist such as isopropyl alcohol for 5 minutes and then drying the wafer W with a spin dryer. The resist film 19 may be solidified by, for example, heating the wafer W at 200 ° C. for 3 hours using an oven.

ステップS102〜S105により、ウエハWに含まれる圧電薄膜共振子1の対向領域E1の上には、質量を付加する質量付加膜となるレジスト膜19が形成され、当初は目標周波数FTを上回っていた圧電薄膜共振子1の共振周波数FRは、目標周波数FT以下に低下させられる。 In step S102 to S105, on opposite region E1 of the piezoelectric thin film resonator 1 contained in the wafer W is formed resist film 19 at which the mass adding film of adding mass, initially not exceed the target frequency F T The resonance frequency F R of the piezoelectric thin film resonator 1 is lowered to the target frequency F T or less.

なお、上記説明では、レジスト膜19を質量付加膜として用いる例について説明したが、アブレーション加工が可能な他の感光性樹脂の膜、例えば、感光性ポリイミド膜を質量付加膜として用いることもできる。   In the above description, the example in which the resist film 19 is used as the mass addition film has been described. However, another photosensitive resin film that can be ablated, for example, a photosensitive polyimide film may be used as the mass addition film.

また、上記説明では、レジスト膜19をフォトリソグラフィでパターニングすることにより、対向領域E1の上にのみ正確にレジスト膜19を残存させ、パットP11及びP12を露出させたが、パットP11及びP12の上にレジスト液膜層18が形成されないようしておけば、レジスト膜19のパターニングは必ずしも必要ではない。   In the above description, the resist film 19 is patterned by photolithography so that the resist film 19 remains accurately only on the facing region E1 and the pads P11 and P12 are exposed. If the resist liquid film layer 18 is not formed, the patterning of the resist film 19 is not necessarily required.

○周波数調整;
次に、共振周波数FRの調整対象となる1個の圧電薄膜共振子1AのパットP11及びP12にプローバーを配線し、ネットワークアナライザを用いて圧電薄膜共振子1Aの共振周波数FRを測定できるようにする。そして、図6に示すように、圧電薄膜共振子1Aの共振周波数FRを測定しながら、圧電薄膜共振子1Aの対向領域E1の上に形成されたレジスト膜19に電磁波(紫外線UV)を照射することにより、当該レジスト膜19をアブレーション加工する(ステップS106)。
○ Frequency adjustment;
Then the prober wired to pad P11 and P12 of one film bulk acoustic resonator 1A to be adjusted resonant frequency F R, so that it can measure the resonant frequency F R of the piezoelectric thin film resonator 1A using a network analyzer To. Then, as shown in FIG. 6, while measuring the resonant frequency F R of the piezoelectric thin film resonator 1A, the resist film 19 formed on opposite region E1 of the piezoelectric thin-film resonator 1A electromagnetic waves (ultraviolet UV) radiation Thus, the resist film 19 is ablated (step S106).

このとき、レジスト膜19のアブレーション加工が進行するにつれてレジスト膜19の質量が小さくなるので、レジスト膜19のアブレーション加工が進行するにつれて圧電薄膜共振子1Aの共振周波数FRは上昇するが、圧電薄膜共振子1Aの共振周波数FRが目標周波数FTまで上昇するのに同期して(ステップS107で"YES")電磁波の照射を中止すれば(ステップS108)、圧電薄膜共振子1Aの共振周波数FRを正確に目標周波数FTにあわせることができる。もちろん、圧電薄膜共振子1Aの共振周波数FRが目標周波数FTまで上昇するまでは(ステップS107で"NO")、圧電薄膜共振子1Aの共振周波数FRの測定と圧電薄膜共振子1Aの対向領域E1の上に形成されたレジスト膜19への電磁波の照射をそのまま継続すればよい。なお、電磁波の照射時間が所定時間を超えても圧電薄膜共振子1Aの共振周波数FRが目標周波数FTまで上昇しない場合は、当該圧電薄膜共振子1Aは不良であるとみなして、当該圧電薄膜共振子1Aの共振周波数FRの調整を放棄してもよい。 At this time, since the mass of the resist film 19 as ablation of the resist film 19 is advanced decreases, although ablation of the resist film 19 is the resonant frequency F R of the piezoelectric thin film resonator 1A with the progress increases, the piezoelectric thin film resonant frequency F R of the resonator 1A is synchronized to rise to the target frequency F T if discontinued irradiation ( "YES" in step S107) electromagnetic waves (step S108), the resonance frequency F of the piezoelectric thin film resonator 1A You can adjust the R to precisely target frequency F T. Of course, up to the resonant frequency F R of the piezoelectric thin film resonator 1A is raised up to the target frequency F T is ( "NO" in step S107), the measurement and the piezoelectric thin film resonator 1A resonant frequency F R of the piezoelectric thin film resonator 1A What is necessary is just to continue irradiation of the electromagnetic wave to the resist film 19 formed on the opposing area | region E1 as it is. Incidentally, if the electromagnetic wave irradiation time of the resonant frequency F R of the piezoelectric thin film resonator 1A also exceeds the predetermined time has not increased to the target frequency F T is regarded as the piezoelectric thin film resonator 1A is poor, the piezoelectric the adjustment of the resonance frequency F R of the thin film resonator 1A may be abandoned.

アブレーション加工に用いる電磁波の光源としては、共振周波数FRの調整対象となる圧電薄膜共振子1Aの対向領域E1の上に形成されたレジスト膜19のみに電磁波を選択的に照射し、隣接する圧電薄膜共振子1Bの対向領域E1の上に形成されたレジスト膜19には電磁波を照射しないような、ダイバージェンスが小さい光源を採用することが望ましく、エキシマレーザやYAG4次高調波レーザ等の紫外線レーザを採用することが特に望ましい。ただし、このことは、アブレーション加工に用いる紫外線UVの光源として、紫外線ランプを採用することを妨げるものではない。なお、電磁波の光源として紫外線ランプを採用する場合、電磁波をレンズで集光したり、メタルマスクで電磁波の照射領域を限定したりする工夫を行えばよい。 The electromagnetic source used in the ablation processing by irradiating an electromagnetic wave only the resist film 19 formed on the selectively opposite region E1 of the piezoelectric thin film resonator 1A to be adjusted resonant frequency F R, adjacent piezoelectric It is desirable to use a light source with a small divergence that does not irradiate electromagnetic waves to the resist film 19 formed on the opposing region E1 of the thin film resonator 1B, and an ultraviolet laser such as an excimer laser or a YAG fourth harmonic laser is used. It is particularly desirable to adopt it. However, this does not prevent the adoption of an ultraviolet lamp as a light source of ultraviolet UV used for ablation processing. In the case where an ultraviolet lamp is used as the electromagnetic wave light source, it is sufficient to contrive to collect the electromagnetic wave with a lens or limit the irradiation area of the electromagnetic wave with a metal mask.

また、紫外線以外の波長の光源として、近赤外線波長の光源であるYAGレーザ、または可視光波長の光源であるYAGの2次高調波レーザにおいて、短パルス、高集光ビームとすることで、高パワー密度がえられ擬似アブレーション加工を行うことが出来たり、多光子吸収によるアブレーション加工を行うことが出来る。被加工物の吸収特性によってこれらの光源を用いることで加工効率の高い加工を行うことが出来る。   In addition, as a light source of a wavelength other than ultraviolet light, a high power density is obtained by using a YAG laser which is a near infrared wavelength light source or a YAG second harmonic laser which is a visible light wavelength light source, by using a short pulse and a highly condensed beam. As a result, pseudo ablation processing can be performed, or ablation processing by multiphoton absorption can be performed. By using these light sources depending on the absorption characteristics of the workpiece, processing with high processing efficiency can be performed.

また、レーザプラズマEUVリソグラフィー光源等の波長10数nmの極端紫外線と呼ばれる波長の光源を用いることによるアブレーション加工を行うことも出来る。パターニング精度の高い加工を行うことが出来る。   Also, ablation processing can be performed by using a light source having a wavelength called extreme ultraviolet rays having a wavelength of several tens of nm, such as a laser plasma EUV lithography light source. Processing with high patterning accuracy can be performed.

このようなアブレーション加工では、適切な光量の電磁波を照射すれば、レジスト膜19の表面の高分子の結合鎖を切断し、レジスト膜19をその表面から順次除去加工することができるので、レジスト膜19の全体を均一に薄肉化することができ、レジスト膜19の平面的なパターンに影響を与えることがない。このため、第1実施形態に係る周波数調整方法では、周波数調整に伴うスプリアスの発生を抑制することができる。また、このようなアブレーション加工は、大気中で実行することができるので、第1実施形態に係る周波数調整方法では、圧電薄膜共振子1の共振周波数FRを大気中で調整することができる。 In such an ablation process, if an electromagnetic wave having an appropriate amount of light is irradiated, a polymer bond chain on the surface of the resist film 19 can be cut and the resist film 19 can be sequentially removed from the surface. The entire film 19 can be thinned uniformly, and the planar pattern of the resist film 19 is not affected. For this reason, in the frequency adjustment method according to the first embodiment, it is possible to suppress the occurrence of spurious due to the frequency adjustment. Moreover, such ablation, because it can be performed in the atmosphere, the frequency adjustment method according to the first embodiment, the resonant frequency F R of the piezoelectric thin film resonator 1 can be adjusted in the atmosphere.

なお、第1実施形態に係る周波数調整方法では、ウエハWに含まれる全部の圧電薄膜共振子1について共振周波数FRの調整が完了するまでは(ステップS109で"NO")、一の圧電薄膜共振子1について共振周波数FRの調整が終了すると、ウエハWをステージで移動することにより、又は、光源を走査することにより、電磁波の照射範囲を移動して(ステップS110)、共振周波数FRが未だ調整されていない他の圧電薄膜共振子1について同様に共振周波数FRの調整を行う。 In the frequency adjustment method according to the first embodiment, until the piezoelectric thin film resonator 1 all contained in the wafer W to adjust the resonant frequency F R is completed (in step S109 "NO"), one of the piezoelectric thin film About resonator 1 is adjustment of the resonance frequency F R to end, by moving the wafer W on the stage, or, by scanning the light source, by moving the irradiation range of the electromagnetic waves (step S110), the resonance frequency F R There adjusted similarly resonant frequency F R for the other piezoelectric thin film resonator 1 that has not been adjusted yet.

目標周波数FTはウエハWに含まれる全部の圧電薄膜共振子について同じ値に設定する場合もあるし、目的に応じて異なる値に設定する場合もある。 Target frequency F T is to sometimes the piezoelectric thin-film resonator of all included in the wafer W is set to the same value, in some cases set to a different value depending on the purpose.

<2 第2実施形態>
図7は、本発明の第2実施形態に係る周波数調整方法を説明するフローチャートである。第2実施形態でも、第1実施形態と同様に、レジスト膜19を電磁波でアブレーション加工することによりウエハWに含まれる圧電薄膜共振子1の共振周波数FRを個別に調整し、ウエハ内バラツキを抑制している。
<2 Second Embodiment>
FIG. 7 is a flowchart illustrating a frequency adjustment method according to the second embodiment of the present invention. In the second embodiment, like the first embodiment, the resist film 19 a resonant frequency F R of the piezoelectric thin film resonator 1 contained in the wafer W is adjusted individually by ablation processing by the electromagnetic wave, the wafer in the dispersion Suppressed.

図7に従って説明すると、第2実施形態に係る周波数調整方法においては、まず、ウエハ準備(ステップS201)及びレジスト膜形成(ステップS202〜S205)を第1実施形態と同様の手順で行う。   Referring to FIG. 7, in the frequency adjustment method according to the second embodiment, first, wafer preparation (step S201) and resist film formation (steps S202 to S205) are performed in the same procedure as in the first embodiment.

続く周波数調整においては、まず、ウエハWに含まれる圧電薄膜共振子1のパットP11及びP12にプローバーを順次接続して、ウエハWに含まれる圧電薄膜共振子1の共振周波数FRを順次測定する(ステップS206)。 Followed in frequency adjustment, first, by sequentially connecting the prober to pad P11 and P12 of the piezoelectric thin film resonator 1 contained in the wafer W, sequentially measures the resonant frequency F R of the piezoelectric thin film resonator 1 contained in the wafer W (Step S206).

次に、あらかじめ実験的に調べておいた電磁波の照射条件(光量や照射時間)と圧電薄膜共振子1の共振周波数FRの上昇幅との関係を参照し、ウエハWに含まれる全部の圧電薄膜共振子1について、共振周波数FRと目標周波数FTとの乖離に応じて、電磁波の照射条件を決定する(ステップS207)。ステップS207では、例えば、電磁波をレジスト膜19に照射した場合の圧電薄膜共振子1の共振周波数FRの上昇速度Dをあらかじめ実験的に調べてあるとすれば、共振周波数FRの圧電薄膜共振子1についての電磁波の照射時間は(FT−FR)/Dと決定することができる。 Next, with reference to the previously experimentally investigated in advance electromagnetic wave irradiation conditions (light intensity or irradiation time) and the relationship between the rise of the resonance frequency F R of the piezoelectric thin film resonator 1, all of the piezoelectric contained in the wafer W the thin film resonator 1, in accordance with the deviation between the resonance frequency F R and the target frequency F T, to determine the irradiation conditions of the electromagnetic waves (step S207). In step S207, for example, if the rising speed D of the resonance frequency F R of the piezoelectric thin film resonator 1 when the resist film 19 is irradiated with electromagnetic waves is experimentally examined in advance, the piezoelectric thin film resonance of the resonance frequency F R is obtained. The irradiation time of the electromagnetic wave for the child 1 can be determined as (F T −F R ) / D.

続いて、決定した照射条件に従って、1個の圧電薄膜共振子1の対向領域E1の上に形成されたレジスト膜19に電磁波を照射することにより、レジスト膜19をアブレーション加工し、共振周波数FRを調整する(ステップS208)。 Subsequently, according to the determined irradiation condition, the resist film 19 is ablated by irradiating the resist film 19 formed on the opposing region E1 of one piezoelectric thin film resonator 1 with the electromagnetic wave, and the resonance frequency F R Is adjusted (step S208).

なお、特定の圧電薄膜共振子1についての照射条件は、当該特定の圧電薄膜共振子1の励振領域E1の上のレジスト膜19に電磁波を照射するのに先立って決定すればよく、上記説明のようにウエハWに含まれる全部の圧電薄膜共振子1についての照射条件を同時に決定することは必須ではない。したがって、一の圧電薄膜共振子1に電磁波を照射しているときに、次に電磁波を照射する他の圧電薄膜共振子1についての照射条件を決定するようなことも許容される。   The irradiation conditions for the specific piezoelectric thin film resonator 1 may be determined prior to irradiating the resist film 19 on the excitation region E1 of the specific piezoelectric thin film resonator 1 with the electromagnetic wave. Thus, it is not essential to simultaneously determine the irradiation conditions for all the piezoelectric thin film resonators 1 included in the wafer W. Therefore, it is allowed to determine the irradiation conditions for the other piezoelectric thin film resonators 1 to be irradiated with the electromagnetic waves next while the one piezoelectric thin film resonator 1 is irradiated with the electromagnetic waves.

そして、第2実施形態に係る周波数調整方法では、ウエハWに含まれる全部の圧電薄膜共振子1について共振周波数FRの調整が完了するまでは(ステップS209で"NO")、一の圧電薄膜共振子1について共振周波数FRの調整が終了すると、ウエハWをステージで移動することにより、又は、光源を走査することにより、電磁波の照射範囲を移動して(ステップS210)、共振周波数FRが未だ調整されていない他の圧電薄膜共振子1について同様に共振周波数FRの調整を行う。 Then, the frequency adjustment method according to the second embodiment, until the piezoelectric thin film resonator 1 all contained in the wafer W to adjust the resonant frequency F R is completed (in step S209 "NO"), one of the piezoelectric thin film When the adjustment of the resonance frequency F R for the resonator 1 is completed, the irradiation range of the electromagnetic wave is moved by moving the wafer W on the stage or by scanning the light source (step S210), and the resonance frequency F R. There adjusted similarly resonant frequency F R for the other piezoelectric thin film resonator 1 that has not been adjusted yet.

目標周波数FTはウエハWに含まれる全部の圧電薄膜共振子について同じ値に設定する場合もあるし、目的に応じて異なる値に設定する場合もある。 Target frequency F T is to sometimes the piezoelectric thin-film resonator of all included in the wafer W is set to the same value, in some cases set to a different value depending on the purpose.

この第2実施形態に係る周波数調整方法でも、第1実施形態に係る周波数調整方法と同様に、周波数調整に伴うスプリアスの発生を抑制することができるとともに、圧電薄膜共振子1の共振周波数FRを大気中で調整することができる。 Even in the frequency adjustment method according to the second embodiment, it is possible to suppress the occurrence of spurious due to the frequency adjustment and to reduce the resonance frequency F R of the piezoelectric thin film resonator 1 as in the frequency adjustment method according to the first embodiment. Can be adjusted in the atmosphere.

<3 第3実施形態>
図8は、本発明の第3実施形態に係る周波数調整方法を説明するフローチャートである。また、図9は、周波数調整の途上におけるウエハWを模式的に示す断面図である。第3実施形態でも、第1実施形態と同様に、レジスト膜19を電磁波でアブレーション加工することにより、ウエハWに含まれる圧電薄膜共振子1の共振周波数FRを調整し、ウエハ内バラツキを抑制しているが、ウエハWに含まれる全部の圧電薄膜共振子1の共振周波数FRを一括して調整する点が第1実施形態と異なっている。
<3 Third Embodiment>
FIG. 8 is a flowchart illustrating a frequency adjustment method according to the third embodiment of the present invention. FIG. 9 is a cross-sectional view schematically showing the wafer W in the course of frequency adjustment. In the third embodiment, like the first embodiment, by ablation of the resist film 19 in the electromagnetic wave, and adjust the resonant frequency F R of the piezoelectric thin film resonator 1 contained in the wafer W, suppress wafer in variation Although it is to point to adjust the resonance frequency F R of the whole of the piezoelectric thin film resonator 1 contained in the wafer W collectively is different from the first embodiment.

図8に従って説明すると、第3実施形態に係る周波数調整方法においては、まず、ウエハ準備(ステップS301)及びレジスト膜形成(ステップS302〜S305)を第1実施形態と同様の手順で行う。   Referring to FIG. 8, in the frequency adjustment method according to the third embodiment, first, wafer preparation (step S301) and resist film formation (steps S302 to S305) are performed in the same procedure as in the first embodiment.

続いて、ウエハWにおける圧電薄膜共振子1の共振周波数FRの分布に応じた照射条件の分布を与えた電磁波をウエハWに照射する(ステップS306)。ステップS306では、例えば、ウエハWの外周に近づくにつれて圧電体薄膜16(又は、上面電極17や下面電極15)の膜厚が薄くなっているため、ウエハWの外周に近づくにつれて圧電薄膜共振子1の共振周波数FRが高くなるような場合、図9に示すように、ウエハWの外周に近づくにつれて光量が減少する電磁波をウエハWの上面の全面にに照射する。又は、ウエハWの外周に近づくにつれて照射時間が短くなる電磁波をウエハWの上面の全面にに照射することもできる。もちろん、第2実施形態と同様に、ウエハWに含まれる全部の圧電薄膜共振子1の共振周波数FRを実際に測定し、圧電薄膜共振子1の共振周波数FRの具体的分布をウエハWごとに特定するようにしてもよい。 Subsequently, irradiation with electromagnetic waves given the distribution of irradiation conditions according to the distribution of the resonant frequency F R of the piezoelectric thin film resonator 1 of the wafer W to the wafer W (step S306). In step S306, for example, the film thickness of the piezoelectric thin film 16 (or the upper surface electrode 17 or the lower surface electrode 15) decreases as it approaches the outer periphery of the wafer W, so that the piezoelectric thin film resonator 1 approaches the outer periphery of the wafer W. If the resonant frequency F R that is high in, as shown in FIG. 9, irradiates the electromagnetic wave amount decreases toward the periphery of the wafer W to the entire upper surface of the wafer W. Alternatively, the entire upper surface of the wafer W can be irradiated with an electromagnetic wave whose irradiation time becomes shorter as it approaches the outer periphery of the wafer W. Of course, as in the second embodiment, actually measured resonance frequency F R of the whole of the piezoelectric thin film resonator 1 contained in the wafer W, specific distribution wafers W of the resonance frequency F R of the piezoelectric thin film resonator 1 You may make it specify for every.

この第3実施形態に係る周波数調整方法でも、第1実施形態に係る周波数調整方法と同様に、周波数調整に伴うスプリアスの発生を抑制することができるとともに、圧電薄膜共振子1の共振周波数FRを大気中で調整することができる。この第3実施形態に係る周波数調整方法は、傾向があらかじめわかっているウエハ内バラツキの抑制に特に効果的である。 Even in the frequency adjustment method according to the third embodiment, it is possible to suppress the occurrence of spurious due to the frequency adjustment as well as the resonance frequency F R of the piezoelectric thin film resonator 1 as in the frequency adjustment method according to the first embodiment. Can be adjusted in the atmosphere. The frequency adjusting method according to the third embodiment is particularly effective for suppressing variations in the wafer whose tendency is known in advance.

<4 第4実施形態>
図10は、本発明の第4実施形態に係る周波数調整方法を説明するフローチャートである。また、図11は、周波数調整の途上におけるウエハWを模式的に示す断面図である。第4実施形態でも、第1実施形態と同様に、レジスト膜19を電磁波でアブレーション加工することにより、ウエハWに含まれる圧電薄膜共振子1の共振周波数FRを調整しているが、ウエハWに含まれる全部の圧電薄膜共振子1の共振周波数FRを一括して調整することにより、複数のウエハWの間の圧電薄膜共振子1の共振周波数FRのバラツキ(以下、「ウエハ間バラツキ」)を抑制している点が第1実施形態と異なっている。
<4 Fourth Embodiment>
FIG. 10 is a flowchart illustrating a frequency adjustment method according to the fourth embodiment of the present invention. FIG. 11 is a cross-sectional view schematically showing the wafer W in the course of frequency adjustment. Also in the fourth embodiment, like the first embodiment, by ablation of the resist film 19 in the electromagnetic wave, although adjusting the resonance frequency F R of the piezoelectric thin film resonator 1 contained in the wafer W, the wafer W The resonance frequencies F R of all the piezoelectric thin film resonators 1 included in the wafer are collectively adjusted, whereby variations in the resonance frequencies F R of the piezoelectric thin film resonators 1 between a plurality of wafers W (hereinafter referred to as “wafer variations between wafers”). ") Is different from the first embodiment.

図10に従って説明すると、第4実施形態に係る周波数調整方法においては、まず、ウエハ準備(ステップS401)及びレジスト膜形成(ステップS402〜S405)を第1実施形態と同様の手順で行う。   Referring to FIG. 10, in the frequency adjustment method according to the fourth embodiment, first, wafer preparation (step S401) and resist film formation (steps S402 to S405) are performed in the same procedure as in the first embodiment.

続いて、ウエハWに含まれる圧電薄膜共振子1のパットP11及びP12にプローバーを順次接続して、ウエハWに含まれる圧電薄膜共振子1の共振周波数FRを順次測定する(ステップS406)。 Subsequently, the pad P11 and P12 of the piezoelectric thin film resonator 1 contained in the wafer W by sequentially connecting the prober sequentially measuring the resonant frequency F R of the piezoelectric thin film resonator 1 contained in the wafer W (step S406).

次に、あらかじめ実験的に調べておいた電磁波の照射条件(光量や照射時間)と圧電薄膜共振子1の共振周波数FRの上昇幅との関係を参照し、ウエハWにおける圧電薄膜共振子1の共振周波数FRの代表値(例えば、平均値や最頻値等の統計量)と目標周波数FTとの乖離に応じた照射条件を決定する(ステップS407)。ステップS407では、例えば、電磁波をレジスト膜19に照射した場合の共振周波数FRの上昇速度Dをあらかじめ実験的に調べてあるとすれば、ウエハWに対する電磁波の照射時間は(FT−FRA)/Dと決定することができる。ただし、「FRA」は、ウエハWに含まれる全部の圧電薄膜共振子1の共振周波数FRの平均値である。 Next, with reference to the previously experimentally investigated in advance electromagnetic wave irradiation conditions (light intensity or irradiation time) and the relationship between the rise of the resonance frequency F R of the piezoelectric thin film resonator 1, the piezoelectric thin film resonator 1 of the wafer W representative value of the resonant frequency F R of (e.g., average value or statistics mode value, etc.) to determine the irradiation conditions in accordance with the deviation between the target frequency F T (step S407). In step S407, for example, if the rising speed D of the resonant frequency F R of the case of applying an electromagnetic wave in the resist film 19 are investigated experimentally in advance, electromagnetic irradiation time for the wafer W is (F T -F RA ) / D. However, “F RA ” is an average value of the resonance frequencies F R of all the piezoelectric thin film resonators 1 included in the wafer W.

そして、決定した照射条件に従って、図11に示すような光量及び照射時間が均一な電磁波をウエハWの上面の全面に照射することにより、レジスト膜19をアブレーション加工し、共振周波数FRを調整する(ステップS408)。 Then, according to the determined irradiation conditions, by the amount of light and the irradiation time as shown in FIG. 11 is irradiated with uniform electromagnetic waves over the entire surface of the upper surface of the wafer W, the resist film 19 and ablation, adjusting the resonance frequency F R (Step S408).

この第4実施形態に係る周波数調整方法でも、第1実施形態に係る周波数調整方法と同様に、周波数調整に伴うスプリアスの発生を抑制することができるとともに、圧電薄膜共振子1の共振周波数FRを大気中で調整することができる。 Even in the frequency adjustment method according to the fourth embodiment, it is possible to suppress the occurrence of spurious due to the frequency adjustment as well as the resonance frequency F R of the piezoelectric thin film resonator 1 as in the frequency adjustment method according to the first embodiment. Can be adjusted in the atmosphere.

本発明の第1実施形態に係る圧電薄膜共振子の共振周波数の調整方法の適用対象となるウエハWを模式的に示す断面図である。It is sectional drawing which shows typically the wafer W used as the application object of the adjustment method of the resonant frequency of the piezoelectric thin film resonator which concerns on 1st Embodiment of this invention. ウエハWを個々の圧電薄膜共振子1に分離した状態を示す断面図である。2 is a cross-sectional view showing a state where a wafer W is separated into individual piezoelectric thin film resonators 1. FIG. 本発明の第1実施形態に係る圧電薄膜共振子の共振周波数の調整方法を説明するフローチャートである。It is a flowchart explaining the adjustment method of the resonant frequency of the piezoelectric thin film resonator which concerns on 1st Embodiment of this invention. 周波数調整の途上におけるウエハWを模式的に示す断面図である。It is sectional drawing which shows typically the wafer W in the middle of frequency adjustment. 周波数調整の途上におけるウエハWを模式的に示す断面図である。It is sectional drawing which shows typically the wafer W in the middle of frequency adjustment. 周波数調整の途上におけるウエハWを模式的に示す断面図である。It is sectional drawing which shows typically the wafer W in the middle of frequency adjustment. 本発明の第2実施形態に係る圧電薄膜共振子の共振周波数の調整方法を説明するフローチャートである。It is a flowchart explaining the adjustment method of the resonant frequency of the piezoelectric thin film resonator which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る圧電薄膜共振子の共振周波数の調整方法を説明するフローチャートである。It is a flowchart explaining the adjustment method of the resonant frequency of the piezoelectric thin film resonator which concerns on 3rd Embodiment of this invention. 周波数調整の途上におけるウエハWを模式的に示す断面図である。It is sectional drawing which shows typically the wafer W in the middle of frequency adjustment. 本発明の第4実施形態に係る圧電薄膜共振子の共振周波数の調整方法を説明するフローチャートである。It is a flowchart explaining the adjustment method of the resonant frequency of the piezoelectric thin film resonator which concerns on 4th Embodiment of this invention. 周波数調整の途上におけるウエハWを模式的に示す断面図である。It is sectional drawing which shows typically the wafer W in the middle of frequency adjustment.

符号の説明Explanation of symbols

1 圧電薄膜共振子
11 支持基板
12 接着層
13 キャビティ形成膜
15 下面電極
16 圧電体薄膜
17 上面電極
19 レジスト膜
E1 対向領域
W ウエハ
DESCRIPTION OF SYMBOLS 1 Piezoelectric thin film resonator 11 Support substrate 12 Adhesive layer 13 Cavity formation film 15 Lower surface electrode 16 Piezoelectric thin film 17 Upper surface electrode 19 Resist film E1 Opposite area W Wafer

Claims (7)

質量を付加する質量付加膜を圧電薄膜共振子の上に形成し、圧電薄膜共振子の共振周波数を目標周波数より低下させる形成工程と、
電磁波を照射することにより前記質量付加膜をアブレーション加工し前記質量付加膜の平面的なパターンに影響を与えることなく前記質量付加膜の全体を均一に薄肉化することにより、圧電薄膜共振子の共振周波数を目標周波数まで上昇させる照射工程と、
を備え、
前記圧電薄膜共振子において圧電体薄膜を挟んで電極対が対向し、
前記形成工程は、
前記圧電体薄膜を挟んで前記電極対が対向する対向領域の全体に前記質量付加膜を形成し、かつ、前記対向領域のみに前記質量付加膜を形成する圧電薄膜共振子の共振周波数の調整方法。
Forming a mass addition film for adding mass on the piezoelectric thin film resonator, and lowering a resonance frequency of the piezoelectric thin film resonator from a target frequency;
Resonance of the piezoelectric thin film resonator by ablating the mass-added film by irradiating electromagnetic waves and uniformly thinning the entire mass-added film without affecting the planar pattern of the mass-added film An irradiation process to raise the frequency to the target frequency;
With
In the piezoelectric thin film resonator, the electrode pair is opposed across the piezoelectric thin film,
The forming step includes
A method for adjusting a resonance frequency of a piezoelectric thin film resonator, wherein the mass addition film is formed over the entire facing region where the electrode pair faces with the piezoelectric thin film interposed therebetween, and the mass addition film is formed only in the facing region. .
前記形成工程は、
感光性樹脂を成膜する成膜工程と、
前記感光性樹脂をフォトリソグラフィでパターニングして前記質量付加膜を得るパターニング工程と、
を備える請求項1に記載の圧電薄膜共振子の共振周波数の調整方法。
The forming step includes
A film forming step of forming a photosensitive resin film;
A patterning step of patterning the photosensitive resin by photolithography to obtain the mass addition film;
A method for adjusting the resonance frequency of the piezoelectric thin film resonator according to claim 1.
前記照射工程は、圧電薄膜共振子の共振周波数を測定しながら電磁波を照射し、圧電薄膜共振子の共振周波数が目標周波数まで上昇するのに同期して電磁波の照射を中止する、
請求項1又は請求項2に記載の圧電薄膜共振子の共振周波数の調整方法。
The irradiation step irradiates the electromagnetic wave while measuring the resonance frequency of the piezoelectric thin film resonator, and stops the irradiation of the electromagnetic wave in synchronization with the resonance frequency of the piezoelectric thin film resonator rising to the target frequency.
A method for adjusting a resonance frequency of the piezoelectric thin film resonator according to claim 1.
前記照射工程に先立ち、圧電薄膜共振子の共振周波数と目標周波数との乖離に応じて電磁波の照射条件を決定する決定工程、
をさらに備える請求項1又は請求項2に記載の圧電薄膜共振子の共振周波数の調整方法。
Prior to the irradiation step, a determination step of determining the irradiation condition of the electromagnetic wave according to the difference between the resonance frequency of the piezoelectric thin film resonator and the target frequency,
The method for adjusting the resonance frequency of the piezoelectric thin film resonator according to claim 1, further comprising:
前記形成工程において、圧電薄膜共振子の集合体に含まれる各圧電薄膜共振子の上に前記質量付加膜を形成し、
前記照射工程において、前記集合体における圧電薄膜共振子の共振周波数の分布に応じた照射条件の分布を有する電磁波を前記集合体に照射する、
請求項1又は請求項2に記載の圧電薄膜共振子の共振周波数の調整方法。
In the forming step, the mass addition film is formed on each piezoelectric thin film resonator included in the piezoelectric thin film resonator assembly,
In the irradiation step, the assembly is irradiated with electromagnetic waves having a distribution of irradiation conditions according to a distribution of resonance frequencies of the piezoelectric thin film resonators in the assembly.
A method for adjusting a resonance frequency of the piezoelectric thin film resonator according to claim 1.
前記形成工程において、圧電薄膜共振子の集合体に含まれる各圧電薄膜共振子の上に前記質量付加膜を形成し、
前記照射工程において、前記集合体における圧電薄膜共振子の共振周波数の代表値と目標周波数との乖離に応じた照射条件の均一な電磁波を前記集合体に照射する、
請求項1又は請求項2に記載の圧電薄膜共振子の共振周波数の調整方法。
In the forming step, the mass addition film is formed on each piezoelectric thin film resonator included in the piezoelectric thin film resonator assembly,
In the irradiation step, the aggregate is irradiated with an electromagnetic wave having a uniform irradiation condition according to a deviation between a representative value of a resonance frequency of the piezoelectric thin film resonator in the aggregate and a target frequency.
A method for adjusting a resonance frequency of the piezoelectric thin film resonator according to claim 1.
圧電体薄膜と、
前記圧電体薄膜を挟んで対向する電極対と、
前記圧電体薄膜及び前記電極対を含む積層構造の上に形成され、前記積層構造の共振周波数と目標周波数との乖離に応じて質量がアブレーション加工で調整された質量付加膜と、
を備え、
前記質量付加膜は、前記圧電体薄膜を挟んで前記電極対が対向する対向領域の全体に形成され、かつ、前記対向領域のみに形成され、平面的なパターンに影響を与えることなく全体が均一に薄肉化された圧電薄膜共振子。
A piezoelectric thin film;
A pair of electrodes facing each other across the piezoelectric thin film;
A mass-added film formed on a laminated structure including the piezoelectric thin film and the electrode pair, the mass of which is adjusted by ablation processing according to a deviation between a resonance frequency of the laminated structure and a target frequency;
With
The mass-added film is formed on the entire facing region where the electrode pair faces each other with the piezoelectric thin film interposed therebetween, and is formed only on the facing region , so that the entire surface is uniform without affecting the planar pattern. thinned piezoelectric thin film resonator in.
JP2006139824A 2006-05-19 2006-05-19 Piezoelectric thin film resonator and method for adjusting resonance frequency of piezoelectric thin film resonator Active JP5036215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006139824A JP5036215B2 (en) 2006-05-19 2006-05-19 Piezoelectric thin film resonator and method for adjusting resonance frequency of piezoelectric thin film resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006139824A JP5036215B2 (en) 2006-05-19 2006-05-19 Piezoelectric thin film resonator and method for adjusting resonance frequency of piezoelectric thin film resonator

Publications (2)

Publication Number Publication Date
JP2007312157A JP2007312157A (en) 2007-11-29
JP5036215B2 true JP5036215B2 (en) 2012-09-26

Family

ID=38844590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006139824A Active JP5036215B2 (en) 2006-05-19 2006-05-19 Piezoelectric thin film resonator and method for adjusting resonance frequency of piezoelectric thin film resonator

Country Status (1)

Country Link
JP (1) JP5036215B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2460935A (en) * 2008-06-10 2009-12-23 Boeing Co Frequency tuning of disc resonator gyroscopes via resonator mass perturbations based on an identified model
US8333112B2 (en) 2008-06-10 2012-12-18 The Boeing Company Frequency tuning of disc resonator gyroscopes via resonator mass perturbation based on an identified model
JP5617523B2 (en) * 2009-12-08 2014-11-05 株式会社村田製作所 Manufacturing method of multilayer piezoelectric thin film filter
WO2020144941A1 (en) * 2019-01-11 2020-07-16 株式会社村田製作所 Piezoelectric device, vibration structure, and piezoelectric sensor
JP6705580B1 (en) * 2019-01-11 2020-06-03 株式会社村田製作所 Vibrating structure and piezoelectric sensor
JP7485479B2 (en) 2020-03-17 2024-05-16 太陽誘電株式会社 filter

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288506A (en) * 1985-06-14 1986-12-18 Murata Mfg Co Ltd Piezoelectric parts element and manufacture of piezoelectric parts using it
JPH06224676A (en) * 1993-01-26 1994-08-12 Murata Mfg Co Ltd Frequency adjusting method for piezoelectric resonance parts
JPH11340768A (en) * 1998-05-25 1999-12-10 Matsushita Electric Ind Co Ltd Frequency adjustment method for piezoelectric resonator and frequency adjustment device for piezoelectric resonator
JP2000040931A (en) * 1998-07-23 2000-02-08 Matsushita Electric Ind Co Ltd Piezoelectric resonator, manufacture thereof and frequency adjusting method of the same
JP2001251159A (en) * 2000-03-08 2001-09-14 Mitsubishi Electric Corp Thin film piezoelectric element and its manufacturing method
US6456173B1 (en) * 2001-02-15 2002-09-24 Nokia Mobile Phones Ltd. Method and system for wafer-level tuning of bulk acoustic wave resonators and filters
US6617249B2 (en) * 2001-03-05 2003-09-09 Agilent Technologies, Inc. Method for making thin film bulk acoustic resonators (FBARS) with different frequencies on a single substrate and apparatus embodying the method
US6441702B1 (en) * 2001-04-27 2002-08-27 Nokia Mobile Phones Ltd. Method and system for wafer-level tuning of bulk acoustic wave resonators and filters
JP3984441B2 (en) * 2001-07-26 2007-10-03 松下電器産業株式会社 Piezoelectric thin film vibrator and filter
JP2003347883A (en) * 2002-05-27 2003-12-05 Mitsubishi Electric Corp Piezoelectric thin-film element and manufacturing method thereof
JP2005051685A (en) * 2003-07-31 2005-02-24 Matsushita Electric Works Ltd Method and device for adjusting resonance frequency of ultrasonic sensor
JP4223428B2 (en) * 2004-03-31 2009-02-12 富士通メディアデバイス株式会社 Filter and manufacturing method thereof
JP2006086702A (en) * 2004-09-15 2006-03-30 Citizen Miyota Co Ltd Frequency adjuster and adjusting method of tuning fork oscillator, and tuning fork oscillator subjected to frequency adjustment by that method

Also Published As

Publication number Publication date
JP2007312157A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
US7370396B2 (en) Method for manufacturing an electronic component
JP5036215B2 (en) Piezoelectric thin film resonator and method for adjusting resonance frequency of piezoelectric thin film resonator
US7854049B2 (en) Method of manufacturing a piezoelectric thin film device
US20070200458A1 (en) Piezoelectric thin film device
JP2003050584A (en) Method and system for wafer-level tuning of bulk acoustic wave resonator and filter
US20070210877A1 (en) Piezoelectric thin film device
US20070200459A1 (en) Piezoelectric thin film device
US20110241491A1 (en) Surface-mountable quartz-crystal devices and methods for manufacturing same
JP2008306280A (en) Piezoelectric thin film device
JP2009005143A (en) Piezoelectric thin film device
JP2008078869A (en) Method for manufacturing oscillator
CN109891744B (en) Method for adjusting frequency of piezoelectric vibration device
JP5992346B2 (en) Method for manufacturing wavelength conversion element
JP2007288331A (en) Manufacturing method of piezoelectric vibration reed, the piezoelectric vibration reed, and piezoelectric vibrator
JP5031526B2 (en) Piezoelectric vibrator and manufacturing method thereof
JP5047660B2 (en) Piezoelectric thin film device
JP4039230B2 (en) Method for adjusting oscillation frequency of tuning fork vibrator, and tuning fork vibrator with oscillation frequency adjusted by the method
JP2022537083A (en) Transversely excited film bulk acoustic resonator with multiple diaphragm thicknesses and method of fabrication
JP2011250226A (en) Piezoelectric device and method for adjusting its frequency
JP2008147833A (en) Piezoelectric thin film device
JP2001148617A (en) Manufacturing method of saw filter
JP2010010955A (en) Method for manufacturing piezoelectric vibrator, and piezoelectric vibrator
JP2008160694A (en) Piezoelectric thin film device
JP2010147963A (en) Method of manufacturing crystal oscillator, and device using same
JP2000040931A (en) Piezoelectric resonator, manufacture thereof and frequency adjusting method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120413

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5036215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150