JP5035600B2 - Biological microscope - Google Patents

Biological microscope Download PDF

Info

Publication number
JP5035600B2
JP5035600B2 JP2007020621A JP2007020621A JP5035600B2 JP 5035600 B2 JP5035600 B2 JP 5035600B2 JP 2007020621 A JP2007020621 A JP 2007020621A JP 2007020621 A JP2007020621 A JP 2007020621A JP 5035600 B2 JP5035600 B2 JP 5035600B2
Authority
JP
Japan
Prior art keywords
focus error
error detection
focus
observation
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007020621A
Other languages
Japanese (ja)
Other versions
JP2008185875A (en
Inventor
耕徳 横山
虹之 景
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2007020621A priority Critical patent/JP5035600B2/en
Publication of JP2008185875A publication Critical patent/JP2008185875A/en
Application granted granted Critical
Publication of JP5035600B2 publication Critical patent/JP5035600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)
  • Automatic Focus Adjustment (AREA)

Description

本発明は、焦点誤差信号を用いた観察光学系の自動焦点機能を有する生物顕微鏡に関するものである。   The present invention relates to a biological microscope having an automatic focusing function of an observation optical system using a focus error signal.

長時間の観察を目的とした生物顕微鏡においては、温度変化などが原因で、観察像の焦点がずれてしまうために、自動焦点機能が必要である。   In a biological microscope intended for long-time observation, an autofocus function is necessary because the focus of an observation image is shifted due to a temperature change or the like.

図4は、自動焦点機能を有する従来の生物顕微鏡の一例を示す構成図である。図に示すように、生物顕微鏡はプレパラート1上に置かれた試料を対物レンズ101および観察部103により拡大して観察する観察光学系100と、焦点誤差検出光Ldを使用して合焦状態を検出する焦点誤差検出光学系200と、焦点誤差検出光Ldを観察光Lsの光路に重畳するダイクロイックミラー300と、焦点誤差検出光学系200から得られる焦点誤差信号Seに応じて自動焦点動作を行う制御手段400とから構成されている。   FIG. 4 is a block diagram showing an example of a conventional biological microscope having an autofocus function. As shown in the figure, the biological microscope uses the observation optical system 100 for magnifying and observing the sample placed on the preparation 1 with the objective lens 101 and the observation unit 103, and the focus error detection light Ld to determine the in-focus state. A focus error detection optical system 200 to detect, a dichroic mirror 300 that superimposes the focus error detection light Ld on the optical path of the observation light Ls, and a focus error signal Se obtained from the focus error detection optical system 200, and an automatic focus operation is performed. The control means 400 is comprised.

対物レンズ101はレンズアクチュエータ102により光軸方向(Z方向)に移動され、制御手段400は焦点誤差信号Seを帰還量として、レンズアクチュエータ102を駆動する。   The objective lens 101 is moved in the optical axis direction (Z direction) by the lens actuator 102, and the control means 400 drives the lens actuator 102 using the focus error signal Se as a feedback amount.

焦点誤差検出光学系200において、焦点誤差検出光光源201から出力された焦点誤差検出光Ldは、レンズ202を通過した後、ハーフミラー203で反射され、ダイクロイックミラー300により観察光Lsの光路に重畳されて、観察対象(プレパラート1)に照射される。   In the focus error detection optical system 200, the focus error detection light Ld output from the focus error detection light source 201 passes through the lens 202, is reflected by the half mirror 203, and is superimposed on the optical path of the observation light Ls by the dichroic mirror 300. Then, the observation object (preparation 1) is irradiated.

また、観察対象(プレパラート1)からの戻り光(反射光)は、焦点誤差検出光Ld成分のみがダイクロイックミラー300により反射され、焦点誤差検出光学系200に入射する。入射光はハーフミラー203を通過し、コリメータレンズ204およびシリンドリカルレンズ205を介して、4分割フォトダイオード206に達する。コリメータレンズ204、シリンドリカルレンズ205および4分割フォトダイオード206は、非点収差法による焦点誤差検出を行い、焦点誤差信号Seを発生する。   Further, only the focus error detection light Ld component of the return light (reflected light) from the observation target (preparation 1) is reflected by the dichroic mirror 300 and enters the focus error detection optical system 200. Incident light passes through the half mirror 203 and reaches the quadrant photodiode 206 via the collimator lens 204 and the cylindrical lens 205. The collimator lens 204, the cylindrical lens 205, and the quadrant photodiode 206 perform focus error detection by the astigmatism method and generate a focus error signal Se.

なお、フィルタ104、207は、観察光Lsまたは焦点誤差検出光Ldが他の光学系に入り込まないように挿入されたものである。   The filters 104 and 207 are inserted so that the observation light Ls or the focus error detection light Ld does not enter another optical system.

このように構成された生物顕微鏡において、対物レンズ101を光軸方向(Z方向)に移動させると、焦点誤差信号Seは図5に示す如く、S字カーブを描く。制御手段400はこのS字カーブ上において、焦点誤差信号Seがゼロまたは任意の一定値となる点を合焦状態として、自動焦点動作を行う。   When the objective lens 101 is moved in the optical axis direction (Z direction) in the thus configured biological microscope, the focus error signal Se draws an S-curve as shown in FIG. The control means 400 performs the autofocus operation with the point where the focus error signal Se is zero or any constant value on the S-curve as the in-focus state.

例えば、図に示す例では、焦点誤差検出光Ld(観察光Ls)の焦点位置がプレパラート1の表面に位置した時に焦点誤差信号Seがゼロとなるので、この面に焦点を合わせる場合には、制御手段400は焦点誤差信号Seがゼロとなるように、レンズアクチュエータ102を駆動して、対物レンズ101の位置を制御する。以後、焦点を合わせようとする面を焦点基準面2と呼ぶ。   For example, in the example shown in the figure, the focus error signal Se becomes zero when the focus position of the focus error detection light Ld (observation light Ls) is positioned on the surface of the preparation 1, so when focusing on this surface, The control unit 400 drives the lens actuator 102 to control the position of the objective lens 101 so that the focus error signal Se becomes zero. Hereinafter, the surface to be focused is referred to as a focus reference surface 2.

特開平5−88072号公報JP-A-5-88072

生物顕微鏡においては、観察開始時または観察中に自動焦点動作を行わせることが多く、通常、試料3を顕微鏡視野の中心に置いた状態で自動焦点動作を行なわせる。
また、一般に、焦点誤差検出光学系200の光軸調整を行う場合、その光軸は観察光学系100と同一に調整されるので、焦点誤差検出光Ldは観察光Lsと同じ位置、すなわち顕微鏡視野のほぼ中心に照射されることになる。
In a biological microscope, an autofocus operation is often performed at the start of observation or during observation. Usually, the autofocus operation is performed with the sample 3 placed at the center of the microscope field of view.
In general, when the optical axis of the focus error detection optical system 200 is adjusted, the optical axis is adjusted to be the same as that of the observation optical system 100, so that the focus error detection light Ld is at the same position as the observation light Ls, that is, the microscope field of view. It will be irradiated to almost the center.

このため、プレパラート1の上に試料3を置いた状態で自動焦点動作を行なおうとすると、焦点誤差検出光Ldが試料3にも照射されることになり、試料3の屈折率の影響を受けて、対物レンズ101の光軸方向(Z方向)の動きに対する焦点誤差信号Seの変化に、図6に示すような乱れを生じてしまう可能性がある。顕微鏡の視野4と試料3の位置との関係を図6(a)に示し、この時の焦点誤差信号Seの様子を図6(b)に示す。   For this reason, if an autofocus operation is performed with the sample 3 placed on the preparation 1, the focus error detection light Ld is also irradiated onto the sample 3, and is affected by the refractive index of the sample 3. Thus, the change in the focus error signal Se with respect to the movement of the objective lens 101 in the optical axis direction (Z direction) may cause a disturbance as shown in FIG. The relationship between the field of view 4 of the microscope and the position of the sample 3 is shown in FIG. 6A, and the state of the focus error signal Se at this time is shown in FIG.

このように、顕微鏡視野の中心に試料3があると、焦点誤差信号Seの変化に乱れを生じ、正確な自動焦点動作が行えなかったり、自動焦点動作が不安定となってしまう。
また、これを避けるためには、図7に示す如く、試料3を顕微鏡視野4の中心から外して、試料3のない所で自動焦点動作を行わなければならない。顕微鏡の視野4と試料3の位置との関係を図7(a)に示し、この時の焦点誤差信号Seの様子を図7(b)に示す。
As described above, when the sample 3 is in the center of the microscope visual field, the change in the focus error signal Se is disturbed, and an accurate autofocus operation cannot be performed or the autofocus operation becomes unstable.
In order to avoid this, as shown in FIG. 7, the sample 3 must be removed from the center of the microscope field of view 4 and an autofocus operation must be performed in the absence of the sample 3. The relationship between the field of view 4 of the microscope and the position of the sample 3 is shown in FIG. 7A, and the state of the focus error signal Se at this time is shown in FIG.

本発明は、上記のような従来装置の欠点をなくし、顕微鏡視野の中心に試料を置いた状態においても、自動焦点動作を行うことのできる生物顕微鏡を簡単な構成により実現することを目的としたものである。   An object of the present invention is to eliminate the drawbacks of the conventional apparatus as described above, and to realize a biological microscope capable of performing an autofocus operation with a simple configuration even when a sample is placed at the center of a microscope field of view. Is.

また、自動焦点動作が試料から外れた位置で行われているか否かを検出し、表示することのできる生物顕微鏡を簡単な構成により実現することを目的としたものである。   It is another object of the present invention to realize a biological microscope capable of detecting and displaying whether or not the autofocus operation is performed at a position deviated from a sample with a simple configuration.

本発明の生物顕微鏡は、
観察部から出射する観察光を透過させ、焦点誤差検出光源から出射する焦点誤差検出光を反射して前記観察光と焦点誤差検出光の光軸を同一の光軸上に重畳させるダイクロイックミラーと、このダイクロイックミラーで重畳した光を対物レンズを介して焦点基準面に照射するとともに、前記焦点基準面からの戻り光を受けて、前記焦点基準面への合焦状態を検出する焦点誤差検出光学系を有する生物顕微鏡において、
前記ダイクロイックミラーを傾けることにより前記観察光の光軸に対して前記焦点誤差検出光源からの光軸を傾けて、前記生物顕微鏡の視野中心からずらして焦点誤差検出光の照射位置を試料の位置から外す照射位置変更手段と、
前記焦点誤差検出光学系から得られる焦点誤差信号の乱れの有無を検出する焦点誤差検出状態判別手段と、
この焦点誤差検出状態判別手段の判別結果に応じて前記焦点誤差信号の乱れの有無を表示する表示手段と、を有し、
前記焦点誤差検出状態判別手段は、前記対物レンズの光軸方向の動きに対する前記焦点誤差信号の変化を一定区間サンプリングして高周波成分として検出し、その高周波成分の大きさから前記焦点誤差信号の乱れの有無を判別し、
前記表示手段は、試料の観察中または観察開始において、試料を前記顕微鏡視野の中心に位置させるに際し、前記焦点誤差信号の乱れの有無を表示することを特徴とする。
The biological microscope of the present invention is
A dichroic mirror that transmits the observation light emitted from the observation unit, reflects the focus error detection light emitted from the focus error detection light source, and superimposes the optical axis of the observation light and the focus error detection light on the same optical axis; A focus error detection optical system that irradiates the focus reference plane with the light superimposed by the dichroic mirror via the objective lens and receives the return light from the focus reference plane to detect the in-focus state on the focus reference plane In a biological microscope having
Tilt the optical axis from the focus error detecting light source with respect to the optical axis of the observation light by tilting the dichroic mirror, the position of the sample irradiation position of and shifted from the center of the field of view of the biological microscope focus error detection light An irradiation position changing means for removing from ,
A focus error detection state determination means for detecting presence or absence of disturbance of a focus error signal obtained from the focus error detection optical system;
Display means for displaying the presence or absence of disturbance of the focus error signal according to the determination result of the focus error detection state determination means,
The focus error detection state discriminating means samples a change in the focus error signal with respect to the movement of the objective lens in the optical axis direction and detects it as a high frequency component, and detects the disturbance of the focus error signal from the magnitude of the high frequency component. The presence or absence of
The display means displays whether or not the focus error signal is disturbed when the sample is positioned at the center of the microscope visual field during observation of the sample or at the start of observation.

前記ダイクロイックミラーを一定角度で支持する保持部を有し、このダイクロイックミラーにおける角度の変更は、この保持部の顕微鏡フレームへの取付角度により調節することを特徴とする。   It has a holding part which supports the dichroic mirror at a fixed angle, and the change of the angle in the dichroic mirror is adjusted by the mounting angle of the holding part to the microscope frame.

このように、本発明の生物顕微鏡では、対物レンズにおける観察光の光軸に対して焦点誤差検出光の光軸を傾け、焦点基準面における焦点誤差検出光の照射位置をこの顕微鏡の視野中心からずらすようにしているので、試料を顕微鏡の視野中心に置いた状態においても、焦点誤差検出光の照射位置を試料の位置から外し、確実な自動焦点動作を行うことができる。   Thus, in the biological microscope of the present invention, the optical axis of the focus error detection light is tilted with respect to the optical axis of the observation light in the objective lens, and the irradiation position of the focus error detection light on the focus reference plane is from the center of the field of view of this microscope. Since they are shifted, even when the sample is placed at the center of the visual field of the microscope, the irradiation position of the focus error detection light can be removed from the position of the sample, and a reliable autofocus operation can be performed.

また、焦点誤差検出光学系から得られる焦点誤差信号における乱れの有無を検出する焦点誤差検出状態判別手段と、この焦点誤差検出状態判別手段の判別結果に応じて焦点誤差信号における乱れの有無を表示する表示手段とを有しているので、自動焦点動作が試料から外れた位置で行われているか否かを検出して、表示することができ、自動焦点動作の動作状況を顕微鏡の操作者に知らせることができる。   Also, a focus error detection state determination unit that detects the presence or absence of disturbance in the focus error signal obtained from the focus error detection optical system, and displays the presence or absence of disturbance in the focus error signal according to the determination result of the focus error detection state determination unit Display means that can detect and display whether or not the autofocus operation is performed at a position deviated from the sample, and display the operation status of the autofocus operation to the operator of the microscope. I can inform you.

以下、図1〜図3を参照して、本発明の生物顕微鏡を説明する。   Hereinafter, the biological microscope of the present invention will be described with reference to FIGS.

図1は本発明の生物顕微鏡の一実施例を示す構成図である。図において、前記図4〜図7と同様のものは、同一符号を付して示す。   FIG. 1 is a block diagram showing an embodiment of a biological microscope of the present invention. In the figure, the same components as those in FIGS. 4 to 7 are denoted by the same reference numerals.

図に示す例では、ダイクロイックミラー300は保持部301に支持され、顕微鏡のフレーム105に取り付けられている。通常、ダイクロイックミラー300は保持部301に45°の角度に固定されており、保持部301とフレーム105との間に、シムテープなどのスペーサ部材302を介在させることにより、ダイクロイックミラー300の角度を45°から数mrad傾けている。   In the example shown in the figure, the dichroic mirror 300 is supported by the holding unit 301 and attached to the frame 105 of the microscope. Usually, the dichroic mirror 300 is fixed to the holding portion 301 at an angle of 45 °, and a spacer member 302 such as shim tape is interposed between the holding portion 301 and the frame 105 so that the angle of the dichroic mirror 300 is 45. It is tilted from a few mrad.

このようにすると、図2に示す如く、観察光Lsの光軸に対して、焦点誤差検出光Ldの光軸を傾けることができ、その照射位置Pdを観察光Lsの照射位置Ps(顕微鏡視野の中心)からずらすことができる。   In this way, as shown in FIG. 2, the optical axis of the focus error detection light Ld can be tilted with respect to the optical axis of the observation light Ls, and the irradiation position Pd is changed to the irradiation position Ps of the observation light Ls (microscope field of view). Center).

したがって、試料を顕微鏡の視野中心に置いた状態においても、焦点誤差検出光Ldの照射位置Pdを試料の位置から外し、試料の屈折率などの影響を受けることなく、確実な自動焦点動作を行うことができる。   Therefore, even when the sample is placed at the center of the visual field of the microscope, the irradiation position Pd of the focus error detection light Ld is removed from the position of the sample, and a reliable autofocus operation is performed without being affected by the refractive index of the sample. be able to.

なお、ダイクロイックミラー300の角度を変更することにより、焦点誤差検出光学系200に入射する焦点誤差検出光Ldの光軸も変化することになるが、この変化に対応して、4分割フォトダイオード206の位置などが調整される。   Note that, by changing the angle of the dichroic mirror 300, the optical axis of the focus error detection light Ld incident on the focus error detection optical system 200 also changes. In response to this change, the four-division photodiode 206 is changed. The position of is adjusted.

図1の説明においては、保持部301の取付角度によりダイクロイックミラー300の角度を変更する場合を例示したが、スペーサ部材302などを使用せず、保持部301におけるダイクロイックミラー300の支持角度を直接変更するようにしても良い。   In the description of FIG. 1, the case where the angle of the dichroic mirror 300 is changed according to the mounting angle of the holding unit 301 is illustrated, but the support angle of the dichroic mirror 300 in the holding unit 301 is directly changed without using the spacer member 302 or the like. You may make it do.

また、焦点誤差検出光学系200の光軸自体を変え、ダイクロイックミラー300に対する焦点誤差検出光Ldの入射角を変化させるようにしても良い。   Alternatively, the incident angle of the focus error detection light Ld with respect to the dichroic mirror 300 may be changed by changing the optical axis itself of the focus error detection optical system 200.

さて、上記のような生物顕微鏡において、基準焦点面2から反射された焦点誤差検出光Ldは、大部分がダイクロイックミラー300により焦点誤差検出光学系200方向に反射され、残りもフィルタ104によりカットされるので、観察部103に入射して、観察の邪魔をしてしまうことはない。   In the biological microscope as described above, most of the focus error detection light Ld reflected from the reference focal plane 2 is reflected by the dichroic mirror 300 in the direction of the focus error detection optical system 200, and the rest is also cut by the filter 104. Therefore, the light does not enter the observation unit 103 and disturb the observation.

言い換えると、観察光学系100では焦点誤差検出光Ldを見ることはできず、焦点誤差検出光学系200が基準焦点面上のどの位置に焦点誤差検出光Ldを照射し、自動焦点動作を行っているのかを確認することはできない。   In other words, the observation optical system 100 cannot see the focus error detection light Ld, and the focus error detection optical system 200 irradiates the focus error detection light Ld on any position on the reference focal plane to perform an autofocus operation. It is not possible to confirm whether or not

したがって、焦点誤差検出光LDが確実に試料3から外れた位置に照射され、焦点誤差信号Seに乱れを生じていないことを確認することのできる手段があると好適である。
Therefore, it is preferable that there is a means that can surely irradiate the focus error detection light LD at a position off the sample 3 and confirm that the focus error signal Se is not disturbed.

図3は、焦点誤差検出光学系200から得られる焦点誤差信号Seにおける乱れの有無を検出する焦点誤差検出状態判別手段500と、この焦点誤差検出状態判別手段500の判別結果に応じて焦点誤差信号Seにおける乱れの有無を表示する表示手段600の一実施例を示す構成図である。   FIG. 3 shows a focus error detection state determination unit 500 that detects the presence or absence of disturbance in the focus error signal Se obtained from the focus error detection optical system 200, and a focus error signal according to the determination result of the focus error detection state determination unit 500. It is a block diagram which shows one Example of the display means 600 which displays the presence or absence of disorder in Se.

焦点誤差検出状態判別手段500は、AD変換部501、メモリ部502、信号処理部503により構成される。AD変換部501およびメモリ部502により、対物レンズ101の光軸方向(Z方向)の動きに対する焦点誤差信号Seの変化を、一定区間サンプリングするとともに、信号処理部503により、このデータ列をフーリエ変換し、高周波成分の大きさから焦点誤差信号Seの乱れの有無を判別する。すなわち、焦点誤差信号Seに乱れがあると、高周波成分が大きくなり、これが一定値を越えた時に、自動焦点動作への不適を判断して、判別出力を発生する。   The focus error detection state determination unit 500 includes an AD conversion unit 501, a memory unit 502, and a signal processing unit 503. The AD conversion unit 501 and the memory unit 502 sample the change of the focus error signal Se with respect to the movement of the objective lens 101 in the optical axis direction (Z direction) for a predetermined interval, and the signal processing unit 503 performs Fourier transform on the data string. Then, the presence or absence of disturbance of the focus error signal Se is determined from the magnitude of the high frequency component. That is, if there is disturbance in the focus error signal Se, the high frequency component becomes large, and when this exceeds a certain value, it is determined whether or not it is inappropriate for the autofocus operation and a discrimination output is generated.

表示手段600は、発光ダイオードよりなり、焦点誤差検出状態判別手段500の出力に応じて、その判別結果を表示する。例えば、焦点誤差信号Seに乱れがある時には点灯し、乱れがない時には消灯する。   The display unit 600 includes a light emitting diode, and displays the determination result according to the output of the focus error detection state determination unit 500. For example, it is turned on when the focus error signal Se is disturbed, and is turned off when there is no disorder.

なお、上記の判別動作は、自動焦点動作の開始時に対物レンズ101を光軸方向(Z方向)にスキャンさせて、焦点誤差信号SeのS字カーブを得るという、引込動作とともに行われるものである。   Note that the above-described determination operation is performed together with the pull-in operation in which the objective lens 101 is scanned in the optical axis direction (Z direction) at the start of the automatic focus operation to obtain an S-shaped curve of the focus error signal Se. .

したがって、観察開始時または観察中において、試料3を顕微鏡視野の中心に位置させる際に、表示手段600の表示を確認しながら、試料3の位置を調整するようにすれば、試料3が焦点誤差検出光Ldの照射位置にかかっているか否かを知ることができ、試料3が焦点誤差信号Seに影響を与えることなく、確実に自動焦点動作を行なわせることのできる位置に、試料3を位置決めすることができる。   Accordingly, when the sample 3 is positioned at the center of the microscope visual field at the start of observation or during observation, the sample 3 will be in focus error if the position of the sample 3 is adjusted while checking the display of the display means 600. It can be determined whether or not the irradiation position of the detection light Ld is applied, and the sample 3 is positioned at a position where the sample 3 can reliably perform the autofocus operation without affecting the focus error signal Se. can do.

以上説明したように、本発明の生物顕微鏡では、対物レンズにおける観察光の光軸に対して焦点誤差検出光の光軸を傾け、焦点基準面における焦点誤差検出光の照射位置をこの顕微鏡の視野中心からずらすようにしているので、試料を顕微鏡の視野中心に置いた状態においても、焦点誤差検出光の照射位置を試料の位置から外し、確実な自動焦点動作を行うことができる。   As described above, in the biological microscope of the present invention, the optical axis of the focus error detection light is tilted with respect to the optical axis of the observation light in the objective lens, and the irradiation position of the focus error detection light on the focus reference plane is set to the field of view of this microscope. Since the position is shifted from the center, even when the sample is placed at the center of the field of view of the microscope, the irradiation position of the focus error detection light is removed from the position of the sample, and a reliable autofocus operation can be performed.

また、焦点誤差検出光学系から得られる焦点誤差信号における乱れの有無を検出する焦点誤差検出状態判別手段と、この焦点誤差検出状態判別手段の判別結果に応じて焦点誤差信号における乱れの有無を表示する表示手段とを有しているので、自動焦点動作が試料から外れた位置で行われているか否かを検出して、表示することができ、自動焦点動作の動作状況を顕微鏡の操作者に知らせることができる。   Also, a focus error detection state determination unit that detects the presence or absence of disturbance in the focus error signal obtained from the focus error detection optical system, and displays the presence or absence of disturbance in the focus error signal according to the determination result of the focus error detection state determination unit Display means that can detect and display whether or not the autofocus operation is performed at a position deviated from the sample, and display the operation status of the autofocus operation to the operator of the microscope. I can inform you.

なお、上記の説明においては、焦点誤差検出光学系200として非点収差法を利用した焦点誤差検出手段を例示したが、焦点誤差の検出方法はこれに限られるものではない。   In the above description, the focus error detection means using the astigmatism method is exemplified as the focus error detection optical system 200, but the focus error detection method is not limited to this.

本発明の生物顕微鏡の一実施例を示す構成図。The block diagram which shows one Example of the biological microscope of this invention. 観察光Lsおよび焦点誤差検出光Ldの光軸の様子を示す図。The figure which shows the mode of the optical axis of the observation light Ls and the focus error detection light Ld. 焦点誤差検出状態判別手段および表示手段の一実施例を示す構成図。The block diagram which shows one Example of a focus error detection state determination means and a display means. 従来の生物顕微鏡の一例を示す構成図。The block diagram which shows an example of the conventional biological microscope. 対物レンズの移動に対する焦点誤差信号の変化の様子を示す図。The figure which shows the mode of a focus error signal changing with respect to the movement of an objective lens. 顕微鏡視野中の試料の位置と焦点誤差信号の変化の様子を示す図。The figure which shows the mode of the change of the position of the sample in a microscope visual field, and a focus error signal. 顕微鏡視野中の試料の位置と焦点誤差信号の変化の様子を示す図。The figure which shows the mode of the change of the position of the sample in a microscope visual field, and a focus error signal.

符号の説明Explanation of symbols

1 プレパラート
2 焦点基準面
3 試料
4 視野
100 観察光学系
101 対物レンズ
102 レンズアクチュエータ
103 観察部
200 焦点誤差検出光学系
300 ダイクロイックミラー
400 制御手段
500 焦点誤差検出状態判別手段
600 表示手段
DESCRIPTION OF SYMBOLS 1 Preparation 2 Focus reference plane 3 Sample 4 Field of view 100 Observation optical system 101 Objective lens 102 Lens actuator 103 Observation part 200 Focus error detection optical system 300 Dichroic mirror 400 Control means 500 Focus error detection state discrimination means 600 Display means

Claims (2)

観察部から出射する観察光を透過させ、焦点誤差検出光源から出射する焦点誤差検出光を反射して前記観察光と焦点誤差検出光の光軸を同一の光軸上に重畳させるダイクロイックミラーと、このダイクロイックミラーで重畳した光を対物レンズを介して焦点基準面に照射するとともに、前記焦点基準面からの戻り光を受けて、前記焦点基準面への合焦状態を検出する焦点誤差検出光学系を有する生物顕微鏡において、
前記ダイクロイックミラーを傾けることにより前記観察光の光軸に対して前記焦点誤差検出光源からの光軸を傾けて、前記生物顕微鏡の視野中心からずらして焦点誤差検出光の照射位置を試料の位置から外す照射位置変更手段と、
前記焦点誤差検出光学系から得られる焦点誤差信号の乱れの有無を検出する焦点誤差検出状態判別手段と、
この焦点誤差検出状態判別手段の判別結果に応じて前記焦点誤差信号の乱れの有無を表示する表示手段と、を有し、
前記焦点誤差検出状態判別手段は、前記対物レンズの光軸方向の動きに対する前記焦点誤差信号の変化を一定区間サンプリングして高周波成分として検出し、その高周波成分の大きさから前記焦点誤差信号の乱れの有無を判別し、
前記表示手段は、試料の観察中または観察開始において、試料を前記顕微鏡視野の中心に位置させるに際し、前記焦点誤差信号の乱れの有無を表示することを特徴とする生物顕微鏡。
A dichroic mirror that transmits the observation light emitted from the observation unit, reflects the focus error detection light emitted from the focus error detection light source, and superimposes the optical axis of the observation light and the focus error detection light on the same optical axis; A focus error detection optical system that irradiates the focus reference plane with the light superimposed by the dichroic mirror via the objective lens and receives the return light from the focus reference plane to detect the in-focus state on the focus reference plane In a biological microscope having
Tilt the optical axis from the focus error detecting light source with respect to the optical axis of the observation light by tilting the dichroic mirror, the position of the sample irradiation position of and shifted from the center of the field of view of the biological microscope focus error detection light An irradiation position changing means for removing from ,
A focus error detection state determination means for detecting presence or absence of disturbance of a focus error signal obtained from the focus error detection optical system;
Display means for displaying the presence or absence of disturbance of the focus error signal according to the determination result of the focus error detection state determination means,
The focus error detection state discriminating means samples a change in the focus error signal with respect to the movement of the objective lens in the optical axis direction and detects it as a high frequency component, and detects the disturbance of the focus error signal from the magnitude of the high frequency component. The presence or absence of
The biological microscope characterized in that the display means displays whether or not the focus error signal is disturbed when the sample is positioned at the center of the microscope visual field during observation of the sample or at the start of observation.
前記ダイクロイックミラーを一定角度で支持する保持部を有し、このダイクロイックミラーにおける角度の変更は、この保持部の顕微鏡フレームへの取付角度により調節することを特徴とする請求項1に記載の生物顕微鏡。   2. The biological microscope according to claim 1, further comprising a holding portion that supports the dichroic mirror at a constant angle, and the change of the angle of the dichroic mirror is adjusted by an angle of attachment of the holding portion to the microscope frame. .
JP2007020621A 2007-01-31 2007-01-31 Biological microscope Active JP5035600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007020621A JP5035600B2 (en) 2007-01-31 2007-01-31 Biological microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007020621A JP5035600B2 (en) 2007-01-31 2007-01-31 Biological microscope

Publications (2)

Publication Number Publication Date
JP2008185875A JP2008185875A (en) 2008-08-14
JP5035600B2 true JP5035600B2 (en) 2012-09-26

Family

ID=39728953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007020621A Active JP5035600B2 (en) 2007-01-31 2007-01-31 Biological microscope

Country Status (1)

Country Link
JP (1) JP5035600B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170090175A1 (en) 2015-09-25 2017-03-30 Olympus Corporation Microscope apparatus, automatic focusing device, and automatic focusing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0969974A (en) * 1995-08-31 1997-03-11 Canon Inc Image pickup device
JPH11248437A (en) * 1998-03-02 1999-09-17 Olympus Optical Co Ltd Measuring instrument
JP3579630B2 (en) * 2000-04-24 2004-10-20 隆樹 笠原 Microscope autofocus device
JP2004046107A (en) * 2002-05-14 2004-02-12 Olympus Corp Mirror unit for microscope
JP2005010665A (en) * 2003-06-20 2005-01-13 Olympus Corp Automatic focusing device for microscope and automatic focusing method for microscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170090175A1 (en) 2015-09-25 2017-03-30 Olympus Corporation Microscope apparatus, automatic focusing device, and automatic focusing method
US10634895B2 (en) 2015-09-25 2020-04-28 Olympus Corporation Microscope apparatus, automatic focusing device, and automatic focusing method

Also Published As

Publication number Publication date
JP2008185875A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
US7692856B2 (en) Focus error detecting optical system for a microscope
JP4021183B2 (en) Focus state signal output device
KR101484323B1 (en) Automatic focus control unit, electronic device and automatic focus control method
JP4914715B2 (en) Inverted microscope system
US9025243B2 (en) Microscope apparatus
JP4097761B2 (en) Autofocus microscope and autofocus detection device
WO2007075953A3 (en) Distance measuring system
JP5053691B2 (en) Specimen scanner device and specimen position detection method using the device
US11294163B2 (en) Autofocus-control of a microscope including an electrically tunable lens
JP4573524B2 (en) Scanning laser microscope
JP6590366B2 (en) Microscope device, autofocus device, and autofocus method
JP5035600B2 (en) Biological microscope
JP2007271979A (en) Living thing microscope
JP4614907B2 (en) microscope
JP2011112880A (en) Microscope
JP2022529078A (en) Methods and Devices for Checking Confocalness of Scanning and Descanning Microscope Assemblies
JP2008122791A (en) Focus detection device for microscope and microscope having the same
JPH0588072A (en) Automatic focusing device
JP2008209429A (en) Illuminating device for microscope and fluorescence microscope system
WO2022054921A1 (en) System including auto-alignment
van den Berg et al. A modular approach to active focus stabilization for fluorescence microscopy
JP2010181782A (en) Automatic focusing device
KR101202977B1 (en) Hybrid Microscope for Simultaneously Observing Surface and Inner Structure of Target Sample
JP2002277729A (en) Device and method for automatic focusing of microscope
JP2012083487A (en) Focus detecting device and method for detecting focus by focus detecting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5035600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150